四川省成都市龙泉九中2014届九年级(上)期末模拟数学试题

合集下载

2014年四川省成都市中考数学试卷(附答案与解析)

2014年四川省成都市中考数学试卷(附答案与解析)

数学试卷 第1页(共28页) 数学试卷 第2页(共28页)绝密★启用前四川省成都市2014年高中阶段教育学校统一招生考试数 学本试卷满分150分,考试时间120分钟.A 卷(共100分)第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在2-,1-,0,2这四个数中,最大的数是 ( ) A .2- B .1- C .0 D .22.下列几何体的主视图是三角形的是 ( )ABCD3.正在建设的成都第二绕城高速全长超过220公里,串起我市二、三圈层以及周边的广汉、简阳等地,总投资达到290亿元.用科学记数法表示290亿元应为 ( )A .829010⨯元B .929010⨯元C .102.9010⨯元D .112.9010⨯元 4.下列计算正确的是( )A .23x x x +=B .235x x x +=C .235()x x =D .632x x x ÷= 5.下列图形中,不是轴对称图形的是( )ABC D6.函数5y x =-中,自变量x 的取值范围是( )A .5x ≥-B .5x ≤-C .5x ≥D .5x ≤7.如图,把三角板的直角顶点放在直尺的一边上,若130∠=,则2∠的度数为 ( )A .60B .50C .40D .308.近年来,我国持续大面积的雾霾天气让环保和健康问题成为焦点.为进一步普及环保和健康知识,我市某校举行了“建设宜居成都,关注环境保护”的知识竞赛,某班学生的成绩统计如下:成绩(分) 60 70 80 90 100 人 数4 812 115则该班学生成绩的众数和中位数分别是( )A .70分,80分B .80分,80分C .90分,80分D .80分,90分 9.将二次函数223y x x =-+化为2()y x h k =-+的形式,结果为 ( )A .2(1)4y x =++B .2(1)2y x =++C .2(1)4y x =-+D .2(1)2y x =-+ 10.在圆心角为120的扇形AOB 中,半径6cm OA =,则扇形AOB 的面积是 ( )A .26π cmB .28πcmC .212πcmD .224πcm第Ⅱ卷(非选择题 共70分)二.填空题(本大题共4小题,每小题4分,共16分,请把答案填在题中的横线上)11.计算:|2|=- .12.如图,为估计池塘岸边A ,B 两点间的距离,在池塘的一侧选取点O ,分别取OA ,OB 的中点M ,N ,测得32m MN =,则A ,B 两点间的距离是 m .13.在平面直角坐标系中,已知一次函数21y x =+的图象经过111(,)P x y ,222(,)P x y 两点,若12x x <,则1y 2y (填“>”“<”或“=”). 14.如图,AB 是O 的直径,点C 在AB 的延长线上,CD 切O 于点D ,连接AD .若25A ∠=,则C ∠= 度.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷第4页(共28页)三、解答题(本大题共6小题,共54分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分12分,每题6分)(1)计算:0294sin30(2014π)2-+--.(2)解不等式组:315,2(2)7xx x-⎧⎨++⎩>①<②.16.(本小题满分6分)如图,在一次数学课外实践活动中,小文在点C处测得树的顶端A的仰角为37,20mBC=,求树的高度AB.(参考数据:sin370.60≈,cos370.80≈,tan370.75≈)17.(本小题满分8分)先化简,再求值:22(1)b ba b a b-÷--,其中31a=+,31b=-.18.(本小题满分8分)第十五届中国“西博会”将于2014年10月底在成都召开,现有20名志愿者准备参加某分会场的工作,其中男生8人,女生12人.(1)若从这20人中随机选取一人作为联络员,求选到女生的概率;(2)若该分会场的某项工作只在甲、乙两人中选一人,他们准备以游戏的方式决定由谁参加,游戏规则如下:将四张牌面数字分别为2,3,4,5的扑克牌洗匀后,数字朝下放于桌面,从中任取2张,若牌面数字之和为偶数,则甲参加,否则乙参加.试问这个游戏公平吗?请用树状图或列表法说明理由.19.(本小题满分10分)如图,一次函数5y kx=+(k为常数,且0k≠)的图像与反比例函数8yx=-的图象交于(2,)A b-,B两点.(1)求一次函数的表达式;(2)若将直线AB向下平移(0)m m>个单位长度后与反比例函数的图象有且只有一个公共点,求m的值.20.(本小题满分10分)如图,矩形ABCD中,2AD AB=,E是AD边上一点,1DE ADn=(n为大于2的整数),连接BE,作BE的垂直平分线分别交AD,BC于点F,G,FG与BE的交点为O,连接BF和EG.(1)试判断四边形BFEG的形状,并说明理由;(2)当AB a=(a为常数),3n=时,求FG的长;(3)记四边形BFEG的面积为1S,矩形ABCD的面积为2S,当121730SS=时,求n的值(直接写出结果,不必写出解答过程).B卷(共50分)一、填空题(本大题共5小题,每小题4分,共20分.请把答案填在题中的横线上)21.在开展“国学诵读”活动中,某校为了解全校1 300名学生课外阅读的情况,随机调查了50名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据,估计该校1 300名学生一周的课外阅读时间不少于7小时的人数是.22.已知关于x的分式方程111x k kx x+-=+-的解为负数,则k的取值范围是.23.在边长为1的小正方形组成的方格纸中,称小正方形的顶点为“格点”,顶点全在格点上的多边形为“格点多边形”.格点多边形的面积记为S,其内部的格点数记为N,边界上的格点数记为L.例如,图中的三角形ABC是格点三角形,其中2S=,0N=,6L=;图中格点多边形DEFGHI所对应的S,N,L分别是.经探究发现,任意格点多边形的面积S可表示为S aN bL c=++,其中,,a b c为常数,则当5N=,14L=时,S=(用数值作答).数学试卷第3页(共28页)数学试卷 第5页(共28页) 数学试卷 第6页(共28页)24.如图,在边长为2的菱形ABCD 中,=60A ∠,M 是AD 边的中点,N 是AB 边上一动点,将AMN △沿MN 所在的直线翻折得到A MN '△,连接A C ',则A C '长度的最小值是 .25.如图,在平面直角坐标系xOy 中,直线32y x =与双曲线6y x=相交于A ,B 两点, C 是第一象限内双曲线上一点,连接CA 并延长交y 轴于点P ,连接BP ,BC .若PBC △的面积是20,则点C 的坐标为 .二、解答题(本大题共3小题,共30分.解答应写出必要的文字说明、证明过程或演算步骤)26.(本小题满分8分)在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m 长的篱笆围成一个矩形花园ABCD (篱笆只围AB ,BC 两边),设m AB x =.(1)若花园的面积为2192m ,求x 的值;(2)若在P 处有一棵树与墙CD ,AD 的距离分别是15m 和6 m ,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S 的最大值.27.(本小题满分10分)如图,在O 的内接ABC △中,90ACB ∠=,2AC BC =,过C 作AB 的垂线l 交O于另一点D ,垂足为E .设P 是AB 上异于A ,C 的一个动点,射线AP 交l 于点F ,连接PC 与PD ,PD 交AB 于点G . (1)求证:PAC PDF △∽△; (2)若5AB =,AP BP =,求PD 的长;(3)在点P 运动过程中,设AGx BG=,tan AFD y ∠=,求y 与x 之间的函数关系式(不要求写出x 的取值范围).28.(本小题满分12分)如图,已知抛物线(2)(4)8ky x x =+-(k 为常数,且0k >)与x 轴从左至右依次交于A ,B 两点,与y 轴交于点C ,经过点B的直线y x b =+与抛物线的另一交点为D . (1)若点D 的横坐标为5-,求抛物线的函数表达式;(2)若在第一象限内的抛物线上有点P ,使得以A ,B ,P 为顶点的三角形与ABC △相似,求k 的值;(3)在(1)的条件下,设F 为线段BD 上一点(不含端点),连接AF .一动点M 从点A 出发,沿线段AF 以每秒1个单位的速度运动到F ,再沿线段FD 以每秒2个单位的速度运动到D 后停止.当点F 的坐标是多少时,点M 在整个运动过程中用时最少?毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共28页)数学试卷 第8页(共28页)四川省成都市2014年高中阶段教育学校统一招生考试数学答案解析A 卷 第Ⅰ卷一、选择题 1.【答案】D【解析】将各数在数轴上表示,通过数轴比较大小,其中最大的是2,故选D . 【考点】有理数的大小比较 2.【答案】B【解析】观察四种几何体,可以判断主视图为三角形的为圆锥,故选B . 【考点】简单几何体的三视图. 3.【答案】C【解析】科学记数法是将一个数写成10n a ⨯的形式,其中1||10a <<,n 为整数,a 是只有一位整数的数;当原数的绝对值10≥时,n 为正整数,n 等于原数的整数位数减1;当原数的绝对值小于1时,为负整数,n 的绝对值等于原数左起第一个非零数字前零的个数(含整数位上的零).1029029 000 000 000 2.910==⨯亿,故选C .【考点】科学记数法 4.【答案】B【解析】A ,B 为整式的加减运算,整式加减运算的实质为合并同类项,A 中两项不是同类项,不能合并,A 错误,B 正确;C 为幂的乘方,底数不变,指数应相乘,C 错误;D 为同底数幂的除法,同底数幂相除,底数不变,指数相减,D 错误,故选B . 【考点】整式的计算 5.【答案】A【解析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,B ,C ,D 选项中的图形沿竖直的直线折叠直线两旁的部分都能重合,A 中的图形不能重合,故选A . 【考点】轴对称图形 6.【答案】C第Ⅱ卷5/ 14数学试卷 第11页(共28页)数学试卷 第12页(共28页)tan BC C . 2037BC m C ==,∠20tan3720AB ∴=≈答:树高AB 约为15m. 【考点】三角函数 17.【答案】23【解析】解:=原式(2)用列表法表示如下:或画树状图如下:)点7/ 14数学试卷 第15页(共28页)数学试卷 第16页(共28页)平移后的直线与反比例函数的图像有且只有一个公共点FC GBO ∠BOG ∴△BG EF ∴=∴四边形BFEG 又FG BE ⊥平行四边形2)当AB Rt ABE △2+BE AB =A EOF =∠∠9 / 1456=483aOE AB a a AE a =【考点】四边形的综合应用B 卷22数学试卷 第19页(共28页)数学试卷 第20页(共28页)00000166166(33)2(33)2022x x x x x ++-+++-=,得ACB =∠是O 的直径 APB ∴∠ CPB PBA +∠l AB ⊥于点FAE +=∠PB ∴=∠∠ABP AFE ACP ==∠∠PAC =又∠(2)在Rt ABC △由勾股定理,得1122ABC S AB CE AC BC ==△,2CE ∴=,可得4AE =.当AP BP =时,有PA PB =,则OABP 为等腰直角三角形25222PAB AP AB ∴===∠,EF AB ⊥由垂径定理,得由(1)知故5622DF PA PD AC ⨯==)方法一:过点G 作,ACH ∠,,l AB AC AD ⊥∴=∠tan GHPH ∴=AP AD AG DB BG=12BD AG BC x AD BG AC == 1tan 2AP AFD ABP x PB ==∠=之间的的函数关系式为12y x = 【考点】圆,相似三角形,勾股定理,三角函数直线点22144144(6)81616k k -++26=2216k -=,即 又0,2k k >∴=A P AB227272(6)44k k -++2166=45k -=,即,0,k k >∴4255或 作DG y ⊥轴于点G ,过点A 作43)3。

2013-2014成都市九年级(上)数学期末模拟试题2(无答案)

2013-2014成都市九年级(上)数学期末模拟试题2(无答案)

2013-2014成都市九年级(上)数学期末模拟试题2A 卷 姓名________得分_____ 一、 选择题(每题3分,共30分) 1、一元二次方程02=+x x的根为( )A.x =1 B.x =-1 C.x 1=0,x 2=-1 D.x 1=0,x 2=12、下列说法中,错误的是( )A.一组对边平行且相等的四边形是平行四边形 B 、四个角都相等的四边形是矩形 C.两条对角线互相垂直且平分的四边形是菱形 D 、邻边相等的四边形是正方形3、晚上,小华出去散步,在经过一盏路灯时,他发现自己的身影是( ) A.变长 B.变短 C.先变长后变短 D.先变短后变长4、随机掷一枚均匀的硬币两次,两次正面都朝上的概率是( )A 、41 B 、21 C 、43D 、1 5、在△ABC 中,∠C=90°,如果tanA =512 ,那么sinB 的值等于( )A 513 (B) 1213 (C) 512 (D)1256、制造一种产品,原来每件的成本是100元,由于连续两次降低成本,现在的成本是81元,则平均每次降低成本 ( ) A 、90﹪B 、80﹪C 、20﹪D 、10﹪7、某校九年级一班共有学生50人,现在对他们的生日(可以不同年)进行统计,则正确的说法是( ) A 、至少有两名学生生日相同 B 、不可能有两名学生生日相同C 、可能有两名学生生日相同,但可能性不大D 、可能有两名学生生日相同,且可能性很大 8、如图,点P 是反比例函数2y x=-上的一点,PD⊥x 轴于点D ,则△POD 的面积为 ( ) A .4 B.2 C.1 D. 无法确定 9、抛物线2x y -=不具有的性质是()A 、开口向下B 、对称轴是 y 轴C 、与 y 轴不相交D 、最高点是原点10、二次函数122--=x x y 的图象在x 轴上截得的线段长为( )A 、22B 、23C 、32D 、33 二、 填空题(每题3分,共18分) 11、如果关于x 的一元二次方程022=+-m x x有两个相等的实数根,则m = 。

(完整word版)成都市九年级上学期期末数学试卷(含答案)

(完整word版)成都市九年级上学期期末数学试卷(含答案)

九年级上册期末数学测试卷(时间:120分钟,总分:150分)A 卷(共100分)一 、选择题(每题3分,共30分) 1、3--的倒数是( )A .3B .3-C .31 D .31- 2、已知12-=-b a ,则124+-b a 的值为( )A .1-B .0C .1D .33、如图,桌子上放着一个长方体的茶叶盒和一个圆柱形的水杯,则其主视图是( )4、在正方形网格中,ABC △的位置如图所示,则cos B ∠的值为( ) A .12B .22C .32 D .335、某商店购进一种商品,单价为30元.试销中发现这种商品每天的销售量P (件)与每件的销售价x (元)满足关系:1002P x =-.若商店在试销期间每天销售这种商品获得200元的利润,根据题意,下面所列方程正确的是( ).A . (x -30)(100-2x)=200B .x(100-2x)=200C . (30-x)(100-2x)=200D . (x -30)(2x -100)=200 6、反比例函数ky x=在第二象限的图象如图所示,过函数图象上一点P 作PA ⊥x 轴交x 轴于点A, 已知PAO ∆的面积为3,则k 的值为( ) A .6 B .6- C .3 D .3-7、如图,在一块形状为直角梯形的草坪中,修建了一条由A .B .C .D .正面A →M →N →C 的小路(M 、N 分别是AB 、CD 中点).极少数同学 为了走“捷径”,沿线段AC 行走,破坏了草坪,实际上他们 仅少走了( )A .7米B .6米C .5米D .4米8、将抛物线23y x =先向左平移2个单位,再向下平移1个单位后得到新的抛物线,则新抛物线的解析式是( )A .23(2)1y x =++B .23(2)1y x =-+C . 23(2)1y x =+-D .23(2)1y x =-- 9、已知二次函数c bx ax y ++=2)0(≠a 的图象如图所示, 给出以下结论:①0<abc ;②当1x =时,函数有最大值; ③当13x x =-=或时,函数y 的值都等于0; ④024<++c b a 其中正确结论的个数是( )A .1个B .2个C .3个D .4个10、下列四个图象表示的函数中,当x <0时,函数值y 随自变量x 的增大而减小的是( )二、填空题(每空4分,共16分) 11、化简.12、如图,在□ABCD 中,AB =5,AD =8,DE 平分∠ADC , 则B E = .13、若关于x 一元二次方程02)2(2=++-a x a x 的两个实数根分别是3、b ,则=b .14、如图,矩形ABCD 的边AB 与y 轴平行,顶点A 的坐标为(1,2),点B 、xxxxy yy y O O O O A .B .C .D .D 在反比例函数xy 6=(x >0)的图象上,则点C 的坐标为 . 三、计算题(15题6分,16题每小题6分,共18分)15、计算:245sin 2201221801-︒++⎪⎭⎫ ⎝⎛--;16、解方程:(1)x x 232-=; (2)1213122+=--+-x x x x四、解答题(每小题8分,共16分)17、放风筝是大家喜爱的一种运动.星期天的上午小明在万达广场上放风筝.如图他在A 处时不小心让风筝挂在了一棵树的树梢上,风筝固定在了D 处.此时风筝线AD 与水平线的夹角为30°.为了便于观察,小明迅速向前边移动边收线到达了离A 处10米的B 处,此时风筝线BD 与水平线的夹角为45°.已知点A 、B 、C 在同一条直线上,∠ACD=90°.请你求出小明此吋的风筝线的长度是多少米?(本题中风筝线均视为线段,结果保留根号)18、今只有一张欢乐谷门票,而小明和小华都想要去,于是他们两人分别提出一个方案:小明的方案是:转动如图所示的转盘,当转盘停止转动后,如果指针停在阴影区域,则小明获得门票;如果指针停在白色区域,则小华获得门票(转盘被等分成6个扇形,若指针停在边界处,则重新转动转盘).小华的方案是:有三张卡片,上面分别标有数字1,2,3,将它们背面朝上洗匀后,从中摸出一张,记录下卡片上的数字后放回,重新洗匀后再摸出一张.若摸出两张卡片上的数字之和为奇数,则小明获得门票;若摸出两张卡片上的数字之和为偶数,则小华获得门票.(1)在小明的方案中,计算小明获得门票的概率,并说明小明的方案是否公平?(2)用树状图或列表法列举小华设计方案中可能出现的所有结果,计算小华获得门票的概率,并说明小华的方案是否公平?五、解答题(每小题10分,共20分)19、如图,已知一次函数y=kx+b的图象交反比例函数y=错误! (x>0)的图象于点A、B,交x轴于点C.(1)求m的取值范围;(2)若点A的坐标是(2,-4),且BCAB=13,求m的值和一次函数的解析式.20、在直角梯形ABCD中,AB∥CD,∠ABC=90°,AB=2BC=2CD,对角线AC与BD相交于点O,线段OA,OB的中点分别为点E,F.(1)求证:△FOE≌ △DOC;(2)求sin∠OEF的值;(3)若直线EF与线段AD,BC分别相交于点G,H,求AB CDGH的值.①②③……B 卷(共50分)一、填空题。

2014~2015学年度第一学期期末考试九年级数学试卷答案

2014~2015学年度第一学期期末考试九年级数学试卷答案

2014——2015学年度第一学期期末测试九 年 级 数 学参考答案一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的代号填入题后括号内.1.D 2.B 3.C 4.A 5.B 6.C 7.D 8.A 9.B 10.C二、填空题:本大题共8小题,每小题3分,共24分.请把最后结果填在题中横线上. 11.0。

6 12.25 13.24 14.52 15.277 16.(9,0) 17.-1<x <3 18.②④三、解答题:本大题共10小题,共96分.解答时应写出文字说明、证明过程或演算步骤. 19.(本小题满分8分)每图4分解:由表可以看出,随机地摸取一个小球然后放回, 再随机地摸出一个小球,可能出现的结果有16个,它们出现的可能性相等.…………4分 (1)满足两次取的小球的标号相同的结果有4个,所以P (1)=164=41.……6分 (2)满足两次取的小球的标号的和等于4的结果有3个,所以P (2)=163.…8分21.(本小题满分9分)(1)8π (3分) (2)(3分)(3)③(3分)22.(本小题满分8分)证明:连接OC .………………………………………………1分∵OA =OC ,∴∠OAC =∠OCA .………………………2分∵CD 切⊙O 于点C ,∴OC ⊥CD .……………………3分∵AD ⊥CD ,∴∠ADC =∠OCD =90°,即∠ADC +∠OCD =180°,∴AD ∥OC ,……………………………………………5分∴∠DAC =∠OCA =∠OAC ,……………………………7分∴AC 平分∠DAB .……………………………………8分一 二1 2 3 4 1 (1,1) (2,1) (3,1) (4,1) 2 (1,2) (2,2) (3,2) (4,2) 3 (1,3) (2,3) (3,3) (4,3)4 (1,4) (2,4) (3,4) (4,4) A B C D O . (第22题图).O A B C解:设所围成圆锥的底面半径和高分别为r 和h .∵扇形半径为3㎝,圆心角为120°, ∴12032180r ππ⋅⋅=,……………………………………………………………………4分 ∴r =1,……………………………………………………………………………………6分∴h ==8分24.(本小题满分10分)解:(1)令y =0,得2230x x --=,………………………………………………………1分解得x 1=3,x 2=-1,………………………………………………………………3分 ∴抛物线与x 轴交点坐标为(3,0)和(-1,0).……………………………4分(2)令x =0,得y =-3,∴抛物线与y 轴交点坐标为(0,-3),…………………………………………5分 ∴将此抛物线向上平移3个单位后可以经过原点.……………………………7分 平移后抛物线解析式为22y x x =-.………………………………………10分25.(本小题满分9分)(1)证明:∵DE ∥BC ,EF ∥AB ,∴∠AED =∠ECF ,∠A =∠FEC ,……………2分∴△ADE ∽△EFC .………………………………………………………………4分(2)解:∵△ADE ∽△EFC , ∴AD DE EF FC=.…………………………5分 ∵AD =4,DE =5,EF =2, ∴FC =52.……………………………………6分 ∵DE ∥BC ,EF ∥AB ,∴四边形DEFB 是平行四边形,∴BF =DE =5,……8分∴BC =BF + FC =5+52=152.………………………………………………………9分26.(本小题满分10分)(1)证明:∵四边形ABCD 是正方形,∴∠A =∠B =90°,∴∠DEA +∠ADE =90°.…1分∵EF ⊥DE ,∴∠DEF =90°,∴∠DEA +∠FEB =90°,……………………………2分 ∴∠ADE =∠FEB ,……………………………………………………………………4分 ∴△ADE ∽△BEF .……………………………………………………………………5分(2)解:∵正方形的边长为4,AE =x ,∴BE =4-x .∵△ADE ∽△BEF , ∴DA AE EB BF =,……………………………………………7分 ∴44x x y =-, ∴2(4)144x x y x x -==-+,…………………………………10分解:(1)由题意得1060x y -=.…………………………………………………………3分 (2)由题意得1200040101)200)(1060()200(2++-=+-=+=x x x x x y z .6分 (3)由题意得)1060(201200040101202x x x y z w --++-=-= 10800421012++-=x x .…………………………………………9分 当每个房间的定价2102=-=a b x (元)时,w 有最大值,最大值是15210.………12分28.(本小题满分14分)解:(1)∵点A 坐标为(0,3),∴OA =3.∵矩形ABCO 面积为12,∴AB =4,……2分∴抛物线的对称轴为直线x =2.…………………………………………………4分(2)∵∠ADM =∠DOM ,∠AMD =∠DMO ,∴△ADM ∽△DOM , ∴MOMD MD AM =,∴MO AM MD ⋅=2.设MO=x ,则MA= x -3. ∴)3(4-=x x ,∴41=x ,12-=x ,∴MO=4,∴D 点坐标为(2,4).…6分 设抛物线的解析式为4)2(2+-=x a y . 将点A (0,3)代入得443+=a ,∴41-=a , ∴抛物线的解析式为4)2(412+--=x y .……………………………8分 (3)∵⊙P 在y 轴上截得线段长为2,OA =3, ∴P 点纵坐标为2或4.……9分在4)2(412+--=x y 中,令y=2或4得 4)2(4122+--=x 或4)2(4142+--=x ,………………………………11分 解得2221+=x ,2222-=x ,23=x ,∴P 点坐标为(222+,2)、(222-,2)或(2,4).………………14分。

四川省成都市九年级(上)期末数学试卷(含解析)

四川省成都市九年级(上)期末数学试卷(含解析)

