高中数学人版必修二直线和圆的方程综合复习试题(含答案解析)

合集下载

高中数学必修二直线和圆的方程复习练习试题及答案(可编辑修改word版)

高中数学必修二直线和圆的方程复习练习试题及答案(可编辑修改word版)

5一、 选择题(每题 3 分,共 54 分)1、在直角坐标系中,直线 x +3y - 3 = 0 的倾斜角是()5 2 A .B .C .D .6 3632、若圆 C 与圆(x + 2)2+ ( y - 1)2 = 1 关于原点对称,则圆 C 的方程是()A . (x - 2)2+ ( y + 1)2 = 1 B . (x - 2)2+ ( y - 1)2 = 1C . (x - 1)2+ ( y + 2)2 = 1D . (x + 1)2+ ( y - 2)2 = 13、直线 ax + by + c = 0 同时要经过第一、第二、第四象限,则 a 、b 、c 应满足( )A . ab > 0, b c < 0B . ab > 0, b c < 0C . ab > 0, b c > 0D . ab < 0, b c < 04、已知直线l 1 : y = 1 x + 2 ,直线l 2 21 过点 P (-2,1) ,且l 1 3到l 2的夹角为 45 ,则直线l 2的方程是( ) A. y = x - 1 B. y = x + 3 5C . y = -3x + 7D . y = 3x + 75、不等式 2x - y - 6 > 0 表示的平面区域在直线 2x - y - 6 = 0 的( )A .左上方B .右上方C .左下方D .左下方6、直线3x - 4 y - 9 = 0 与圆 x 2+ y 2= 4 的位置关系是()A .相交且过圆心B .相切C .相离D .相交但不过圆心7、已知直线 ax + by + c = 0(abc ≠ 0) 与圆 x 2+ y 2= 1相切,则三条边长分别为 a 、b 、c 的三角形()A .是锐角三角形B .是直角三角形C .是钝角三角形D .不存在8、过两点(-1,1)和(3,9) 的直线在 x 轴上的截距是() A.- 32B.- 2 32 C.D .259、点(0,5) 到直线 y = 2x 的距离为()5 3 A .B .C .D .22210、下列命题中,正确的是()A .点(0,0) 在区域 x + y ≥ 0 内B .点(0,0) 在区域 x + y + 1 < 0 内C .点(1,0) 在区域 y > 2x 内D .点(0,1) 在区域 x - y + 1 < 0 内二、填空题(每题 3 分,共 15 分)19、以点 (1,3)和(5,-1) 为端点的线段的中垂线的方程是5⎧b + 3 =a + 3b 4 20、过点 (3,4)且与直线3x - y + 2 = 0 平行的直线的方程是21、直线3x - 2 y + 6 = 0在x 、y 轴上的截距分别为k 22、三点(2,- 3),(4,3)及(5, ) 在同一条直线上,则 k 的值等于223、若方程 x 2+ y 2- 2x + 4 y + 1 + a = 0 表示的曲线是一个圆,则 a 的取值范围是三、解答题(第 24、25 两题每题 7 分,第 26 题 8 分,第 27 题 9 分,共 31 分) 24、若圆经过点 A (2,0), B (4,0), C (0,2) ,求这个圆的方程。