四川省成都市九年级(上)期末数学试卷一、选择题(本大题共小10题,每小题3分,共30分) 1.(3分)下列各数中与4相等的是( ) A .22-B .2(2)-C .|4|--D .(4)-+2.(3分)2017年成都市经济呈现活力增强,稳重向好的发展态势,截止2017年12月,全市实现地区总值约13900亿元,将13900亿元用科学记数法表示是( )亿元. A .213910⨯B .313.910⨯C .41.3910⨯D .51.3910⨯3.(3分)下列计算正确的是( ) A .326a a a ⨯=B .32a a a -=C .22a b ab +=D .123--=-4.(3分)下列说法不正确的是( )A .两组对边分别相等的四边形是平行四边形B .当a c b +=时,一元二次方程20ax bx c ++=必有一根为1C .若点P 是线段AB 的黄金分割点()PA PB >,则512PA AB -= D .23410x x -+=的两根之和为435.(3分)已知52x y =,则x y y-的值为( ) A .35B .32C .23 D .35-6.(3分)如图,线段AB 两个端点的坐标分别为(2,2)A 、(3,1)B ,以原点O 为位似中心,在第一象限内将线段AB 扩大为原来的2倍后得到线段CD ,则端点C 的坐标分别为( )A .(3,1)B .(3,3)C .(4,4)D .(4,1)7.(3分)如图,在菱形ABCD 中,2AB =,120ABC ∠=︒,则对角线BD 等于( )A .2B .4C .6D .88.(3分)如图,A 、B 、C 三点在正方形网格线的交点处,若将ABC ∆绕着点A 逆时针旋转得到△AC B '',则tan B '的值为( )A .12B .13C .14D .249.(3分)关于x 的一元二次方程220x x m ++=有实数根,则m 的取值范围是( ) A .1m <B .1m <且0m ≠C .1m …D .1m … 且0m ≠10.(3分)如图,菱形OBAC 的边OB 在x 轴上,点(8,4)A ,4tan 3COB ∠=,若反比例函数(0)ky k x=≠的图象经过点C ,则k 的值为( )A .6B .12C .24D .32二、填空题(本大题共4小题,每小题4分,共16分)11.(4分)已知a 为锐角,且满足tan(10)3a +︒=,则a 为 度.12.(4分)已知关于x 的一元二次方程20x x m -+=有一个根为2,则m 的值为 ,它的另一个根为 .13.(4分)反比例函数||2m y mx -=,当0x >时,y 随x 的增大而增大,则m = 14.(4分)如图,AB 和DE 是直立在地面上的两根立柱,5AB =米,某一时刻AB 在阳光下的投影3BC =米,在测量AB 的投影时,同时测量出DE 在阳光下的投影长为6米,则DE 的长为 .三、解答题(本大题共6小题,共54分) 15.(12分)计算(1)计算:03(3)(1)3tan 3027π--+--⨯︒+ (2)解方程:(3)2x x x -=16.(6分)先化简再求值:213(1)22a a a a +++--,其中12a =17.(8分)如图,大楼AD 高50米,和大楼AD 相距90米的C 处有一塔BC ,某人在楼顶D 处测得塔顶B 的仰角30BDE ∠=︒,求塔高.(结果保留整数,参考数据:2 1.41,3 1.73)≈≈18.(8分)某班为了解学生一学期做义工的时间情况,对全班50名学生进行调查,按做义工的时间t (单位:小时),将学生分成五类:A 类(02)t 剟,B 类(24)t <…,C 类(46)t <…,D 类(68)t <…,E 类(8)t >.绘制成尚不完整的条形统计图如图.根据以上信息,解答下列问题: (1)E 类学生有 人,补全条形统计图; (2)D 类学生人数占被调查总人数的 %;(3)从该班做义工时间在04t 剟的学生中任选2人,求这2人做义工时间都在24t <…中的概率.19.(10分)如图,在平面直角坐标系xOy中,一次函数y kx b=+的图象与反比例函数6 yx =的图象相交于点(,3)A m,(6,1)B--,与x轴交于点(,0)C n (1)求一次函数y kx b=+的关系式;(2)求BOC∆的面积;(3)若点P在x轴上,且32ACP BOCS S∆∆=,求点P的坐标20.(10分)在平行四边形ABCD 中,6AB =,8BC =,点E 、F 分别为AB 、BC 的两点.(1)如图1,若90B ∠=︒,且2BF CE ==,连接EF 、DE ,判断EF 和DE 的数量关系及位置关系,并说明理由;(2)如图2,60B FED ∠=∠=︒,求证:EF BEED CD=; (3)如图3,若90ABC ∠=︒,点C 关于BD 的对称点为点C ',点O 为平行四边形ABCD 对角线BD 的中点,连接OC 交AD 于点G ,求GD 的长.B 卷一、填空题:(每小题4分,共20分)21.(4分)已知m ,n 是方程2240x x --=的两实数根,则22m mn n ++= . 22.(4分)有三张正面分别写有数字2-,1-, 1 的卡片, 它们的背面完全相同, 将这三张卡片的背面朝上洗匀后随机抽取一张, 以其正面的数字作为x 的值, 放回卡片洗匀, 再从三张卡片中随机抽取一张, 以其正面的数字作为y 的值, 两次结果记为(,)x y . 则使分式2223x xy yx y x y-+--有意义的(,)x y 出现的概率是 . 23.(4分)如图,点A 是反比例函数5(0)y x x=>图象上的一点,点B 是反比例函数1(0)y x x=-<图象上的点,连接OA 、OB 、AB ,若90AOB ∠=︒,则sin A ∠=24.(4分)如图,在ABC ∆中,5AB =,12AC =,13BC =,ABD ∆、ACE ∆、BCF ∆都是等边三角形,则四边形AEFD 的面积S = .25.(4分)如图,直线l 经过正方形ABCD 的顶点A ,先分别过此正方形的顶点B 、D 作BE l ⊥于点E 、DF l ⊥于点F .然后再以正方形对角线的交点O 为端点,引两条相互垂直的射线分别与AD ,CD 交于G ,H 两点.若25EF =,2ABE S ∆=,则线段GH 长度的最小值是 .二、解答题:(26题8分,27题10分,28题12分,共计30分)26.(8分)成都市中心城区“小游园,微绿地”规划已经实施,武侯区某街道有一块矩形空地进入规划试点.如图,已知该矩形空地长为90m ,宽为60m ,按照规划将预留总面积为24536m 的四个小矩形区域(阴影部分)种植花草,并在花草周围修建三条横向通道和三条纵向通道,各通道的宽度相等. (1)求各通道的宽度;(2)现有一工程队承接了对这24536m 的区域(阴影部分)进行种植花草的绿化任务,该工程队先按照原计划进行施工,在完成了2536m 的绿化任务后,将工作效率提高25%,结果提前2天完成任务,求该工程队原计划每天完成多少平方米的绿化任务?27.(10分)如图,正方形ABCD中,4AB=,点E是对角线AC上的一点,连接DE.过点E作EF ED⊥,交AB于点F,以DE、EF为邻边作矩形DEFG,连接AG.(1)求证:矩形DEFG是正方形;(2)求AG AE+的值;(3)若F恰为AB中点,连接DF交AC于点M,请直接写出ME的长.28.(12分)如图1,已知点(,0)A a,(0,)B b,且a、b满足21(3)0a a b++++=,ABCDY的边AD与y轴交于点E,且E为AD中点,双曲线kyx=经过C、D两点.(1)求k的值;(2)点P在双曲线kyx=上,点Q在y轴上,若以点A、B、P、Q为顶点的四边形是平行四边形,试求满足要求的所有点P、Q的坐标;(3)以线段AB为对角线作正方形AFBH(如图3),点T是边AF上一动点,M是HT的中点,MN HT⊥,交AB于N,当T在AF上运动时,MNHT的值是否发生改变?若改变,求出其变化范围;若不改变,请求出其值,并给出你的证明.参考答案与试题解析一、选择题(本大题共小10题,每小题3分,共30分) 1.(3分)下列各数中与4相等的是( ) A .22-B .2(2)-C .|4|--D .(4)-+【考点】1E :有理数的乘方;14:相反数;15:绝对值 【分析】各项计算得到结果,即可做出判断. 【解答】解:A 、原式4=-,不相同; B 、原式4=,相同; C 、原式4=-,不相同;D 、原式4=-,不相同,故选:B .【点评】此题考查了有理数的乘方,绝对值,相反数,熟练掌握有理数的乘方,绝对值,相反数的意义是解本题的关键.2.(3分)2017年成都市经济呈现活力增强,稳重向好的发展态势,截止2017年12月,全市实现地区总值约13900亿元,将13900亿元用科学记数法表示是( )亿元. A .213910⨯B .313.910⨯C .41.3910⨯D .51.3910⨯【考点】1I :科学记数法-表示较大的数【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <…,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数. 【解答】解:13900亿41.3910=⨯亿, 故选:C .【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1||10a <…,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.(3分)下列计算正确的是( ) A .326a a a ⨯=B .32a a a -=C .22a b ab +=D .123--=-【考点】46:同底数幂的乘法;1A :有理数的减法;35:合并同类项【分析】分别根据同底数幂的乘法法则,合并同类项的法则,有理数的加减法法则逐一判断即可.【解答】解:325a a a ⨯=,故选项A 不合题意;3a 与2a 不是同类项,故不能合并,故选项B 不合题意;2a 与b 不是同类项,故不能合并,故选项C 不合题意;123--=-,正确,故选项D 符合题意.故选:D .【点评】本题主要考查了幂的运算以及有理数的加减法,熟练掌握运算法则是解答本题的关键.4.(3分)下列说法不正确的是( )A .两组对边分别相等的四边形是平行四边形B .当a c b +=时,一元二次方程20ax bx c ++=必有一根为1C .若点P 是线段AB 的黄金分割点()PA PB >,则PA AB =D .23410x x -+=的两根之和为43 【考点】3A :一元二次方程的解;AB :根与系数的关系;3S :黄金分割;6L :平行四边形的判定【分析】A 、根据平行四边形的判定判断即可;B 、根据一元二次方程的根解答即可;C 、根据黄金分割点的概念解答即可;D 、根据一元二次方程的根解答即可.【解答】解:A 、两组对边分别相等的四边形是平行四边形,正确;B 、当a c b +=-时,一元二次方程20ax bx c ++=必有一根为1,错误;C 、若点P 是线段AB 的黄金分割点()PA PB >,则PA AB =,正确;D 、23410x x -+=的两根之和为为43,正确; 故选:B .【点评】此题考查黄金分割,关键是根据黄金分割、平行四边形的判定和一元二次方程的根解答.5.(3分)已知52x y =,则x y y-的值为( )A .35B .32C .23D .35- 【考点】1S :比例的性质【分析】直接利用已知表示出x ,y 的值,进而代入原式求出答案.【解答】解:设5x k =,2(0)y k k =≠,则52322x y k k y k --==, 故选:B .【点评】此题主要考查了比例式,正确表示出各未知数是解题关键.6.(3分)如图,线段AB 两个端点的坐标分别为(2,2)A 、(3,1)B ,以原点O 为位似中心,在第一象限内将线段AB 扩大为原来的2倍后得到线段CD ,则端点C 的坐标分别为( )A .(3,1)B .(3,3)C .(4,4)D .(4,1)【考点】5D :坐标与图形性质;SC :位似变换【分析】利用位似图形的性质结合对应点坐标与位似比的关系得出C 点坐标.【解答】解:Q 以原点O 为位似中心,在第一象限内将线段AB 扩大为原来的2倍后得到线段CD ,A ∴点与C 点是对应点,C Q 点的对应点A 的坐标为(2,2),位似比为:1:2,∴点C 的坐标为:(4,4)故选:C .【点评】此题主要考查了位似变换,正确把握位似比与对应点坐标的关系是解题关键.7.(3分)如图,在菱形ABCD 中,2AB =,120ABC ∠=︒,则对角线BD 等于( )A .2B .4C .6D .8【考点】8L :菱形的性质【分析】由菱形的性质可证得ABD ∆为等边三角形,则可求得答案.【解答】解:Q 四边形ABCD 为菱形,//AD BC ∴,AD AB =,180A ABC ∴∠+∠=︒,18012060A ∴∠=︒-︒=︒,ABD ∴∆为等边三角形,2BD AB ∴==,故选:A .【点评】本题主要考查菱形的性质,利用菱形的性质证得ABD ∆为等边三角形是解题的关键.8.(3分)如图,A 、B 、C 三点在正方形网格线的交点处,若将ABC ∆绕着点A 逆时针旋转得到△AC B '',则tan B '的值为( )A .12B .13C .14D 2 【考点】2R :旋转的性质;1T :锐角三角函数的定义【分析】过C 点作CD AB ⊥,垂足为D ,根据旋转性质可知,B B ∠'=∠,把求tan B '的问题,转化为在Rt BCD ∆中求tan B .【解答】解:过C 点作CD AB ⊥,垂足为D .根据旋转性质可知,B B ∠'=∠.在Rt BCD ∆中,1tan 3CD B BD ==, 1tan tan 3B B ∴'==. 故选:B .【点评】本题考查了旋转的性质,旋转后对应角相等;三角函数的定义及三角函数值的求法.9.(3分)关于x 的一元二次方程220x x m ++=有实数根,则m 的取值范围是( )A .1m <B .1m <且0m ≠C .1m …D .1m … 且0m ≠【考点】AA :根的判别式【分析】由方程根的情况,根据根的判别式,可得到关于m 的不等式,则可求得m 的取值范围.【解答】解:Q 一元二次方程220x x m ++=有实数根,∴△0…,即2240m -…,解得1m …, 故选:C .【点评】本题主要考查根的判别式,熟练掌握一元二次方程根的个数与根的判别式的关系是解题的关键.10.(3分)如图,菱形OBAC 的边OB 在x 轴上,点(8,4)A ,4tan 3COB ∠=,若反比例函数(0)k y k x =≠的图象经过点C ,则k 的值为( )A .6B .12C .24D .32【考点】6G :反比例函数图象上点的坐标特征;7T :解直角三角形;8L :菱形的性质【分析】作AH x ⊥轴于H ,如图,利用菱形的性质得到//OC AB ,//AC OB ,OB AB AC ==,所以ABH COB ∠=∠,在Rt ABH ∆中,利用正切的定义得到3BH =,则5OB =,从而得到(3,4)C ,然后根据反比例函数图象上点的坐标特征求出k 的值.【解答】解:作AH x ⊥轴于H ,如图,(8,4)A Q ,8OH ∴=,4AH =,Q 四边形ABOC 为菱形,//OC AB ∴,//AC OB ,OB AB AC ==,ABH COB ∴∠=∠,在Rt ABH ∆中,4tan 3AH ABH BH ∠==, 334BH AH ∴==, 5OB ∴=,(3,4)C ∴,Q 反比例函数(0)k y k x=≠的图象经过点C , 3412k ∴=⨯=. 故选:B .【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数(k y k x=为常数,0)k ≠的图象是双曲线,图象上的点(,)x y 的横纵坐标的积是定值k ,即xy k =.也考查了菱形的性质.二、填空题(本大题共4小题,每小题4分,共16分)11.(4分)已知a 为锐角,且满足tan(10)3a +︒=,则a 为 50 度.【考点】5T :特殊角的三角函数值【分析】直接利用特殊角的三角函数值进而得出答案.【解答】解:tan(10)3a +︒=Q ,1060α∴+︒=︒,故50α=︒.故答案为:50.【点评】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.12.(4分)已知关于x 的一元二次方程20x x m -+=有一个根为2,则m 的值为 2- ,它的另一个根为 .【考点】3A :一元二次方程的解;8A :解一元二次方程-因式分解法【分析】代入根先求出m 的值,然后根据方程求出另一个根.【解答】解:Q 有一个根为2,420m ∴-+=2m =-.220x x --=(2)(1)0x x -+=2x =或1x =-.所以另一个根为1-.故答案为:2-;1-.【点评】本题考查解一元二次方程,用到因式分解的方法.13.(4分)反比例函数||2m y mx -=,当0x >时,y 随x 的增大而增大,则m = 1-【考点】4G :反比例函数的性质;1G :反比例函数的定义【分析】根据反比例函数的一般形式,可以得到x 的次数是1-;根据当0x >时,y 随x 的增大而增大,可以得到比例系数是负数,即可求得.【解答】解:根据题意得:||210m m -=-⎧⎨<⎩, 解得:1m =-.故答案为:1-.【点评】本题考查了反比例函数的一般形式以及反比例函数的性质,正确理解函数的性质是关键.14.(4分)如图,AB 和DE 是直立在地面上的两根立柱,5AB =米,某一时刻AB 在阳光下的投影3BC =米,在测量AB 的投影时,同时测量出DE 在阳光下的投影长为6米,则DE 的长为 10m .【考点】SA :相似三角形的应用;5U :平行投影【分析】根据平行的性质可知ABC DEF ∆∆∽,利用相似三角形对应边成比例即可求出DE 的长.【解答】解:如图,在测量AB 的投影时,同时测量出DE 在阳光下的投影长为6m , ABC DEF ∆∆Q ∽,5AB m =,3BC m =,6EF m = ∴AB DE BC EF = ∴536DE = 10()DE m ∴=故答案为10m .【点评】本题通过投影的知识结合图形相似的性质巧妙地求出灯泡离地面的距离,是平行投影性质在实际生活中的应用.三、解答题(本大题共6小题,共54分)15.(12分)计算(1)计算:03(3)(1)3tan 3027π--+--⨯︒+(2)解方程:(3)2x x x -=【考点】5T :特殊角的三角函数值;6E :零指数幂;8A :解一元二次方程-因式分解法;6F :负整数指数幂;2C :实数的运算【分析】(1)根据零指数幂的意义、负整数指数幂的意义和特殊角的三角函数值进行计算;(2)先移项得到(3)20x x x --=,然后利用因式分解法解方程.【解答】解:(1)原式113=--+11=-+=;(2)(3)20x x x --=,(32)0x x --=,0x =或320x --=,所以10x =,25x =.【点评】本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了实数的运算.16.(6分)先化简再求值:213(1)22a a a a +++--,其中12a = 【考点】6D :分式的化简求值【分析】分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的.【解答】解:原式123(2)2a a a a a +-+=+-- 21(2)(2)a a a a a a a ++=+-- 221(2)a a a a ++=- 2(1)(2)a a a +=- 当12a =时, 原式21(1)2311(2)22+==-- 【点评】本题考查了分式的化简,熟练分解因式是解题的关键.17.(8分)如图,大楼AD 高50米,和大楼AD 相距90米的C 处有一塔BC ,某人在楼顶D 处测得塔顶B 的仰角30BDE ∠=︒,求塔高.(结果保留整数,参考数据:1.73)≈≈【考点】TA :解直角三角形的应用-仰角俯角问题【分析】过点D 作DE BC ⊥于点E ,在直角三角形BDE 中,根据30BDE ∠=︒,求出BE 的长度,然后即可求得塔高.【解答】解:过点D 作DE BC ⊥于点E ,在Rt BDE ∆中,30BDE ∠=︒Q ,90DE =米,3tan 3090303BE DE ∴=︒==g ), 350102BC BE EC BE AD ∴=+=+=+≈(米). 答:塔高约为102米.【点评】本题考查的是解直角三角形的应用,解答本题的关键是根据仰角构造出直角三角形,利用三角函数的知识求解.18.(8分)某班为了解学生一学期做义工的时间情况,对全班50名学生进行调查,按做义工的时间t (单位:小时),将学生分成五类:A 类(02)t 剟,B 类(24)t <…,C 类(46)t <…,D 类(68)t <…,E 类(8)t >.绘制成尚不完整的条形统计图如图.根据以上信息,解答下列问题:(1)E 类学生有 5 人,补全条形统计图;(2)D 类学生人数占被调查总人数的 %;(3)从该班做义工时间在04t 剟的学生中任选2人,求这2人做义工时间都在24t <…中的概率.【考点】VC :条形统计图;6X :列表法与树状图法【分析】(1)根据总人数等于各类别人数之和可得E 类别学生数;(2)用D 类别学生数除以总人数即可得;(3)列举所有等可能结果,根据概率公式求解可得.【解答】解:(1)E 类学生有50(232218)5-+++=(人), 补全图形如下:故答案为:5;(2)D 类学生人数占被调查总人数的18100%36%50⨯=, 故答案为:36;(3)记02t 剟内的两人为甲、乙,24t <…内的3人记为A 、B 、C , 从中任选两人有:甲乙、甲A 、甲B 、甲C 、乙A 、乙B 、乙C 、AB 、AC 、BC 这10种可能结果,其中2人做义工时间都在24t <…中的有AB 、AC 、BC 这3种结果, ∴这2人做义工时间都在24t <…中的概率为310. 【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查条形统计图.19.(10分)如图,在平面直角坐标系xOy中,一次函数y kx b=+的图象与反比例函数6 yx=的图象相交于点(,3)A m,(6,1)B--,与x轴交于点(,0)C n(1)求一次函数y kx b=+的关系式;(2)求BOC∆的面积;(3)若点P在x轴上,且32ACP BOCS S∆∆=,求点P的坐标【考点】8G:反比例函数与一次函数的交点问题【分析】(1)利用待定系数法解决问题即可.(2)求出点C的坐标即可解决问题.(3)设(,0)P m,利用三角形的面积公式构建方程即可解决问题.【解答】解:(1)Q反比例函数6yx=的图象相交于点(,3)A m,2m∴=,把(2,3)A,(6,1)B--代入y kx b=+,则有2361k bk b+=⎧⎨-+=-⎩,解得122kb⎧=⎪⎨⎪=⎩,∴一次函数的解析式为122y x=+.(2)连接OB.Q 一次函数的解析式为122y x =+交x 轴于C , (4,0)C ∴-,4OC ∴=,(6,1)B --Q ,14122OBC S ∆∴=⨯⨯=,(3)设(,0)P m ,由题意:13|4|3222m +=⨯g g ,6m ∴=-或2-.【点评】本题考查反比例函数与一次函数的交点问题,解题的关键是熟练掌握待定系数法,学会利用参数构建方程解决问题,属于中考常考题型.20.(10分)在平行四边形ABCD 中,6AB =,8BC =,点E 、F 分别为AB 、BC 的两点.(1)如图1,若90B ∠=︒,且2BF CE ==,连接EF 、DE ,判断EF 和DE 的数量关系及位置关系,并说明理由;(2)如图2,60B FED ∠=∠=︒,求证:EF BEED CD=; (3)如图3,若90ABC ∠=︒,点C 关于BD 的对称点为点C ',点O 为平行四边形ABCD 对角线BD 的中点,连接OC 交AD 于点G ,求GD 的长.【考点】SO :相似形综合题【分析】(1)根据平行四边形的性质结合AB 、BC 、BF 、CE 的长度,即可证出()BEF CDE SAS ∆≅∆,利用全等三角形的性质可得出EF DE =、BEF CDE ∠=∠,再通过角的计算即可找出90DEF ∠=︒,即EF DE ⊥;(2)在AB 上取点G ,使BG BE =,连接EG ,则BEG ∆为等边三角形,根据平行四边形的性质结合角的计算可找出C EGF ∠=∠、CDE GEF ∠=∠,进而可证出CDE GEF ∆∆∽,根据相似三角形的性质可得出EF GEDE CD=,等量替换后可得出EF BEED CD=; (3)连接AC 、CC '、AC ',设CC '交BD 于点M ,利用面积法及勾股定理可求出OM 的长度,易知OM 为中位线,根据中位线的性质可得出AC '的长度及//AC BD ',进而可得出AGC DGO ∆'∆∽,利用相似三角形的性质可得出14145525AG AC DG DO '===,结合AD 的长度即可求出DG 的长度.【解答】(1)解:EF DE =,EF DE ⊥.理由如下:Q 四边形ABCD 为平行四边形,90B ∠=︒,90C B ∴∠=∠=︒.6AB =Q ,8BC =,2BF CE ==, 6BE BC CE CD ∴=-==. 在BEF ∆和CDE ∆中,BF CEB C BE CD =⎧⎪∠=∠⎨⎪=⎩,()BEF CDE SAS ∴∆≅∆, EF DE ∴=,BEF CDE ∠=∠.90CDE CED ∠+∠=︒Q , 90BEF CED ∴∠+∠=︒, 90DEF ∴∠=︒,即EF DE ⊥.(2)证明:如图2,在AB 上取点G ,使BG BE =,连接EG ,则BEG ∆为等边三角形,60BGE BEG ∴∠=∠=︒, 180120EGF BGE ∴∠=︒-∠=︒.Q 四边形ABCD 为平行四边形,60B ∠=︒,120C EGF∴∠=︒=∠,60CED CDE∴∠+∠=︒.60DEF∠=︒Q,60BEG∠=︒,180606060 GEF CED∴∠+∠=︒-︒-︒=︒,CDE GEF∴∠=∠,CDE GEF∴∆∆∽,∴EF GEDE CD=,即EF BEED CD=.(3)解:连接AC、CC'、AC',设CC'交BD于点M,如图3所示,则BD为线段CC'的垂直平分线.90ABC∠=︒Q,∴平行四边形ABCD为矩形,2210BD BC CD∴=+=,11522OC AC BD===,245BC CDCMBD==g,2275OM OC CM∴=-=.Q点O为AC的中点,点M为CC'的中点,1425AC OM∴'==,且//AC BD',AGC DGO∴∆'∆∽,∴14145525AG ACDG DO'===,25200142539DG AD∴==+.【点评】本题考查了全等三角形的判定与性质、相似三角形的判定与性质、等边三角形的判定与性质、平行四边形的性质、三角形的面积以及勾股定理,解题的关键是:(1)通过BEF CDE∆≅∆找出相等的边角关系;(2)利用构造相似三角形找出EF GEDE CD=;(3)利用相似三角形的性质找251425DG AD =+.B 卷一、填空题:(每小题4分,共20分)21.(4分)已知m ,n 是方程2240x x --=的两实数根,则22m mn n ++= 4 . 【考点】AB :根与系数的关系【分析】先根据一元二次方程根的定义得到224m m =+,则22m mn n ++可变形为2()4m n mn +++,再根据根与系数的关系得到2m n +=,4mn =-,然后利用整体代入的方法计算代数式的值.【解答】解:m Q 是方程2240x x --=的实数根, 2240m m ∴--=, 224m m ∴=+,222422()4m mn n m mn n m n mn ∴++=+++=+++,m Q ,n 是方程2240x x --=的两实数根,2m n ∴+=,4mn =-,2222444m mn n ∴++=⨯-+=.故答案为4.【点评】本题考查了根与系数的关系:若1x ,2x 是一元二次方程20(0)ax bx c a ++=≠的两根时,12b x x a +=-,12c x x a=.22.(4分)有三张正面分别写有数字2-,1-, 1 的卡片, 它们的背面完全相同, 将这三张卡片的背面朝上洗匀后随机抽取一张, 以其正面的数字作为x 的值, 放回卡片洗匀, 再从三张卡片中随机抽取一张, 以其正面的数字作为y 的值, 两次结果记为(,)x y . 则使分式2223x xy y x y x y -+--有意义的(,)x y 出现的概率是 9. 【考点】62 :分式有意义的条件;6X :列表法与树状图法【分析】首先列表得出所有等可能的情况数, 再找出能使分式有意义的(,)x y 情况数, 即可求出所求的概率 . 【解答】解: 列表如下:2- (2,2)-- (1,2)-- (1,2)- 1-(2,1)-- (1,1)-- (1,1)- 1(2,1)-(1,1)-(1,1)所有等可能的情况有 9 种,Q 分式的最简公分母为()()x y x y +-,x y ∴≠-且x y ≠时, 分式有意义,∴能使分式有意义的(,)x y 有 4 种,则49P =. 故答案为:49.【点评】此题考查了列表法与树状图法, 用到的知识点为: 概率=所求情况数与总情况数之比, 注意此题是放回实验还是不放回实验是解题关键 .23.(4分)如图,点A 是反比例函数5(0)y x x=>图象上的一点,点B 是反比例函数1(0)y x x=-<图象上的点,连接OA 、OB 、AB ,若90AOB ∠=︒,则sin A ∠=66【考点】2G :反比例函数的图象;6G :反比例函数图象上点的坐标特征;7T :解直角三角形【分析】如图作AE x ⊥轴于E ,BF x ⊥轴于F .设5(,)A a a ,1(,)B b b-,由BOF OAE ∆∆∽,可得AE OEOF BF=,推出225a b =,想办法求出OB 、AB (用b 表示),再根据三角函数的定义即可解决问题;【解答】解:如图作AE x ⊥轴于E ,BF x ⊥轴于F .设5(,)A a a ,1(,)B b b -,90AOB OFB AEO ∠=∠=∠=︒Q ,90BOF AOE∴∠+∠=︒,90AOE OAE∠+∠=︒,BOF OAE∴∠=∠,BOF OAE∴∆∆∽,∴AE OEOF BF=,∴51aabb=--,225a b∴=,22222222212566AB OB OA b a bb a b=+=+++=+Q,2216()AB bb∴=+,221OB bb=+,222216sin616()bOB bAABbb+∴∠===+,故答案为66.【点评】本题考查反比例函数图象上点的特征、反比例函数的图象、解直角三角形等知识,解题的关键是学会利用参数解决问题,属于中考填空题中的压轴题.24.(4分)如图,在ABC∆中,5AB=,12AC=,13BC=,ABD∆、ACE∆、BCF∆都是等边三角形,则四边形AEFD的面积S=30.【考点】KD:全等三角形的判定与性质;KK:等边三角形的性质;KQ:勾股定理;KS:勾股定理的逆定理【分析】根据题中的等式关系可推出两组对边分别相等,从而可判断四边形AEFD 为平行四边形.由勾股定理的逆定理判定90BAC ∠=︒,则150DAE ∠=︒,故易求30FDA ∠=︒.所以由平行四边形的面积公式即可解答.【解答】解:Q 在ABC ∆中,5AB =,12AC =,13BC =, 222BC AB AC ∴=+, 90BAC ∴∠=︒,ABD ∆Q ,ACE ∆都是等边三角形, 60DAB EAC ∴∠=∠=︒, 150DAE ∴∠=︒.ABD ∆Q 和FBC ∆都是等边三角形, 60DBF FBA ABC ABF ∴∠+∠=∠+∠=︒, DBF ABC ∴∠=∠.在ABC ∆与DBF ∆中, BD BA DBF ABC BF BC =⎧⎪∠=∠⎨⎪=⎩()ABC DBF SAS ∴∆≅∆, 12AC DF AE ∴===,同理可证ABC EFC ∆≅∆, 5AB EF AD ∴===,∴四边形DAEF 是平行四边形(两组对边分别相等的四边形是平行四边形). 18030FDA DAE ∴∠=︒-∠=︒,()130512302AEFD S AD DF sin ⎛⎫∴=⋅⋅︒=⨯⨯= ⎪⎝⎭Y ,即四边形AEFD 的面积是30, 故答案为:30.【点评】本题综合考查了勾股定理的逆定理,平行四边形的判定与性质,全等三角形的判定与性质以及等边三角形的性质.综合性比较强,难度较大,有利于培养学生综合运用知识进行推理和计算的能力.25.(4分)如图,直线l 经过正方形ABCD 的顶点A ,先分别过此正方形的顶点B 、D 作BE l ⊥于点E 、DF l ⊥于点F .然后再以正方形对角线的交点O 为端点,引两条相互垂直的射线分别与AD ,CD 交于G ,H 两点.若25EF =,2ABE S ∆=,则线段GH 长度的最小值是6 .【考点】KD :全等三角形的判定与性质;KQ :勾股定理;LE :正方形的性质【分析】根据正方形的性质可得AB AD =,90BAD ∠=︒,然后利用同角的余角相等求出BAE ADF ∠=∠,再利用“角角边”证明ABE ∆和DAF ∆全等,根据全等三角形对应边相等可得BE AF =,设AE x =,BE y =,然后列出方程组求出x 、y 的值,再利用勾股定理列式求出正方形的边长AB ,根据正方形的对角线平分一组对角可得45OAG ODH ∠=∠=︒,根据同角的余角相等求出AOG DOH ∠=∠,然后利用“角边角”证明AOG ∆和DOH ∆全等,根据全等三角形对应边相等可得OG OH =,判断出OGH ∆是等腰直角三角形,再根据垂线段最短和等腰直角三角形的性质可得OH CD ⊥时GH 最短,然后求解即可.【解答】解:在正方形ABCD 中,AB AD =,90BAD ∠=︒, 90BAE DAF ∴∠+∠=︒, DF l ⊥Q ,90DAF ADF ∴∠+∠=︒,BAE ADF ∴∠=∠,在ABE ∆和DAF ∆中, 90BAE ADF AFD BEA AB AD ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩, ()ABE DAF AAS ∴∆≅∆,BE AF ∴=,设AE x =,BE y =, 25EF =Q ,2ABE S ∆=,∴122x y xy ⎧+=⎪⎨=⎪⎩, 消掉y并整理得,240x -+=,解得11x =-,21x =+,当11x =,11y =+,当21x =,21y =-,∴由勾股定理得,AB ==,在正方形ABCD 中,45OAG ODH ∠=∠=︒,OA OD =,90AOD ∠=︒, 90AOG DOG ∴∠+∠=︒, OG OH ⊥Q ,90DOH DOG ∴∠+∠=︒, AOG DOH ∴∠=∠,在AOG ∆和DOH ∆中, AOG DOH OA ODOAG ODH ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()AOG DOH ASA ∴∆≅∆, OG OH ∴=,OGH ∴∆是等腰直角三角形,由垂线段最短可得,OH CD ⊥时OH 最短,GH 也最短, 此时,GH=.【点评】本题考查了正方形的性质,全等三角形的判定与性质,勾股定理,等腰直角三角形的判定与性质,难点在于多次证明三角形全等并判断出GH 长度最小时的情况. 二、解答题:(26题8分,27题10分,28题12分,共计30分)26.(8分)成都市中心城区“小游园,微绿地”规划已经实施,武侯区某街道有一块矩形空地进入规划试点.如图,已知该矩形空地长为90m ,宽为60m ,按照规划将预留总面积为24536m的四个小矩形区域(阴影部分)种植花草,并在花草周围修建三条横向通道和三条纵向通道,各通道的宽度相等.(1)求各通道的宽度;(2)现有一工程队承接了对这24536m的区域(阴影部分)进行种植花草的绿化任务,该工程队先按照原计划进行施工,在完成了2536m的绿化任务后,将工作效率提高25%,结果提前2天完成任务,求该工程队原计划每天完成多少平方米的绿化任务?【考点】AD:一元二次方程的应用;7B:分式方程的应用【分析】(1)设各通道的宽度为x米,四块小矩形区域可合成长为(903)x-米、宽为(603)x-米的大矩形,根据草地的面积,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;(2)设该工程队原计划每天完成y平方米的绿化任务,根据工作时间=工作总量÷工作效率结合提前2 天完成任务,即可得出关于y的分式方程,解之经检验后即可得出结论.【解答】解:(1)设各通道的宽度为x米,根据题意得:(903)(603)4536x x--=,解得:12x=,248x=(不合题意,舍去).答:各通道的宽度为2米.(2)设该工程队原计划每天完成y平方米的绿化任务,根据题意得:453653645365362(125%)y y---=+,解得:400y=,经检验,400y=是原方程的解,且符合题意.答:该工程队原计划每天完成400平方米的绿化任务.【点评】本题考查了分式方程的应用以及一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)找准等量关系,正确列出分式方程.27.(10分)如图,正方形ABCD中,4AB=,点E是对角线AC上的一点,连接DE.过。

龙泉驿区2014-2015学年上期期末九年级试题参考答案

龙泉驿区2014-2015学年上期期末九年级试题参考答案

龙泉驿区2014——2015学年上期期末考试试题九年级数学参考答案A 卷一、 选择题(每小题3分,共30分)DADAB CDBCC二、 填空题(每小题4分,共16分) 11. 1- 12. 2 13. 18214. 23三、 计算题(每小题6分,共24分) 15.(1)解:()432-±=+y y ……………………2分3,2121==y y ;……………………2分 (2)解:20=∆……………………2分 25222,1±=x51,5121+=-=x x……………………2分16.解:(1)原式2222233+⋅-⋅=……………………3分2123+-=……………………1分21=……………………1分(2)原式()342132332-++-= ……………………3分3413332-++-=……………………1分 =23--=……………………1分四、 解答题(共36分)A17.(7分)解:据题意,作CE ⊥AB 于E ……………………1分在Rt △ACE 中 ∵21=AC CE ∵AC=10∴CE=5,AE=35……………………2分又在Rt △ABE 中∵AB=15,AE=35……………………2分 ∴BE=11……………………1分 ∴BC=11-5=6答:旗杆的高度为6米……………………1分18.(8分)解:∵BC 为直径∴∠CAB=∠CDB=90°……………………2分 在Rt △ABC 中,BC=10,AB=6 ∴AC=8……………………2分又∵AD 平分∠CAB ∴弧CD=弧BD∴CD=BD ……………………2分在Rt △BDC 中,BC=10 ∴CD=BD=25……………………2分19.(10分)解:(1)∵双曲线在二、四象限,且23=∆ABO S ∴3-=k……………………2分 双曲线解析式为xy 3-=……………………1分 直线解析式为2+-=x y……………………2分(2)由⎪⎩⎪⎨⎧+-=-=23x y x y……………………1分解得:11-=x ,32=x得A 点坐标为()3,1-,C 点坐标为()1,3-……………………2分()31221+⋅⋅=∆AOC S =4 ……………………2分20.(11分)解:(1)设抛物线解析式为()332--=x a y……………………1分∵抛物线过原点 ∴()33002--=a解得93=a ……………………2分∴()33932--=x y即x x y 332932-=……………………1分 点A 坐标为(6,0)……………………2分(2)∵AOB POA S S ∆∆=2 ∴32=P y……………………2分解方程32332932=-x x ……………………1分解得:2366±=x ∴P 点坐标为()32,33-或()32,33+ ……………………2分B 卷一、 填空题(每小题4分,共20分)21. 33+22. π2 23.23 24. ⎪⎪⎭⎫⎝⎛-=215,215 25. ①③④(具体给分需讨论)二、 解答题(共30分)26.(10分) 解:解:(1)()()()()()()⎩⎨⎧≤≤--<≤--+=90502200309050122003040x x x x x y即: ()()⎩⎨⎧≤≤+-<≤++-=905012000120501200018022x x x x x y ……………………4分图略……………………2分(2)当1≤x <50时,二次函数开口下,二次函数对称轴为x =45, 当x =45时,y 最大=﹣2×452+180×45+2000=6050,当50≤x ≤90时,y 随x 的增大而减小, 当x =50时,y 最大=6000,综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元;…………2分(3)当20≤x ≤60时,每天销售利润不低于4800元.……………………2分27.(8分)(1)连接OA ,过点B 作BH ⊥AC ,垂足为H ,如图1所示. ∵AB 与⊙O 相切于点A ,∴∠OAB =90°. ∵OQ =QB =1, ∴OA =1. ∴AB =.……………………2分∵△ABC 是等边三角形, ∴AC =AB =,∠CAB =60°.∴HB =.……………………1分∴S △ABC =21AC •BH =21××23=.∴△ABC 的面积为.……………………1分(2)连接MQ ,如图3所示. ∵PQ 是⊙O 的直径, ∴∠PMQ =90°. ∵OA ⊥PM , ∴∠PDO =90°. ∴∠PDO =∠PMQ .∴AO ∥MQ ……………………1分 ∵PO =OQ =PQ . ∴PD =PM ,OD =MQ . 同理:MQ =AO ,BM =A B . ∵AO =1, ∴MQ =21. ∴OD =41.……………………1分 ∵∠PDO =90°,PO =1,OD =41, ∴PD =. ∴PM =. ∴DM =.∵∠ADM =90°,AD =A 0﹣OD =43, ∴AM ===.……………………1分∵△ABC 是等边三角形, ∴BM =,AB =.∴AC=.∴CM=.∴CM的长度为.……………………1分28.(12分)解:(1)∵抛物线的对称轴为x=1,矩形OCDE的三个顶点分别是C(3,0),D(3,4),E(0,4),点A在DE上,∴点A坐标为(1,4),……………………2分设抛物线的解析式为y=a(x﹣1)2+4,把C(3,0)代入抛物线的解析式,可得a(3﹣1)2+4=0,解得a=﹣1.故抛物线的解析式为y=﹣(x﹣1)2+4,即y=﹣x2+2x+3;……………………2分(2)依题意有:OC=3,OE=4,∴CE===5,当∠QPC=90°时,∵cos∠QPC==,∴=,解得t=;……………………2分当∠PQC=90°时,∵cos∠QCP==,∴=,解得t=.……………………2分∴当t=或t=时,△PCQ为直角三角形;(3)∵A(1,4),C(3,0),设直线AC的解析式为y=kx+b,则,解得.故直线AC的解析式为y=﹣2x+6.∵P(1,4﹣t),将y=4﹣t代入y=﹣2x+6中,得x=1+,∴Q点的横坐标为1+,……………………1分将x=1+代入y=﹣(x﹣1)2+4中,得y=4﹣.∴Q点的纵坐标为4﹣,……………………1分∴QF=(4﹣)﹣(4﹣t)=t﹣,∴S△ACQ=S△AFQ+S△CPQ=FQ•AG+FQ•DG=FQ(AG+DG)=FQ•AD=×2(t﹣)=﹣(t﹣2)2+1,……………………1分∴当t=2时,△ACQ的面积最大,最大值是1.故答案为:(1,4),y=﹣(x﹣1)2+4.……………………1分。

龙泉驿区初三数学期末试卷

龙泉驿区初三数学期末试卷

一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √16B. √-9C. πD. √0.252. 已知 a > b,则下列不等式中正确的是()A. a + 3 > b + 3B. a - 3 < b - 3C. a / 3 > b / 3D. a / 3 < b / 33. 一个等腰三角形的底边长为10cm,腰长为12cm,则这个三角形的周长是()A. 30cmB. 34cmC. 36cmD. 40cm4. 下列函数中,在定义域内是单调递增的是()A. y = 2x - 1B. y = -x^2 + 1C. y = x^3D. y = -x5. 已知 a、b、c 是三角形的三边,且满足 a + b > c,b + c > a,a + c > b,则下列结论正确的是()A. a > bB. b > cC. c > aD. 无法确定6. 在平面直角坐标系中,点A(2,3)关于y轴的对称点是()A. (-2,3)B. (2,-3)C. (-2,-3)D. (2,3)7. 下列各组数中,成等差数列的是()A. 1,4,7,10B. 1,3,6,10C. 1,2,4,8D. 1,2,4,58. 若sin α = 1/2,则α 的度数是()A. 30°B. 45°C. 60°D. 90°9. 下列图形中,属于平行四边形的是()A. 矩形B. 正方形C. 等腰梯形D. 三角形10. 若一个数的平方根是-3,则这个数是()A. 9B. -9C. 3D. -3二、填空题(每题3分,共30分)11. 计算:(-2)^3 × 3^2 = _______12. 若 |x - 5| = 3,则 x 的值为 _______,_______。

13. 在△ABC中,∠A = 90°,AB = 6cm,AC = 8cm,则 BC 的长度为 _______cm。

四川省成都市九年级(上)期末数学试卷(含解析)

四川省成都市九年级(上)期末数学试卷(含解析)