(完整word)高中数学必修二直线与圆的综合问题.doc

(完整word)高中数学必修二直线与圆的综合问题.doc

直线与圆一.解答题(共10 小题)1.已知直线x﹣ y+3=0 与圆心为( 3,4)的圆 C 相交,截得的弦长为2.(1)求圆 C 的方程;(2)设 Q 点的坐标为( 2,3),且动点 M 到圆 C 的切线长与 | MQ| 的比值为常数 k(k> 0).若动点 M 的轨迹是一条直线,试确定相应的 k 值,并求出该直线的方程.2.已知直线l: y=x+2 被圆 C:(x﹣ 3)2+(y﹣2)2=r2(r>0)截得的弦AB的长等于该圆的半径.(1)求圆 C 的方程;(2)已知直线 m:y=x+n 被圆 C:(x﹣3)2+( y﹣2)2=r2( r> 0)截得的弦与圆心构成三角形CDE.若△ CDE 的面积有最大值,求出直线m:y=x+n 的方程;若△ CDE的面积没有最大值,说明理由.3.已知 M (4, 0), N( 1,0),曲线 C上的任意一点P 满足:?=6||(Ⅰ)求点 P 的轨迹方程;(Ⅱ)过点 N(1,0)的直线与曲线 C 交于 A,B 两点,交 y 轴于 H 点,设=λ1,=λ2,试问λ1+λ2 是否为定值?如果是定值,请求出这个定值;如果不是定值,请说明理由.4.已知动圆 P 与圆 F1:(x+2)2+y2=49 相切,且与圆 F2:( x﹣ 2)2+y2=1 相内切,记圆心P 的轨迹为曲线 C.(Ⅰ)求曲线 C 的方程;(Ⅱ)设 Q 为曲线 C 上的一个不在x 轴上的动点, O 为坐标原点,过点F2作 OQ 的平行线交曲线 C 于 M,N 两个不同的点,求△QMN 面积的最大值.5.已知动圆P 过定点且与圆N:相切,记动圆圆心P 的轨迹为曲线C.(Ⅰ)求曲线 C 的方程;(Ⅱ)过点 D( 3,0)且斜率不为零的直线交曲线 C 于 A,B 两点,在 x 轴上是否存在定点 Q,使得直线AQ,BQ的斜率之积为非零常数?若存在,求出定点的坐标;若不存在,请说明理由.6.如图所示,在△ABC中, AB 的中点为 O,且 OA=1,点 D 在 AB 的延长线上,且.固定边AB,在平面内移动顶点C,使得圆 M 与边 BC,边 AC 的延长线相切,并始终与AB 的延长线相切于点D,记顶点C 的轨迹为曲线Γ.以AB所在直线为x 轴, O 为坐标原点如图所示建立平面直角坐标系.(Ⅰ)求曲线Γ的方程;(Ⅱ)设动直线l 交曲线Γ于 E、 F 两点,且以EF为直径的圆经过点O,求△ OEF面积的取值范围.7.已知△ ABC的顶点 A(1, 0),点 B 在 x 轴上移动, | AB| =| AC| ,且 BC 的中点在y 轴上.(Ⅰ)求 C 点的轨迹Γ的方程;(Ⅱ)已知过 P( 0,﹣ 2)的直线 l 交轨迹Γ于不同两点 M, N,求证: Q( 1,2)与 M, N 两点连线 QM, QN 的斜率之积为定值.8.已知圆M: x2+y2+2y﹣7=0和点N(0,1),动圆P经过点N且与圆M相切,圆心P的轨迹为曲线E.(1)求曲线 E 的方程;(2)点 A 是曲线 E 与 x 轴正半轴的交点,点 B、C 在曲线 E 上,若直线 AB、AC的斜率 k1,k2,满足 k1k2=4,求△ ABC面积的最大值.9.已知过点A( 0, 1)且斜率为k 的直线 l 与圆 C:(x﹣ 2)2+(y﹣3)2=1 交于点 M,N 两点.(1)求 k 的取值范围;(2)请问是否存在实数k 使得(其中O为坐标原点),如果存在请求出k 的值,并求 | MN | ;如果不存在,请说明理由.10.已知O 为坐标原点,抛物线C: y2=nx(n> 0)在第一象限内的点P(2, t)到焦点的距离为,C在点P 处的切线交 x 轴于点 Q,直线 l1经过点 Q 且垂直于 x轴.(1)求线段 OQ 的长;(2)设不经过点 P 和 Q 的动直线 l2:x=my+b 交 C 交点 A 和 B,交 l1于点 E,若直线 PA, PB 的斜率依次成等差数列,试问: l2是否过定点?请说明理由.直线与圆参考答案与试题解析一.解答题(共10 小题)1.已知直线x﹣ y+3=0 与圆心为( 3,4)的圆 C 相交,截得的弦长为2.(1)求圆 C 的方程;(2)设 Q 点的坐标为( 2,3),且动点 M 到圆 C 的切线长与 | MQ| 的比值为常数 k(k> 0).若动点 M 的轨迹是一条直线,试确定相应的 k 值,并求出该直线的方程.【分析】(1)求出圆心 C 到直线 l 的距离,利用截得的弦长为2求得半径的值,可得圆 C 的方程;(2)设动点 M( x,y),则由题意可得=k,即=k,化简可得(k2﹣1)?x2+(k2﹣1) ?y2+(6﹣ 4k2) x+(8﹣6k2)y+13k2﹣9=0,若动点 M 的轨迹方程是直线,则k2﹣1=0,即可得出结论.【解答】解:(1)圆心 C 到直线 l 的距离为= ,∵截得的弦长为 2,∴半径为 2,∴圆 C:(x﹣ 3)2+( y﹣4)2=4;(2)设动点 M (x, y),则由题意可得=k,即=k,化简可得( k2﹣ 1)?x2+( k2﹣ 1)?y2+( 6﹣4k2)x+(8﹣ 6k2) y+13k2﹣21=0,若动点 M 的轨迹方程是直线,则 k2﹣ 1=0,∴ k=1,直线的方程为 x+y﹣4=0.【点评】本小题主要考查直线与圆的位置关系,弦长公式的应用,圆的一般式方程,属于中档题.2.已知直线l: y=x+2 被圆 C:(x﹣ 3)2+(y﹣2)2=r2(r>0)截得的弦AB的长等于该圆的半径.(1)求圆 C 的方程;(2)已知直线 m:y=x+n 被圆 C:(x﹣3)2+( y﹣2)2=r2( r> 0)截得的弦与圆心构成三角形CDE.若△ CDE 的面积有最大值,求出直线m:y=x+n 的方程;若△ CDE的面积没有最大值,说明理由.【分析】(1)根据直线和圆相交得到的弦长公式求出圆的半径即可求圆 C 的方程;(2)根据直线和圆相交的位置关系,结合△CDE的面积公式即可得到结论.【解答】解:(1)设直线 l 与圆 C 交于 A, B 两点.∵直线 l :y=x+2 被圆 C:(x﹣ 3)2 +(y﹣ 2)2=r2( r>0)截得的弦长等于该圆的半径,∴△ CAB为正三角形,∴三角形的高等于边长的,∴圆心 C 到直线 l 的距离等于边长的.∵直线方程为x﹣y+2=0,圆心的坐标为(3, 2),∴圆心到直线的距离d==,∴r=,∴圆C的方程为:(x﹣3)2+(y﹣2)2=6.(2)设圆心 C 到直线 m 的距离为 h, H 为 DE的中点,连结 CD,CH,CE.在△ CDE中,∵DE=,∴=∴,当且仅当 h2=6﹣h2,即 h2=3,解得h=时,△ CDE的面积最大.∵CH=,∴| n+1| =,∴n=,∴存在n的值,使得△ CDE的面积最大值为3,此时直线 m 的方程为y=x.【点评】本题主要考查直线和圆的位置关系的应用,根据弦长公式是解决本题的关键.3.已知 M (4, 0), N( 1,0),曲线 C上的任意一点P 满足:?=6||(Ⅰ)求点 P 的轨迹方程;(Ⅱ)过点 N(1,0)的直线与曲线 C 交于 A,B 两点,交 y 轴于 H 点,设=λ1,=λ2,试问λ1+λ2 是否为定值?如果是定值,请求出这个定值;如果不是定值,请说明理由.【分析】(Ⅰ)求出向量的坐标,利用条件化简,即可求点P 的轨迹方程;(Ⅱ)分类讨论,利用=λ1,=λ2,结合韦达定理,即可得出结论.【解答】解:(Ⅰ)设 P( x,y),则=(﹣ 3,0),=( x﹣ 4,y),=(1﹣x,﹣ y).∵?=6|| ,∴﹣ 3×( x﹣ 4)+0× y=6,化简得=1 为所求点 P 的轨迹方程 .4 分(Ⅱ)设 A(x1,y1), B( x2, y2).①当直线 l 与 x 轴不重合时,设直线l 的方程为x=my+1( m≠ 0),则 H( 0,﹣).从而=( x , y +),=( 1 x , y ),由=λ得(x,y +)=λ(1x , y ),111111111 1∴ λ=1+1同理由得λ,2=1+∴ (λ1+λ2)=2+由直与方程立,可得(4+3m2) y2+6my 9=0,∴y1+y2=,y1y2=代入得∴(λ+λ) =2+=,1 2∴λ+λ1 2=②当直 l 与 x 重合, A( 2,0),B(2,0),H(0, 0),λ,1 =.λ2= 2∴λ+λ分1 2=11上,λ1+λ2定.12 分.【点】本考迹方程,考向量知的运用,考直与位置关系的运用,考分的数学思想,属于中档.4.已知P与F1:(x+2)2+y2=49相切,且与F2:( x 2)2+y2=1相内切,心P 的迹曲 C.(Ⅰ)求曲 C 的方程;(Ⅱ) Q 曲 C 上的一个不在x 上的点, O 坐原点,点F2作 OQ 的平行交曲 C 于 M,N 两个不同的点,求△QMN 面的最大.【分析】(I )由已知条件推出| PF1|+| PF2| =8> | F1F2| =6,从而得到心P 的迹以F1,F2焦点的,由此能求出心P 的迹 C 的方程.(II)由 MN∥ OQ,知△ QMN 的面 =△ OMN 的面,由此能求出△QMN 的面的最大.【解答】解:(Ⅰ) P 的半径R,心 P 的坐( x,y),由于 P 与 F1:( x+2)2+y2=49相切,且与F2:( x 2)2+y2=1相内切,所以 P 与F1只能内切.⋯( 1 分)所以 | PF1|+| PF2 | =7 R+R 1=6> | F1F2| =4.⋯(3 分)所以心心P 的迹以F1,F2焦点的,其中 2a=6,2c=4,∴ a=3, c=2, b2=a2c2=5.所以曲 C 的方程=1.⋯(4 分)(Ⅱ) M (x1, y1), N( x2, y2), Q(x3,y3),直 MN 的方程x=my+2,由可得:(5m 2+9) y2+20my 25=0,y 1+y2 =,y1y2=.⋯(5分)所以 | MN | ==⋯(7分)因 MN∥ OQ,∴△ QMN 的面 =△OMN 的面,∵O 到直 MN :x=my+2 的距离 d=.⋯(9分)所以△ QMN 的面.⋯( 10 分)令=t, m2=t21(t ≥0),S==.,.因 t≥ 1,所以.所以,在 [ 1, +∞)上增.所以当 t=1 , f( t )取得最小,其9.⋯( 11 分)所以△ QMN 的面的最大.⋯( 12 分)【点】本考的准方程、直、、与等知,考推理能力、运算求解能力,考函数与方程思想、化与化思想、数形合思想等.5.已知 P 定点且与 N:相切,心P 的迹曲C.(Ⅰ)求曲 C 的方程;(Ⅱ)点 D( 3,0)且斜率不零的直交曲 C 于 A,B 两点,在 x 上是否存在定点Q,使得直AQ, BQ的斜率之非零常数?若存在,求出定点的坐;若不存在,明理由.【分析】(Ⅰ)由意可知丨PM 丨+丨 PN 丨 =4>丨 MN 丨 =2 , P 的迹 C 是以 M ,N 焦点,2=a2 c2=1,即可求得方程;4 的, a=4, c= ,b(Ⅱ)将直线方程代入椭圆方程,考查韦达定理,直线的斜率公式,当且仅当,解得 t= ±2,代入即可求得,定点的坐标.【解答】解:(Ⅰ)设动圆 P 的半径为r,由 N:及,知点M在圆N 内,则有,从而丨 PM 丨 +丨 PN 丨=4>丨 MN 丨=2,∴P 的轨迹 C 是以 M ,N 为焦点,长轴长为 4 的椭圆,设曲线 C 的方程为:(a>b>0),则2a=4,a=4,c=,b2=a2﹣c2=1故曲线 C 的轨迹方程为;(Ⅱ)依题意可设直线AB 的方程为 x=my+3,A( x1,y1),B(x2, y2).,由,整理得:( 4+m2)y2+6my+5=0,则△ =36m2﹣4×5×( 4+m2)> 0,即 m2> 4,解得: m>2 或 m<﹣ 2,由 y 1+y2=﹣,y1y2= , x1+x2=m(y1+y2)+6=,x1x2=(my1 +3)(my2 +3) =m2y1y2+m(y 1+y2)+9=,假设存在定点Q(t ,0),使得直线AQ,BQ 的斜率之积为非零常数,则(x1﹣ t)( x2 ﹣t ) =x1 2﹣ t( x1+x2) +t2= ﹣t ×2= ,x +t∴kAQ?k BQ=?==,要使 k AQ?k BQ为非零常数,当且仅当,解得t=±2,当 t=2 时,常数为=,当 t= ﹣2 时,常数为=,∴存在两个定点Q1(2, 0)和 Q2( 2, 0),使直AQ,BQ 的斜率之常数,当定点 Q1( 2,0),常数;当定点Q2( 2, 0),常数.【点】本考准方程及几何性,的定,考直与的位置关系,达定理,直的斜率公式,考算能力,属于中档.6.如所示,在△ABC中, AB 的中点O,且 OA=1,点 D 在 AB 的延上,且.固定AB,在平面内移点C,使得 M 与 BC, AC 的延相切,并始与AB 的延相切于点D,点C 的迹曲Γ.以AB所在直x , O 坐原点如所示建立平面直角坐系.(Ⅰ)求曲Γ的方程;(Ⅱ)直l 交曲Γ于 E、 F 两点,且以EF直径的点O,求△ OEF面的取范.【分析】(Ⅰ)确定点 C 迹Γ是以 A,B 焦点, 4 的,且挖去的两个点,即可求曲Γ的方程;(Ⅱ)可直,而表示面,即可求△ OEF面的取范.【解答】解:(Ⅰ)依意得AB=2,BD=1,M 与 AC 的延相切于T1,与 BC 相切于 T2,AD=AT1, BD=BT2, CT1=CT2 所以AD+BD=AT+BT=AC+CT +BT=AC+CT+CT=AC+BC=AB+2BD=4> AB=2⋯(2 分)12121 2所以点 C 迹Γ是以A,B 焦点, 4 的,且挖去的两个点.曲Γ的方程.⋯( 4 分)(Ⅱ)由于曲Γ 要挖去两个点,所以直OE, OF 斜率存在且不0 ,所以可直⋯( 5 分)由得,,同理可得:,;所以,又 OE⊥ OF,所以⋯(8分)令t=k2+1,t>1且k 2=t1,所以=⋯(10 分)又,所以,所以,所以,所以,所以△ OEF面的取范.⋯( 12 分)【点】本考迹方程,考直与位置关系的运用,考三角形面的算,考学生分析解决的能力,属于中档.7.已知△ ABC的点 A(1, 0),点 B 在 x 上移, | AB| =| AC| ,且 BC 的中点在y 上.(Ⅰ)求 C 点的迹Γ的方程;(Ⅱ)已知 P( 0, 2)的直 l 交迹Γ于不同两点 M, N,求: Q( 1,2)与 M, N 两点 QM, QN 的斜率之定.【分析】(Ⅰ)利用直接法,求 C 点的迹Γ的方程;(Ⅱ)直 l 的方程 y=kx 2,与抛物方程立,求出斜率,即可明.【解答】解:(Ⅰ) C( x,y)( y≠ 0),因 B 在 x 上且 BC 中点在 y 上,所以 B( x,0),由| AB| =| AC| ,得( x+1)2=(x 1)2+y2,化得y2=4x,所以 C 点的迹Γ的方程y2=4x(y≠ 0).(Ⅱ)直 l 的斜率然存在且不0,直 l 的方程 y=kx 2, M (x1, y1), N( x2, y2),由得 ky24y 8=0,所以,,,同理,,所以 Q(1, 2)与 M ,N 两点的斜率之定4.【点】本考迹方程,考直与抛物位置关系的运用,考学生的算能力,属于中档.8.已知M: x2+y2+2y 7=0和点N(0,1),P点N且与M相切,心P的迹曲E.(1)求曲 E 的方程;(2)点 A 是曲 E 与 x 正半的交点,点 B、C 在曲 E 上,若直 AB、AC的斜率 k1,k2,足 k1k2=4,求△ ABC面的最大.【分析】(1)利用与的位置关系,得出曲 E 是 M, N 焦点,的,即可求曲 E 的方程;(2)立方程得(1+2t2)y2+4mty +2m22=0,利用达定理,合k1k2=4,得出直BC 定点( 3, 0),表示出面,即可求△ABC面的最大.【解答】解:(1) M : x2+y2+2y 7=0 的心 M( 0, 1),半径点 N( 0, 1)在 M内,因 P 点 N 且与 M 相切,所以 P 与 M 内切. P 半径 r,r=| PM| .因 P 点 N,所以 r=| PN| ,>| MN| ,所以曲 E 是 M, N 焦点,的.2=2 1=1,由,得 b所以曲 E 的方程⋯(4分)(Ⅱ)直 BC斜率 0 ,不合意B(x1,y1), C( x2, y2),直 BC:x=ty+m,立方程得( 1+2t 2) y2+4mty +2m22=0,又k 1k2=4,知y1y2=4(x1 1)(x2 1)=4(ty1 +m 1)( ty2+m 1)=.代入得又 m≠ 1,化得( m+1)( 1 4t2)=2( 4mt 2)+2(m 1)( 1+2t 2),解得 m=3,故直 BC 定点( 3, 0)⋯(8 分)由△ >,解得t2> 4 ,=(当且 当取等号).上,△ ABC 面 的最大⋯( 12 分)【点 】 本 考 与 的位置关系,考 的定 与方程,考 直 与 位置关系的运用,考 达定理,属于中档 .9.已知 点 A ( 0, 1)且斜率 k 的直 l 与 C :(x2)2+(y3) 2=1 交于点 M ,N 两点.(1)求 k 的取 范 ;(2) 是否存在 数k 使得 (其中 O 坐 原点),如果存在 求出k 的 ,并求 | MN | ;如果不存在, 明理由.【分析】(1) 出直 方程,利用直 与 的位置关系,列出不等式求解即可.(2) 出 M ,N 的坐 , 利用直 与 的方程 立,通 达定理, 合向量的数量 , 求出直 的斜率,然后判断直 与 的位置关系求解 | MN| 即可.【解答】 解:(1)由 ,可知直 l 的方程 y=kx+1,因 直l 与 C 交于两点,由已知可得C 的 心 C 的坐 ( 2,3),半径 R=1.故由< 1,解得: <k <所以 k 的取 范 得(, )(2) M (x 1 ,y 1),N (x 2,y 2).将 y=kx+1 代入方程:(x 2)2+(y 3) 2=1,整理得( 1+k 2)x 24(1+k ) x+7=0.所以 x 1+x 2=,x 1x 2 =,? =x 1x 2 +y1y 2 =(1+k 2)( x1x 2)+k ( x +x ) +1==12,1 2解得 k=1,所以直l 的方程 y=x+1.故 心 C 在直 l 上,所以 | MN | =2.【点 】 本 主要考 直 和 的位置关系的 用,以及直 和 相交的弦 公式的 算,考 学生的 算能力,是中档 .10.已知 O 坐 原点,抛物C : y 2=nx (n > 0)在第一象限内的点P (2, t )到焦点的距离 ,C 在点 P 的切 交 x 于点 Q ,直 l 1 点 Q 且垂直于 x .(1)求 段 OQ 的 ;(2)不点 P 和 Q 的直 l2:x=my+b 交 C 交点 A 和 B,交 l1于点 E,若直 PA, PB 的斜率依次成等差数列,: l2是否定点?明理由.【分析】(1)先求出 p 的,然后求出在第一象限的函数,合函数的数的几何意求出N 的坐即可求段 OQ 的;(2)立直和抛物方程行消元,化关于y 的一元二次方程,根据根与系数之的关系合直斜率的关系建立方程行求解即可.【解答】解:(Ⅰ)由抛物 y2=nx(n>0)在第一象限内的点P(2, t)到焦点的距离,得 2+ = ,∴ n=2,抛物 C 的方程 y 2=2x,P(2,2).⋯(2 分)C 在第一象限的象的函数解析式y= , y′=,故 C 在点 P 的切斜率,切的方程y 2= ( x 2),令 y=0 得 x= 2,所以点 Q 的坐( 2,0).故段 OQ 的 2.⋯( 5 分)(Ⅱ)l2恒定点( 2, 0),理由如下:由意可知 l 1的方程 x= 2,因 l2与 l1相交,故 m≠ 0.由 l 2: x=my+b,令 x= 2,得 y= ,故 E( 2,)A( x1,y1),B(x2,y2)由消去 x 得: y22my2b=0y 1+y2 =2m,y1y2= 2b ⋯( 7 分)直 PA的斜率,同理直 PB 的斜率,直 PE的斜率.因直 PA,PE,PB 的斜率依次成等差数列,所以+=2×⋯(10分)整理得:=,因 l2不点 Q,所以 b≠ 2,所以 2m b+2=2m,即 b=2.故 l 2的方程x=my+2,即 l2恒定点( 2, 0).⋯(12 分)【点】本主要考直和抛物的位置关系,利用直和抛物方程,化一元二次方程,合达定理,利用而不求的思想是解决本的关.。