四川省成都市九年级(上)期末数学试卷一、选择題(每小题3分,共30分)1.在Rt△ABC中,∠C=90°,若AC=3,BC=2,则tan A的值是()A.B.C.D.2.方程x(x+2)=0的解是()A.x=0B.x=2C.x=0或x=2D.x=0或x=﹣23.如图是由5个相同的小正方体搭成的一个几何体,它的俯视图是()A.B.C.D.4.如图,随机闭合开关S1、S2、S3中的两个,则能让灯泡⊗发光的概率是()A.B.C.D.5.若反比例函数(k≠0)的图象过点(﹣2,1),则这个函数的图象一定过()A.(2,﹣1)B.(2,1)C.(﹣2,﹣1)D.(1,2)6.某种品牌运动服经过两次降价,每件零售价由460元降为215,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是()A.460(1+x)2=215B.460(1﹣x)2=215C.460(1﹣2x)2=215D.460(1﹣x2)=2157.如图,利用标杆BE测量建筑物的高度.已知标杆BE高1.2m,AB:AC=1:9,则建筑物CD的高是()A.96m B.10.8m C.12m D.14m8.如图,点A,B,C均在⊙O上,若∠A=66°,则∠OCB的度数是()A.24°B.28°C.33°D.48°9.如图,在菱形ABCD中,对角线AC、BD相交于点O,BD=8,tan∠ABD=,则菱形ABCD 的边长为()A.5B.6C.7D.810.对于抛物线y=﹣2(x+1)2+3,下列结论:①抛物线的开口向下;②对称轴为直线x=1:③顶点坐标为(﹣1,3);④x>﹣1时,y随x的增大而减小,其中正确结论的个数为()A.1B.2C.3D.4二、填空题(每小题4分,共16分)11.(4分)如果,那么=12.(4分)若x=﹣2是一元二次方程x2+3x+k=0的一个根,则k的值为13.(4分)已知A(x1,y1),B(x2,y2)都在反比例函数的图象y=﹣上,且x1<0<x2,则y1与y2大小关系是.14.(4分)如图,△ABC内接于圆O,AB为圆O直径,∠CAB=60°,弦AD平分∠CAB,若AD =3,则BD=.三、解答题(本大题共6个小题,共54分)15.(12分)(1)计算:﹣2sin60°+|1﹣tan60°|+(2019﹣π)0(2)解方程:4x(x+3)=x2﹣916.(6分)若关于x的一元二次方程(m﹣2)x2+2x+1=0有两个实根,求m的取值范围.17.(8分)《基础教育课程改革纲要》要求每位学生每学年都要参加社会实践活动.某学校组织了一次户外攀岩活动,如图,攀岩墙体近似看作垂直于地面,一学生攀到D点时,距离地面B 点3.6米,该学生继续向上很快就攀到顶点E.在A处站立的带队老师拉着安全绳,分别在点D 和点E测得点C的俯角是45°和60°,带队老师的手C点距离地面1.6米,请求出攀岩的顶点E距离地面的高度为多少米?(结果可保留根号)18.(8分)我区正在进行《中学学科核心素养理念下渗透数学美育教育的研究为了了解我区课堂教学中渗透数学美育的情况,在200名学生中随机抽取了部分学生进行调查调查,调查结果分为非常了解、了解”、了解较少、“不了解四类,并将调查结果绘制出以下两幅不完整的统计图,请根据统计图回答下列问题(1)本次抽取调查的学生共有人,估计该校200名学生中不了解的人数约有人;(2)“非常了解”的4人中有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人去参加中心数学知识竞赛,请用树状图或列表的方法,求恰好抽到2名同学一男一女的概率.19.(10分)如图,正比例函数y=kx与反比例函数y=(x>0)的图象有个交点A,AB⊥x轴于点B.平移正比例函数y=kx的图象,使其经过点B(2,0),得到直线l,直线l与y轴交于点C(0,﹣3)(1)求k和m的值;(2)点M是直线OA上一点过点M作MN∥AB,交反比例函数y=(x>0)的图象于点N,若线段MN=3,求点M的坐标.20.(10分)如图,已知Rt△ACE中,∠AEC=90°,CB平分∠ACE交AE于点B,AC边上一点O,⊙O经过点B、C,与AC交于点D,与CE交于点F,连结BF.(1)求证:AE是⊙O的切线;(2)若cos∠CBF=,AE=8,求⊙O的半径;(3)在(2)条件下,求BF的长.一、填空题(每小题4分,共20分)21.(4分)关于x的方程(m﹣1)x|m|+1+3x﹣2=0是一元二次方程,则m的值为.22.(4分)现有三张分别标有数字2、3、4的卡片,它们除了数字外完全相同,把卡片背面朝上洗匀,从中任意抽取一张,将上面的数字记为a(不放回);从剩下的卡片中再任意抽取一张,将上面的数字记为b,则点(a,b)在直线y=图象上的概率为.23.(4分)如图,矩形ABCD的对角线AC、BD交于点O,点E是BC边上的一动点,连结OE,将△BOC分成了两个三角形,若BE=OB,且OC2=CE•BC,则∠BOC的度数为.24.(4分)如图,在△ABC中,AB=AC,以AC为直径的⊙O与边BC相交于点E,过点E作EF ⊥AB于点F,延长FE、AC相交于点D,若CD=4,AF=6,则BF的长为.25.(4分)平面直角坐标系中,点A在反比例函数y1=(x>0)的图象上,点A'与点A关于点O对称,直线AA'的解析式为y2=mx,将直线AA'绕点A′顺时针旋转,与反比例函数图象交于点B,直线A′B的解析式为y3=x+n,若△AA'B的面积为3,则k的值为.二、解答题(本大题共3小题,共30分)26.(8分)经过市场调查得知,某种商品的销售期为100天,设该商品销量单价为y(万元/kg),y与时间t(天)函数关系如图所示,其中线段AB表示前50天销售单价y万元/kg与时间t天的函数关系;线段BC的函数关系式为y=t+m该商品在销售期内的销量如下表时间(t)0<t≤5050<t≤100销量(kg)200t+150(1)分别求出当0<t≤50和50<t≤100时y与t的函数关系式;(2)设每天的销售收入为w(万元),则当t为何值时,w的值最大?求出最大值;27.(10分)在矩形ABCD中,E是AD的中点,以点E为直角顶点的直角三角形EFG的两边EF、EG始终与矩形AB、BC两边相交,AB=2,FG=8,(1)如图1,当EF、EG分别过点B、C时,求∠EBC的大小;(2)在(1)的条件下,如图2,将△FFG绕点E按顺时针方向旋转,当旋转到EF与AD重合时停止转动.若EF、EG分别与AB、BC相交于点M、N,①在△EFG旋转过程中,四边形BMEN的面积是否发生变化?若不变,求四边形BMEN的面积;若要变,请说明理由.②如图3,设点O为FG的中点,连结OB、OE,若∠F=30°,当OB的长度最小时,求tan∠EBG的值.28.(12分)在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴的两个交点分别为A(﹣3,0)、B(1,0),与y轴交于点D(0,3),过顶点C作CH⊥x轴于点H(1)求抛物线的解析式和顶点C的坐标;(2)连结AD、CD,若点E为抛物线上一动点(点E与顶点C不重合),当△ADE与△ACD面积相等时,求点E的坐标;(3)若点P为抛物线上一动点(点P与顶点C不重合),过点P向CD所在的直线作垂线,垂足为点Q,以P、C、Q为顶点的三角形与△ACH相似时,求点P的坐标.参考答案与试题解析一、选择題(每小题3分,共30分)1.在Rt△ABC中,∠C=90°,若AC=3,BC=2,则tan A的值是()A.B.C.D.【分析】根据正切的定义计算即可.【解答】解:tan A==,故选:B.【点评】本题考查的是锐角三角函数的定义,锐角A的对边a与邻边b的比叫做∠A的正切.2.方程x(x+2)=0的解是()A.x=0B.x=2C.x=0或x=2D.x=0或x=﹣2【分析】利用因式分解的方法得到x=0或x+2=0,然后解两个一次方程即可.【解答】解:x=0或x+2=0,所以x1=0,x2=﹣2.故选:D.【点评】本题考查了解一元二次方程﹣因式分解法:就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).3.如图是由5个相同的小正方体搭成的一个几何体,它的俯视图是()A.B.C.D.【分析】根据俯视图是从上面看到的图形结合几何体判定则可.【解答】解:从上面看,左边是2个正方形,中间和右上角都是1个正方形.故选:D.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.4.如图,随机闭合开关S1、S2、S3中的两个,则能让灯泡⊗发光的概率是()A.B.C.D.【分析】采用列表法列出所有情况,再根据能让灯泡发光的情况利用概率公式进行计算即可求解.【解答】解:列表如下:共有6种情况,必须闭合开关S3灯泡才亮,即能让灯泡发光的概率是=.故选:C.【点评】本题考查了列表法与画树状图求概率,用到的知识点为:概率=所求情况数与总情况数之比.5.若反比例函数(k≠0)的图象过点(﹣2,1),则这个函数的图象一定过()A.(2,﹣1)B.(2,1)C.(﹣2,﹣1)D.(1,2)【分析】先把点(﹣2,1)代入反比例函数y=(k≠0),求出k的值,再对各选项进行逐一判断即可.【解答】解:∵反比例函数y=(k≠0)的图象过点(﹣2,1),∴k=﹣2×1=﹣2.A、∵2×(﹣1)=﹣2,∴此点在函数图象上,故本选项符合题意;B、∵2×1=2≠﹣2,∴此点不在函数图象上,故本选项不合题意;C、∵(﹣2)×(﹣1)=2,∴此点不在函数图象上,故本选项不合题意;D、∵1×2=2≠﹣2,∴此点不在函数图象上,故本选项不合题意.故选:A.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上点的坐标一定适合此函数的解析式是解答此题的关键.6.某种品牌运动服经过两次降价,每件零售价由460元降为215,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是()A.460(1+x)2=215B.460(1﹣x)2=215C.460(1﹣2x)2=215D.460(1﹣x2)=215【分析】设每次降价的百分率为x,根据该运动服的原价及经过两次降价后的价格,即可得出关于x的一元二次方程,此题得解.【解答】解:设每次降价的百分率为x,根据题意得:460(1﹣x)2=215.故选:B.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.7.如图,利用标杆BE测量建筑物的高度.已知标杆BE高1.2m,AB:AC=1:9,则建筑物CD的高是()A.96m B.10.8m C.12m D.14m【分析】先证明△ABE∽△ACD,则利用相似三角形的性质进行解答即可.【解答】解:∵EB∥CD,∴△ABE∽△ACD,∴,即,解得:CD=10.8m,故选:B.【点评】本题考查了相似三角形的应用:借助标杆或直尺测量物体的高度.利用杆或直尺测量物体的高度就是利用杆或直尺的高(长)作为三角形的边,利用视点和盲区的知识构建相似三角形,用相似三角形对应边的比相等的性质求物体的高度.8.如图,点A,B,C均在⊙O上,若∠A=66°,则∠OCB的度数是()A.24°B.28°C.33°D.48°【分析】首先利用圆周角定理可得∠COB的度数,再根据等边对等角可得∠OCB=∠OBC,进而可得答案.【解答】解:∵∠A=66°,∴∠COB=132°,∵CO=BO,∴∠OCB=∠OBC=(180°﹣132°)=24°,故选:A.【点评】此题主要考查了圆周角定理,关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.9.如图,在菱形ABCD中,对角线AC、BD相交于点O,BD=8,tan∠ABD=,则菱形ABCD 的边长为()A.5B.6C.7D.8【分析】根据菱形的性质求出BO=4,AC⊥BD,解直角三角形求出AO,根据勾股定理求出AB 即可.【解答】解:∵四边形ABCD是菱形,BD=8,∴AC⊥BD,BO=DO,∴∠AOB=90°,OB=OD=4,∵tan∠ABD==,∴AO=3,由勾股定理得:AB==5,即菱形ABCD的边长为5,故选:A.【点评】本题考查了菱形的性质和解直角三角形,能熟记菱形的性质是解此题的关键,注意:菱形的对角线互相平分且垂直.10.对于抛物线y=﹣2(x+1)2+3,下列结论:①抛物线的开口向下;②对称轴为直线x=1:③顶点坐标为(﹣1,3);④x>﹣1时,y随x的增大而减小,其中正确结论的个数为()A.1B.2C.3D.4【分析】根据题目中的函数解析式和二次函数的性质,可以判断各个小题中的结论是否正确.【解答】解:∵抛物线y=﹣2(x+1)2+3,a=﹣2<0,∴抛物线的开口向下,故①正确,对称轴是直线x=﹣1,故②错误,顶点坐标为(﹣1,3),故③正确,x>﹣1时,y随x的增大而减小,故④正确,故选:C.【点评】本题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.二、填空题(每小题4分,共16分)11.(4分)如果,那么=【分析】依据比例的性质,即可得到4a=7b,进而得出=.【解答】解:∵,∴4a﹣4b=3b,∴4a=7b,∴=,故答案为:.【点评】本题主要考查了比例的性质,解题时注意:内项之积等于外项之积.12.(4分)若x=﹣2是一元二次方程x2+3x+k=0的一个根,则k的值为2【分析】把x=﹣2代入方程x2+3x+k=0得4﹣6+k=0,然后解关于k的方程即可.【解答】解:把x=﹣2代入方程x2+3x+k=0得4﹣6+k=0,解得k=2.故答案为2.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.13.(4分)已知A(x1,y1),B(x2,y2)都在反比例函数的图象y=﹣上,且x1<0<x2,则y1与y2大小关系是y1>y2.【分析】将点A,点B坐标代入解析式,可求y1,y2,由x1<0<x2,可得y1>0,y2<0,即可得y1与y2大小关系.【解答】解:∵A(x1,y1),B(x2,y2)都在反比例函数的图象y=﹣上,∴y1=,y2=,∵x1<0<x2,∴y1>0>y2,故答案为:y1>y2【点评】本题考查了反比例函数图象上点的坐标特征,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.14.(4分)如图,△ABC内接于圆O,AB为圆O直径,∠CAB=60°,弦AD平分∠CAB,若AD =3,则BD=.【分析】解:连接BD,如图,先计算出∠BAD=30°,再根据圆周角定理得到∠ADB=90°,然后利用含30度的直角三角形三边的关系计算BD的长.【解答】解:如图,∵AD平分∠CAB,∴∠BAD=×60°=30°,∵AB为圆O直径,∴∠ADB=90°,∴BD=AD=.故答案为:.【点评】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了圆周角定理.三、解答题(本大题共6个小题,共54分)15.(12分)(1)计算:﹣2sin60°+|1﹣tan60°|+(2019﹣π)0(2)解方程:4x(x+3)=x2﹣9【分析】(1)先计算负整数指数幂和零指数幂并代入特殊锐角的三角函数值,再计算乘法、取绝对值符号,继而计算加减可得;(2)先将方程整理成一般式,再利用因式分解法求解可得.【解答】解:(1)原式=2﹣2×+|1﹣|+1=2﹣+﹣1+1=2;(2)4x2+12x=x2﹣9,4x2+12x﹣x2+9=0,3x2+12x+9=0,x2+4x+3=0,(x+1)(x+3)=0,则x+1=0或x+3=0,解得x1=﹣1,x2=﹣3.【点评】本题主要考查解一元二次方程和实数的混合运算,能选择适当的方法解一元二次方程并熟练掌握实数的混合运算是解此题的关键.16.(6分)若关于x的一元二次方程(m﹣2)x2+2x+1=0有两个实根,求m的取值范围.【分析】首先根据题意可知△=b2﹣4ac≥0,然后,即可推出4﹣4(m﹣2)≥0,通过解不等式即可推出结果,注意m≠2.【解答】解:∵(m﹣2)x2+2x+1=0有两个实数根,∴△=b2﹣4ac≥0,∴4﹣4(m﹣2)≥0,∴m≤3,又知(m﹣2)x2+2x+1=0是一元二次方程,即m﹣2≠0,解得m≠2,故m≤3且m≠2.【点评】本题主要考查根的判别式,关键在于推出△≥0,注意一元二次方程二次系数不能为0,此题基础题,比较简单.17.(8分)《基础教育课程改革纲要》要求每位学生每学年都要参加社会实践活动.某学校组织了一次户外攀岩活动,如图,攀岩墙体近似看作垂直于地面,一学生攀到D点时,距离地面B 点3.6米,该学生继续向上很快就攀到顶点E.在A处站立的带队老师拉着安全绳,分别在点D 和点E测得点C的俯角是45°和60°,带队老师的手C点距离地面1.6米,请求出攀岩的顶点E距离地面的高度为多少米?(结果可保留根号)【分析】作CF⊥BE于F,根据矩形的性质求出BF,根据正切的概念计算即可.【解答】解:作CF⊥BE于F,则四边形ABFC为矩形,∴BF=AC=1.6,∴DF=DB﹣FB=2,由题意得,∠DCF=45°,∠ECF=60°,∴CF=DF=2,在Rt△ECF中,EF=CF×tan∠ECF=2,∴EB=EF+BF=2+1.6,答:攀岩的顶点E距离地面的高度为(2+1.6)米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握锐角三角函数的定义,仰角俯角的概念是解题的关键.18.(8分)我区正在进行《中学学科核心素养理念下渗透数学美育教育的研究为了了解我区课堂教学中渗透数学美育的情况,在200名学生中随机抽取了部分学生进行调查调查,调查结果分为非常了解、了解”、了解较少、“不了解四类,并将调查结果绘制出以下两幅不完整的统计图,请根据统计图回答下列问题(1)本次抽取调查的学生共有50人,估计该校200名学生中不了解的人数约有60人;(2)“非常了解”的4人中有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人去参加中心数学知识竞赛,请用树状图或列表的方法,求恰好抽到2名同学一男一女的概率.【分析】(1)由“非常了解”的人数及其所占百分比求得总人数,根据各了解程度的百分比之和等于1求得“不了解”的百分比,再用总人数乘以样本中“不了解”人数所占比例可得;(2)分别用树状图或列表的方法表示出所有等可能结果,从中找到恰好抽到2名同学一男一女的结果数,利用概率公式计算可得.【解答】解:(1)本次抽取调查的学生共有4÷8%=50(人),∵“不了解”对应的百分比为1﹣(40%+22%+8%)=30%,∴估计该校200名学生中不了解的人数约有200×30%=60(人),故答案为:50,60;(2)列表如下:A1A2B1B2A1(A2,A1)(B1,A1)(B2,A1)A2(A1,A2)(B1,A2)(B2,A2)B1(A1,B1)(A2,B1)(B2,B1)B2(A1,B2)(A2,B2)(B1,B2)由表可知共有12种可能的结果,恰好抽到2名同学一男一女的结果有8个,所以恰好抽到2名同学一男一女的概率为=.【点评】本题考查了列表法与树状图法、扇形统计图、条形统计图;通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.19.(10分)如图,正比例函数y=kx与反比例函数y=(x>0)的图象有个交点A,AB⊥x轴于点B.平移正比例函数y=kx的图象,使其经过点B(2,0),得到直线l,直线l与y轴交于点C(0,﹣3)(1)求k和m的值;(2)点M是直线OA上一点过点M作MN∥AB,交反比例函数y=(x>0)的图象于点N,若线段MN=3,求点M的坐标.【分析】(1)由直线l与y轴交于点C(0,﹣3)知直线l的解析式为y=kx﹣3,根据点B坐标可得k的值,再根据平移知AB=OC=3,从而得出点A坐标,从而得出m的值;(2)先得出正比例函数和反比例函数解析式,再设点M(a,a),则N(a,),由MN=3得出关于a的方程,解之可得答案.【解答】解:(1)∵平移正比例函数y=kx的图象,得到直线l,直线l与y轴交于点C(0,﹣3),∴直线l的解析式为y=kx﹣3,∵点B(2,0)在直线l上,∴2k﹣3=0,解得k=,由题意知AB=OC=3,则点A(2,3),∴m=2×3=6;(2)由题意知直线OA解析式为y=x,反比例函数解析式为y=,设点M(a,a),则N(a,),∴|a﹣|=3,解得:a=1+或a=﹣1(负值舍去),则点M坐标为(1+,)或(﹣1,).【点评】本题考查了反比例函数与一次函数的交点问题,待定系数法求函数的解析式,函数图象上点的坐标特征,体现了数形结合的思想.20.(10分)如图,已知Rt△ACE中,∠AEC=90°,CB平分∠ACE交AE于点B,AC边上一点O,⊙O经过点B、C,与AC交于点D,与CE交于点F,连结BF.(1)求证:AE是⊙O的切线;(2)若cos∠CBF=,AE=8,求⊙O的半径;(3)在(2)条件下,求BF的长.【分析】(1)连接OB,根据等腰三角形的性质得到∠OCB=∠OBC,根据角平分线的定义得到∠OCB=∠BCF,得到∠OBC=∠BCF,求得∠ABO=∠AEC=90°,于是得到结论;(2)连接DF交OB于G,根据圆周角定理得到∠CFD=90°,得到∠CFD=∠CEA,推出cos ∠CBF=cos∠CEF=,设BE=2x,则DF=4x,CD=5x,得到OC=OB=2.5x,根据勾股定理得到x=(负值舍去),于是得到⊙O的半径=;(3)由(2)知BE=2x=3,根据切线的性质得到∠BCE=∠EBF,根据相似三角形的性质得到EF=,根据勾股定理得到BF==.【解答】(1)证明:连接OB,∵OB=OC,∴∠OCB=∠OBC,∵CB平分∠ACE,∴∠OCB=∠BCF,∴∠OBC=∠BCF,∴∠ABO=∠AEC=90°,∴OB⊥AE,∴AE是⊙O的切线;(2)解:连接DF交OB于G,∵CD是⊙O的直径,∴∠CFD=90°,∴∠CFD=∠CEA,∴DF∥AE,∴∠CDF=∠CAB,∵∠CDF=∠CBF,∴∠A=∠CBF,∴cos∠CBF=cos∠CEF=,∵AE=8,∴AC=10,∴CE=6,∵DF∥AE,∴DF⊥OB,∴DG=GF=BE,设BE=2x,则DF=4x,CD=5x,∴OC=OB=2.5x,∴AO=10﹣2.5x,AB=8﹣2x,∵AO2=AB2+OB2,∴(10﹣2.5x)2=(8﹣2x)2+(2.5x)2,解得:x=(负值舍去),∴⊙O的半径=;(3)解:由(2)知BE=2x=3,∵AE是⊙O的切线;∴∠BCE=∠EBF,∵∠E=∠E,∴△BEF∽△CEB,∴,∴=,∴EF=,∴BF==.【点评】本题考查了切线的性质和判定,勾股定理,平行线的判定和性质,相似三角形的判定和性质,正确的作出辅助线是解题的关键.一、填空题(每小题4分,共20分)21.(4分)关于x的方程(m﹣1)x|m|+1+3x﹣2=0是一元二次方程,则m的值为﹣1.【分析】利用一元二次方程的定义判断即可确定出m的值.【解答】解:∵关于x的方程(m﹣1)x|m|+1+3x﹣2=0是一元二次方程,∴|m|+1=2,且m﹣1≠0,解得:m=﹣1,故答案为:﹣1【点评】此题考查了一元二次方程的定义,以及绝对值,熟练掌握一元二次方程的定义是解本题的关键.22.(4分)现有三张分别标有数字2、3、4的卡片,它们除了数字外完全相同,把卡片背面朝上洗匀,从中任意抽取一张,将上面的数字记为a(不放回);从剩下的卡片中再任意抽取一张,将上面的数字记为b,则点(a,b)在直线y=图象上的概率为.【分析】列表得出所有等可能的情况数,找出点(a,b)在直线y=图象上的情况数,即可求出所求的概率.【解答】解:列表得:2342(3,2)(4,2)3(2,3)(4,3)4(2,4)(3,4)得到所有等可能的情况有6种,其中点(a,b)在直线y=图象上的只有(3,2)这1种情况,所以点(a,b)在直线y=图象上的概率为,故答案为:.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.23.(4分)如图,矩形ABCD的对角线AC、BD交于点O,点E是BC边上的一动点,连结OE,将△BOC分成了两个三角形,若BE=OB,且OC2=CE•BC,则∠BOC的度数为108°.【分析】由△OCE∽△BCO,推出∠COE=∠CBO,由四边形ABCD是矩形,推出OB=OC,推出∠OBC=∠OCB=∠COE,设∠OBC=∠OCB=∠COE=x,构建方程即可解决问题.【解答】解:∵OC2=CE•BC,∴=,∵∠OCE=∠OCB,∴△OCE∽△BCO,∴∠COE=∠CBO,∵四边形ABCD是矩形,∴OB=OC,∴∠OBC=∠OCB=∠COE,设∠OBC=∠OCB=∠COE=x,∵BE=BO,∴∠BOE=∠BEO=∠COE+∠ECO=2x,∵∠OBC+∠OCB+∠BOC=180°,∴x+x+3x=180°,∴x=36°,∴∠BOC=3x=108°,故答案为108°【点评】本题考查相似三角形的判定和性质,矩形的性质,三角形内角和定理等知识,解题的关键是正确寻找相似三角形解决问题,学会利用参数解决问题,属于中考常考题型.24.(4分)如图,在△ABC中,AB=AC,以AC为直径的⊙O与边BC相交于点E,过点E作EF ⊥AB于点F,延长FE、AC相交于点D,若CD=4,AF=6,则BF的长为2.【分析】如图,连接AE,OE.设BF=x.首先证明OE∥AB,可得=,由此构建方程即可解决问题;【解答】解:如图,连接AE,OE.设BF=x.∵AC是直径,∴∠AEC=90°,∴AE⊥BC,∵AB=AC,∴∠EAB=∠EAC,∵OA=OE,∴∠OAE=∠OEA,∴∠EAB=∠AEO,∴OE∥AB,∴=,∴AF=6,CD=4,BF=x,∴AC=AB=x+6,∴OE=OA=OD=,∴=,整理得:x2+10x﹣24=0,解得x=2或﹣12(舍弃),经检验x=2是分式方程的解,∴BF=2.故答案为2.【点评】本题考查圆周角定理,等腰三角形的性质,平行线分线段成比例定理等知识,解题的关键是学会利用参数,构建方程解决问题.25.(4分)平面直角坐标系中,点A在反比例函数y1=(x>0)的图象上,点A'与点A关于点O 对称,直线AA '的解析式为y 2=mx ,将直线AA '绕点A ′顺时针旋转,与反比例函数图象交于点B ,直线A ′B 的解析式为y 3=x +n ,若△AA 'B 的面积为3,则k 的值为 ±2 .【分析】设点A (a ,),根据对称性以及直线上点的坐标特点分别用含有k 的代数式表示出点A '、B 的坐标,然后根据三角形的面积公式解答即可. 【解答】解:∵设点A (a ,). ∵A 和点A '关于原点对称, ∴点A '的坐标为(﹣a ,﹣), ∵点A '在y 2=mx 的图象上, ∴点A '的坐标为(﹣a ,﹣am ). ∴﹣=﹣am , a 2m =k .∵直线AA '绕点A ′顺时针旋转,与反比例函数图象交与点B ,∴,∴点B 的坐标为(2a ,),过点A 作AD ⊥x 轴,交A 'B 于点D ,连BO ,∵O 为AA ′中点 S △AOB =S △ABA ′=, ∵点A 、B 在双曲线上, ∴S △AOC =S △BOD ,∴S △AOB =S 四边形ACDB =,由已知点A 、B 坐标都表示(a ,)、(2a ,),∴,∴k =2.当双曲线在二、四象限时,k =﹣2. 故答案为:±2【点评】本题综合考查反比例函数、一次函数图象及其性质,解答过程中,涉及到了面积转化方法、待定系数法和数形结合思想. 二、解答题(本大题共3小题,共30分)26.(8分)经过市场调查得知,某种商品的销售期为100天,设该商品销量单价为y (万元/kg ),y 与时间t (天)函数关系如图所示,其中线段AB 表示前50天销售单价y 万元/kg 与时间t 天的函数关系;线段BC 的函数关系式为y =t +m 该商品在销售期内的销量如下表 时间(t ) 0<t ≤50 50<t ≤100 销量(kg )200t +150(1)分别求出当0<t ≤50和50<t ≤100时y 与t 的函数关系式;(2)设每天的销售收入为w (万元),则当t 为何值时,w 的值最大?求出最大值;【分析】(1)设y =kt +b ,利用待定系数法即可解决问题;(2)日利润=日销售量×每公斤利润,据此分别表示当0<t ≤50和50<t ≤100时,根据函数性质求最大值后比较得结论.【解答】解:(1)当0<t ≤50时,设y 与t 的函数关系式为y =kt +b , ∴,解得:k =,b =15, ∴y =t +15;当50<t≤100时,把(100,20)代入y=t+m得,20=﹣×100+m,∴m=30,∴线段BC的函数关系式为y=t+30;(2)当0<t≤50时,w=200(t+15)=40t+3000,∴当t=50时,w最大=5000(万元),当50<t≤100时,w=(t+150)(t+30)=﹣t2+15t+4500,∵w=﹣t2+15t+4500=﹣(t﹣75)2+5062.5,∴当t=75时,w最大=5062.5(万元),∴当t=75时,w的值最大,w最大=5062.5万元.【点评】此题主要考查了二次函数的应用,熟练掌握各函数的性质和图象特征,针对所给条件作出初步判断后需验证其正确性,最值问题需由函数的性质求解时,正确表达关系式是关键.27.(10分)在矩形ABCD中,E是AD的中点,以点E为直角顶点的直角三角形EFG的两边EF、EG始终与矩形AB、BC两边相交,AB=2,FG=8,(1)如图1,当EF、EG分别过点B、C时,求∠EBC的大小;(2)在(1)的条件下,如图2,将△FFG绕点E按顺时针方向旋转,当旋转到EF与AD重合时停止转动.若EF、EG分别与AB、BC相交于点M、N,①在△EFG旋转过程中,四边形BMEN的面积是否发生变化?若不变,求四边形BMEN的面积;若要变,请说明理由.②如图3,设点O为FG的中点,连结OB、OE,若∠F=30°,当OB的长度最小时,求tan∠EBG的值.【分析】(1)证明△AEB≌△DEC(SAS),可得EB=EC,根据等腰直角三角形的性质即可解决问题.(2)①四边形BMEN的面积不变.证明△MEB≌△NEC(ASA),推出S△MEB =S△ENC,可得S四边形EMBN=S △EBC .②如图当E ,B ,O 共线时,OB 的值最小,作GH ⊥OE 于H .想办法求出BH ,GH 即可解决问题.【解答】解:(1)如图1中,∵四边形ABCD 是矩形, ∴AB =DC ,∠A =∠D =90°, ∵AE =DE ,∴△AEB ≌△DEC (SAS ), ∴EB =EC , ∵∠BEC =90°, ∴∠EBC =45°.(2)①结论:四边形BMEN 的面积不变.理由:由(1)可知:∠EBM =∠ECN =45°, ∵∠MEN =∠BEC =90°, ∴∠BEM =∠CEN , ∵EB =EC ,∴△MEB ≌△NEC (ASA ), ∴S △MEB =S △ENC ,∴S 四边形EMBN =S △EBC =×4×2=4.②如图当E,B,O共线时,OB的值最小,作GH⊥OE于H.∵OF=OG,∠FEG=90°,∴OE=OF=OG=4,∵∠F=30°,∴∠EGF=60°,∴△EOG是等边三角形,∵GH⊥OE,∴GH=2,OH=EH=2,∵BE=2,∴OB=4﹣2,∴BH=2﹣(4﹣2)=2﹣2,∴tan∠EBG===+.【点评】本题属于四边形综合题,考查了矩形的性质,旋转变换,全等三角形的判定和性质,等边三角形的判定和性质,锐角三角函数等知识,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题.28.(12分)在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴的两个交点分别为A(﹣3,0)、B(1,0),与y轴交于点D(0,3),过顶点C作CH⊥x轴于点H(1)求抛物线的解析式和顶点C的坐标;(2)连结AD、CD,若点E为抛物线上一动点(点E与顶点C不重合),当△ADE与△ACD面积相等时,求点E的坐标;(3)若点P为抛物线上一动点(点P与顶点C不重合),过点P向CD所在的直线作垂线,垂足为点Q,以P、C、Q为顶点的三角形与△ACH相似时,求点P的坐标.【分析】(1)把点A、B、D的坐标代入二次函数表达式,即可求解;(2)①过点C作CE∥AD交抛物线于点E,则△ADE与△ACD面积相等;②过点H′作直线E′E″∥AD,则△ADE′、△ADE′′与△ACD面积相等,分别求解即可.(3)分△ACH∽△CPQ、△ACH∽△PCQ两种情况,求解即可.【解答】解:(1)把点A、B、D的坐标代入二次函数表达式得:,解得:,则抛物线的表达式为:y=﹣x2﹣2x+3…①,函数的对称轴为:x=﹣=﹣1,则点C的坐标为(﹣1,4);(2)过点C作CE∥AD交抛物线于点E,交y轴于点H,则△ADE与△ACD面积相等,直线AD过点D,则其表达式为:y=mx+3,将点A的坐标代入上式得:0=﹣3m+3,解得:m=1,则直线AD的表达式为:y=x+3,CE∥AD,则直线CE表达式的k值为1,设直线CE的表达式为:y=x+n,。

成都市2013-2014九年级上期末试题(含答案

成都市2013-2014九年级上期末试题(含答案

九年级数学一、选择题。

(本大题共10个小题,每小题3分,共30分。

) 1.sin45°的值等于( ) A .21 B .22 C .23 D .12. 若一元二次方程022=++m x x 有实数解,则m 的取值范围是 ( ) A. 1-≤m B. 1≤m C. 4≤m D.21≤m3.如图,正方形ABOC 的边长为2,反比例函数xky =的图象过点A ,则k 的值是( ) A .2 B .﹣2 C .4 D .﹣44.已知1是关于x 的一元二次方程()0112=++-x x m 的一个根,则m 的值是( ) A . -1 B .1 C . 0 D . 无法确定 5. 如图,为估算某河的宽度,在河对岸边选定一个目标点A ,在近岸取点B ,C ,D ,使得AB ⊥BC ,CD ⊥BC ,点E 在BC 上,并且点A ,E ,D 在同一条直线上。

若测得BE=20m ,EC=10m ,CD=20m ,则河的宽度AB 等于( ) A. 60m B. 40m C. 30m D. 20m6. 分别写有数字0,-1,-2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是( ) A .51 B. 52 C .53D .547.抛物线322-+=x x y 的顶点在第( )象限A .一B .二C .三D .四8.某市2009年平均房价为每平方米4000元.连续两年增长后,2011年平均房价达到每平方米5500元,设这两年平均房价年平均增长率为x ,根据题意,下面所列方程正确的是( )A .40002=+)15500x ( B .4000155002=-)(x C .5500140002=+)(x D .5500140002=-)(x9. 如图,已知菱形ABCD 的对角线AC ,BD 的长分别为6cm 、8cm ,AE ⊥BC 于点E ,则AE 的长是( ) A .cm 35 B .cm 52C .cm 548 D .cm 52410.下列命题:(1)一组邻边相等的平行四边形是菱形;(2)一组邻边相等的矩形是正方形;(3)一组对边平行且相等的四边形是平行四边形;(4)一组对边相等且有一个角是直角的四边形是矩形;其中真第9题图D. 4个二、填空题 11,如图,O 是矩形ABCD 的对角线AC 的中点,M 是AD 的中点,若 AB=5,AD=12,则四边形ABOM 的周长为__________ 121. 方程x x 32=的根是 。

2024届四川省成都市龙泉驿区数学九上期末检测试题含解析

2024届四川省成都市龙泉驿区数学九上期末检测试题含解析

2024届四川省成都市龙泉驿区数学九上期末检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房建设力度.2013年市政府共投资2亿元人民币建设廉租房8万平方米,预计到2015年底三年共累计投资9.5亿元人民币建设廉租房,若在这两年内每年投资的增长率都为x ,可列方程( )A .229.5x =B .()22212(1)9.5x x ++++=C .22(1)9.5x +=D .()2221(1)9.58x x ++++=⨯ 2.设a ,b 是方程220170x x +-=的两个实数根,则22a a b ++的值为( )A .2014B .2015C .2016D .20173.某学校要种植一块面积为200m 2的长方形草坪,要求两边长均不小于10m ,则草坪的一边长y (单位:m )随另一边长x (单位:m )的变化而变化的图象可能是( )A .B .C .D .4.若点()1,3P 在反比例函数1k y x +=的图象上,则关于x 的二次方程220x x k +-=的根的情况是( ). A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法确定5.参加一次聚会的每两人都握了一次手,所有人共握手10 次,若共有 x 人参加聚会,则根据题意,可列方程( ) A .(1)10x x -= B .(1)10x x += C .1(1)102x x -= D .1(1)102x x += 6.已知二次函数y =x 2﹣6x+m (m 是实数),当自变量任取x 1,x 2时,分别与之对应的函数值y 1,y 2满足y 1>y 2,则x 1,x 2应满足的关系式是( )A .x 1﹣3<x 2﹣3B .x 1﹣3>x 2﹣3C .|x 1﹣3|<|x 2﹣3|D .|x 1﹣3|>|x 2﹣3|7.如图,在ABC 中,DE //BC,AD 3BD,DE 3==,则BC 的长度为A .1B .43C .4D .68.如图,点G 是△ABC 的重心,下列结论中正确的个数有( )①12DG GB =;②AE ED AB BC =;③△EDG ∽△CBG ;④14EGDBGC S S =.A .1个B .2个C .3个D .4个9.下列函数中,变量y 是x 的反比例函数是( )A .21y x =B .1y x -=C .11y x =+D .11y x=- 10.已知△ABC ,D ,E 分别在AB ,AC 边上,且DE ∥BC ,AD =2,DB =3,△ADE 面积是4则四边形DBCE 的面积是( )A .6B .9C .21D .25二、填空题(每小题3分,共24分)11.若代数式21x mx ++是完全平方式,则m 的值为______.12.如图,△ABC 中,AE 交BC 于点D ,∠C =∠E ,AD =4,BC =8,BD :DC =5:3,则DE 的长等于__________________.13.如图,O 是正方形ABCD 边上一点,以O 为圆心,OB 为半径画圆与AD 交于点E ,过点E 作⊙O 的切线交CD 于F ,将△DEF 沿EF 对折,点D 的对称点D '恰好落在⊙O 上.若AB =6,则OB 的长为_____.14.抛物线2 y x bx c =-++的部分图象如图所示,对称轴是直线1x =-,则关于x 的一元二次方程20x bx c -++=的解为____.15.在Rt △ABC 中,AC :BC =1:2,则sinB =______.16.若反比例函数y=1m x-的图象在每一个象限中,y 随着x 的增大而减小,则m 的取值范围是_____. 17.关于x 的一元二次方程kx 2+3x ﹣1=0有实数根,则k 的取值范围是_____.18.已知函数2(1)m y m x-=+是反比例函数,则m =________. 三、解答题(共66分)19.(10分)如图,正方形ABCD 的边长为8cm ,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 上的动点,且AE BF CG DH ===.(1)求证:四边形EFGH 是正方形;(2)求四边形EFGH 面积的最小值.20.(6分)如图,AB 为⊙O 的直径,弦AC 的长为8cm .(1)尺规作图:过圆心O 作弦AC 的垂线DE ,交弦AC 于点D ,交优弧ABC 于点E ;(保留作图痕迹,不要求写作法);(2)若DE的长为8cm,求直径AB的长.21.(6分)某报社为了解市民对“社会主义核心价值观”的知晓程度,采取随机抽样的方式进行问卷调查,调查结果分为“A非常了解”“B了解”“C基本了解”三个等级,并根据调查结果制作了如下图所示两幅不完整的统计图.(1)这次调查的市民人数为,m=,n=;(2)补全条形统计图;(3)若该市约有市民1000000人,请你根据抽样调查的结果,估计该市大约有多少人对“社会主义核心价值观”达到“A非常了解”的程度.22.(8分)如图,点E是△ABC的内心,AE的延长线与△ABC的外接圆相交于点D.(1)若∠BAC=70°,求∠CBD的度数;(2)求证:DE=DB.23.(8分)我们知道:有两条边相等的三角形叫做等腰三角形.类似地,我们定义:至少有一组对边相等的四边形叫做等对边四边形.如图,在△ABC中,AB>AC,点D,E分别在AB,AC上,设CD,BE相交于点O,如果∠A是锐角,∠DCB=∠EBC=12∠A.探究:满足上述条件的图形中是否存在等对边四边形,并证明你的结论.24.(8分)(1)如图1,在ABC ∆中,点D 在边BC 上,且BD AB AC ==,AD CD =,求B 的度数;(2)如图2,在菱形EFGH 中,72E ∠=︒,请设计三种不同的分法(只要有一条分割线段不同就视为不同分法),将菱形EFGH 分割成四个三角形,使得每个三角形都是等腰三角形(不要求写画法,要求画出分割线段,标出所得三角形内角的度数).25.(10分)已知:如图,在平行四边形ABCD 中,过点C 分别作AD 、AB 的垂线,交边AD 、AB 延长线于点E 、F .(1)求证:AD DE AB BF ⋅=⋅;(2)联结AC ,如果CF AC DE CD =,求证:22AC AF BC BF=. 26.(10分)如图1,在矩形ABCD 中AB=4, BC=8,点E 、F 是BC 、AD 上的点,且BE=DF.(1)求证:四边形AECF 是平行四边形.(2)如果四边形AECF 是菱形,求这个菱形的边长.(3)如图2,在(2)的条件下,取AB 、CD 的中点G 、H,连接DG 、BH, DG 分别交AE 、CF 于点M 、Q, BH 分别交AE 、CF于点N、P,求点P到BC的距离并直接写出四边形MNPQ的面积。

龙泉初三数学试卷及答案

龙泉初三数学试卷及答案

一、选择题(本大题共10小题,每小题3分,共30分。

每小题给出的四个选项中,只有一项是符合题目要求的。

)1. 若a > b,则下列不等式中成立的是()A. a² > b²B. a³ > b³C. a - b > 0D. a + b > 02. 已知一次函数y = kx + b(k ≠ 0),当x = 1时,y = 2;当x = 2时,y = 4。

则该函数的图像是()A. 上升的直线B. 下降的直线C. 平行于x轴的直线D. 平行于y轴的直线3. 在等腰三角形ABC中,AB = AC,AD是BC边上的高,且∠BAC = 60°,则∠BAD的度数是()A. 30°B. 45°C. 60°D. 90°4. 下列函数中,定义域为实数集R的是()A. y = √(x - 1)B. y = 1/xC. y = x²D. y = 1/x²5. 若一个等差数列的前三项分别是3,5,7,则该数列的公差是()A. 2B. 3C. 4D. 56. 在平面直角坐标系中,点A(-2,3)关于原点的对称点是()A. (2,-3)B. (-2,-3)C. (3,-2)D. (-3,2)7. 若二次函数y = ax² + bx + c(a ≠ 0)的图像开口向上,且顶点坐标为(1,-2),则a的值是()A. 1B. -1C. 2D. -28. 下列图形中,不是轴对称图形的是()A. 正方形B. 等边三角形C. 长方形D. 圆9. 若∠A和∠B是等腰三角形底边上的两个角,且∠A = 50°,则∠B的度数是()A. 50°B. 80°C. 100°D. 130°10. 下列方程中,无实数解的是()A. x² - 4x + 3 = 0B. x² - 4x + 4 = 0C. x² + 4x + 3 = 0D. x² + 4x + 4 = 0二、填空题(本大题共10小题,每小题3分,共30分。

四川省成都市九年级上学期数学期末考试试卷

四川省成都市九年级上学期数学期末考试试卷

四川省成都市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共10分)1. (1分)若两个连续整数的积是56,则它们的和是()A . 11B . 15C . -15D . ±152. (1分)如图所示,两个等边三角形,两个矩形,两个正方形,两个菱形各成一组,每组中的一个图形在另一个图形的内部,对应边平行,且对应边之间的距离都相等,那么两个图形不相似的一组是()A .B .C .D .3. (1分)如图是油路管道的一部分,延伸外围的支路恰好构成一个直角三角形,两直角边分别为6m和8m.按照输油中心O到三条支路的距离相等来连接管道,则O到三条支路的管道总长(即OA+OB+OC,计算时视管道为线,中心O为点)是()A . 2mC . 6mD . 9m4. (1分)在直角三角形中不能求解的是()A . 已知斜边和一锐角B . 已知两边C . 已知两角D . 已知一直角边和一锐角5. (1分)如图,在△ABC中,∠C=90°,AB=13,BC=5,则sinA的值是()A .B .C .D .6. (1分)下列说法正确的是A . 一个游戏的中奖率是1%,则做100次这样的游戏一定会中奖B . 为了解某品牌灯管的使用寿命,可以采用普查的方式C . 一组数据6、8、7、8、9、10的众数和平均数都是8D . 若甲组数据的方差S甲2=0.05,乙组数据的方差S乙2=0.1,则乙组数据比甲组数据稳定7. (1分)(2020·东营) 如图,随机闭合开关,,中的两个,则能让两盏灯泡同时发光的概率为()A .B .D .8. (1分)(2019·拱墅模拟) 已知点A(t,y1),B(t+2,y2)在抛物线的图象上,且﹣2≤t≤2,则线段AB长的最大值、最小值分别是()A . 2 ,2B . 2 ,2C . 2 ,2D . 2 ,29. (1分)如图,AB是⊙O的直径,弦CD交AB于点E,且AE=CD=8,∠BAC=∠BOD,则⊙O的半径为()A .B . 5C . 4D . 310. (1分)(2020·浙江模拟) 如图,△ABC内接于⊙O,∠A= .若BC=,则的长为()A . πB .C . 2πD .二、填空题 (共5题;共5分)11. (1分) (2020八下·北海期末) 如图,菱形ABCD的两条对角线AC,BD相交于点O,E是AB的中点,若AC=6,BD=8,则OE的长为________.12. (1分)(2017·孝感模拟) “赵爽弦图”是四个全等的直角三角形与中间一个小正方形拼成的大正方形.有一“赵爽弦图”飞镖板,其直角三角形的两条直角边的长分别是2和4.小明同学距飞镖板一定距离向飞镖板投掷飞镖(假设投掷的飞镖均扎在飞镖板上),则投掷一次飞镖扎在中间小正形区域(含边)的概率是________.13. (1分) (2017九上·鄞州月考) 如图,已知抛物线y=mx2﹣6mx+5m与x轴交于A、B两点,以AB为直径的⊙P经过该抛物线的顶点C,直线l∥ x轴,交该抛物线于M、N两点,交⊙ P与E、F两点,若EF=2 ,则MN的长是________.14. (1分) (2019九上·哈尔滨月考) 如图,是中点,,若,,则、、三点所在圆的半径为________.15. (1分)(2020·江阴模拟) 如图,在平面直角坐标系中,Rt△ABC的顶点B与原点O重合,直角边BC在x轴的正半轴上,∠ACB=90°,点A的坐标为(3,),点D是BC边上一个动点(不与点B,C重合),过点D 作DE⊥BC交AB边于点E,将△BDE沿直线DE翻折,点B落在x轴上的点F处,当△AEF为直角三角形时,点F的坐标是________.三、解答题 (共8题;共16分)16. (2分)(2019·惠安模拟) 如图,在直角坐标系中,点P的坐标为(2,0),⊙P与x轴相交于原点O和点A,又B、C两点的坐标分别为(0,b),(﹣1,0).(1)当b=2时,求经过B、C两点的直线解析式;(2)当B点在y轴上运动时,直线BC与⊙P位置关系如何?并求出相应位置b的值17. (2分)(2016·德州) 在甲、乙两名同学中选拔一人参加“中华好诗词”大赛,在相同的测试条件下,两人5次测试成绩(单位:分)如下:甲:79,86,82,85,83乙:88,79,90,81,72.回答下列问题:(1)甲成绩的平均数是________,乙成绩的平均数是________;(2)经计算知S甲2=6,S乙2=42.你认为选拔谁参加比赛更合适,说明理由;(3)如果从甲、乙两人5次的成绩中各随机抽取一次成绩进行分析,求抽到的两个人的成绩都大于80分的概率.18. (3分)已知某二次函数的图象是由抛物线y=2x2向右平移得到,且当x=1时,y=1.(1)求此二次函数的解析式;(2)当x在什么范围内取值时,y随x增大而增大?19. (1分) (2018九上·康巴什期中) 在⊙O中,直径AB⊥CD于点E,连接CO并延长交AD于点F,且CF⊥AD.求∠D的度数.20. (1分)如图所示,PA、PB是⊙O的切线,切点分别是A、B,Q为⊙O上一点,过Q点作⊙O的切线,交PA、PB于E、F点,已知PA=8cm,求:△PEF的周长.21. (1分)已知Rt△ABC的斜边AB=13cm,一条直角边AC=5cm,以直线AB为轴旋转一周得一个几何体.求这个几何体的表面积.22. (3分) (2019八下·余杭期中) 如图,平行四边形ABCD中,AP,BP分别平分∠DAB和∠CBA,交于DC 边上点P,AD=5.(1)求线段AB的长.(2)若BP=6,求△ABP的周长.23. (3分)(2018·长宁模拟) 在直角坐标平面内,直线y= x+2分别与x轴、y轴交于点A、C.抛物线(1)求上述抛物线的表达式;(2)联结BC、BD,且BD交AC于点E,如果△ABE的面积与△ABC的面积之比为4:5,求∠DBA的余切值;(3)过点D作DF⊥AC,垂足为点F,联结CD.若△CFD与△AOC相似,求点D的坐标.参考答案一、单选题 (共10题;共10分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共8题;共16分)16-1、16-2、17-1、17-2、17-3、18-1、18-2、19-1、20-1、21-1、22-1、22-2、23-1、23-2、23-3、。

【数学】九年级上册成都数学全册期末复习试卷(Word版 含解析)

【数学】九年级上册成都数学全册期末复习试卷(Word版 含解析)

【数学】九年级上册成都数学全册期末复习试卷(Word 版 含解析)一、选择题1.有9名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前4名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这9名同学成绩的( ) A .平均数B .方差C .中位数D .极差2.要得到函数y =2(x -1)2+3的图像,可以将函数y =2x 2的图像( ) A .向左平移1个单位长度,再向上平移3个单位长度 B .向左平移1个单位长度,再向下平移3个单位长度 C .向右平移1个单位长度,再向上平移3个单位长度 D .向右平移1个单位长度,再向下平移3个单位长度3.在九年级体育中考中,某班参加仰卧起坐测试的一组女生(每组8人)测试成绩如下(单位:次/分):46,44,45,42,48,46,47,46.则这组数据的中位数为( ) A .42B .45C .46D .484.如图,⊙O 的直径BA 的延长线与弦DC 的延长线交于点E ,且CE =OB ,已知∠DOB =72°,则∠E 等于( )A .18°B .24°C .30°D .26°5.△ABC 的外接圆圆心是该三角形( )的交点.A .三条边垂直平分线B .三条中线C .三条角平分线D .三条高6.一枚质地匀均的骰子,其六个面上分别标有数字:1,2,3,4,5,6,投掷一次,朝上面的数字大于4的概率是( )A .12 B .13C .23 D .167.如图,ABC △内接于⊙O ,30BAC ∠=︒,8BC = ,则⊙O 半径为( )A .4B .6C .8D .128.方程2210x x --=的两根之和是( ) A .2-B .1-C .12D .12-9.抛物线y =x 2先向右平移1个单位,再向上平移3个单位,得到新的抛物线解析式是( )A .y =(x+1)2+3B .y =(x+1)2﹣3C .y =(x ﹣1)2﹣3D .y =(x ﹣1)2+310.一个不透明的袋子中装有20个红球,2个黑球,1个白球,它们除颜色外都相同,若从中任意摸出1个球,则( ) A .摸出黑球的可能性最小 B .不可能摸出白球 C .一定能摸出红球D .摸出红球的可能性最大11.若关于x 的一元二次方程240kx x -+=有实数根,则k 的取值范围是( ) A .16k ≤ B .116k ≤C .1,16k ≤且0k ≠ D .16,k ≤ 且0k ≠ 12.如图,BC 是A 的内接正十边形的一边,BD 平分ABC ∠交AC 于点D ,则下列结论正确的有( )①BC BD AD ==;②2BC DC AC =⋅;③2AB AD =;④512BC AC -=.A .1个B .2个C .3个D .4个13.某同学在解关于x 的方程ax 2+bx +c =0时,只抄对了a =1,b =﹣8,解出其中一个根是x =﹣1.他核对时发现所抄的c 是原方程的c 的相反数,则原方程的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .有一个根是x =1D .不存在实数根14.如图,点P (x ,y )(x >0)是反比例函数y=kx(k >0)的图象上的一个动点,以点P 为圆心,OP 为半径的圆与x 轴的正半轴交于点A ,若△OPA 的面积为S ,则当x 增大时,S 的变化情况是( )A .S 的值增大B .S 的值减小C .S 的值先增大,后减小D .S 的值不变 15.若二次函数y =x 2+4x +n 的图象与x 轴只有一个公共点,则实数n 的值是( )A .1B .3C .4D .6二、填空题16.如图,⊙O 是△ABC 的外接圆,∠A =30°,BC =4,则⊙O 的直径为___.17.二次函数23(1)2y x =-+图象的顶点坐标为________. 18.O 的半径为4,圆心O 到直线l 的距离为2,则直线l 与O 的位置关系是______.19.设x 1、x 2是关于x 的方程x 2+3x -5=0的两个根,则x 1+x 2-x 1•x 2=________. 20.将抛物线y=﹣2x 2+1向左平移三个单位,再向下平移两个单位得到抛物线________; 21.如图,直线l 1∥l 2∥l 3,A 、B 、C 分别为直线l 1,l 2,l 3上的动点,连接AB ,BC ,AC ,线段AC 交直线l 2于点D .设直线l 1,l 2之间的距离为m ,直线l 2,l 3之间的距离为n ,若∠ABC =90°,BD =3,且12m n =,则m +n 的最大值为___________.22.在▱ABCD 中,∠ABC 的平分线BF 交对角线AC 于点E ,交AD 于点F .若AB BC =35,则EFBF的值为_____.23.若32x y =,则x y y+的值为_____. 24.二次函数2y ax bx c =++的图象如图所示,若点()11,A y ,()23,B y 是图象上的两点,则1y ____2y (填“>”、“<”、“=”).25.某电视台招聘一名记者,甲应聘参加了采访写作、计算机操作和创意设计的三项素质测试得分分别为70、60、90,三项成绩依次按照5:2:3计算出最后成绩,那么甲的成绩为__.26.抛物线228y x x m =++与x 轴只有一个公共点,则m 的值为________. 27.已知3a =4b ≠0,那么ab=_____. 28.如图,在△ABC 和△APQ 中,∠PAB =∠QAC ,若再增加一个条件就能使△APQ ∽△ABC ,则这个条件可以是________.29.如图,将二次函数y =12(x -2)2+1的图像沿y 轴向上平移得到一条新的二次函数图像,其中A (1,m ),B (4,n )平移后对应点分别是A′、B′,若曲线AB 所扫过的面积为12(图中阴影部分),则新的二次函数对应的函数表达是__________________.30.如图,在四边形ABCD 中,∠BAD =∠BCD =90°,AB +AD =8cm .当BD 取得最小值时,AC 的最大值为_____cm .三、解答题31.解方程: (1)x 2﹣2x ﹣1=0;(2)(2x ﹣1)2=4(2x ﹣1). 32.如图,AB 为O 的直径,PD 切O 于点C ,交AB 的延长线于点D ,且2D A ∠=∠.(1)求D∠的度数.(2)若O的半径为2,求BD的长.33.某校为了解本校九年级男生“引体向上”项目的训练情况,随机抽取该年级部分男生进行了一次测试(满分15分,成绩均记为整数分),并按测试成绩(单位:分)分成四类:A类(12≤m≤15),B类(9≤m≤11),C类(6≤m≤8),D类(m≤5)绘制出以下两幅不完整的统计图,请根据图中信息解答下列问题:(1)本次抽取样本容量为,扇形统计图中A类所对的圆心角是度;(2)请补全统计图;(3)若该校九年级男生有300名,请估计该校九年级男生“引体向上”项目成绩为C类的有多少名?34.为了落实国务院的指示精神,地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y2x80=-+. 设这种产品每天的销售利润为w元.(1)求w与x之间的函数关系式;(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?35.如图,二次函数y=ax2+bx+c的图象与x轴相交于点A(﹣1,0)、B(5,0),与y轴相交于点C(0,33).(1)求该函数的表达式;(2)设E为对称轴上一点,连接AE、CE;①当AE+CE取得最小值时,点E的坐标为;②点P从点A出发,先以1个单位长度/的速度沿线段AE到达点E,再以2个单位长度的速度沿对称轴到达顶点D.当点P到达顶点D所用时间最短时,求出点E的坐标.四、压轴题36.如图①,O 经过等边ABC 的顶点A ,C (圆心O 在ABC 内),分别与AB ,CB 的延长线交于点D ,E ,连结DE ,BF EC ⊥交AE 于点F . (1)求证:BD BE =.(2)当:3:2AF EF =,6AC =,求AE 的长.(3)当:3:2AF EF =,AC a =时,如图②,连结OF ,OB ,求OFB △的面积(用含a 的代数式表示).37.已知,如图Rt △ABC 中,∠C =90°,AC =6cm ,BC =8cm ,点P 为AC 的中点,Q 从点A 运动到B ,点Q 运动到点B 停止,连接PQ ,取PQ 的中点O ,连接OC ,OB . (1)若△ABC ∽△APQ ,求BQ 的长;(2)在整个运动过程中,点O 的运动路径长_____;(3)以O 为圆心,OQ 长为半径作⊙O ,当⊙O 与AB 相切时,求△COB 的面积.38.如图,B是O的半径OA上的一点(不与端点重合),过点B作OA的垂线交O于点C,D,连接OD,E是O上一点,CE CA,过点C作O的切线l,连接OE并延长交直线l于点F.(1)①依题意补全图形.②求证:∠OFC=∠ODC.(2)连接FB,若B是OA的中点,O的半径是4,求FB的长.39.已知抛物线y=﹣14x2+bx+c经过点A(4,3),顶点为B,对称轴是直线x=2.(1)求抛物线的函数表达式和顶点B的坐标;(2)如图1,抛物线与y轴交于点C,连接AC,过A作AD⊥x轴于点D,E是线段AC上的动点(点E不与A,C两点重合);(i)若直线BE将四边形ACOD分成面积比为1:3的两部分,求点E的坐标;(ii)如图2,连接DE,作矩形DEFG,在点E的运动过程中,是否存在点G落在y轴上的同时点F恰好落在抛物线上?若存在,求出此时AE的长;若不存在,请说明理由.40.如图,在边长为5的菱形OABC中,sin∠AOC=45,O为坐标原点,A点在x轴的正半轴上,B,C两点都在第一象限.点P以每秒1个单位的速度沿O→A→B→C→O运动一周,设运动时间为t(秒).请解答下列问题:(1)当CP⊥OA时,求t的值;(2)当t<10时,求点P的坐标(结果用含t的代数式表示);(3)以点P为圆心,以OP为半径画圆,当⊙P与菱形OABC的一边所在直线相切时,请直接写出t的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前4名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.故选:C.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、极差、方差的意义,掌握相关知识点是解答此题的关键.2.C解析:C【解析】【分析】找到两个抛物线的顶点,根据抛物线的顶点即可判断是如何平移得到.【详解】解:∵y=2(x-1)2+3的顶点坐标为(1,3),y=2x2的顶点坐标为(0,0),∴将抛物线y=2x2向右平移1个单位,再向上平移3个单位,可得到抛物线y=2(x-1)2+3故选:C.【点睛】本题考查了二次函数图象与几何变换,解答时注意抓住点的平移规律和求出关键点顶点坐标.3.C解析:C【解析】【分析】根据中位数的定义,把8个数据从小到大的顺序依次排列后,求第4,第5位两数的平均数即为本组数据的中位数.【详解】解:把数据由小到大排列为:42,44,45,46,46,46,47,48∴中位数为4646462+=.故答案为:46.【点睛】找中位数的时候一定要先排好大小顺序,再根据奇数个数和偶数个数来确定中位数.如果是奇数个,则正中间的数字即为中位数;如果是偶数个,则找中间两个数的平均数为中位数.先将数据按从小到大顺序排列是求中位数的关键.4.B解析:B【解析】【分析】根据圆的半径相等可得等腰三角形,根据三角形的外角的性质和等腰三角形等边对等角可得关于∠E的方程,解方程即可求得答案.【详解】解:如图,连接CO,∵CE=OB=CO=OD,∴∠E=∠1,∠2=∠D∴∠D=∠2=∠E+∠1=2∠E.∴∠3=∠E+∠D=∠E+2∠E=3∠E.由∠3=72°,得3∠E=72°.解得∠E=24°.故选:B.【点睛】本题考查了圆的认识,等腰三角形的性质,三角形的外角的性质.能利用圆的半径相等得出等腰三角形是解题关键.5.A解析:A【解析】【分析】根据三角形的外接圆的概念、三角形的外心的概念和性质直接填写即可.【详解】解:△ABC的外接圆圆心是△ABC三边垂直平分线的交点,故选:A.【点睛】本题考查了三角形的外心,三角形的外接圆圆心即为三角形的外心,是三条边垂直平分线的交点,正确理解三角形外心的概念是解题的关键.6.B解析:B【解析】【分析】直接得出朝上面的数字大于4的个数,再利用概率公式求出答案.【详解】∵一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,∴共有6种情况,其中朝上面的数字大于4的情况有2种,∴朝上一面的数字是朝上面的数字大于4的概率为:21 63 ,故选:B.【点睛】本题考查简单的概率求法,概率=所求情况数与总情况数的比;熟练掌握概率公式是解题关键.7.C解析:C【解析】【分析】连接OB,OC,根据圆周角定理求出∠BOC的度数,再由OB=OC判断出△OBC是等边三角形,由此可得出结论.【详解】解:连接OB,OC,∵∠BAC=30°,∴∠BOC =60°.∵OB =OC ,BC =8,∴△OBC 是等边三角形,∴OB =BC =8.故选:C.【点睛】 本题考查的是圆周角定理以及等边三角形的判定和性质,根据题意作出辅助线,构造出等边三角形是解答此题的关键.8.C解析:C【解析】 【分析】利用两个根和的关系式解答即可.【详解】两个根的和=1122b a , 故选:C.【点睛】此题考查一元二次方程根与系数的关系式, 1212,b c x x x x a a+=-=. 9.D解析:D【解析】【分析】按“左加右减,上加下减”的规律平移即可得出所求函数的解析式.【详解】抛物线y =x 2先向右平移1个单位得y =(x ﹣1)2,再向上平移3个单位得y =(x ﹣1)2+3.故选D.【点睛】本题考查了二次函数图象的平移,其规律是是:将二次函数解析式转化成顶点式y=a (x -h )2+k (a ,b ,c 为常数,a ≠0),确定其顶点坐标(h ,k ),在原有函数的基础上“h 值正右移,负左移; k 值正上移,负下移”.10.D解析:D【解析】【分析】根据概率公式先分别求出摸出黑球、白球和红球的概率,再进行比较,即可得出答案.【详解】解:∵不透明的袋子中装有20个红球,2个黑球,1个白球,共有23个球,∴摸出黑球的概率是2 23,摸出白球的概率是1 23,摸出红球的概率是20 23,∵123<223<2023,∴从中任意摸出1个球,摸出红球的可能性最大;故选:D.【点睛】本题考查了可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等.11.C解析:C【解析】【分析】一元二次方程有实数根,则根的判别式∆≥0,且k≠0,据此列不等式求解.【详解】根据题意,得:∆=1-16k≥0且k≠0,解得:116k≤且k≠0.故选:C.【点睛】本题考查一元二次方程根的判别式与实数根的情况,注意k≠0.12.C解析:C【解析】【分析】①③,根据已知把∠ABD,∠CBD,∠A角度确定相等关系,得到等腰三角形证明腰相等即可;②通过证△ABC∽△BCD,从而确定②是否正确,根据AD=BD=BC,即BC AC BC AC BC-=解得BC=12AC ,故④正确. 【详解】①BC 是⊙A 的内接正十边形的一边,因为AB =AC ,∠A =36°,所以∠ABC =∠C =72°,又因为BD 平分∠ABC 交AC 于点D ,∴∠ABD =∠CBD =12∠ABC =36°=∠A , ∴AD =BD ,∠BDC =∠ABD +∠A =72°=∠C ,∴BC =BD ,∴BC =BD =AD ,正确;又∵△ABD 中,AD+BD >AB∴2AD >AB, 故③错误.②根据两角对应相等的两个三角形相似易证△ABC ∽△BCD , ∴BC CD AB BC=,又AB =AC , 故②正确, 根据AD =BD =BC ,即BC AC BC AC BC -=,解得AC ,故④正确, 故选C .【点睛】本题主要考查圆的几何综合,解决本题的关键是要熟练掌握圆的基本性质和几何图形的性质. 13.A解析:A【解析】【分析】直接把已知数据代入进而得出c 的值,再解方程根据根的判别式分析即可.【详解】∵x =﹣1为方程x 2﹣8x ﹣c =0的根,1+8﹣c =0,解得c =9,∴原方程为x 2-8x +9=0,∵24b ac ∆=-=(﹣8)2-4×9>0,∴方程有两个不相等的实数根.故选:A .【点睛】本题考查一元二次方程的解、一元二次方程根的判别式,解题的关键是掌握一元二次方程根的判别式,对于一元二次方程()200++=≠ax bx c a ,根的情况由24b ac ∆=-来判别,当24b ac ->0时,方程有两个不相等的实数根,当24b ac -=0时,方程有两个相等的实数根,当24b ac -<0时,方程没有实数根.14.D解析:D【解析】【分析】作PB ⊥OA 于B ,如图,根据垂径定理得到OB =AB ,则S △POB =S △PAB ,再根据反比例函数k 的几何意义得到S △POB =12|k |,所以S =2k ,为定值. 【详解】作PB ⊥OA 于B ,如图,则OB =AB ,∴S △POB =S △PAB . ∵S △POB =12|k |,∴S =2k ,∴S 的值为定值. 故选D .【点睛】本题考查了反比例函数系数k 的几何意义:在反比例函数y =k x图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k |. 15.C解析:C【解析】【分析】二次函数y =x 2+4x +n 的图象与x 轴只有一个公共点,则240b ac =-=⊿,据此即可求得.【详解】∵1a =,4b =,c n =,根据题意得:2244410b ac n =-=⨯⨯=⊿﹣,解得:n =4,故选:C .【点睛】本题考查了抛物线与x 轴的交点,二次函数2y ax bx c =++(a ,b ,c 是常数,a ≠0)的交点与一元二次方程20ax bx c ++=根之间的关系.24b ac =-⊿决定抛物线与x 轴的交点个数.⊿>0时,抛物线与x 轴有2个交点;0=⊿时,抛物线与x 轴有1个交点;⊿<0时,抛物线与x 轴没有交点.二、填空题16.8【解析】【分析】连接OB ,OC ,依据△BOC 是等边三角形,即可得到BO=CO=BC=BC=4,进而得出⊙O 的直径为8.【详解】解:如图,连接OB ,OC ,∵∠A=30°,∴∠BOC=解析:8【解析】【分析】连接OB ,OC ,依据△BOC 是等边三角形,即可得到BO=CO=BC=BC=4,进而得出⊙O 的直径为8.【详解】解:如图,连接OB ,OC ,∵∠A=30°,∴∠BOC=60°,∴△BOC 是等边三角形,又∵BC=4,∴BO=CO=BC=BC=4,∴⊙O 的直径为8,故答案为:8.【点睛】本题主要考查了三角形的外接圆以及圆周角定理的运用,三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.17.【解析】【分析】二次函数(a≠0)的顶点坐标是(h ,k ).【详解】解:根据二次函数的顶点式方程知,该函数的顶点坐标是:(1,2). 故答案为:(1,2).【点睛】本题考查了二次函数的性解析:()1,2【解析】【分析】二次函数2()y a x h k =-+(a≠0)的顶点坐标是(h ,k ).【详解】解:根据二次函数的顶点式方程23(1)2y x =-+知,该函数的顶点坐标是:(1,2). 故答案为:(1,2).【点睛】本题考查了二次函数的性质和二次函数的三种形式,解答该题时,需熟悉二次函数的顶点式方程2()y a x h k =-+中的h ,k 所表示的意义. 18.相交【解析】【分析】由圆的半径为4,圆心O 到直线l 的距离为2,利用直线和圆的位置关系,圆的半径大于直线到圆距离,则直线l 与O 的位置关系是相交.【详解】解:∵⊙O 的半径为4,圆心O 到直线L 的解析:相交【解析】【分析】由圆的半径为4,圆心O 到直线l 的距离为2,利用直线和圆的位置关系,圆的半径大于直线到圆距离,则直线l 与O 的位置关系是相交.【详解】解:∵⊙O 的半径为4,圆心O 到直线L 的距离为2,∵4>2,即:d <r ,∴直线L 与⊙O 的位置关系是相交.故答案为:相交.本题考查知道知识点是圆与直线的位置关系,若d <r ,则直线与圆相交;若d>r ,则直线与圆相离;若d=r ,则直线与圆相切.19.2【解析】【分析】先根据根与系数的关系得出两根之和与两根之积,代入即可得出结论.【详解】解:∵x1,x2是关于 x 的方程x2+3x -5=0的两个根,根据根与系数的关系,得,x1+x2=解析:2【解析】【分析】先根据根与系数的关系得出两根之和与两根之积,代入即可得出结论.【详解】解:∵x 1,x 2是关于 x 的方程x 2+3x -5=0的两个根,根据根与系数的关系,得,x 1+x 2=-3,x 1x 2=-5,则 x 1+x 2-x 1x 2=-3-(-5)=2,故答案为2.【点睛】本题考查了一元二次方程的根与系数的关系,求出x 1+x 2=-3,x 1x 2=-5是解题的关键.20.【解析】【分析】根据抛物线平移的规律计算即可得到答案.【详解】根据题意:平移后的抛物线为.【点睛】此题考查抛物线的平移规律:对称轴左加右减,函数值上加下减,掌握规律并熟练运用是解题的关解析:()2231y x =-+-【解析】【分析】根据抛物线平移的规律计算即可得到答案.【详解】根据题意:平移后的抛物线为()2231y x =-+-.【点睛】此题考查抛物线的平移规律:对称轴左加右减,函数值上加下减,掌握规律并熟练运用是21.【解析】【分析】过作于,延长交于,过作于,过作于,设,,得到,,根据相似三角形的性质得到,,由,得到,于是得到,然后根据二次函数的性质即可得到结论.【详解】解:过作于,延长交于,过作于,过解析:274【解析】【分析】过B 作1BE l ⊥于E ,延长EB 交3l 于F ,过A 作2AN l ⊥于N ,过C 作2CM l ⊥于M ,设AE BN x ==,CF BM y ==,得到3DM y =-,4DN x =-,根据相似三角形的性质得到xy mn =,29y x =-+,由12m n =,得到2n m =,于是得到()3m n m +=最大,然后根据二次函数的性质即可得到结论.【详解】解:过B 作1BE l ⊥于E ,延长EB 交3l 于F ,过A 作2AN l ⊥于N ,过C 作2CM l ⊥于M ,设AE BN x ==,CF BM y ==,3BD =,3DM y ∴=-,3DN x =-,90ABC AEB BFC CMD AND ∠=∠=∠=∠=∠=︒,90EAB ABE ABE CBF ∴∠+∠=∠+∠=︒,EAB CBF ∴∠=∠,ABE BFC ∴∆∆∽,∴AE BE BF CF=,即x m n y =, xy mn ∴=,ADN CDM ∠=∠,CMD AND ∴∆∆∽,∴AN DN CM DM=,即3132m x n y -==-, 29y x ∴=-+,12m n =, 2n m ∴=,()3m n m ∴+=最大,∴当m 最大时,()3m n m +=最大,22(29)292mn xy x x x x m ==-+=-+=,∴当92(29)4x =-=⨯-时,28128mn m ==最大, 94m ∴=最大, m n ∴+的最大值为927344⨯=. 故答案为:274. 【点睛】本题考查了平行线的性质,相似三角形的判定和性质,二次函数的性质,正确的作出辅助线,利用相似三角形转化线段关系,得出关于m 的函数解析式是解题的关键.22..【解析】【分析】根据平行四边形的性质和角平分线的性质,得出边的关系,进而利用相似三角形的性质求解.【详解】解:∵四边形ABCD 是平行四边形,∴AD∥BC,∴∠AFB=∠EBC,∵B 解析:38.【解析】【分析】根据平行四边形的性质和角平分线的性质,得出边的关系,进而利用相似三角形的性质求解.【详解】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠AFB =∠EBC ,∵BF 是∠ABC 的角平分线,∴∠EBC =∠ABE =∠AFB ,∴AB =AF , ∴35AB AF BC BC ==, ∵AD ∥BC ,∴△AFE ∽△CBE , ∴35AF EF BC BE ==, ∴38EF BF =; 故答案为:38. 【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知平行四边形的性质、角平分线的性质及相似三角形的判定定理.23..【解析】【分析】根据比例的合比性质变形得:【详解】∵,∴故答案为:.【点睛】本题主要考查了合比性质,对比例的性质的记忆是解题的关键. 解析:52. 【解析】【分析】 根据比例的合比性质变形得:325.22x y y ++== 【详解】 ∵32x y =,∴325.22x y y ++== 故答案为:52. 【点睛】本题主要考查了合比性质,对比例的性质的记忆是解题的关键.24.>【解析】【分析】利用函数图象可判断点,都在对称轴右侧的抛物线上,然后根据二次函数的性质可判断与的大小.【详解】解:∵抛物线的对称轴在y 轴的左侧,且开口向下,∴点,都在对称轴右侧的抛物线解析:>【解析】【分析】利用函数图象可判断点()11,A y ,()23,B y 都在对称轴右侧的抛物线上,然后根据二次函数的性质可判断1y 与2y 的大小.【详解】解:∵抛物线的对称轴在y 轴的左侧,且开口向下,∴点()11,A y ,()23,B y 都在对称轴右侧的抛物线上,∴1y >2y .故答案为>.【点睛】本题考查二次函数图象上点的坐标特征,二次函数的性质.解决本题的关键是判断点A 和点B 都在对称轴的右侧.25.74【解析】【分析】利用加权平均数公式计算.【详解】甲的成绩=,故答案为:74.【点睛】此题考查加权平均数,正确理解各数所占的权重是解题的关键.解析:74【解析】【分析】利用加权平均数公式计算.【详解】甲的成绩=70560290374523,故答案为:74.【点睛】此题考查加权平均数,正确理解各数所占的权重是解题的关键.26.8【解析】试题分析:由题意可得,即可得到关于m的方程,解出即可.由题意得,解得考点:本题考查的是二次根式的性质点评:解答本题的关键是熟练掌握当时,抛物线与x轴有两个公共点;当时,抛物线与x解析:8【解析】试题分析:由题意可得,即可得到关于m的方程,解出即可.由题意得,解得考点:本题考查的是二次根式的性质点评:解答本题的关键是熟练掌握当时,抛物线与x轴有两个公共点;当时,抛物线与x轴只有一个公共点;时,抛物线与x轴没有公共点.27..【解析】【分析】根据等式的基本性质将等式两边都除以3b,即可求出结论.【详解】解:两边都除以3b,得=,故答案为:.【点睛】此题考查的是等式的基本性质,掌握等式的基本性质是解决此解析:43.【解析】【分析】根据等式的基本性质将等式两边都除以3b,即可求出结论.【详解】解:两边都除以3b,得a b =43,故答案为:43.【点睛】此题考查的是等式的基本性质,掌握等式的基本性质是解决此题的关键.28.∠P=∠B(答案不唯一)【解析】【分析】要使△APQ∽△ABC ,在这两三角形中,由∠PAB=∠QA C可知∠PAQ=∠BAC,还需的条件可以是∠B=∠P或∠C=∠Q或.【详解】解:这个条件解析:∠P=∠B(答案不唯一)【解析】【分析】要使△APQ∽△ABC,在这两三角形中,由∠PAB=∠QAC可知∠PAQ=∠BAC,还需的条件可以是∠B=∠P或∠C=∠Q或AP AQ AB AC=.【详解】解:这个条件为:∠B=∠P ∵∠PAB=∠QAC,∴∠PAQ=∠BAC∵∠B=∠P,∴△APQ∽△ABC,故答案为:∠B=∠P或∠C=∠Q或AP AQ AB AC=.【点睛】本题考查了相似三角形的判定与性质的运用,掌握相似三角形的判定与性质是解题的关键.29.y=0.5(x-2)+5【解析】解:∵函数y=(x﹣2)2+1的图象过点A(1,m),B(4,n),∴m=(1﹣2)2+1=1,n=(4﹣2)2+1=3,∴A(1,1),B(4,3),过A作AC解析:y=0.5(x-2)2+5【解析】解:∵函数y=12(x﹣2)2+1的图象过点A(1,m),B(4,n),∴m=12(1﹣2)2+1=112,n=12(4﹣2)2+1=3,∴A(1,112),B(4,3),过A作AC∥x轴,交B′B的延长线于点C,则C(4,112),∴AC=4﹣1=3.∵曲线段AB扫过的面积为12(图中的阴影部分),∴AC•AA′=3AA′=12,∴AA′=4,即将函数y=12(x﹣2)2+1的图象沿y轴向上平移4个单位长度得到一条新函数的图象,∴新图象的函数表达式是y=12(x﹣2)2+5.故答案为y=0.5(x﹣2)2+5.点睛:本题主要考查了二次函数图象与几何变换以及平行四边形面积求法等知识,根据已知得出AA′是解题的关键.30.【解析】【分析】设AB=x,则AD=8﹣x,由勾股定理可得BD2=x2+(8﹣x)2,由二次函数的性质可求出AB=AD=4时,BD的值最小,根据条件可知A,B,C,D四点在以BD 为直径的圆上.解析:2【解析】【分析】设AB=x,则AD=8﹣x,由勾股定理可得BD2=x2+(8﹣x)2,由二次函数的性质可求出AB=AD=4时,BD的值最小,根据条件可知A,B,C,D四点在以BD为直径的圆上.则AC为直径时最长,则最大值为2.【详解】解:设AB=x,则AD=8﹣x,∵∠BAD =∠BCD =90°,∴BD 2=x 2+(8﹣x )2=2(x ﹣4)2+32.∴当x =4时,BD 取得最小值为42.∵A ,B ,C ,D 四点在以BD 为直径的圆上.如图,∴AC 为直径时取得最大值.AC 的最大值为2.故答案为:2.【点睛】本题考查了四边形的对角线问题,掌握勾股定理和圆内接四边形的性质是解题的关键.三、解答题31.(1)x =22;(2)x =52或x =12. 【解析】【分析】(1)根据配方法即可求出答案.(2)根据因式分解法即可求出答案.【详解】解:(1)∵x 2﹣2x ﹣1=0,∴x 2﹣2x +1=2,∴(x ﹣2)2=2, ∴x =2.(2)∵(2x ﹣1)2=4(2x ﹣1),∴(2x ﹣1﹣4)(2x ﹣1)=0, ∴x =52或x =12. 【点睛】 此题主要考查一元二次方程的求解,解题的关键是熟知一元二次方程的解法.32.(1)45D ∠=︒;(2)222BD =.【解析】【分析】(1)根据等腰三角形性质和三角形外角性质求出∠COD=2∠A ,求出∠D=∠COD ,根据切线性质求出∠OCD=90°,即可求出答案;(2)由题意O的半径为2,求出OC=CD=2,根据勾股定理求出BD即可.【详解】解:(1)∵OA=OC,∴∠A=∠ACO,∴∠COD=∠A+∠ACO=2∠A,∵∠D=2∠A,∴∠D=∠COD,∵PD切⊙O于C,∴∠OCD=90°,∴∠D=∠COD=45°;(2)∵∠D=∠COD,O的半径为2,∴OC=OB=CD=2,在Rt△OCD中,由勾股定理得:22+22=(2+BD)2,解得:2BD=.【点睛】本题考查切线的性质,勾股定理,等腰三角形性质,三角形的外角性质的应用,主要考查学生的推理能力,熟练掌握切线的性质,勾股定理,等腰三角形性质,三角形的外角性质是解题关键.33.(1)50,72;(2)作图见解析;(3)90.【解析】【分析】(1)用A类学生的人数除以A类学生的人数所占的百分比即可得到抽查的学生数,从而可以求得样本容量,由扇形统计图可以求得扇形圆心角的度数;(2)根据统计图可以求得C类学生数和C类与D类所占的百分比,从而可以将统计图补充完整;(3)用该校九年级男生的人数乘以该校九年级男生“引体向上”项目成绩为C类的的学生所占得百分比即可得答案.【详解】(1)由题意可得,抽取的学生数为:10÷20%=50,扇形统计图中A类所对的圆心角是:360°×20%=72°,(2)C类学生数为:50﹣10﹣22﹣3=15,C类占抽取样本的百分比为:15÷50×100%=30%,D类占抽取样本的百分比为:3÷50×100%=6%,补全的统计图如所示,。