高中数学必修2直线和圆专题【答案】

高中数学必修2直线和圆专题【答案】

直线与圆专题卷答案一. 选择题CABDA AACDB二. 填空题11.3 12. 210 13. 60° 14. k ∈R 且k ≠-1 15. {4, 5, 6, 7}三. 解答题16. 解:过B 作CA 的垂线交直线CA 于点H ,则|CD|=|BH|设A(a ,0),B(0,b),则a>1,b>1.直线AC 的方程为:y =21(x -a) 即x -2y -a =0∴ |BH|=52b a + ∵ (1, 1)在AB 上 ∴ a 1+b 1=1 ∴ |CD|=52b a +=51(a +2b)(a 1+b 1)=51(3+a b 2+a b ) ∴ |CD|≥51(3+22)=510253+ 当a 2=2b 2且a +b =ab 即a =1+2,b =222+时 |CD|有最小值510253+,此时直线l 的方程为:22212+++y x =1 17. (1)由题意知此平面区域表示的是以O(0,0),P(4,0),Q(0,2)构成的三角形及其内部,且△OPQ 是直角三角形,∵覆盖它的且面积最小的圆是其外接圆.∴圆心是(2,1),半径是5,∴圆C 的方程是(x -2)2+(y -1)2=5.(2)设直线l 的方程是:y =x +b.∵CA ⊥CB ,∴圆心C 到直线l 的距离是102, 即|2-1+b|2=102.解之得,b =-1± 5. ∴直线l 的方程是:y =x -1± 5.18.(1)当直线l 经过坐标原点时,该直线在两坐标轴上的截距都为0,此时2+a =0,解得a =-2,此时直线l 的方程为x -y =0;当直线l 不经过坐标原点,即a ≠-2时,由直线在两坐标轴上的截距相等可得2+a a +1=2+a ,解得a =0,此时直线l 的方程为x +y -2=0. 所以,直线l 的方程为x -y =0或x +y -2=0.(2)由直线方程可求得M ⎝ ⎛⎭⎪⎫2+a a +1,0、N(0,2+a),又因为a>-1,故S △OMN =12×2+a a +1×(2+a)=12×(a +1)2+2(a +1)+1a +1=12×[(a +1)+1a +1+2]≥12×⎝ ⎛⎭⎪⎫2(a +1)×1a +1+2=2,当且仅当a +1=1a +1,即a =0或a =-2(舍去)时等号成立.此时直线l 的方程为x +y -2=0. 19. [解析] (1)显然直线l 的斜率存在,设切线方程为y -2=k(x -1),则由|2-k|k2+1=2得,k1=0,k2=-43,故所求的切线方程为y =2或4x +3y -10=0. (2)当直线l 垂直于x 轴时,此时直线方程为x =1,l 与圆的两个交点坐标为(1,3)和(1,-3),这两点的距离为23,满足题意;当直线l 不垂直于x 轴时,设其方程为y -2=k(x -1),即kx -y -k +2=0,设圆心到此直线的距离为d ,则23=24-d2,∴d =1,∴1=|-1+2|k2+1,∴k =34,此时直线方程为3x -4y +5=0,综上所述,所求直线方程为3x -4y +5=0或x =1.(3)设Q 点的坐标为(x ,y ),∵M (x 0,y 0),ON →=(0,y 0),OQ →=OM →+ON →,∴(x ,y )=(x 0,2y 0),∴x =x 0,y =2y 0.∵x 20+y 20=4,∴x 2+⎝⎛⎭⎫y 22=4,即x 24+y 216=1, ∴Q 点的轨迹方程是x 24+y 216=1,轨迹是一个焦点在y 轴上的椭圆. 20. [解析] (1)线段AB 的中点E ⎝⎛⎭⎫32,52,kAB =3-21-2=-1,故线段AB 的中垂线方程为y -52=x -32,即x -y +1=0. 因为圆C 经过A 、B 两点,故圆心在线段AB 的中垂线上.又因为直线m :3x -2y =0平分圆C ,所以直线m 经过圆心.由⎩⎪⎨⎪⎧ x -y +1=03x -2y =0解得,⎩⎪⎨⎪⎧x =2y =3,即圆心的坐标为C(2,3),而圆的半径r =|CB|=(2-2)2+(2-3)2=1,所以圆C 的方程为:(x -2)2+(y -3)2=1.(2)直线l 的方程为y =kx +1.圆心C 到直线l 的距离d =|2k -3+1|1+k2, (ⅰ)由题意得d =|2k -3+1|1+k2<1,两边平方整理得:3k2-8k +3<0, 解之得:4-73<k<4+73. (ⅱ)将直线l 的方程与圆C 的方程组成方程组得,⎩⎪⎨⎪⎧ y =kx +1 ①(x -2)2+(y -3)2=1 ② 将①代入②得:(1+k2)x2-4(1+k)x +7=0,设M(x1,y1)、N(x2,y2),则由根与系数的关系可得:x1+x2=4(1+k)1+k2,x1x2=71+k2, 而y1y2=(kx1+1)·(kx2+1)=k2x1x2+k(x1+x2)+1,所以OM →·ON →=x1x2+y1y2=(1+k2)x1x2+k(x1+x2)+1=(1+k2)·71+k2+k ·4(1+k)1+k2+1=4k(1+k)1+k2+8, 故有4k(1+k)1+k2+8=12,整理k(1+k)=1+k2,解得k =1.经检验知,此时有Δ>0,所以k =1.。

高中数学人教A版必修2直线和圆的综合问题课后练习一含解析

高中数学人教A版必修2直线和圆的综合问题课后练习一含解析

(同步复习精讲辅导)北京市2014-2015学年高中数学 直线和圆的综合问题课后练习一(含解析)新人教A 版必修2设直线l 经过点P (3,4),圆C 的方程为(x -1)2+(y +1)2=4.若直线l 与圆C 交于两个不同的点,则直线l 的斜率的取值范围为( ). A .⎝ ⎛⎭⎪⎫1918,+∞ B .⎝ ⎛⎭⎪⎫1716,2720 C .⎝ ⎛⎭⎪⎫2120,+∞ D .⎝ ⎛⎭⎪⎫2720,2917 题1已知m ∈R ,直线l :m y m mx 4)1(2=+-和圆C :0164822=++-+y x y x . (1)求直线l 斜率的取值范围;(2)直线l 能否将圆C 分割成弧长的比值为12的两段圆弧?为什么?题2已知圆22630x y x y ++-+=上的两点P 、Q 关于直线k x -y +4=0对称,且OP ⊥OQ (O 为坐标原点),求直线PQ 的方程. 题3在平面直角坐标系xOy 中,已知圆x 2+y 2=16上有且只有四个点到直线3x -4y +c =0的距离为2,则实数c 的取值范围为 . 题4过点A (11, 2)作圆x 2+y 2-2x +4y +1=0的弦,则弦长为整数的弦共有( ). A .4条 B .7条 C .8条 D .11条 题5如果圆(x +3)2+(y -1)2=1关于直线l :mx +4y -1=0对称,则直线l 的斜率为( ).A .4B .-4C .14D .-14题6过点(0,1)引x 2+y 2-4x +3=0的两条切线,这两条切线夹角的余弦值为________.题7过点(2,1)的直线中,被圆x 2+y 2-2x -4y =0截得的弦长最短的直线方程为 . 题8 若直线1x ya b+=通过点P (1,1),(a >0,b >0),则( ) A .a +b ≤4 B .a +b ≥4 C .ab <4 D .ab >4 题9在平面直角坐标系xOy 中,已知圆x 2+y 2-12x +32=0的圆心为Q ,过点P (0,2)且斜率为k 的直线与圆相交于不同的两点A 、B . (1)求k 的取值范围;(2)是否存在常数k ,使得向量OA OB +u u u r u u u r 与PQ u u u u r共线?如果存在,求k 值;如果不存在,请说明理由. 题10在坐标平面内,与点A (1,3)的距离为2,且与点B (3,1)的距离为32的直线共有______条.课后练习详解题1答案:C .详解:由题意,设直线l 的方程为y -4=k (x -3),即kx -y +4-3k =0.又直线l 与圆C :(x -1)2+(y +1)2=4交于两个不同的点,所以圆心到直线的距离小于圆的半径长,即|5-2k |k 2+1<2,解得k >2120.所以直线l 的斜率的取值范围为⎝ ⎛⎭⎪⎫2120,+∞,答案选C .题2答案:(1)[-12,12];(2)不能将圆C 分割成弧长的比值为12的两段弧.详解:(1)直线l 的方程可化为y =m m 2+1x -4mm 2+1,直线l 的斜率k =m m 2+1,因为|m |≤12(m 2+1),所以|k |=|m |m 2+1≤12,当且仅当|m |=1时等号成立.所以,斜率k 的取值范围是[-12,12].(2)不能.由(1)知l 的方程为y =k (x -4),其中|k |≤12.圆C 的圆心为C (4,-2),半径r =2,圆心C 到直线l 的距离为d =21+k2, 由|k |≤12,得d ≥45>1,即d >r2.从而,若l 与圆C 相交,则圆C 截直线l 所得的弦所对的圆心角小于2π3.所以l 不能将圆C 分割成弧长的比值为12的两段弧.题3答案:y =-12x +32或y =-12x +54.详解:由P 、Q 关于直线kx -y +4=0对称知直线kx -y +4=0过已知圆的圆心(-12,3),则k =2,直线PQ 的斜率k PQ =-12.设直线PQ 的方程为y =-12x +b ,P (x 1,y 1)、Q (x 2,y 2),则P 、Q 两点的坐标是方程组⎩⎪⎨⎪⎧y =-12x +b x 2+y 2+x -6y +3=0的解,消去y ,得54x 2+(4-b )x +b 2-6b +3=0,故x 1+x 2=- 4(4-b )5, ①x 1x 2=4(b 2-6b +3)5, ②由OP ⊥OQ ⇒x 1x 2+y 1y 2=0⇒x 1x 2+(-12x 1+b )·(-12x 2+b )=0,54x 1x 2-b 2(x 1+x 2)+b 2=0,将①,②代入得b =32或b =54. 所以直线PQ 的方程为y =-12x +32或y =-12x +54.题4答案:-10<c <10.详解:圆x 2+y 2=16的圆心为O ,半径等于4,圆心到直线的距离5||c d =, 要使圆x 2+y 2=16上有且只有四个点到直线3x -4y +c =0的距离为2,应有245||-<=c d ,即-10<c <10. 题5答案:B .详解:圆x 2+y 2-2x +4y +1=0的标准方程是:(x -1)2+(y +2)2=22, 圆心(1,-2),半径r =2,过点A (11,2)的最短的弦长大于0, 最长的弦长为4,只有一条,还有长度为1,2,3的弦长,各2条, 所以共有弦长为整数的1+2×3=7条.故选B . 题6答案:D .详解:依题意,得直线mx +4y -1=0经过点(-3,1),所以-3m +4-1=0.所以m =1,故直线l 的斜率为-14,选D .题7 答案:53cos =α. 详解:设切线的方程为y -1=kx ,即kx -y +1=0.由切线的性质可得,圆心(2,0)到直线kx -y +1=0的距离11|12|22=++=k k d ,0=k 或43k =-,设两直线的夹角为α,则20πα≤≤,由直线的夹角公式可得,)34(01340tan -⨯-+=α, 因为925cos 1tan 122==+αα,cos α>0,所以53cos =α. 题8答案:x -y -1=0.详解:∵圆x 2+y 2-2x -4y =0的圆心为C (1,2) ∴设A (2,1),得AC 的斜率12112-=--=AC K ,∵直线l 经过点A (2,1),且l 被圆x 2+y 2-2x -4y =0截得的弦长最短 ∴直线l 与经过点A (2,1)的直径垂直的直线由此可得,直线l 的斜率为K =1,因此,直线l 方程为y -1=x -2,即x -y -1=0 故答案为:x -y -1=0. 题9 答案:B . 详解:因为直线1x ya b+=通过点P (1,1), 所以111=+ba ,又因为a >0,b >0, 由基本不等式可得1111224b aa b a b a b a b+=++=+++≥+=()()当且仅当a =b =2时,取等号,故选B . 题10答案:(1)-34<k <0;(2)没有符合题意的常数k .详解:(1)圆(x -6)2+y 2=4的圆心Q (6,0),半径r =2,设过P 点的直线方程为y =kx +2,根据题意得|6k +2|1+k 2<2,∴4k 2+3k <0,∴-34<k <0. (2)设A (x 1,y 1),B (x 2,y 2),则OA OB +u u u r u u u r=(x 1+x 2,y 1+y 2),将y =kx +2代入x 2+y 2-12x +32=0中消去y 得(1+k 2)x 2+4(k -3)x +36=0,∵x 1,x 2是此方程两根,∴则x 1+x 2=-4(k -3)1+k2,又y 1+y 2=k (x 1+x 2)+4=-4k (k -3)1+k2+4, P (0,2),Q (6,0),∴PQ u u u u r=(6,-2),向量OA OB +u u u r u u u r 与PQ u u u u r共线等价于-2(x 1+x 2)=6(y 1+y 2), ∴8(k -3)1+k 2=-6k ·4(k -3)1+k 2+24,∴k =-34,由(1)知k ∈(-34,0),故没有符合题意的常数k .题11答案:1.详解:以A (1,32为半径作圆A ,以B (3,1)为圆心,以32圆B .∵|AB 22(13)(31)22322-+-==, ∴两圆内切,公切线只有一条.故答案为:1.。

高中数学人教A版必修2《直线和圆的综合问题》课后练习二(含解析)

高中数学人教A版必修2《直线和圆的综合问题》课后练习二(含解析)

(同步复习精讲辅导)北京市-高中数学 直线和圆的综合问题课后练习二(含解析)新人教A 版必修2题1已知直线l :y =x +m 与半圆C :x 2+y 2=4(y ≥0)有两个公共点,则实数m 的取值范围是____________.题2已知直线l :y =x +m ,m ∈R .若以点M (2,0)为圆心的圆与直线l 相切于点P ,且点P 在y 轴上,求该圆的方程;题3过原点的直线与圆044222=+--+y x y x 相交所得弦的长为2,则该直线的方程为__________.题4在平面直角坐标系xOy 中,已知圆x 2+y 2=4上恰有两个点到直线4x -3y +c =0的距离为1,则实数c 的取值范围是 .题5已知点P 是半径为5的⊙O 内的一个定点,且OP =3,则过点P 的所有弦中,弦长为整数的弦共有多少条( ).A .2条B .3条C .4条D .5条题6圆x 2+y 2-2x +6y +5a =0关于直线y =x +2b 成轴对称图形,则a -b 的取值范围是( ).A .(-∞,4)B .(-∞,0)C .(-4,+∞)D .(4,+∞)题7从原点向圆x 2+y 2-12y +27=0作两条切线,则这两条切线的夹角的大小为 .题8已知圆C :(x -3)2+(y -4)2=4和直线l :kx -y -4k +3=0.(1)求证:不论k 取什么值,直线和圆总相交;(2)求k 取何值时,圆被直线截得的弦最短,并求最短弦的长.题9若直线ax +by =2经过点M (cos α,sin α),则( ).A .422≤+b aB . 422≥+b aC .41122≤+b aD .41122≥+b a题10若直线b x y -=与曲线212+-=y x ,有两个不同的公共点,则实数b 的取值范围为 .题11如图,在平面内,两条直线l 1,l 2相交于点O ,对于平面内任意一点M ,若p 、q 分别是点M 到直线l 1,l 2的距离,则称(p ,q )为点M 的“距离坐标”.根据上述规定,“距离坐标”是(1,1)的点共有 个.课后练习详解题1 答案:222<≤m .详解:当直线y =x +m 与圆相切时,由题意可得2||2m =, ∴22=m 或22-=m (舍去),当直线y =x +m 过A (-2,0)时,m =2,此时y =x +2过(0,2)点结合图形可得,直线l :y =x +m 与半圆C :x 2+y 2=4(y ≥0)有两个公共点时,222<≤m .题2答案:(x -2)2+y 2=8.详解:依题意,点P 的坐标为(0,m ).因为MP ⊥l ,所以0-m 2-0×1=-1, 解得m =2,即点P 的坐标为(0,2).从而圆的半径r =|MP |=22,故所求圆的方程为(x -2)2+y 2=8.题3答案:2x -y =0.详解:设所求直线方程为y =kx ,即kx -y =0.由于直线kx -y =0被圆截得的弦长等于2,圆的半径是1,因此圆心到直线的距离等于12-(22)2=0, 即圆心位于直线kx -y =0上.于是有k -2=0,即k =2,因此所求直线方程是2x -y =0.题4答案:(-15,-5)∪(5,15).详解:由已知可得:圆半径为2,圆心为(0,0)故圆心(0,0)到直线4x -3y +c =0的距离为5||c d =, 如图中的直线m 恰好与圆有3个公共点,此时d =OA =2-1,直线n 与圆恰好有1个公共点,此时d =OB =2+1=3,当直线介于m 、n 之间满足题意.故要使圆x 2+y 2=4上恰有两个点到直线4x -3y +c =0的距离为1,只需d 大于1小于3,即35||1<<c , 解得:-15<c <-5,或5<c <15故c 的取值范围是:(-15,-5)∪(5,15).题5答案:C .详解:如图,过P 作弦AB ⊥OP ,交⊙O 于A 、B ,连接OA ;Rt△OAP 中,OP =3,OA =5;根据勾股定理,得AP =4;∴AB =2AP =8;故过点P 的弦的长度都在8~10之间;因此弦长为8、9、10;当弦长为8、10时,过P 点的弦分别为弦AB 和过P 点的直径,分别有一条;当弦长为9时,根据圆的对称性知,符合条件的弦应该有两条;故弦长为整数的弦共有4条.故选C .题6答案:A .详解:由题得圆心(1,-3),且(-2)2+62-4·5a >0,即a <2.由圆心在直线上,可得b =-2,∴a -b <4,所以选A .题7答案:60°. 详解:设原点为O ,圆心为P (0,6),半径是PA =3,切点为A 、B ,则OP =6,在Rt△AOP 中,∠AOP=30°,所以则这两条切线的夹角的大小为60°.题8答案:(1)省略;(2)k =1,22.详解:(1)证明:由直线l 的方程可得y -3=k (x -4),则直线l 恒通过定点(4,3),把(4,3)代入圆C 的方程,得(4-3)2+(3-4)2=2<4,所以点(4,3)在圆的内部,所以直线l 与圆C 总相交.(2)设圆心到直线l 的距离为d ,则22211d k k ==+-+(),又设弦长为L ,则2222Lr d =+)(, 即222221)224-4(1)322111L k k k k k k +==-+=-≥+++((), ∴当k =1时,22L min 2=)(,∴22L min =,所以圆被直线截得最短的弦长为22.题9答案:B .详解:直线ax +by =2经过点M (cos α,sin α),∴a cos α+b sin α=2,∴a 2+b 2=(a 2+b 2)(cos 2α+sin 2α)≥(a cos α+b sin α)2=4,(当且仅当cos sin a b αα=时等号成立)故选B .题10 答案:)223[+,.详解:因为曲线212+-=y x ,所以(x -2)2+y 2=1(x ≥2), 表示圆心为(2,0),半径为1的右半圆.圆心(2,0),到直线x -y -b =0的距离为12|2|=-=b d 解得22+=b 或2-2=b (舍去),当直线y =x -b 过点B (2,-1)时,直线与圆有两个交点,此时b =3.所以要使直线y =x -b 与曲线212+-=y x 有两个不同的公共点, 所以223+<≤b ,即实数b 的取值范围为)223[+,. 故答案为:)223[+,.题11答案:4.详解:到l1的距离是1的点,在与l1平行且与l1的距离是1的两条直线上;到l2的距离是1的点,在与l2平行且与l2的距离是1的两条直线上;以上四条直线有四个交点,故“距离坐标”是(1,1)的点共有4个.故答案为:4.。

必修2专题--直线与圆的方程试卷及答案

必修2专题--直线与圆的方程试卷及答案

必修2专题--直线与圆的方程试卷及答案高二文数专题复习——直线与方程一、选择题1.直线2x +ay +3=0的倾斜角为120°,则a 的值是 ( )223A. B C .23 D .-3332. 若A (1, 5) 、B (-2, -1) 、C (-1, m ) 三点共线,则m 的值为 ( ) A . 0 B .1 C . -2 D . 23.已知过A (-1,a ) 、B (a, 8) 两点的直线与直线2x -y +1=0平行,则a的值为( )A .-10 B.17 C.5 D .24.直线l 过点(-1,2) 且与直线2x -3y +4=0垂直,则l 的方程是 ( )A .3x +2y -1=0B .3x +2y +7=0C .2x -3y +5=0D .2x -3y +8=5.已知直线l 1:(k -3) x +(4-k ) y +1=0与l 2:2(k -3) x -2y +3=0平行,则k 的值是( )A .1或3 B.1或5 C.3或5 D.1或26.圆O 1:x 2+y 2-2x =0和圆O 2:x 2+y 2-4y =0的位置关系是 ( )A .相离 B.相交 C.外切 D .内切7.若直线ax +by +c =0过第一、二、三象限,则 ( )A .ab >0,bc <0B .ab >0,bc >0C .ab <0,bc >0D .ab <0,bc <8.直线Ax +By -1=0在y 轴上的截距是-13x -y =33的倾斜角的2倍,则 ( ) A .A 3,B =1 B .A =-3,B =-1 C .A 3,B =-1 D .A =-3,B =19.已知点M (1,0)是圆C :x 2+y 2-4x -2y =0内的一点,则过点M 的最短弦所在的直线方程是( )A .x +y -1=0 B.x -y -1=0 C.x -y +1=0 D.x +y +2=0110、圆x 2-6x +y 2+2y =0关于直线方程为y = x 对称的圆的方程 ( ).222A 、(x+1) +(y -3) =10 B、 (x -1) 2+(y +3)2=10 C 、(x -1) 2+(y -3) 2=10 D 、(x -1) 2+(y -3) 2=100二、填空题11.直线5x -4y -20=0在x 、y 轴上的截距分别是________.12.直线l 过点(-2,4) ,且在x 轴、y 轴上的截距相等,则l 的方程是________.13.不论m 怎么变化,直线(m-2) x -(2m+1)y -(3m+4)=0恒过定点________.14.若直线y =x -m 与曲线y =1-x 有两个不同的交点,则m 的取值范围是_______.三、解答题15.已知直线l 1的方程为3x +4y -12=0.(1)若直线l 2与l 1平行,且过点(-1,3) ,求直线l 2的方程;(2)若直线l 2与l 1垂直,且l 2与两坐标轴围成的三角形面积为4,求直线l 2的方程.16、. 已知三角形的三个顶点A (-2, -3) ,B (2,-1)C(0, 2), (1)求直线AB 的方程;(2)求直线AB 的垂直平分线的方程CD ;(3)求△ABC 面积。

高中数学 人教版 必修二 直线与圆的方程综合复习题(含答案)