四川省成都市龙泉九中2014届九年级上期末模拟数学试题

四川省成都市龙泉九中2014届九年级上期末模拟数学试题

交于点 P 。
(1)求证: BF EF ;
E
(2)求证: PA 是圆O 的切线;
A
(3)若 FG BF ,且圆O 的半径长为3 2 ,求 BD 和 FG 的长
F
度。
G
P
B
DO
C
26、如图:⊙O 与直线 PC相切于点 C,直径 AB∥PC,PA交⊙O 于 D,BP交⊙O 于 E,DE交 PC于 F
A、45
B、 53
C、
4 3
D、34

3.在下列四个函数中, y 随 x 的增大而减小的函数是 (
)
(A) y = 3x
(B) y = 2x(x < 0) (C) y = 5x + 2 (D) y = x2 (x > 0)
4.三角形两边长分别为 3 和 6,第三边是方程 x - 6x + 8 = 0 的解,则这个三角形的周长是
注明 x 的取值范围.
(2)每件小商品销售价是多少元时,商店每天销售这种小商品的利润最大?最大利润是多少?(注:销售
利润=销售收入-购进成本)
27、如图, A 是以 BC 为直径的圆O 上一点, AD BC 于点 D ,过点 B 作圆O 的切线,与CA 的延长
线相交于点 E,G 是 AD 的中点,连结CG 并延长与 BE 相交于点 F ,延长 AF 与 CB 的延长线相
2
5.在(ΔA)BC1中1 ,(已B知)∠13C=(90C°),1si1n或B=133,则(Dco)s1A1的和值1是3 ( )
5
A. 3
4
B. 4
3
c. 4
5
D. 3
5
6.如图,四边形 ABCD 为 e O 的内接四边形, E 是 BC 延长线上的一点,已知 BOD 100o ,则

【初三数学】成都市九年级数学上期末考试单元检测试卷(含答案解析)

【初三数学】成都市九年级数学上期末考试单元检测试卷(含答案解析)