高中数学 人教版 必修二 直线与圆的方程综合复习题(含答案)

直线与圆的方程综合复习(含答案)一. 选择题1.已知点A(1,. 3),B(-1,33),则直线AB 的倾斜角是( C ) A 3B 6C 23D 562.已知过点A(-2,m)和B (m,4)的直线与直线2x+y-1=0平行,则m 的值为( C ) A 0 B 2 C -8 D 103.若直线L 1:ax+2y+6=0与直线L 2:x+(a-1)y+(2a -1)=0平行但不重合,则a 等于( D )A -1或2B 23C 2D -14.若点A (2,-3)是直线a 1x+b 1y+1=0和a 2x+b 2y+1=0的公共点,则相异两点 (a 1,b 1)和(a 2,b 2)所确定的直线方程是( A ) A.2x-3y+1=0 B.3x-2y+1=0 C.2x-3y-1=0 D.3x-2y-1=05.直线xcos θ+y-1=0 (θ∈R )的倾斜角的范围是 ( D )A.[)π,0B.⎪⎭⎫⎢⎣⎡ππ43,4C.⎥⎦⎤⎢⎣⎡-4,4ππD.⎪⎭⎫⎢⎣⎡⎥⎦⎤⎢⎣⎡πππ,434,06.“m=12”是“直线(m+2)x+3my+1=0与直线(m-2)x+(m+2y)-3=0相互垂直”的( B )A 充分必要条件B 充分而不必要条件C 必要而不充分条件D 既不充分也不必要条件7.已知A(7,-4)关于直线L 的对称点为B (-5,6),则直线L 的方程为(B ) A 5x+6y-11=0 B 6x-5y-1=0 C 6x+5y-11=0 D 5x-6y+1=0 8.已知直线1l 的方向向量a=(1,3),直线2l 的方向向量b=(-1,k).若直线2l 经过点(0,5)且1l 2l ,则直线2l 的方程为( B )A x+3y-5=0B x+3y-15=0C x-3y+5=0D x-3y+15=0 9. 过坐标原点且与圆2x +2y -4x+2y+52=0相切的直线方程为( A )A y=-3x 或y= 13xB y=3x 或y= -13xC y=-3x 或y= -13xD y=3x 或y= 13x10.直线x+y=1与圆2x +2y -2ay=0(a>0)没有公共点,则a 的取值范围是(A )A (02-1,)B (2-1, 2+1)C (-2-1, 2-1)D (0, 2+1) 11.圆2x +2y -4x-4y-10=0上的点到直线x+y-14=0的最大距离与最小距离的差是( C )A 36B 18C 62D 5212.以直线:y=kx-k 经过的定点为P 为圆心且过坐标原点的圆的方程为(D ), A 2x +2y +2x=0 B 2x +2y +x=0 C 2x +2y -x=0 D 2x +2y -2x-013.已知两定点A(-2,0),B(1,0),如果定点P 满足PA=2PB,则定点P 的轨迹所 包围的面积等于( B )A B 4 C 8 D 914.若直线3x+y+a=0过圆2x +2y +2x-4y=0的圆心,则a 的值为( B )A 1B -1C 3D -315.若直线2ax-by+2=0 (a >0,b >0)始终平分圆x 2+y 2+2x-4y+1=0的周长,则ba11+的最小值是( C )A.41B.2C.4D.2116.若直线y=k(x-2)+4与曲线y=1+24x -有两个不同的交点,则k 的取值范围是 ( A )A.⎥⎦⎤⎝⎛43,125 B.⎪⎭⎫⎝⎛+∞,125 C.⎥⎦⎤⎝⎛43,21D.⎪⎭⎫⎝⎛125,17.设两圆1C ,2C 都和两坐标轴相切,且过点(4,1),则两圆心的距离 ︱1C 2C ︱等于( C )A 4B 42C 8D 8218.能够使得圆x 2+y 2-2x+4y+1=0上恰有两个点到直线2x+y+c=0距离等于1的c的一个值为 ( C ) A.2B.5C.3D.3519.若直线by ax +=1与圆x 2+y 2=1有公共点,则( D )A.a 2+b 2≤1B.a 2+b 2≥1C.2211ba +≤1 D.2211ba +≥120.已知A (-3,8)和B (2,2),在x 轴上有一点M ,使得|AM|+|BM|为最短,那么点M 的坐标为( B ) A.(-1,0)B.(1,0)C.⎪⎭⎫⎝⎛0522,D. ⎪⎭⎫⎝⎛522,021.直线y=kx+3与圆2(3)x+2(2)y =4相交于M 、N 两点,若︱MN ︱≥23,则k 的取值范围是( A )A [-34,0] B [-∞,-34] [0,∞) C [-33,33] D [-23,0] 22.(广东理科2)已知集合{(,)|,A x y x y =为实数,且221}x y +=,{(,)|,B x y x y =为实数,且}y x =,则AB 的元素个数为(C )A .0B .1C .2D .3 23.(江西理科9)若曲线02221=-+x y x C :与曲线 0)(2=--m mx y y C :有四个不同的交点,则实数m 的取值范围是 ( B ) A. )33,33(-B. )33,0()0,33( -C. ]33,33[-D. ),33()33,(+∞--∞ 答案:B 曲线0222=-+x y x 表示以()0,1为圆心,以1为半径的圆,曲线()0=--m mx y y 表示0,0=--=m mx y y 或过定点()0,1-,0=y 与圆有两个交点,故0=--m mx y 也应该与圆有两个交点,由图可以知道,临界情况即是与圆相切的时候,经计算可得,两种相切分别对应3333=-=m m 和,由图可知,m 的取值范围应是)33,0()0,33( -二.填空题24.已知圆C 经过)3,1(),1,5(B A 两点,圆心在X 轴上,则C 的方程为10)2(22=+-y x ___________。

高中数学必修二直线和圆的方程复习练习试题及答案

高中数学必修二直线和圆的方程复习练习试题及答案

1、已知圆2522=+y x ,求:(1)过点A (4,-3)的切线方程(2)过点B (-5,2)的切线方程。

2、求直线01543=-+y x 被圆2522=+y x 所截得的弦长。

3、实数y x ,满足)0(422≥=+y y x ,试求y x m +=3的取值范围。

4、已知实数y x ,满足01422=+-+x y x(1)求xy的最大值和最小值;(2)求x y -的最大值和最小值; (3)求22y x +的最大值和最小值。

1、在直角坐标系中,直线033=-+y x 的倾斜角是()A .6πB .3π C .65π D .32π2、若圆C 与圆1)1()2(22=-++y x 关于原点对称,则圆C 的方程是()A .1)1()2(22=++-y x B .1)1()2(22=-+-y x C .1)2()1(22=++-y x D .1)2()1(22=-++y x3、直线0=++c by ax 同时要经过第一、第二、第四象限,则c b a 、、应满足( )A .0,0<>bc abB .0,0<>bc abC .0,0>>bc abD .0,0<<bc ab 5、不等式062>--y x 表示的平面区域在直线062=--y x 的( )A .左上方B .右上方C .左下方D .左下方6、直线0943=--y x 与圆422=+y x 的位置关系是() A .相交且过圆心B .相切C .相离D .相交但不过圆心7、已知直线)0(0≠=++abc c by ax 与圆122=+y x 相切,则三条边长分别为cb a 、、的三角形()A .是锐角三角形 B .是直角三角形C .是钝角三角形D .不存在8、过两点)9,3()1,1(和-的直线在x 轴上的截距是() A .23-B .32-C .52 D .29、点)5,0(到直线x y 2=的距离为()A .25 B .5C .23D .2511、由点)3,1(P 引圆922=+y x的切线的长是 ()A .2B .19 C .1 D .412、三直线102,1034,082=-=+=++y x y x y ax 相交于一点,则a 的值是( )A .2-B .1-C .0D .113、已知直线01:,03:21=+-=+y kx l y x l ,若1l 到2l 的夹角为60,则k 的值是 ()A .03或B .03或-C .3D .3-14、如果直线02012=-+=++y x y ax 与直线互相垂直,那么a 的值等于( )A .1B .31-C .32-D .2-16、由422=+=y x x y 和圆所围成的较小图形的面积是( )A .4πB .πC .43πD .23π17、动点在圆122=+y x 上移动时,它与定点)0,3(B 连线的中点的轨迹方程是( )A .4)3(22=++y x B .1)3(22=+-y x C .14)32(22=+-y x D .21)23(22=++y x19、以点)1,5()3,1(-和为端点的线段的中垂线的方程是 20、过点023)4,3(=+-y x 且与直线平行的直线的方程是 21、直线y x y x 、在0623=+-轴上的截距分别为22、三点)2,5()3,4(32k及),,(-在同一条直线上,则k 的值等于23、若方程014222=+++-+a y x y x 表示的曲线是一个圆,则a 的取值范围是 25、求到两个定点)0,1(),0,2(B A -的距离之比等于2的点的轨迹方程。

高中数学 人教版 必修二 直线与圆的方程综合复习题(含答案)

高中数学 人教版 必修二 直线与圆的方程综合复习题(含答案)

直线与圆的方程综合复习〔含答案〕一. 选择题1.已知点A(1,. 3),B(-1,33),则直线AB 的倾斜角是〔 C 〕 A 3B 6C 23D 562.已知过点A(-2,m)和B 〔m,4〕的直线与直线2x+y-1=0平行,则m 的值为〔 C 〕 A 0 B 2 C -8 D 103.假设直线L 1:ax+2y+6=0与直线L 2:x+(a-1)y+(2a -1)=0平行但不重合,则a 等于〔 D 〕A -1或2 B23C 2D -1 4.假设点A 〔2,-3〕是直线a 1x+b 1y+1=0和a 2x+b 2y+1=0的公共点,则相异两点 〔a 1,b 1〕和〔a 2,b 2〕所确定的直线方程是( A ) A.2x-3y+1=0 B.3x-2y+1=0 C.2x-3y-1=0 D.3x-2y-1=0 5.直线xcos θ+y-1=0 (θ∈R )的倾斜角的范围是 ( D )A.[)π,0B.⎪⎭⎫⎢⎣⎡ππ43,4C.⎥⎦⎤⎢⎣⎡-4,4ππD.⎪⎭⎫⎢⎣⎡⎥⎦⎤⎢⎣⎡πππ,434,06.“m= 12〞是“直线〔m+2〕x+3my+1=0与直线〔m-2〕x+(m+2y)-3=0相互垂直〞的〔 B 〕A 充分必要条件B 充分而不必要条件C 必要而不充分条件D 既不充分也不必要条件7.已知A(7,-4)关于直线L 的对称点为B 〔-5,6〕,则直线L 的方程为〔B 〕 A 5x+6y-11=0 B 6x-5y-1=0 C 6x+5y-11=0 D 5x-6y+1=0 8.已知直线1l 的方向向量a=(1,3),直线2l 的方向向量b=(-1,k).假设直线2l 经过点〔0,5〕且1l 2l ,则直线2l 的方程为〔 B 〕A x+3y-5=0B x+3y-15=0C x-3y+5=0D x-3y+15=0 9. 过坐标原点且与圆2x +2y -4x+2y+52=0相切的直线方程为〔 A 〕A y=-3x 或y= 13xB y=3x 或y= -13xC y=-3x 或y= -13xD y=3x 或y= 13x10.直线x+y=1与圆2x +2y -2ay=0(a>0)没有公共点,则a 的取值范围是〔A 〕A (02-1,)B (2-1, 2+1)C (-2-1, 2-1)D (0, 2+1) 11.圆2x +2y -4x-4y-10=0上的点到直线x+y-14=0的最大距离与最小距离的差是〔 C 〕A 36B 18C 62D 5212.以直线:y=kx-k 经过的定点为P 为圆心且过坐标原点的圆的方程为〔D 〕, A 2x +2y +2x=0 B 2x +2y +x=0 C 2x +2y -x=0 D 2x +2y -2x-013.已知两定点A(-2,0),B(1,0),如果定点P 满足PA=2PB,则定点P 的轨迹所 包围的面积等于〔 B 〕A B 4 C 8 D 914.假设直线3x+y+a=0过圆2x +2y +2x-4y=0的圆心,则a 的值为〔 B 〕A 1B -1C 3D -315.假设直线2ax-by+2=0 (a >0,b >0)始终平分圆x 2+y 2+2x-4y+1=0的周长,则ba 11+的最小值是〔 C 〕 A.41B.2C.4D.2116.假设直线y=k(x-2)+4与曲线y=1+24x -有两个不同的交点,则k 的取值范围是 〔 A 〕A.⎥⎦⎤⎝⎛43,125 B.⎪⎭⎫⎝⎛+∞,125 C.⎥⎦⎤⎝⎛43,21D.⎪⎭⎫⎝⎛125,0 17.设两圆1C ,2C 都和两坐标轴相切,且过点〔4,1〕,则两圆心的距离 ︱1C 2C ︱等于〔 C 〕A 4B 42C 8D 8218.能够使得圆x 2+y 2-2x+4y+1=0上恰有两个点到直线2x+y+c=0距离等于1的c的一个值为 〔 C 〕 A.2B.5C.3D.3519.假设直线by ax +=1与圆x 2+y 2=1有公共点,则( D )A.a 2+b 2≤1B.a 2+b 2≥1C.2211b a +≤1 D.2211b a +≥120.已知A 〔-3,8〕和B 〔2,2〕,在x 轴上有一点M ,使得|AM|+|BM|为最短,那么点M 的坐标为〔 B 〕A.(-1,0)B.(1,0)C.⎪⎭⎫⎝⎛0522,D. ⎪⎭⎫⎝⎛522,021.直线y=kx+3与圆2(3)x +2(2)y =4相交于M 、N 两点,假设︱MN ︱≥23,则k 的取值范围是〔 A 〕A [-34,0] B [-∞,-34] [0,∞〕 C [-33,33] D [-23,0] 22.〔X 理科2〕已知集合{(,)|,A x y x y =为实数,且221}x y +=,{(,)|,B x y x y =为实数,且}y x =,则A B 的元素个数为〔 C 〕A .0B .1C .2D .3 23.〔X 理科9〕假设曲线02221=-+x y x C :与曲线 0)(2=--m mx y y C :有四个不同的交点,则实数m 的取值范围是 ( B ) A. )33,33(-B. )33,0()0,33( -C. ]33,33[-D. ),33()33,(+∞--∞ 答案:B 曲线0222=-+x y x 表示以()0,1为圆心,以1为半径的圆,曲线()0=--m mx y y 表示0,0=--=m mx y y 或过定点()0,1-,0=y 与圆有两个交点,故0=--m mx y 也应该与圆有两个交点,由图可以了解,临界情况即是与圆相切的时候,经计算可得,两种相切分别对应3333=-=m m 和,由图可知,m 的取值范围应是)33,0()0,33( -二.填空题24.已知圆C 经过)3,1(),1,5(B A 两点,圆心在X 轴上,则C 的方程为10)2(22=+-y x ___________。

高中数学人教版必修二直线与圆的方程综合复习题(含答案)

高中数学人教版必修二直线与圆的方程综合复习题(含答案)

高中数学人教版必修二直线与圆的方程综合复习题(含答案)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN直线与圆的方程综合复习(含答案)一. 选择题1.已知点A(1,. 3),B(-1,33),则直线AB 的倾斜角是( C ) A 3B 6C 23D 562.已知过点A(-2,m)和B (m,4)的直线与直线2x+y-1=0平行,则m 的值为( C )A 0B 2C -8D 103.若直线L 1:ax+2y+6=0与直线L 2:x+(a-1)y+(2a -1)=0平行但不重合,则a 等于( D ) A -1或2 B23C 2D -1 4.若点A (2,-3)是直线a 1x+b 1y+1=0和a 2x+b 2y+1=0的公共点,则相异两点 (a 1,b 1)和(a 2,b 2)所确定的直线方程是( A ) A.2x-3y+1=0 B.3x-2y+1=0 C.2x-3y-1=0 D.3x-2y-1=0 5.直线xcos θ+y-1=0 (θ∈R )的倾斜角的范围是 ( D )A.[)π,0B.⎪⎭⎫⎢⎣⎡ππ43,4 C.⎥⎦⎤⎢⎣⎡-4,4ππD.⎪⎭⎫⎢⎣⎡⎥⎦⎤⎢⎣⎡πππ,434,06.“m=12”是“直线(m+2)x+3my+1=0与直线(m-2)x+(m+2y)-3=0相互垂直”的( B )A 充分必要条件B 充分而不必要条件C 必要而不充分条件D 既不充分也不必要条件7.已知A(7,-4)关于直线L 的对称点为B (-5,6),则直线L 的方程为(B ) A 5x+6y-11=0 B 6x-5y-1=0 C 6x+5y-11=0 D 5x-6y+1=0 8.已知直线1l 的方向向量a=(1,3),直线2l 的方向向量b=(-1,k).若直线2l 经过点(0,5)且1l 2l ,则直线2l 的方程为( B )A x+3y-5=0B x+3y-15=0C x-3y+5=0D x-3y+15=09. 过坐标原点且与圆2x +2y -4x+2y+52=0相切的直线方程为( A )A y=-3x 或y= 13xB y=3x 或y= -13xC y=-3x 或y= -13x D y=3x 或y=13x 10.直线x+y=1与圆2x +2y -2ay=0(a>0)没有公共点,则a 的取值范围是(A )A (02-1,)B (2-1, 2+1)C (-2-1, 2-1)D (0, 2+1) 11.圆2x +2y -4x-4y-10=0上的点到直线x+y-14=0的最大距离与最小距离的差是( C )A 36B 18C 62D 5212.以直线:y=kx-k 经过的定点为P 为圆心且过坐标原点的圆的方程为(D ), A 2x +2y +2x=0 B 2x +2y +x=0 C 2x +2y -x=0 D 2x +2y -2x-013.已知两定点A(-2,0),B(1,0),如果定点P 满足PA=2PB,则定点P 的轨迹所包围的面积等于( B )A B 4 C 8 D 914.若直线3x+y+a=0过圆2x +2y +2x-4y=0的圆心,则a 的值为( B )A 1B -1C 3D -315.若直线2ax-by+2=0 (a >0,b >0)始终平分圆x 2+y 2+2x-4y+1=0的周长,则ba 11+的最小值是( C ) A.41B.2C.4D.2116.若直线y=k(x-2)+4与曲线y=1+24x -有两个不同的交点,则k 的取值范围是( A )A.⎥⎦⎤⎝⎛43,125B.⎪⎭⎫⎝⎛+∞,125 C.⎥⎦⎤ ⎝⎛43,21D.⎪⎭⎫⎝⎛125,17.设两圆1C ,2C 都和两坐标轴相切,且过点(4,1),则两圆心的距离 ︱1C 2C ︱等于( C )A 4B 42C 8D 8218.能够使得圆x 2+y 2-2x+4y+1=0上恰有两个点到直线2x+y+c=0距离等于1的c 的一个值为 ( C ) A.2 B.5C.3D.3519.若直线by ax +=1与圆x 2+y 2=1有公共点,则( D ) A.a 2+b 2≤1 B.a 2+b 2≥1 C.2211ba +≤1D.2211ba +≥120.已知A (-3,8)和B (2,2),在x 轴上有一点M ,使得|AM|+|BM|为最短,那么点M 的坐标为( B ) A.(-1,0)B.(1,0)C.⎪⎭⎫⎝⎛0522, D.⎪⎭⎫ ⎝⎛522,0 21.直线y=kx+3与圆2(3)x+2(2)y =4相交于M 、N 两点,若︱MN ︱≥3则k 的取值范围是( A )A [-34,0] B [-∞,-34] [0,∞)33] D [-23,0] 22.(广东理科2)已知集合{(,)|,A x y x y =为实数,且221}x y +=,{(,)|,B x y x y =为实数,且}y x =,则AB 的元素个数为(C )A .0B .1C .2D .3 23.(江西理科9)若曲线02221=-+x y x C :与曲线0)(2=--m mx y y C :有四个不同的交点,则实数m 的取值范围是 ( B ) A. )33,33(-B. )33,0()0,33( -C. ]33,33[-D. ),33()33,(+∞--∞答案:B 曲线0222=-+x y x 表示以()0,1为圆心,以1为半径的圆,曲线()0=--m mx y y 表示0,0=--=m mx y y 或过定点()0,1-,0=y 与圆有两个交点,故0=--m mx y 也应该与圆有两个交点,由图可以知道,临界情况即是与圆相切的时候,经计算可得,两种相切分别对应3333=-=m m 和,由图可知,m 的取值范围应是)33,0()0,33( -二.填空题24.已知圆C 经过)3,1(),1,5(B A 两点,圆心在X 轴上,则C 的方程为10)2(22=+-y x ___________。

高中数学必修二直线和圆的方程复习练习试题

高中数学必修二直线和圆的方程复习练习试题

精品文档、552 24、已知实数x, y 满足x y 4x 1(1)求—的最大值和最小值; x(2)求y x 的最大值和最小值;2 2(3)求x y 的最大值和最小值。

1、在直角坐标系中,直线,3y 3 0的倾斜角是(A .—6 2、若圆C 与圆(X 2 2 A . (x 2) (y 1) 直线ax by 3、 5、6、7、 2)21 B . 一 32 (y 1) 1关于原点对称,则圆 B . (x 2)2 (y 1)2 1C . (x 1)2 (y c A . ab 0, bc不等式2x y 6 A .左上方 直线3x 4y 9 A .相交且过圆心 已知直线ax by 0同时要经过第一、第二、第四象限,则 0 B . ab 0, bc 0 C . ab 0, bc 0表示的平面区域在直线 2x y 6 B .右上方 0与圆x 2 y 2 B .相切 的方程是2 2)2 1 a 、b 、 0 0的( D . (x 1)2 (y 2)2 1 c 应满足() D . ab 0,bc 0 ) 角三角形8过两点 c 0(abc 0)与圆 x C .是钝角三角形C •左下方 4的位置关系是(C . 2D •左下方 B .是直角三角形 (1,1)和(3,9)的直线在x 轴上的截距是32 B .39、点(0,5) 到直线y 2x 的距离为(相离 2 y 1相切, D .不存在)A. 2D .相交但不过圆心 、b 、c 的三角形( 则三条边长分别为 )A .是锐3C .D .22 23、实数x, y 满足x y4( y 0),试求m 、. 3x y 的取值范围精品文档20、 过点(3,4)且与直线3x y 2 0平行的直线的方程是 ________________21、 直线3x 2y 6 0在x 、y 轴上的截距分别为 __________________k22、 三点(2,3),(4,3)及(5,—)在同一条直线上,则k 的值等于 _____________22 223、 若方程x 2 y 2x 4y 1 a 0表示的曲线是一个圆,则a 的取值范围是 ___________25、求到两个定点 A( 2,0), B(1,0)的距离之比等于2的点的轨迹方程。

(word完整版)人教版高中数学必修二《直线与方程及圆与方程》测试题-及答案

(word完整版)人教版高中数学必修二《直线与方程及圆与方程》测试题-及答案

直线方程一选择题1.已知直线经过点 A (0,4)和点B (1, 2),则直线AB 的斜率为( )A.3B.-2C. 2D.不存在2•过点(1,3)且平行于直线x 2y 3 0的直线方程为()A . x 2y 7 0B . 2x y 1 0 C. x 2y 5 0 D . 2x y 5 0A 、 K 1< K 2< K 3B 、 K 2< K 1< K 3C 、 K 3< K 2< K 1D 、 K 1< K 3< K 27、直线2x+3y-5=0关于直线y=x 对称的直线方程为()8、与直线2x+3y-6=0关于点(1,-1)对称的直线是()A.3x-2y-6=0B.2x+3y+7=0C.3x-2y-12=0 D. 2x+3y+8=09、直线5x-2y-10=0在x 轴上的截距为a,在y 轴上的截距为 4则( )A.a=2,b=5;B.a=2,b=5; C.a= 2 ,b=5; D.a= 2 ,b= 5.A .2 32 B.—33 3 C.D.—225.直线l 与两直线y 1和x y7 0分别交于A, B 两点,若线段AB 的中点为M (1, 1),则直线l 的斜率为()3232A.-B.-c .D.-2 3 2 36、若图中的直线 L 1、L 2、L 3的斜率分别为A 、3x+2y-5=0B 、2x-3y-5=0C 、 3x+2y+5=0D 、3x-2y-5=0 4.若直线x+ay+2=0和2x+3y+1=0互相垂直,则 a=() x二填空题(共20分,每题5分)12.过点(1 , 2)且在两坐标轴上的截距相等的直线的方程 __________________________________13两直线2x+3y — k=0和x — ky+12=0的交点在 y 轴上,则 k 的值是 ____________ 15空间两点 M1 (-1,0,3) ,M2(0,4,-1)间的距离是 _____________________ 三计算题(共71分)16、 ( 15分)已知三角形 ABC 的顶点坐标为 A ( -1,5)、B ( -2,-1)、C ( 4,3),M 是BC 边上的中点。