A.人教版九年级第一学期期末模拟数学试卷【含答案】一.选择题(共14 小题,满分42 分,每小题3 分)1.若=x﹣5,则x的取值范围是()A.x<5 B.x≤5 C.x≥5 D.x>5 2.下列计算正确的是()A.+ =B.3 ﹣=3C.÷2=D.=23.如果与最简二次根式是同类二次根式,则a的值是()A.a=7 B.a=﹣2 C.a=1 D.a=﹣1 4.方程x2=4x 的根是()A.x=4 B.x=0 C.x1=0,x2=4 D.x1=0,x2=﹣4 5.已知关于x的一元二次方程x2﹣kx﹣6=0 的一个根为x=3,则另一个根为()A.x=﹣2 B.x=﹣3 C.x=2 D.x=36.某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15 场比赛,则共有多少个班级参赛?()A.4 B.5 C.6 D.77.将函数y=2(x+1)2﹣3 的图象向右平移2个单位,再向上平移5个单位,可得到抛物线的顶点为()A.(﹣3,2)B.(3,8)C.(1,﹣8)D.(1,2)8.在正方形网格中,△ABC 在网格中的位置如图,则c os B 的值为()B.C.D.29.河堤横断面如图所示,河堤高B C=6m,迎水坡A B 的坡比为1:,则A B 的长为()A.12 m B.4 m C.5 m D.6 m10.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3 的数的概率是()A.B.C.D.11.如图,在R t△ABC 中,∠ACB=90°,点D,E 分别是A B,BC 的中点,点F是B D 的中点.若AB=10,则E F=()A.2.5 B.3 C.4 D.512.如图,在△ABC 中,点D 在BC 边上,连接AD,点G 在线段AD 上,GE∥BD,且交AB 于点E,GF∥AC,且交C D 于点F,则下列结论一定正确的是()A.=B.=C.=D.=13.如图,AB 是圆O 的直径,弦AC,BD 相交于点E,AC=BD,若∠BEC=60°,C 是的中点,则t an∠ACD 值是()A.B.C.D.14.二次函数y=ax2+bx+c 的图象如图所示,则反比例函数y=与一次函数y=ax+b 在同一坐标系内的大致图象是()A.B.C.D.二.填空题(共4 小题,满分16 分,每小题 4 分)15.如图,在平面直角坐标系中,已知点A(﹣2,4),B(﹣4,﹣2),以原点O为位似中心,相似比为把△ABO 缩小,则点A的对应点A'的坐标是.16.已知关于x的函数y=(m﹣1)x2+2x+m 图象与坐标轴只有2个交点,则m=.17.如图,在⊙O 中,半径O C 与弦A N 垂直于点D,且A B=16,OC=10,则C D 的长是.18.如图,点D 在△ABC 的边AC 上,若要使△ABD 与△ACB 相似,可添加的一个条件是(只需写出一个).三.解答题(共6 小题,满分62 分)19.完成下列各题:(1)解方程:x2﹣4x+3=0;(2)计算:cos60°+ sin45°﹣3tan30°.20.受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,某市汽车零部件生产企业的利润逐年提高,据统计,2015 年利润为2 亿元,2017 年利润为2.88 亿元.(1)求该企业从2015 年到2017 年利润的年平均增长率;(2)若2018 年保持前两年利润的年平均增长率不变,该企业2018 年的利润能否超过3.5 亿元?21.如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形的圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止).(1)转动转盘一次,求转出的数字是﹣2 的概率;(2)转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.22.如图1,2 分别是某款篮球架的实物图与示意图,已知AB⊥BC 于点B,底座BC 的长为1 米,底座BC 与支架AC 所成的角∠ACB=60°,点H 在支架AF 上,篮板底部支架EH∥BC,EF⊥EH 于点E,已知A H HF 长米,HE 长1米.(1)求篮板底部支架HE 与支架AF 所成的角∠FHE 的度数.(2)求篮板底部点E到地面的距离.(结果保留根号)23.阅读下列材料,完成任务:自相似图形定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD 中,点E、F、G、H 分别是AB、BC、CD、DA 边的中点,连接EG,HF 交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD 均为正方形,且与原正方形相似,故正方形是自相似图形.任务:(1)图1 中正方形ABCD 分割成的四个小正方形中,每个正方形与原正方形的相似比为;(2)如图2,已知△ABC 中,∠ACB=90°,AC=4,BC=3,小明发现△ABC 也是“自相似图形”,他的思路是:过点C作CD⊥AB于点D,则CD将△ABC分割成2个与它自己相似的小直角三角形.已知△ACD∽△ABC,则△ACD 与△ABC 的相似比为;(3)现有一个矩形A BCD是自相似图形,其中长A D=a,宽A B=b(a>b).请从下列A、B 两题中任选一条作答:我选择题.A:①如图3﹣1,若将矩形ABCD 纵向分割成两个全等矩形,且与原矩形都相似,则a=(用含b的式子表示);②如图3﹣2若将矩形ABCD 纵向分割成n 个全等矩形,且与原矩形都相似,则a =(用含n,b的式子表示);B:①如图4﹣1,若将矩形A BCD 先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a=(用含b的式子表示);②如图4﹣2,若将矩形ABCD 先纵向分割出m 个全等矩形,再将剩余的部分横向分割成n 个全等矩形,且分割得到的矩形与原矩形都相似,则a=(用含m,n,b 的式子表示).24.如图,在平面直角坐标系中,抛物线y=ax2﹣5ax+c 交x 轴于点A,点A 的坐标为(4,0).(1)用含a 的代数式表示c.(2)当a=时,求x为何值时y取得最小值,并求出y的最小值.(3)当a=时,求0≤x≤6 时y的取值范围.(4)已知点B的坐标为(0,3),当抛物线的顶点落在△AOB外接圆内部时,直接写出a 的取值范围.参考答案一.选【解答】解:择题(共14 小题,满分42 分,每小题3 分)1.∵=x﹣5,∴5﹣x≤0∴x≥5.故选:C.2.【解答】解:A、与不能合并,所以A选项错误;B、原式=2 ,所以B选项错误;C、原式=,所以C选项错误;D、原式==2 ,所以D选项正确.故选:D.3.【解答】解:∵与最简二次根式是同类二次根式,=2 ,∴5+a=3,解得:a=﹣2,故选:B.4.【解答】解:方程整理得:x(x﹣4)=0,可得x=0 或x﹣4=0,解得:x1=0,x2=4,故选:C.5.【解答】∵关于x 的一元二次方程x2﹣kx﹣6=0 的一个根为x=3,∴32﹣3k﹣6=0,解得k=1,∴x2﹣x﹣6=0,解得x=3 或x=﹣2,故选:A.6.【解答】解:设共有x 个班级参赛,根据题意得:=15,解得:x1=6,x2=﹣5(不合题意,舍去),则共有6个班级参赛.故选:C.7.【解答】解:y=2(x+1)2﹣3 的图象向右平移2 个单位,再向上平移5 个单位,得y=2(x+1﹣2)2﹣3+5,化简,得y=2(x﹣1)2+2,抛物线的顶点为(1,2),故选:D.8.【解答】解:在直角△ABD 中,BD=2,AD=4,则A B===2 ,则c os B===.故选:A.9.【解答】解:∵BC=6 米,迎水坡A B 的坡比为1:,∴,解得,AC=6 ,∴AB==12,故选:A.10【解答】解:∵共6 个数,大于3 的有3 个,∴P(大于3)==;故选:D.11【解答】解:在Rt△ABC 中,∵AD=BD=5,∴CD=AB=5,∵BF=DF,BE=EC,∴EF=CD=2.5.故选:A.12【解答】解:∵GE∥BD,GF∥AC,∴△AEG∽△ABD,△DFG∽△DCA,∴=,=,∴==.故选:D.13【解答】解:连接AD、BC.∵AB 是圆O 的直径,∴∠ADB=∠ACB=90°.在Rt△ADB 与Rt△BCA 中,AB=AB,AC=BD,∴Rt△ADB≌Rt△BCA,(HL)∴AD=BC,=.故∠BDC=∠BAC=∠3=∠4,△DEC 是等腰三角形,∵∠BEC=60°是△DEC 的外角,∴∠BDC+∠3=∠BEC=60°,∴∠3=30°,∴tan∠ACD=tan∠3=tan30°=.故选:B.14【解答】解:由二次函数开口向上可得:a>0,对称轴在y 轴左侧,故a,b 同号,则b >0,故反比例函数y=图象分布在第一、三象限,一次函数y=ax+b 经过第一、二、三象限.故选:C.二.填空题(共4 小题,满分16 分,每小题 4 分)15【解答】解:∵以原点O为位似中心,相似比为,把△ABO 缩小,∴点A的对应点A′的坐标是(﹣2×,4×)或[﹣2×(﹣),4×(﹣)],即点A′的坐标为:(﹣1,2)或(1,﹣2).故答案为:(﹣1,2)或(1,﹣2).16【解答】解:(1)当m﹣1=0时,m=1,函数为一次函数,解析式为y=2x+1,与x轴交点坐标为(﹣,0);与y轴交点坐标(0,1).符合题意.(2)当m﹣1≠0 时,m≠1,函数为二次函数,与坐标轴有两个交点,则过原点,且与x 轴有两个不同的交点,于是△=4﹣4(m﹣1)m>0,解得,(m﹣)2<,解得m<或m>.将(0,0)代入解析式得,m=0,符合题意.(3)函数为二次函数时,还有一种情况是:与x 轴只有一个交点,与Y 轴交于交于另一点,这时:△=4﹣4(m﹣1)m=0,解得:m=.故答案为:1 或0或.17【解答】解:连接OA,设CD=x,∵OA=OC=10,∴OD=10﹣x,∵OC⊥AB,∴由垂径定理可知:AB=16,由勾股定理可知:102=82+(10﹣x)2∴x=4,∴CD=4,故答案为:418【解答】解:要使△ABC 与△ABD 相似,还需具备的一个条件是∠ABD=∠C 或∠ADB =∠ABC 等,故答案为:∠ABD=∠C.三.解答题(共6 小题,满分62 分)19.【解答】解:(1)∵x2﹣4x+3=0,(x﹣3)=0,则x﹣1∴(x﹣1)=0 或x﹣3=0,解得:x1=1,x2=3;(2)原式=+ ×﹣3×=+ ﹣=1﹣.20【解答】解:(1)设这两年该企业年利润平均增长率为x.根据题意得2(1+x)2=2.88,解得x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:这两年该企业年利润平均增长率为20%;(2)如果2018 年仍保持相同的年平均增长率,那么2018 年该企业年利润为:2.88(1+20%)=3.456,3.456<3.5答:该企业2018 年的利润不能超过3.5 亿元.21【解答】解:(1)将标有数字1和3的扇形两等分可知转动转盘一次共有6种等可能结果,其中转出的数字是﹣2 的有2 种结果,所以转出的数字是﹣2 的概率为= ;(2)列表如下:由表可知共有 36 种等可能结果,其中数字之积为正数的有 20 种结果, 所以这两次分别转出的数字之积为正数的概率为= .22【解答】解:(1)在 R t △EFH 中,cos ∠FHE = =,∴∠FHE =45°,答:篮板底部支架 HE 与支架 AF 所成的角∠FHE 的度数为 45°;(2)延长 FE 交 CB 的延长线于 M ,过点 A 作 AG ⊥FM 于 G ,过点 H 作 HN ⊥AG 于 N ,则四边形 ABMG 和四边形 HNGE 是矩形,∴GM =AB ,HN =EG , 在 R t △ABC 中,∵tan ∠ACB =,∴AB=BC tan60°=1× =,∴GM=AB=,在Rt△ANH 中,∠F AN=∠FHE=45°,∴HN=AH sin45°=× =,∴EM=EG+GM=+ ,答:篮板底部点E到地面的距离是(+ )米.23【解答】解:(1)∵点H是A D的中点,∴AH=AD,∵正方形AEOH∽正方形ABCD,∴相似比为:==;故答案为:;(2)在Rt△ABC 中,AC=4,BC=3,根据勾股定理得,AB=5,∴△ACD 与△ABC 相似的相似比为:=,故答案为:;(3)A、①∵矩形ABEF∽矩形FECD,∴AF:AB=AB:AD,即a:b=b:a,∴a=b;故答案为: b②每个小矩形都是全等的,则其边长为b和a,则b:a=a:b,∴a=b;故答案为: bB、①如图2,由①②可知纵向2 块矩形全等,横向3 块矩形也全等,∴DN=b,Ⅰ、当FM 是矩形DFMN 的长时,∵矩形FMND∽矩形ABCD,∴FD:DN=AD:AB,即F D:b=a:b,解得FD=a,∴AF=a﹣a=a,∴AG===a,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即a:b=b:a得:a=b;Ⅱ、当DF 是矩形DFMN 的长时,∵矩形DFMN∽矩形ABCD,∴FD:DN=AB:AD 即FD:b=b:a解得F D=,∴AF=a﹣=,∴AG==,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即:b=b:a,得:a=b;故答案为: b 或b;②如图3,由①②可知纵向m 块矩形全等,横向n 块矩形也全等,∴DN=b,Ⅰ、当FM 是矩形DFMN 的长时,∵矩形FMND∽矩形ABCD,∴FD:DN=AD:AB,即F D:b=a:b,解得FD=a,∴AF=a﹣a,∴AG===a,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即a:b=b:a得:a=b;Ⅱ、当DF 是矩形DFMN 的长时,∵矩形DFMN∽矩形ABCD,∴FD:DN=AB:AD 即FD:b=b:a解得F D=,∴AF=a﹣,∴AG==,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即:b=b:a,得:a=b;故答案为: b 或24.【解答】解:(1)将A(4,0)代入y=ax2﹣5ax+c,得:16a﹣20a+c=0,解得:c=4a.(2)当a=时,c=2,∴抛物线的解析式为y=x2﹣x+2=(x﹣)2﹣.∵a=>0,∴当x=时,y 取得最小值,最小值为﹣.(3)当a=﹣时,c=﹣2,∴抛物线的解析式为y=﹣x2+ x﹣2=﹣(x﹣)2+ .∵a=﹣<0,∴当x=时,y 取得最大值,最大值为;当x=0 时,y=﹣2;当x=6 时,y=﹣×62+ ×6﹣2=﹣5.∴当0≤x≤6 时,y 的取值范围是﹣5≤y≤.(4)∵抛物线的解析式为y=ax2﹣5ax+4a=a(x﹣)2﹣a,∴抛物线的对称轴为直线x=,顶点坐标为(,﹣a).设线段AB 的中点为O,以AB 为直径作圆,设抛物线对称轴与⊙O 交于点C,D,过点O作OH⊥CD 于点H,如图所示.∵点A的坐标为(4,0),点B的坐标(0,3),∴AB=5,点O的坐标为(2,),点H的坐标为(,).在Rt△COH 中,OC=AB=,OH=,∴CH=,∴点C的坐标为(九年级上册数学期末考试题(答案)一、选择题(本题有10小题,每小题4分,共40分)1.反比例函数y=的图象在()A.第一,二象限B.第一,三象限C.第二,四象限D.第三,四象限2.下列剪纸作品中是中心对称图形的是()A.B.C.D.3.将抛物线y=x2向上平移2个单位后,所得的抛物线的函数表达式为()A.y=x2+2B.y=x2﹣2C.y=(x+2)2D.y=(x﹣2)2 4.下列说法中,正确的是()A.不可能事件发生的概率为0B.随机事件发生的概率为C.“明天要降雨的概率为”,表示明天有半天时间都在降雨D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次5.如图,A,B是⊙O上的两点,C是⊙O上不与A,B重合的任意一点.如果∠AOB=130°,那么∠ACB的度数为()A.65°B.115°C.130°D.65°或115°6.对于二次函数y=﹣2(x+1)(x﹣3),下列说法正确的是()A.图象与x轴的交点为(1,0),(﹣3,0)B.图象的对称轴是直线x=﹣2C.当x<1时,y随x的增大而增大D.此函数有最小值为87.如图,把矩形ABCD绕点A顺时针旋转,使点B的对应点B落在DA的延长线上,若AB=2,BC=4,则点C与其对应点C的距离为()A.6B.8C.2D.28.有x支球队参加篮球比赛,每两队之间都比赛一场,共比赛了21场,则下列方程中符合题意的是()A.x(x﹣1)=21B.x(x﹣1)=42C.x(x+1)=21D.x(x+1)=42 9.如图,在平面直角坐标系中,双曲线y=,y=﹣与⊙O相交,以交点为顶点的八边形ABCDEFGH是正八边形,则此正八边形的面积为()A.32B.64C.16D.16+1610.如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C,与x轴交于A,B两点,其中点B 的坐标为B(4,0),抛物线的对称轴交x轴于点D,CE∥AB,并与抛物线的对称轴交于点E现有下列结论:①b2﹣4a<0;②b>0;③5a+b<0;④AD+CE=4.其中正确结论个数为()A.4B.3C.2D.1二、填空题(本题有6小题,每小题5分,共30分)11.(5分)点M(1,2)关于原点的对称点的坐标为.12.(5分)小红在一次班会中参与学科知识抢答活动,现有语文题5个,数学题5个,英语题5个,她从中随机抽取1个,抽中数学题的概率是.13.(5分)已知函数的图象经过点(1,3),且与x轴没有交点,写出一个满足题意的函数的解析式.14.(5分)在我国古代数学著作《九章算术》中记载了这样一个问题:“今有圆材,埋在墙壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”问题题意为:如图,有一圆柱形木材埋在墙壁中,不知其直径大小.用锯去锯这木材,锯口深1寸(即CD =1寸),锯道长1尺(即AB=1尺),问这圆形木材直径是多少?(注:1尺=10寸)由此,可求出这圆形木材直径为为寸.15.(5分)我县在治理违建的过程中,某小区拆除了自建房,改建绿地.如图,自建房占地是边长为20m的正方形ABCD,改建的绿地是矩形AEFG,其中点E在AB上,点G在AD的延长线上,且DG=2BE.如果设BE的长为x(单位:m),绿地AEFG的面积为y(单位:m2),那么y与x的函数的解析式为,绿地AEFG的最大面积为m2.16.(5分)如图,四边形ABCD是⊙O的内接四边形,AC为直径,点B是弧AC的中点,若AC=7,BD=6,则由四个弓形组成的阴影部分的面积为.三、解答题(本题有8小题,第17~20题毎题8分,第21题10分,第22,23题每题12分,第24题14分,共80分)17.(8分)解方程:(1)x2﹣9=0(2)x2+8x﹣20=018.(8分)在数学活动课中,同学们准备了一些等腰直角三角形纸片,从每张纸片中剪出一个扇形制作圆锥玩具模型.如图,已知△ABC是腰长为16cm的等腰直角三角形.(1)在等腰直角三角形ABC纸片中,以C为圆心,剪出一个面积最大的扇形(要求:尺规作图,保留作图痕迹,不写作法);(2)请求出所制作圆锥底面的半径长.19.(8分)如图,在平面直角坐标系xOy中,直线y=x+1与双曲线y=的一个交点为P (m,2).(1)求k的值;(2)M(2,a),N(n,b)是双曲线上的两点,直接写出当a>b时,n的取值范围.20.(8分)如图,在△ABC中,AB=AC,∠BAC=30°,将△ABC绕点A逆时针旋转α度(30<α<150)得到△AB′C′,B、C两点的对应点分别为点B′、C′,连接BC′,BC与AC、AB′相交于点E、F.(1)当α=70时,∠ABC′=°,∠ACB′=°.(2)求证:BC′∥CB′.21.(10分)转转盘和摸球是等可能概率下的经典模型.(1)在一个不透明的口袋中,放入除颜色外其余都相同的4个小球,其中1个白球,3个黑球搅匀后,随机同时摸出2个球,求摸出两个都是黑球的概率(要求釆用树状图或列表法求解);(2)如图,转盘的白色扇形和黑色扇形的圆心角分别为120°和240°.让转盘自由转动2次,求指针2次都落在黑色区域的概率(要求采用树状图或列表法求解).22.(12分)关于x的方程mx2﹣x﹣m+1=0,有以下三个结论:①当m=0时,方程只有一个实数解;②当m≠0时,方程有两个不相等的实数解;③无论m取何值,方程都有一个整数根.(1)请你判断,这三个结论中正确的有(填序号)(2)证明(1)中你认为正确的结论.23.(12分)如图,▱ABCD的对角线AC、BD相交于点M,点M在以AB为直径的⊙O上,AD与⊙O相交于点E,连接ME.(1)求证:ME=MD;(2)当∠DAB=30°时,判断直线CD与⊙O的位置关系,并说明理由.24.(14分)定义:在平面直角坐标系中,图形G上点P(x,y)的纵坐标y与其横坐标x 的差y﹣x称为P点的“坐标差”,记作Zp,而图形G上所有点的“坐标差”中的最大值称为图形G的“特征值”.(1)①点A(3,1)的“坐标差”为;②抛物线y=﹣x2+5x的“特征值”为;(2)某二次函数y=﹣x2+bx+c(c≠0)的“特征值”为﹣1,点B(m,0)与点C分别是此二次函数的图象与x轴和y轴的交点,且点B与点C的“坐标差”相等.①直接写出m=;(用含c的式子表示)②求此二次函数的表达式.(3)如图,在平面直角坐标系xOy中,点D(4,0),以OD为直径作⊙M,直线y=x+b 与⊙M相交于点E、F.①比较点E、F的“坐标差”Z E、Z F的大小.②请直接写出⊙M的“特征值”为.参考答案一、选择题1.反比例函数y=的图象在()A.第一,二象限B.第一,三象限C.第二,四象限D.第三,四象限【分析】利用反比例函数的性质解答.【解答】解:∵k>0,∴反比例函数图象在第一、三象限.故选:B.【点评】本题主要考查当k>0时,反比例函数图象位于第一、三象限.2.下列剪纸作品中是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的特征逐项判断即可.【解答】解:∵A中的图形不是中心对称图形,∴选项A不正确;∵B中的图形不是中心对称图形,∴选项B不正确;∵C中的图形是中心对称图形,∴选项C正确;∵D中的图形不是中心对称图形,∴选项D不正确.故选:C.【点评】此题主要考查了中心对称图形与轴对称图形,解答此题的关键是要明确:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.将抛物线y=x2向上平移2个单位后,所得的抛物线的函数表达式为()A.y=x2+2B.y=x2﹣2C.y=(x+2)2D.y=(x﹣2)2【分析】求出平移后的抛物线的顶点坐标,然后利用顶点式形式写出即可.【解答】解:∵抛物线y=x2向上平移2个单位后的顶点坐标为(0,2),∴所得抛物线的解析式为y=x2+2.故选:A.【点评】本题考查了二次函数图象与几何变换,此类题目利用顶点的平移确定抛物线函数图象的变化更简便.4.下列说法中,正确的是()A.不可能事件发生的概率为0B.随机事件发生的概率为C.“明天要降雨的概率为”,表示明天有半天时间都在降雨D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次【分析】直接利用概率的意义分别分析得出答案.【解答】解:A、不可能事件发生的概率为0,正确;B、随机事件发生的概率为:0<P<1,故此选项错误;C、“明天要降雨的概率为”,表示明天有50%的可能降雨,故此选项错误;D、掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次,错误.故选:A.【点评】此题主要考查了概率的意义,正确掌握概率的意义是解题关键.5.如图,A,B是⊙O上的两点,C是⊙O上不与A,B重合的任意一点.如果∠AOB=130°,那么∠ACB的度数为()A.65°B.115°C.130°D.65°或115°【分析】根据点C在优弧AB上和劣弧AB上两种情况画出图形,根据圆周角定理和圆内接四边形的性质进行计算即可.【解答】解:如图1,∠ACB=∠AOB=65°;如图2,∠ADB=∠AOB=65°,∵∠ADB+∠ACB=180°,∴∠ACB=115°.综上∠ACB的度数为为65°或115°,故选:D.【点评】本题考查的是圆周角定理和圆内接四边形的性质,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.6.对于二次函数y=﹣2(x+1)(x﹣3),下列说法正确的是()A.图象与x轴的交点为(1,0),(﹣3,0)B.图象的对称轴是直线x=﹣2C.当x<1时,y随x的增大而增大D.此函数有最小值为8【分析】根据二次函数的性质,及对称轴,开口方向,即可判断.【解答】解:A、对于二次函数y=﹣2(x+1)(x﹣3),图象与x轴的交点为(﹣1,0),(3,0),故本选项错误;B、y=﹣2(x+1)(x﹣3)=﹣2(x﹣1)2+8,则图象的对称轴是直线x=1,故本选项错误;C、因为二次函数y=﹣2(x+1)(x﹣3)的图象的开口方向向下,对称轴是直线x=1,所以当x<1时,y随x的增大而增大,故本选项正确;D、由于y=﹣2(x+1)(x﹣3)=﹣2(x﹣1)2+8,所以此函数有最大值为8,故本选项错误;故选:C.【点评】本题考查二次函数的性质,解题的关键是将二次函数关系式变为顶点式,联立二次函数性质对比四个选项即可.7.如图,把矩形ABCD绕点A顺时针旋转,使点B的对应点B落在DA的延长线上,若AB=2,BC=4,则点C与其对应点C的距离为()A.6B.8C.2D.2【分析】连接AC、AC′,如图,先,AC=2,再利用旋转的性质得到∠CAC′=∠BAB′=90°,AC=AC′,则可判断△ACC′为等腰直角三角形,然后根据等腰直角三角形求CC′的长.【解答】解:连接AC、AC′,如图,∵四边形ABCD为矩形,∴∠DAB=∠ABC=90°,在Rt△ABC中,AC==2,∵矩形ABCD绕点A顺时针旋转,使点B的对应点B落在DA的延长线上,∴∠CAC′=∠BAB′=90°,AC=AC′,∴△ACC′为等腰直角三角形,∴CC′=AC=2×=2.故选:D.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了矩形的性质.8.有x支球队参加篮球比赛,每两队之间都比赛一场,共比赛了21场,则下列方程中符合题意的是()A.x(x﹣1)=21B.x(x﹣1)=42C.x(x+1)=21D.x(x+1)=42【分析】设这次有x队参加比赛,由于赛制为单循环形式(每两队之间都赛一场),则此次比赛的总场数为:x(x﹣1)场.根据题意可知:此次比赛的总场数=21场,依此等量关系列出方程即可.【解答】解:设这次有x队参加比赛,则此次比赛的总场数为x(x﹣1)场,根据题意列出方程得:x(x﹣1)=21,整理,得:x2﹣x﹣90=0,进一步整理为:x(x﹣1)=42,故选:B.【点评】此题主要考查了一元二次方程的应用,关键在于理解清楚题意,找出合适的等量关系,列出方程,再求解.需注意赛制是“单循环形式”,需使两两之间比赛的总场数除以2.9.如图,在平面直角坐标系中,双曲线y=,y=﹣与⊙O相交,以交点为顶点的八边形ABCDEFGH是正八边形,则此正八边形的面积为()A .32B .64C .16D .16+16【分析】连接AO ,HO ,由于点A 在双曲线y =﹣上,得到S △AOM =×|﹣4|=2,由于点H 在双曲线y =上,得到S △HOM =×4=2,求出S △AOH =4,于是得到结论.【解答】解:连接AO ,HO ,∵点A 在双曲线y =﹣上,∴S △AOM =×|﹣4|=2,∵点H 在双曲线y =上,∴S △HOM =×4=2,∴S △AOH =4,∴此正八边形的面积=8×4=32,故选:A .【点评】本题考查的是本题考查了反比例函数系数k 的几何意义,正多边形和圆,根据反比例函数系数k 的几何意义求出三角形AOH 的面积是解答此题的关键.10.如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C,与x轴交于A,B两点,其中点B 的坐标为B(4,0),抛物线的对称轴交x轴于点D,CE∥AB,并与抛物线的对称轴交于点E现有下列结论:①b2﹣4a<0;②b>0;③5a+b<0;④AD+CE=4.其中正确结论个数为()A.4B.3C.2D.1【分析】根据图象的开口方向、与x和y轴的交点、对称轴所在的位置,判断即可.【解答】解:抛物线与x轴有两个交点,∴b2﹣4a>0,故①错误;该函数图象的开口向下,a<0,﹣>0,∴b>0,故②正确;∵抛物线y=ax2+bx+c(a≠0)与x轴交于B点,B(4,0),∴∴①﹣②得,15a+3b<0,即5a+b<0,故③正确;∵AD=DB,CE=OD,∴AD+OD=DB+OD=OB=4,可得:AD+CE=4,故④正确.故选:B.【点评】本题考查了二次函数图象与系数的关系.根据二次函数y=ax2+bx+c系数符号判断抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数.二、填空题(本题有6小题,每小题5分,共30分)11.(5分)点M(1,2)关于原点的对称点的坐标为(﹣1,﹣2).【分析】根据关于原点的对称点,横纵、坐标都互为相反数解答.【解答】解:点(1,2)关于原点的对称点的坐标为(﹣1,﹣2).故答案为:(﹣1,﹣2).【点评】本题考查了关于原点对称的点的坐标,熟记“关于原点的对称点,横纵、坐标都互为相反数”是解题的关键.12.(5分)小红在一次班会中参与学科知识抢答活动,现有语文题5个,数学题5个,英语题5个,她从中随机抽取1个,抽中数学题的概率是.【分析】先求出总题的个数,再用数学题的个数除以总题的个数,即可得出抽中数学题的概率.【解答】解:小红在一次班会中参与学科知识抢答活动,现有语文题5个,数学题5个,英语题5个,共15个,∴她从中随机抽取1道,抽中数学题的概率是=;故答案为:.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.13.(5分)已知函数的图象经过点(1,3),且与x轴没有交点,写出一个满足题意的函数的解析式.【分析】该函数图象与x轴没有交点,可以推知该函数可以是反比例函数,也可以是二次函数.利用函数是性质解答即可.【解答】解:∵函数的图象经过点(1,3),且与x轴没有交点,∴该函数可以是反比例函数,也可以是二次函数,∴符合题意的函数的表达式可以为,故答案为:.【点评】考查了反比例函数,一次函数,正比例函数和二次函数的性质,根据“与x轴没有交点”推知该函数可以是反比例函数,也可以是二次函数是解题的关键.14.(5分)在我国古代数学著作《九章算术》中记载了这样一个问题:“今有圆材,埋在墙壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”问题题意为:如图,有一圆柱形木材埋在墙壁中,不知其直径大小.用锯去锯这木材,锯口深1寸(即CD =1寸),锯道长1尺(即AB=1尺),问这圆形木材直径是多少?(注:1尺=10寸)由此,可求出这圆形木材直径为为26寸.【分析】延长CD,交⊙O于点E,连接OA,由题意知CE过点O,且OC⊥AB,AD=BD =AB=5(寸),设圆形木材半径为r,可知OD=r﹣1,OA=r,根据OA2=OD2+AD2列方程求解可得.【解答】解:延长CD,交⊙O于点E,连接OA,由题意知CE过点O,且OC⊥AB,则AD=BD=AB=5(寸),设圆形木材半径为r,则OD=r﹣1,OA=r,∵OA2=OD2+AD2,∴r2=(r﹣1)2+52,解得r=13,所以⊙O的直径为26寸,故答案为:26.【点评】本题考查的是垂径定理的应用,掌握垂直弦的直径平分这条弦,并且平分弦所对的两条弧及勾股定理是解题的关键.15.(5分)我县在治理违建的过程中,某小区拆除了自建房,改建绿地.如图,自建房占地是边长为20m的正方形ABCD,改建的绿地是矩形AEFG,其中点E在AB上,点G 在AD的延长线上,且DG=2BE.如果设BE的长为x(单位:m),绿地AEFG的面积为y(单位:m2),那么y与x的函数的解析式为y=﹣2x2+20x+400,绿地AEFG的最大面积为450m2.【分析】设BE的长为x,绿地AEFG的面积为y,根据题意得出函数解析式进行解答即可.【解答】解:设BE的长为x,绿地AEFG的面积为y,由图形可得:y=﹣2x2+20x+400(0<x<20),解析式变形为:y=﹣2(x﹣5)2+450,所以当x=5时,y有最大值是450,故答案为:y=﹣2x2+20x+400(0<x<20),450.【点评】此题考查二次函数的应用,关键是根据图形得出函数解析式.16.(5分)如图,四边形ABCD是⊙O的内接四边形,AC为直径,点B是弧AC的中点,若AC=7,BD=6,则由四个弓形组成的阴影部分的面积为.【分析】过A作AN⊥BD于N,过C作CM⊥BD于M,得到∠ANB=∠BMC=90°,根据圆周角定理得到∠ABC=∠ADC=90°,根据全等三角形的性质得到AN=BM,BN=CM,得到CM+AN=BN+DN=BD=6,根据圆和三角形的面积公式即可得到结论.【解答】解:过A作AN⊥BD于N,过C作CM⊥BD于M,则∠ANB=∠BMC=90°,∵AC为直径,∴∠ABC=∠ADC=90°,∵点B是弧AC的中点,∴∠ADB=∠CDB=∠BAC=∠ACB=45°,∴∴AB=BC,∠DAC=∠BAN=45°+∠CAN,∵∠DAC=∠CBD,∴∠CBM=∠BAN,。