高中数学必修二直线及圆及方程综合测试卷

高中数学必修二直线及圆及方程综合测试卷

高中数学必修二直线和圆与方程综合测试卷姓名分数一. 选择题 ( 每题 3 分 ,共 30 分 )1. 直线经过点A(0,4)和点 B〔 1, 2〕,那么直线AB 的斜率为〔〕C. 2D. 不存在2.过点(1,3) 且平行于直线x 2 y 3 0 的直线方程为〔〕A.x 2 y 7 0B.2x y 1 0C.x2y 5 0 D .2x y 50 3. 在同一直角坐标系中,表示直线y ax 与 y x a 正确的选项是〔〕y y y yO x O x O x O xA B C D4.假设直线x+ a y+2=0 和2x+3y+1=0 互相垂直,那么a=〔〕2 2C.3 3A .B.2 D .3 3 25 .直线l与两直线y 1和x y 7 0 分别交于 A, B 两点,假设线段AB的中点为M (1, 1) ,那么直线l的斜率为〔〕A.3B.2C. 3 D . 2 2 3 2 36.与直线 2x+3y-6=0 关于点 (1,-1)对称的直线是〔〕A.3x-2y-6=0B.2x+3y+7=0C. 3x-2y-12=0D. 2x+3y+8=07.平行直线 x -y + 1 = 0 , x - y - 1 = 0 间的距离是〔 〕A . 2B . 2C . 2D . 2 228. 圆( x2)2y25 关于原点 P(0, 0)对称的圆的方程为 ()A.( x 2)2y 25B.x 2 ( y 2)25C.(x 2)2 ( y 2) 25D.x 2 ( y 2) 259. 假设P(2,1)为圆( x 1)2y 225的弦 AB 的中点,那么直线 AB 的方程是〔〕A. x y 3C. xy 1 0B.2x y 3 0D.2x y 5 010.圆x 2 y 2 2x 2 y 1 0 上的点到直线x y 2 的距离最大值是〔〕12A.2B. 12C.2D. 1 2 2二 . 填空题〔共 20 分,每题 4 分〕11.过点〔 1, 2〕且在两坐标轴上的截距相等的直线的方程.12.两直线 2x+3y - k=0 和 x - ky+12=0 的交点在 y 轴上,那么 k 的值是 .13.两平行直线 x 3 y 40与 2x 6y 9 0 的距离是.14.空间两点 M1〔 -1,0,3〕 ,M2(0,4,-1)间的距离是.15.圆心在直线2xy7上的圆C 与 y轴交于两点 A(0, 4), B(0, 2) ,那么圆 C 的方程为 .三 .计算题〔每题 10 分,共 50 分〕16.三角形ABC 的顶点坐标为A〔-1,5〕、B〔 -2,-1〕、C〔4,3〕,M 是 BC 边上的中点。

必修2直线和圆复习题及答案

必修2直线和圆复习题及答案

1.直线方程的几种基本形式及适用条件: (1) 点斜式: ______________ ,注意斜率k 是存在的. (2) 斜截式: _______ ,其中b 是直线I 在 _______ 上的截距.(3) 两点式: ____________ (冷工X 2且y i 主y 2),当方程变形为 位 —y i )(x —x i ) —(X 2—x i )(y — y i ) = 0 时,对于一切情况都成立. ⑷截距式: _________ ,其中a 0, a 为I 在x 轴上的截距,b 是I 在y 轴上的截距.(5)一般式: ____________ ,其中A 、B 不同时为0. 1.判定两条直线的位置关系 (1)两条直线的平行① __________________________________________ 右 11: y = k [X + b 1, 12: y = k ?x + b 2,贝S 111I I 2? ________________ 且 ____ l 1与I 2重合? _____________ .② ________________________________________ 当I 1, I 2都垂直于x 轴且不重合时,则有 ___________________________③ 右 11: A [X + B 〔y + C 1 = 0, I 2: A 2X + B 2y + C 2 = 0,则 11 II 12? A 1B 211与I 2重合? A 1 =^A, B 1 =入2, G = (2)两条直线的垂直① 若 h : y =k 〔x + b 1, I 2: y = k ?x + 6,则 I 1 丄 D? ________ . ② 若两条直线中,一条斜率不存在,同时另一条斜率等于零,则 两条直线 ________ .③ 若 11: A [X + B 〔y + G = 0, D : A 2X + B 2y + C 2 = 0,贝U 11 丄 I 2(3)直线 I 1: y = k 1X + b 1, I 2: y = k 2x +b 2相交的条件是 ______ .直线 I 1: A 1X + B 〔y + G = 0, I 2: A 2X +B 2y + C 2 = 0 相父的条件 是 自测题1. 过点M( — 1, m), N(m + 1,4)的直线的斜斜角为45° ,则m 的 值为 _____2. 下列四个命题中真命题是()A .经过定点P o (x o , y o )的直线都可以用方程y — y o = k(x —x °)表示B .经过任意两个不同点 P 1(x , y”, P 2(X 2, y 2)的直线可以用方 程(y —『1)(x 2—X 1)—(x —X 1)(y 2—y” = 0 表示c .不过原点的直线都可以用:+b =1表示=A 2B 1 且 B 1C 2 半 B C ,D .经过定点A(0, b)的直线都可以用方程y= kx+ b表示13. 若三点A(2,3),B(3, —2),C(2,m)共线,则m的值是______ .4. _________ 已知直线x+aF+ 6= 0与直线(a—2)x + 3ay + 2a = 0平行,则a的值为.5. 已知两条直线y= ax—2和y= (a+ 2)x +1互相垂直,则a等于 ________ .例题例1•已知两点A(—1,2), B(m,3),求:(1)求直线AB的斜率;(2)求直线AB 的方程;例2.已知直线I: ax+ y—2 —a= 0在x轴和y轴上的截距相等,则a的值是_________例3.已知直线:11: ax+2y+ 6= 0 和直线l2: x+ (a —1)y + a2—1 =0.(1) 试判断I1与I2是否平行;(2) h丄I2时,求a的值例4.已知两直线l1: mx+8y+n = 0和l2: 2x+ my—1 = 0.试确定m、n的值,使:(1)11 与I2相交于点P(m,—1); (2)1,12;(3)h 丄I2,且I1 在y轴上的截距为一1.练习题1.下列命题中,正确的是()A .若直线的斜率为tan a,则直线的倾斜角是a B.若直线的倾斜角为a 则直线的斜率为tan aC.若直线的倾斜角越大,则直线的斜率就越大 D .直线的倾斜角妖[0,(才,n时,直线的斜率分别在这两个区间上单调递增2.. 若直线I1, I2关于x轴对称,I1的斜率是—「7,则I2的斜率是()A. 7 B .—宁0卡D. —73..两直线m—n=1与*—m = 1的图像可能是图中的哪一个()4..若点A(a,0), B(0, b), C(1, —1)(a>0, b<0)三点共线,贝S a —b 的最小值等于 __________5.. ______________________________________ 过点M(1,—2)的直线与x轴、y轴分别交于P、Q两点,若M恰为线段PQ的中点,贝卩直线PQ的方程为_______________________________16•.已知直线I 的斜率为6,且和坐标轴围成面积为 3的三角形, 求直线I 的方程.7•.已知点M 是直线1: 3x -y + 3 = 0与x 轴的交点,将直线I 绕点M 旋转30°求所得到的直线I ’的方程.8.. 在△ ABC 中,已知A(1,1), AC 边上的高线所在直线方程为 x —2y = 0,AB 边上的高线所在直线方程为3x + 2y -3= 0.求BC 边所在 直线方程.9.. 设直线 I 的方程为(a + 1)x + y + 2-a = 0(a € R). (1) 若I 在两坐标轴上截距相等,求I 的方程; (2) 若I 不经过第二象限,求实数a 的取值范围.高中数学必修二直线和圆练习M(1, 1),则直线I 的斜率为(1. 过点P( 1,3)且垂直于直线x 2y 30的直线方程为()A. 2x y 1 0 B .2x y 5C. x 2y5 0 D .x 2y 7 02.已知过点 A( 2,m)和B(m,4)的直线与直线 2x y 1 0平行,则A .0 B 8 C .2 D . 103. 已知ab O,bc 0 , 则直线 ax by c 通过()A . 第一、二、 三象限B .第- 一、二、四象限C . 第一、三、 四象限D.第二、三、四象限、选择题 4.直线I 与两直线7 0分别交于A,B 两点,若线段AB 的中点为1和x yy m 的值为()A 3D 2A .B .—2 35. 圆 C 1:x 2+y 2+4x-4y+7=0 和圆 C 2:x 2+y 2-4x-10y+13=0 的公切线有A.2条B.3条C.4条6. 已知空间两点 A(1,3,5)、B(-3,1,3),则线段AB 的中点坐标为(D.D.以上均错7. 若直线(1+a)x+y+仁0与圆x 1 2 3+y 2-2x=0相切,则a 的值为( )A.1、-1B.2、-2C.1D.-18.已知圆C : (x-a)2+(y-2) 2=4(a>0)及直线I: x-y+3=0 ,当直线I 被圆C 截得的弦长为 2.3时, 则a等于() A.、2B. 2.2 C.、2 1 D. .. 2 1二、填空题1•点P(1, 1)到直线x y 10的距离是 _________________ .2. 经过点P(1,2)与圆x 2+y 2=1相切的直线方程为 _________________ .3. 与两平行直线x+3y-5=0和x+3y-3=0相切,圆心在直线2x+y+3=0上的圆的方程是 ___________4. 已知圆x 2+y 2-4x+6y-12=0的内部有一点 A(4 , -2),则以A 为中点的弦所在的直线方程为三、解答题1 •求经过点 A( 2,2)并且和两个坐标轴围成的三角形的面积是1的直线方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直线与圆的方程综合复习(含答案)一. 选择题1.已知点则直线AB 的倾斜角是( C ) A 3p B 6p C 23p D 56p2.已知过点A(-2,m)和B (m,4)的直线与直线2x+y-1=0平行,则m 的值为( C ) A 0 B 2 C -8 D 103.若直线L 1:ax+2y+6=0与直线L 2:x+(a-1)y+(2a -1)=0平行但不重合,则a 等于( D )A -1或2B 23C 2D -14.若点A (2,-3)是直线a 1x+b 1y+1=0和a 2x+b 2y+1=0的公共点,则相异两点 (a 1,b 1)和(a 2,b 2)所确定的直线方程是( A )A.2x-3y+1=0B.3x-2y+1=0C.2x-3y-1=0D.3x-2y-1=0 5.直线xcos θ+y-1=0 (θ∈R )的倾斜角的范围是 ( D )A.[)π,0B.⎪⎭⎫⎢⎣⎡ππ43,4C.⎥⎦⎤⎢⎣⎡-4,4ππD.⎪⎭⎫⎢⎣⎡⎥⎦⎤⎢⎣⎡πππ,434,06.“m=12”是“直线(m+2)x+3my+1=0与直线(m-2)x+(m+2y)-3=0相互垂直”的( B )A 充分必要条件B 充分而不必要条件C 必要而不充分条件D 既不充分也不必要条件7.已知A(7,-4)关于直线L 的对称点为B (-5,6),则直线L 的方程为(B ) A 5x+6y-11=0 B 6x-5y-1=0 C 6x+5y-11=0 D 5x-6y+1=0 8.已知直线1l 的方向向量a=(1,3),直线2l 的方向向量b=(-1,k).若直线2l 经过点(0,5)且 1l ^ 2l ,则直线2l 的方程为( B )A x+3y-5=0B x+3y-15=0C x-3y+5=0D x-3y+15=0 9. 过坐标原点且与圆2x +2y -4x+2y+52=0相切的直线方程为( A )A y=-3x 或y= 13xB y=3x 或y= -13xC y=-3x 或y= -13xD y=3x 或y= 13x10.直线x+y=1与圆2x +2y -2ay=0(a>0)没有公共点,则a 的取值范围是(A )+1) 11.圆2x +2y -4x-4y-10=0上的点到直线x+y-14=0的最大距离与最小距离的差是( C )12.以直线:y=kx-k 经过的定点为P 为圆心且过坐标原点的圆的方程为(D ), A 2x +2y +2x=0 B 2x +2y +x=0 C 2x +2y -x=0 D 2x +2y -2x-013.已知两定点A(-2,0),B(1,0),如果定点P 满足PA=2PB,则定点P 的轨迹所 包围的面积等于( B )A pB 4pC 8pD 9p14.若直线3x+y+a=0过圆2x +2y +2x-4y=0的圆心,则a 的值为( B )A 1B -1C 3D -315.若直线2ax-by+2=0 (a >0,b >0)始终平分圆x 2+y 2+2x-4y+1=0的周长,则ba 11+的最小值是( C )A.41B.2C.4D.2116.若直线y=k(x-2)+4与曲线y=1+24x -有两个不同的交点,则k 的取值范围是 ( A )A.⎥⎦⎤ ⎝⎛43,125 B.⎪⎭⎫⎝⎛+∞,125 C.⎥⎦⎤⎝⎛43,21D.⎪⎭⎫⎝⎛125,017.设两圆1C ,2C 都和两坐标轴相切,且过点(4,1),则两圆心的距离 ︱1C 2C ︱等于( C )18.能够使得圆x 2+y 2-2x+4y+1=0上恰有两个点到直线2x+y+c=0距离等于1的c的一个值为 ( C )A.2B.5C.3D.3519.若直线by ax +=1与圆x 2+y 2=1有公共点,则( D )A.a 2+b 2≤1B.a 2+b 2≥1C.2211ba +≤1 D.2211ba +≥120.已知A (-3,8)和B (2,2),在x 轴上有一点M ,使得|AM|+|BM|为最短,那么点M 的坐标为( B )A.(-1,0)B.(1,0)C.⎪⎭⎫ ⎝⎛0522,D. ⎪⎭⎫⎝⎛522,021.直线y=kx+3与圆2(3)x -+2(2)y -=4相交于M 、N 两点,若︱MN ︱≥则k 的取值范围是( A )A [-34,0] B [-∞,-34] U [0,∞)] D [-23,0] 22.(广东理科2)已知集合{(,)|,A x y x y =为实数,且221}x y +=,{(,)|,B x y x y =为实数,且}y x =,则AB 的元素个数为(C )A .0B .1C .2D .3 23.(江西理科9)若曲线02221=-+x y x C :与曲线 0)(2=--m mx y y C :有四个不同的交点,则实数m 的取值范围是 ( B ) A. )33,33(-B. )33,0()0,33( -C. ]33,33[-D. ),33()33,(+∞--∞ 答案:B 曲线0222=-+x y x 表示以()0,1为圆心,以1为半径的圆,曲线()0=--m mx y y 表示0,0=--=m mx y y 或过定点()0,1-,0=y 与圆有两个交点,故0=--m mx y 也应该与圆有两个交点,由图可以知道,临界情况即是与圆相切的时候,经计算可得,两种相切分别对应3333=-=m m 和,由图可知,m 的取值范围应是)33,0()0,33( -二.填空题24.已知圆C 经过)3,1(),1,5(B A 两点,圆心在X 轴上,则C 的方程为10)2(22=+-y x ___________。

25.已知直线l :x-y+4=0与圆C :(x-1)2+(y-1)2=2,则C 上各点到l 距离.26.设直线l经过点A(-1,1),则当点B(2,-1)与直线l的距离最远时,直线l的方程为 3x-2y+5=027.圆x2+y2+2x-4y+1=0关于直线2ax-by+2=0(a、b∈R)对称,则ab的取值范围是( A )A.⎥⎦⎤⎝⎛∞-41, B.⎥⎦⎤⎝⎛410, C.⎪⎭⎫⎝⎛-0,41 D.⎪⎭⎫⎝⎛∞-41,28.与直线2x+3y+5=0平行,且距离等于的直线方程是2x+3y+18=0,或2x+3y-8=0 。

29(重庆理8)在圆06222=--+yxyx内,过点)1,0(E的最长弦和最短弦分别是AC和BD,则四边形ABCD的面积为( B )A.25B.210C.D.220解:圆的方程标准化方程为10)3()1(22=-+-yx,由圆的性质可知,最长弦长为102||=AC,最短弦长BD以)1,0(E为中点,设点F为其圆心,坐标为)3,1(故5||=EF,52)5(102||2=-=∴BD,210||||21=⋅=∴BDACSABCD。

三.解答题30.已知圆C:(x-1)2+(y-2)2=25及直线l:(2m+1)x+(m+1)y=7m+4 (m∈R).(1)证明:不论m取什么实数,直线l与圆C恒相交;(2)求直线l被圆C截得的弦长的最短长度及此时的直线方程.(1)证明直线l可化为x+y-4+m(2x+y-7)=0,即不论m取什么实数,它恒过两直线x+y-4=0与2x+y-7=0的交点.两方程联立,解得交点为(3,1),又有(3-1)2+(1-2)2=5<25,∴点(3,1)在圆内部,∴不论m为何实数,直线l与圆恒相交.(2)解从(1)的结论和直线l过定点M(3,1)且与过此点的圆C的半径垂直时,l被圆所截的弦长|AB|最短,由垂径定理得|AB|=222CMr-=.54])21()13([25222=-+--此时,kt=-C Mk1,从而kt=-31121--=2.∴l的方程为y-1=2(x-3),即2x-y=5.31.已知P 是直线3x+4y+8=0上的动点,PA 、PB 是圆x 2+y 2-2x-2y+1=0的两条切线,A 、B 是切点,C 是圆心,求四边形PACB 面积的最小值.解 将圆方程化为(x-1)2+(y-1)2=1,其圆心为C (1,1),半径r=1,如图,由于四边形PACB 的面积等于Rt △PAC 面积的2倍,所以S PACB =2×21×|PA|×r=12-PC .∴要使四边形PACB 面积最小,只需|PC|最小. 当点P 恰为圆心C 在直线3x+4y+8=0上的正射影时,|PC|最小,由点到直线的距离公式,得|PC|min =5843++=3,故四边形PACB 面积的最小值为22.32(全国课标20)在平面直角坐标系xoy 中,曲线261y x x =-+与坐标轴的交点都在圆C 上(Ⅰ)求圆C 的方程;(Ⅱ)若圆C 与直线0x y a -+=交与,A B 两点,且OA OB ⊥,求a 的值. 【解析】(Ⅰ)曲线261,y x x =-+与y 轴交于点(0,1),与与x 轴交于点(3+-因而圆心坐标为),,3(t C 则有22223(1),1t t t +-=+∴=. 半径为3)1(322=-+t ,所以圆方程是9)1()3(22=-+-y x .(Ⅱ)解法一:设点),(),,(2211y x B y x A 满足220,.(3)(1)9x y a x y -+=⎧⎨-+-=⎩ 解得:012)82(222=+-+-+a a x a x .0416562>--=∆∴a a441656)28(22,1a a a x --±-=21212214,2a a x x a x x -+∴+=-⋅=12121122,0,,OA OB x x y y y x a y x a ⊥∴+==+=+.212122()0,x x a x x a ∴+++=解得1a ∴=-,满足0>,1a ∴=-解法二:设经过直线0x y a -+=和圆9)1()3(22=-+-y x 的交点的圆的方程为0)(12622=+-++-+-a y x y y x x λ,若OA OB ⊥,则以AB 为直径的圆过坐标原点设上述圆就是这样的圆,则圆过原点,所以01=+a λ ① 同时,该圆的圆心)22,26(+-λλ在直线0x y a -+=上,化简得2+=a λ ② 由①②求得1-=a 。

33(上海理23)已知平面上的线段l 及点P ,任取l 上一点Q ,线段PQ 长度的最小值称为点P 到线段l 的距离,记作(,)d P l .⑴ 求点(1,1)P 到线段:30(35)l x y x --=≤≤的距离(,)d P l ;⑵ 设l 是长为2的线段,求点的集合{|(,)1}D P d P l =≤所表示图形的面积; 【解析】⑴ 设(,3)Q x x -是线段:30(35)l x y x --=≤≤上一点,则||5)PQ x ==≤≤,当3x =时,min (,)||d P l PQ = ⑵ 不妨设(1,0),(1,0)A B -为l 的两个端点,则D 为线段1:1(||1),l y x =≤线段2:1(||1)l y x =-≤,………6分 半圆221:(1)1(1),C x y x ++=≤-半圆222:(1)1(1)C x y x -+=≥所围成的区域.这是因为对(,),1,P x y x ≤则(,);d P l y =而对(P x (,)d P l =对(,),1,P x y x > 则(,)d P l =………9分于是D 所表示的图形面积为4π+.………10分34.(12分)已知方程x 2+y 2-2x-4y+m=0.(1)若此方程表示圆,求m 的取值范围;(2)若(1)中的圆与直线x+2y-4=0相交于M 、N 两点,且OM ⊥ON (O 为坐标原点),求m ;(3)在(2)的条件下,求以MN 为直径的圆的方程. 解 (1)(x-1)2+(y-2)2=5-m,∴m <5. (2)设M (x 1,y 1),N (x 2,y 2), 则x 1=4-2y 1,x 2=4-2y 2, 则x 1x 2=16-8(y 1+y 2)+4y 1y 2 ∵OM ⊥ON ,∴x 1x 2+y 1y 2=0∴16-8(y 1+y 2)+5y 1y 2=0 ① 由⎪⎩⎪⎨⎧=+--+-=0422422m y x y x yx得5y 2-16y+m+8=0∴y 1+y 2=516,y 1y 2=58m +,代入①得,m=58.(3)以MN 为直径的圆的方程为 (x-x 1)(x-x 2)+(y-y 1)(y-y 2)=0 即x 2+y 2-(x 1+x 2)x-(y 1+y 2)y=0 ∴所求圆的方程为x 2+y 2-58x-516y=0.35.已知圆C 经过点A (-2,0),B (0,2),且圆心C 在直线y =x 上,又直线l :y =kx +1与圆C 相交于P 、Q 两点. (1)求圆C 的方程; (2)若OP →·OQ →=-2,求实数k 的值; (3)过点(0,1)作直线l 1与l 垂直,且直线l 1与圆C 交于M 、N 两点,求四边形PMQN 面积的最大值.解:(1)设圆心C (a ,a ),半径为r . 因为圆C 经过点A (-2,0),B (0,2), 所以|AC |=|BC |=r ,易得a =0,r =2. 所以圆C 的方程是x 2+y 2=4. (2)因为OP →·OQ →=2×2×cos〈OP →,OQ →〉=-2,且OP →与OQ →的夹角为∠POQ , 所以cos ∠POQ =-12,∠POQ =120°,所以圆心C 到直线l :kx -y +1=0的距离d =1,又d =1k 2+1,所以k =0.(3)设圆心O 到直线l ,l 1的距离分别为d ,d 1,四边形PMQN 的面积为S . 因为直线l ,l 1都经过点(0,1),且l ⊥l 1,根据勾股定理,有d 21+d 2=1.又易知|PQ |=2×4-d 2,|MN |=2×4-d 21,所以S =12·|PQ |·|MN |,即S =12×2×4-d 2×2×4-d 21=216-d 21+d 2+d 21·d 2=212+d 21·d 2≤212+⎝ ⎛⎭⎪⎫d 21+d 222=212+14=7,当且仅当d 1=d 时,等号成立,所以四边形PMQN 面积的最大值为7.。

相关文档
最新文档