四川省成都市九年级(上)期末数学试卷

四川省成都市九年级(上)期末数学试卷

九年级(上)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.在Rt△ABC中,∠C=90°,若AC=3,BC=2,则tan A的值是()A. 12B. 23C. 52D. 2552.方程x(x+2)=0的解是()A. x=0B. x=2C. x=0或x=2D. x=0或x=−23.如图是由5个相同的小正方体搭成的一个几何体,它的俯视图是()A. B. C. D.4.如图,随机闭合开关S1、S2、S3中的两个,则能让灯泡⊗发光的概率是()A. 12B. 13C. 23D. 145.若反比例函数y=kx(k≠0)的图象过点(-2,1),则这个函数的图象一定过()A. (2,−1)B. (2,1)C. (−2,−1)D. (1,2)6.某种品牌运动服经过两次降价,每件零售价由460元降为215,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是()A. 460(1+x)2=215B. 460(1−x)2=215C. 460(1−2x)2=215D. 460(1−x2)=2157.如图,利用标杆BE测量建筑物的高度.已知标杆BE高1.2m,AB:AC=1:9,则建筑物CD的高是()A. 96mB. 10.8mC. 12mD. 14m8.如图,点A,B,C均在⊙O上,若∠A=66°,则∠OCB的度数是()A. 24∘B. 28∘C. 33∘D. 48∘9.如图,在菱形ABCD中,对角线AC、BD相交于点0,BD=8,tan∠ABD=34,则菱形ABCD的边长为()A. 5B. 6C. 7D. 810.对于抛物线y=-2(x+1)2+3,下列结论:①抛物线的开口向下;②对称轴为直线x=1:③顶点坐标为(-1,3);④x>-1时,y随x的增大而减小,其中正确结论的个数为()A. 1B. 2C. 3D. 4二、填空题(本大题共9小题,共36.0分)11.如果a−bb=34,那么ab=______12.若x=-2是一元二次方程x2+3x+k=0的一个根,则k的值为______13.已知A(x1,y1),B(x2,y2)都在反比例函数的图象y=-2x上,且x1<0<x2,则y1与y2大小关系是______.14.如图,△ABC内接于圆O,AB为圆O直径,∠CAB=60°,弦AD平分∠CAB,若AD=3,则BD=______.15.关于x的方程(m-1)x|m|+1+3x-2=0是一元二次方程,则m的值为______.16.现有三张分别标有数字2、3、4的卡片,它们除了数字外完全相同,把卡片背面朝上洗匀,从中任意抽取一张,将上面的数字记为a(不放回);从剩下的卡片中再任意抽取一张,将上面的数字记为b,则点(a,b)在直线y=12x+12图象上的概率为______.17.如图,矩形ABCD的对角线AC、BD交于点O,点E是BC边上的一动点,连结OE,将△BOC分成了两个三角形,若BE=OB,且OC2=CE•BC,则∠BOC的度数为______.18.如图,在△ABC中,AB=AC,以AC为直径的⊙O与边BC相交于点E,过点E作EF⊥AB于点F,延长FE、AC相交于点D,若CD=4,AF=6,则BF的长为______.19.平面直角坐标系中,点A在反比例函数y1=kx(x>0)的图象上,点A'与点A关于点O对称,直线AA'的解析式为y2=mx,将直线AA'绕点A′顺时针旋转,与反比例函数图象交与点B,直线A′B的解析式为y3=m2x+n,若△AA'B的面积为3,则k的值为______.三、计算题(本大题共1小题,共12.0分)20.(1)计算:(12)−1-2sin60°+|1-tan60°|+(2019-π)0(2)解方程:4x(x+3)=x2-9四、解答题(本大题共8小题,共72.0分)21.若关于x的一元二次方程(m-2)x2+2x+1=0有两个实根,求m的取值范围.22.《基础教育课程改革纲要》要求每位学生每学年都要参加社会实践活动.某学校组织了一次户外攀岩活动,如图,攀岩墙体近似看作垂直于地面,一学生攀到D点时,距离地面B点3.6米,该学生继续向上很快就攀到顶点E.在A处站立的带队老师拉着安全绳,分别在点D和点E测得点C的俯角是45°和60°,带队老师的手C点距离地面1.6米,请求出攀岩的顶点E距离地面的高度为多少米?(结果可保留根号)23.我区正在进行《中学学科核心素养理念下渗透数学美育教育的研究为了了解我区课堂教学中渗透数学美育的情况,在200名学生中随机抽取了部分学生进行调查调查,调查结果分为非常了解、了解”、了解较少、“不了解四类,并将调查结果绘制出以下两幅不完整的统计图,请根据统计图回答下列问题(1)本次抽取调查的学生共有______人,估计该校200名学生中不了解的人数约有______人;(2)“非常了解”的4人中有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人去参加中心数学知识竞赛,请用树状图或列表的方法,求恰好抽到2名同学一男一女的概率.24.如图,正比例函数y=kx与反比例函数y=mx(x>0)的图象有个交点A,AB⊥x轴于点B.平移正比例函数y=kx的图象,使其经过点B(2,0),得到直线l,直线l与y轴交于点C(0,-3)(1)求k和m的值;(2)点M是直线OA上一点过点M作MN∥AB,交反比例函数y=mx(x>0)的图象于点N,若线段MN=3,求点M的坐标.25.如图,已知Rt△ACE中,∠AEC=90°,CB平分∠ACE交AE于点B,AC边上一点O,⊙O经过点B、C,与AC交于点D,与CE交于点F,连结BF.(1)求证:AE是⊙O的切线;(2)若cos∠CBF=45,AE=8,求⊙O的半径;(3)在(2)条件下,求BF的长.26.经过市场调查得知,某种商品的销售期为100天,设该商品销量单价为y(万元/kg),y与时间t(天)函数关系如图所示,其中线段AB表示前50天销售单价y万元/kg 与时间t天的函数关系;线段BC的函数关系式为y=−110t+m该商品在销售期内的销量如下表(2)设每天的销售收入为w(万元),则当t为何值时,w的值最大?求出最大值;27.在矩形ABCD中,E是AD的中点,以点E为直角顶点的直角三角形EFG的两边EF、EG始终与矩形AB、BC两边相交,AB=2,FG=8,(1)如图1,当EF、EG分别过点B、C时,求∠EBC的大小;(2)在(1)的条件下,如图2,将△FFG绕点E按顺时针方向旋转,当旋转到EF 与AD重合时停止转动.若EF、EG分别与AB、BC相交于点M、N,①在△EFG旋转过程中,四边形BMEN的面积是否发生变化?若不变,求四边形BMEN的面积;若要变,请说明理由.②如图3,设点O为FG的中点,连结OB、OE,若∠F=30°,当OB的长度最小时,求tan∠EBG的值.28.在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴的两个交点分别为A(-3,0)、B(1,0),与y轴交于点D(0,3),过顶点C作CH⊥x轴于点H(1)求抛物线的解析式和顶点C的坐标;(2)连结AD、CD,若点E为抛物线上一动点(点E与顶点C不重合),当△ADE 与△ACD面积相等时,求点E的坐标;(3)若点P为抛物线上一动点(点P与顶点C不重合),过点P向CD所在的直线作垂线,垂足为点Q,以P、C、Q为顶点的三角形与△ACH相似时,求点P的坐标.答案和解析1.【答案】B【解析】解:tanA==,故选:B.根据正切的定义计算即可.本题考查的是锐角三角函数的定义,锐角A的对边a与邻边b的比叫做∠A的正切.2.【答案】D【解析】解:x=0或x+2=0,所以x1=0,x2=-2.故选:D.利用因式分解的方法得到x=0或x+2=0,然后解两个一次方程即可.本题考查了解一元二次方程-因式分解法:就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).3.【答案】D【解析】解:从上面看,左边是2个正方形,中间和右上角都是1个正方形.故选:D.根据俯视图是从上面看到的图形结合几何体判定则可.本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.4.【答案】C【解析】解:列表如下:共有6种情况,必须闭合开关S3灯泡才亮,即能让灯泡发光的概率是=.故选:C.采用列表法列出所有情况,再根据能让灯泡发光的情况利用概率公式进行计算即可求解.本题考查了列表法与画树状图求概率,用到的知识点为:概率=所求情况数与总情况数之比.5.【答案】A【解析】解:∵反比例函数y=(k≠0)的图象过点(-2,1),∴k=-2×1=-2.A、∵2×(-1)=-2,∴此点在函数图象上,故本选项符合题意;B、∵2×1=2≠-2,∴此点不在函数图象上,故本选项不合题意;C、∵(-2)×(-1)=2,∴此点不在函数图象上,故本选项不合题意;D、∵1×2=2≠-2,∴此点不在函数图象上,故本选项不合题意.故选:A.先把点(-2,1)代入反比例函数y=(k≠0),求出k的值,再对各选项进行逐一判断即可.本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上点的坐标一定适合此函数的解析式是解答此题的关键.6.【答案】B【解析】解:设每次降价的百分率为x,根据题意得:460(1-x)2=215.故选:B.设每次降价的百分率为x,根据该运动服的原价及经过两次降价后的价格,即可得出关于x的一元二次方程,此题得解.本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.7.【答案】B【解析】解:∵EB∥CD,∴△ABE∽△ACD,∴,即,解得:CD=10.8m,故选:B.先证明△ABE∽△ACD,则利用相似三角形的性质进行解答即可.本题考查了相似三角形的应用:借助标杆或直尺测量物体的高度.利用杆或直尺测量物体的高度就是利用杆或直尺的高(长)作为三角形的边,利用视点和盲区的知识构建相似三角形,用相似三角形对应边的比相等的性质求物体的高度.8.【答案】A【解析】解:∵∠A=66°,∴∠COB=132°,∵CO=BO,∴∠OCB=∠OBC=(180°-132°)=24°,故选:A.首先利用圆周角定理可得∠COB的度数,再根据等边对等角可得∠OCB=∠OBC,进而可得答案.此题主要考查了圆周角定理,关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.9.【答案】A【解析】解:∵四边形ABCD是菱形,BD=8,∴AC⊥BD,BO=DO,∴∠AOB=90°,OB=OD=4,∵tan∠ABD==,∴AO=3,由勾股定理得:AB==5,即菱形ABCD的边长为5,故选:A.根据菱形的性质求出BO=4,AC⊥BD,解直角三角形求出AO,根据勾股定理求出AB即可.本题考查了菱形的性质和解直角三角形,能熟记菱形的性质是解此题的关键,注意:菱形的对角线互相平分且垂直.10.【答案】C【解析】解:∵抛物线y=-2(x+1)2+3,a=-2<0,∴抛物线的开口向下,故①正确,对称轴是直线x=-1,故②错误,顶点坐标为(-1,3),故③正确,x>-1时,y随x的增大而减小,故④正确,故选:C.根据题目中的函数解析式和二次函数的性质,可以判断各个小题中的结论是否正确.本题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.解:∵,∴4a-4b=3b,∴4a=7b,∴=,故答案为:.依据比例的性质,即可得到4a=7b,进而得出=.本题主要考查了比例的性质,解题时注意:内项之积等于外项之积.12.【答案】2【解析】解:把x=-2代入方程x2+3x+k=0得4-6+k=0,解得k=2.故答案为2.把x=-2代入方程x2+3x+k=0得4-6+k=0,然后解关于k的方程即可.本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.13.【答案】y1>y2【解析】解:∵A(x1,y1),B(x2,y2)都在反比例函数的图象y=-上,∴y1=,y2=,∵x1<0<x2,∴y1>0>y2,故答案为:y1>y2将点A,点B坐标代入解析式,可求y1,y2,由x1<0<x2,可得y1>0,y2<0,即可得y1与y2大小关系.本题考查了反比例函数图象上点的坐标特征,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.解:如图,∵AD平分∠CAB,∴∠BAD=×60°=30°,∵AB为圆O直径,∴∠ADB=90°,∴BD=AD=.故答案为:.解:连接BD,如图,先计算出∠BAD=30°,再根据圆周角定理得到∠ADB=90°,然后利用含30度的直角三角形三边的关系计算BD的长.本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了圆周角定理.15.【答案】-1【解析】解:∵关于x的方程(m-1)x|m|+1+3x-2=0是一元二次方程,∴|m|+1=2,且m-1≠0,解得:m=-1,故答案为:-1利用一元二次方程的定义判断即可确定出m的值.此题考查了一元二次方程的定义,以及绝对值,熟练掌握一元二次方程的定义是解本题的关键.16.【答案】16【解析】得到所有等可能的情况有6种,其中点(a,b)在直线y=图象上的只有(3,2)这1种情况,所以点(a,b)在直线y=图象上的概率为,故答案为:.列表得出所有等可能的情况数,找出点(a,b)在直线y=图象上的情况数,即可求出所求的概率.此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.17.【答案】108°【解析】解:∵OC2=CE•BC,∴=,∵∠OCE=∠OCB,∴△OCE∽△BCO,∴∠COE=∠CBO,∵四边形ABCD是矩形,∴OB=OC,∴∠OBC=∠OCB=∠COE,设∠OBC=∠OCB=∠COE=x,∵BE=BO,∴∠BOE=∠BEO=∠COE+∠ECO=2x,∵∠OBC+∠OCB+∠BOC=180°,∴x+x+3x=180°,∴x=36°,∴∠BOC=3x=108°,故答案为108°由△OCE∽△BCO,推出∠COE=∠CBO,由四边形ABCD是矩形,推出OB=OC,推出∠OBC=∠OCB=∠COE,设∠OBC=∠OCB=∠COE=x,构建方程即可解决问题.本题考查相似三角形的判定和性质,矩形的性质,三角形内角和定理等知识,解题的关键是正确寻找相似三角形解决问题,学会利用参数解决问题,属于中考常考题型.18.【答案】2【解析】解:如图,连接AE,OE.设BF=x.∵AC是直径,∴∠AEC=90°,∴AE⊥BC,∵AB=AC,∴∠EAB=∠EAC,∵OA=OE,∴∠OAE=∠OEA,∴∠EAB=∠AEO,∴OE∥AB,∴=,∴AF=6,CD=4,BF=x,∴AC=AB=x+6,∴OE=OA=OD=,∴=,整理得:x2+10x-24=0,解得x=2或-12(舍弃),经检验x=2是分式方程的解,∴BF=2.故答案为2.如图,连接AE,OE.设BF=x.首先证明OE∥AB,可得=,由此构建方程即可解决问题;本题考查圆周角定理,等腰三角形的性质,平行线分线段成比例定理等知识,解题的关键是学会利用参数,构建方程解决问题.19.【答案】98【解析】解:∵设点A(a,).∵A和点A'关于原点对称,∴点A'的坐标为(-a,-),∵点A'在y2=mx+n的图象上,∴点A'的坐标为(-a,-am+n).∴-=-am+n,a2m=an+k ①.∵点B的横坐标为3a,∴点B(3a,3am+n)或(3a,),∴3am+n=,即9a2m+3an=k ②由①②得:a2m=,an=-.过点A作AD⊥x轴,交A'B于点D,则点D(a,am+n),∴AD=-am-n.∵S△A'AB=AD(x B-x A′)=•4a(-am-n)=3,∴k-a2m-an=1.5,∴k--(-)=1.5,∴k=.故答案为:设点A(a,),根据对称性以及直线上点的坐标特点分别用含有k的代数式表示出点A'、B的坐标,然后根据三角形的面积公式解答即可.本题综合考查反比例函数、一次函数图象及其性质,解答过程中,涉及到了面积转化方法、待定系数法和数形结合思想.20.【答案】解:(1)原式=2-2×32+|1-3|+1=2-3+3-1+1=2;(2)4x2+12x=x2-9,4x2+12x-x2+9=0,3x2+12x+9=0,x2+4x+3=0,(x+1)(x+3)=0,则x+1=0或x+3=0,解得x1=-1,x2=-3.【解析】(1)先计算负整数指数幂和零指数幂并代入特殊锐角的三角函数值,再计算乘法、取绝对值符号,继而计算加减可得;(2)先将方程整理成一般式,再利用因式分解法求解可得.本题主要考查解一元二次方程和实数的混合运算,能选择适当的方法解一元二次方程并熟练掌握实数的混合运算是解此题的关键.21.【答案】解:∵(m-2)x2+2x+1=0有两个实数根,∴△=b2-4ac≥0,∴4-4(m-2)≥0,∴m≤3,又知(m-2)x2+2x+1=0是一元二次方程,即m-2≠0,解得m≠2,故m≤3且m≠2.【解析】首先根据题意可知△=b2-4ac≥0,然后,即可推出4-4(m-2)≥0,通过解不等式即可推出结果,注意m≠2.本题主要考查根的判别式,关键在于推出△≥0,注意一元二次方程二次系数不能为0,此题基础题,比较简单.22.【答案】解:作CF⊥BE于F,则四边形ABFC为矩形,∴BF=AC=1.6,∴DF=DB-FB=2,由题意得,∠DCF=45°,∠ECF=60°,∴CF=DF=2,在Rt△ECF中,EF=CF×tan∠ECF=23,∴EB=EF+BF=23+1.6,答:攀岩的顶点E距离地面的高度为(23+1.6)米.【解析】作CF⊥BE于F,根据矩形的性质求出BF,根据正切的概念计算即可.本题考查的是解直角三角形的应用-仰角俯角问题,掌握锐角三角函数的定义,仰角俯角的概念是解题的关键.23.【答案】50 60【解析】解:(1)本次抽取调查的学生共有4÷8%=50(人),∵“不了解”对应的百分比为1-(40%+22%+8%)=30%,∴估计该校200名学生中不了解的人数约有200×30%=60(人),故答案为:50,60;由表可知共有12种可能的结果,恰好抽到2名同学一男一女的结果有8个,所以恰好抽到2名同学一男一女的概率为=.(1)由“非常了解”的人数及其所占百分比求得总人数,根据各了解程度的百分比之和等于1求得“不了解”的百分比,再用总人数乘以样本中“不了解”人数所占比例可得;(2)分别用树状图或列表的方法表示出所有等可能结果,从中找到恰好抽到2名同学一男一女的结果数,利用概率公式计算可得.本题考查了列表法与树状图法、扇形统计图、条形统计图;通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.24.【答案】解:(1)∵平移正比例函数y=kx的图象,得到直线l,直线l与y轴交于点C(0,-3),∴直线l的解析式为y=kx-3,∵点B(2,0)在直线l上,∴2k-3=0,解得k=32,由题意知AB=OC=3,则点A(2,3),∴m=2×3=6;(2)由题意知直线OA解析式为y=32x,反比例函数解析式为y=6x,设点M(a,32a),则N(a,6a),∴|32a-6a|=3,解得:a=1+5或a=5-1(负值舍去),则点P坐标为(1+5,3+352)或(5-1,35−32).【解析】(1)由直线l与y轴交于点C(0,-3)知直线l的解析式为y=kx-3,根据点B坐标可得k的值,再根据平移知AB=OC=3,从而得出点A坐标,从而得出m的值;(2)先得出正比例函数和反比例函数解析式,再设点M(a,a),则N(a,),由MN=3得出关于a的方程,解之可得答案.本题考查了反比例函数与一次函数的交点问题,待定系数法求函数的解析式,函数图象上点的坐标特征,体现了数形结合的思想.25.【答案】(1)证明:连接OB,∵OB=OC,∴∠OCB=∠OBC,∵CB平分∠ACE,∴∠OCB=∠BCF,∴∠OBC=∠BCF,∴∠ABO=∠AEC=90°,∴OB⊥AE,∴AE是⊙O的切线;(2)解:连接DF交OB于G,∵CD是⊙O的直径,∴∠CFD=90°,∴∠CFD=∠CEA,∴DF∥AE,∴∠CDF=∠CAB,∵∠CDF=∠CBF,∴∠A=∠CBF,∴cos∠CBF=cos∠CEF=45,∵AE=8,∴AC=10,∴CE=6,∵DF∥AE,∴DF⊥OB,∴DG=GF=BE,设BE=2x,则DF=4x,CD=5x,∴OC=OB=2.5x,∴AO=10-2.5x,AB=8-2x,∵AO2=AB2+OB2,∴(10-2.5x)2=(8-2x)2+(2.5x)2,解得:x=32(负值舍去),∴⊙O的半径=154;(3)解:由(2)知BE=2x=3,∵AE是⊙O的切线;∴∠BCE=∠EBF,∵∠E=∠E,∴△BEF∽△CEB,∴BEEF=CEBE,∴3EF=63,∴EF=32,∴BF=BE2+EF2=352.【解析】(1)连接OB,根据等腰三角形的性质得到∠OCB=∠OBC,根据角平分线的定义得到∠OCB=∠BCF,得到∠OBC=∠BCF,求得∠ABO=∠AEC=90°,于是得到结论;(2)连接DF交OB于G,根据圆周角定理得到∠CFD=90°,得到∠CFD=∠CEA,推出cos∠CBF=cos∠CEF=,设BE=2x,则DF=4x,CD=5x,得到OC=OB=2.5x,根据勾股定理得到x=(负值舍去),于是得到⊙O的半径=;(3)由(2)知BE=2x=3,根据切线的性质得到∠BCE=∠EBF,根据相似三角形的性质得到EF=,根据勾股定理得到BF==.本题考查了切线的性质和判定,勾股定理,平行线的判定和性质,相似三角形的判定和性质,正确的作出辅助线是解题的关键.26.【答案】解:(1)当0<t≤50时,设y与t的函数关系式为y=kt+b,∴50k+b=25b=15,解得:k=15,b=15,∴y=15t+15;当50<t≤100时,把(100,20)代入y=−110t+m得,20=-110×100+m,∴m=30,∴线段BC的函数关系式为y=−110t+30;(2)当0<t≤50时,w=200(15x+15)=40x+3000,∴当t=50时,w最大=5000(万元),当50<t≤100时,w=(t+150)(−110t+30)=-110t2+15t+4500,∵w=-110t2+15t+4500=-110(t-75)2+5062.5,∴当t=75时,w最大=5062.5(万元),∴当t=75时,w的值最大,w最大=5062.5万元.【解析】(1)设y=kt+b,利用待定系数法即可解决问题;(2)日利润=日销售量×每公斤利润,据此分别表示当0<t≤50和50<t≤100时,根据函数性质求最大值后比较得结论.此题主要考查了二次函数的应用,熟练掌握各函数的性质和图象特征,针对所给条件作出初步判断后需验证其正确性,最值问题需由函数的性质求解时,正确表达关系式是关键.27.【答案】解:(1)如图1中,∵四边形ABCD是矩形,∴AB=DC,∠A=∠D=90°,∵AE=DE,∴△AEB≌△DEC(SAS),∴EB=EC,∵∠BEC=90°,∴∠EBC=45°.(2)①结论:四边形BMEN的面积不变.理由:由(1)可知:∠EBM=∠ECN=45°,∵∠MEN=∠BEC=90°,∴∠BEM=∠CEN,∵EB=EC,∴△MEB≌△NEC(ASA),∴S△MEB=S△ENC,∴S四边形EMBN=S△EBC=12×4×2=4.②如图当E,B,O共线时,OB的值最小,作GH⊥OE于H.∵OF=OG,∠FEG=90°,∴OE=OF=OG=4,∵∠F=30°,∴∠EGF=60°,∴△EOG是等边三角形,∵GH⊥OE,∴GH=23,OH=EH=2,∵BE=22,∴OB=4-22,∴BH=2-(4-22)=22-2,∴tan∠EBG=HGBH=2322−2=6+3.【解析】(1)证明△AEB≌△DEC(SAS),可得EB=EC,根据等腰直角三角形的性质即可解决问题.(2)①四边形BMEN的面积不变.证明△MEB≌△NEC(ASA),推出=S△EBC.S△MEB=S△ENC,可得S四边形EMBN②如图当E,B,O共线时,OB的值最小,作GH⊥OE于H.想办法求出BH,GH即可解决问题.本题属于四边形综合题,考查了矩形的性质,旋转变换,全等三角形的判定和性质,等边三角形的判定和性质,锐角三角函数等知识,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题.28.【答案】解:(1)把点A、B、D的坐标代入二次函数表达式得:a+b+c=09a−3b+c=0c=3,解得:a=−1b=−2c=3,则抛物线的表达式为:y=-x2-2x+3…①,函数的对称轴为:x=-b2a=-1,则点C的坐标为(-1,4);(2)过点C作CE∥AD交抛物线于点E,交y轴于点H,则△ADE与△ACD面积相等,直线AD过点D,则其表达式为:y=mx+3,将点A的坐标代入上式得:0=-3m+3,解得:m=1,则直线AD的表达式为:y=x+3,CE∥AD,则直线CE表达式的k值为1,设直线CE的表达式为:y=x+n,将点C的坐标代入上式得:4=-1+n,解得:n=5,则直线CE的表达式为:y=x+5…②,则点H的坐标为(0,5),联立①②并解得:x=-1或-2(x=1为点C的横坐标),即点E的坐标为(-2,3);在y轴取一点H′,使DH=DH′=2,过点H′作直线E′E″∥AD,则△ADE′、△ADE′′与△ACD面积相等,同理可得直线E′E″的表达式为:y=x+1…③,联立①③并解得:x=−3±172,则点E″、E′的坐标分别为(−3+172,−1+172)、(−3−172,−1−172),点E的坐标为:(-2,3)或(−3+172,−1+172)或(−3−172,−1−172);(3)设:点P的坐标为(m,n),n=-m2-2m+3,把点C、D的坐标代入一次函数表达式:y=kx+b得:4=−k+bb=3,解得:k=−1b=3,即直线CD的表达式为:y=-x+3…④,直线AD的表达式为:y=x+3,直线CD和直线AD表达式中的k值的乘积为-1,故AD⊥CD,而直线PQ⊥CD,故直线PQ表达式中的k值与直线AD表达式中的k值相同,同理可得直线PQ表达式为:y=x+(n-m)…⑤,联立④⑤并解得:x=3+m−n2,即点Q的坐标为(3+m−n2,3−m+n2),则:PQ2=(m-3+m−n2)2+(n-3−m+n2)=(m+n−3)22=12(m+1)2•m2,同理可得:PC2=(m+1)2[1+(m+1)2],AH=2,CH=4,则AC=25,当△ACH∽△CPQ时,PCPQ=ACAH=52,即:4PC2=5PQ2,整理得:3m2+16m+16=0,解得:m=-4或-43,点P的坐标为(-4,-5)或(-43,359);当△ACH∽△PCQ时,同理可得:点P的坐标为(-23,359)或(2,-5),故:点P的坐标为:(-4,-5)或(-43,359)或(-23,359)或(2,-5).【解析】(1)把点A、B、D的坐标代入二次函数表达式,即可求解;(2)①过点C作CE∥AD交抛物线于点E,则△ADE与△ACD面积相等;②过点H′作直线E′E″∥AD,则△ADE′、△ADE′′与△ACD面积相等,分别求解即可.(3)分△ACH∽△CPQ、△ACH∽△PCQ两种情况,求解即可.本题考查的是二次函数知识综合运用,涉及到三角形相似、一次函数等知识点,核心是通过作图确定所求点的位置,避免遗漏,本题难度较大.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

龙泉九中九年级(上)期末模拟考试数学试题
A 卷(共100分)
一、选择题(每小题3分,共30分) 1.2cos 45°的值等于 ( ) A
B
C
D
、 2.如图,P 为⊙O 外一点,P A 切⊙O 于点A ,且OP =5,P A =4,则sin ∠APO 等于( )
A 、54
B 、5
3
C 、3
4
D 、4
3
(第2题) (第6题) (第10题)
3.在下列四个函数中,y 随x 的增大而减小的函数是 ( )
(A) 3y x = (B) 2
(0)y x x
=
< (C) 52y x =+ (D) 2(0)y x x => 4.三角形两边长分别为3和6,第三边是方程2
680x x -+=的解,则这个三角形的周长是 (A )11 (B )13 (C )11或13 (D )11和13 5.在ΔABC 中,已知∠C =90°,sinB =5
3,则cosA 的值是 ( )
A .4
3 B .3
4 c .5
4 D .5
3
6.如图,四边形ABCD 为O 的内接四边形,E 是BC 延长线上的一点,已知100BOD ∠=,则D C E
∠的度数为( ) A .40°
B .60°
C .50°
D .80°
7.如果矩形的面积为6cm 2,那么它的长y cm 与宽x cm 之间的函数关系用图象表示大致 ( )
(A) (B) (C) (D)
P O
A ·
8.把二次函数224y x x =-+ 化成顶点式为( )
A .2(1)2y x =-+ B.2(1)3y x =++ C. 2(1)y x =- D. 2(1)3y x =-+ 9.在函数1
2y x
=
-的图象上有三点111(,)A x y 、222(,)A x y 、333(,)A x y ,若1230x x x <<< 则下列正确的是( )
A 、1230y y y <<<
B 、2310y y y <<<
C 、2310y y y <<<
D 、2130y y y <<<
10.已知二次函数c bx ax y ++=2(0≠a )的图象如图所示,则下列结论 ①0<++c b a ②0<+-c b a ③02<+a b ④0>abc 其中正确的个数是( ) A. 1个
B. 2个
C. 3个
二、填空题(每小题3分,共18分) 11.若函数y =()2
1m m x
--反比例函数,则m =________.
12.在Rt △ABC 中,∠C =90º,BC =5,AB =12,sinA =_________.
13..2.已知圆锥的底面半径为2cm ,母线长为5cm ,则它的侧面积是_____cm 2.
14.如图所示的抛物线是二次函数2231y ax x a =-+-的图象,那么a 的值是 . 三、计算题(每小题6分,共18分)
15、解方程:(1)2
3440x x -+=- (2)3(3)x x x -=-
16、计算:(1)23160sin 2212
--︒+⎪⎭

⎝⎛-- (2) 45sin 12|22|822+-+⨯-
17.(8分)如图,某中学九年级一班数学课外活动小组利用周末开展课外实践活动,他们要在某公园人工湖旁的小山AB 上,测量湖中两个小岛C 、D 间的距离.从山顶A 处测得湖中小岛C 的俯角为60°,测得湖中小岛D 的俯角为45°.已知小山AB 的高为180米,求小岛C 、D 间的距离.(计算过程和结果均不取近似值)
18.已知抛物线y =ax 2+bx +c (a ≠0)与x 轴的两交点的横坐标分别是-1和3,与y 轴交点的纵坐标是-3
2
; (1)确定抛物线的解析式;(2)用配方法确定抛物线的开口方向,对称轴和顶点坐标。

191、(2011•湖州)如图,已知AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,∠AOC =60°,OC =2. (1)求OE 和CD 的长;(2)求图中阴影部队的面积.
20. 如图,已知Rt △AOB 的锐角顶点A 在反比例函数y =m
x
的图象上,且△AOB 的面积为3,已知OB =3,(1)求反比例函数的解析式;
(2)一条直线过A 点且交x 轴于C 点,已知tan ∠ACB =7
2
E D
C
B 卷(共50分)
一、填空题(每小题4分,共20分)
21.已知关于x 的二次方程012)21(2=---x k x k 有实数根,则k 的取值范围是 。

22.、二次函数24y ax x a =-+的最大值为1,则a = .
23.如图两建筑物AB 和CD 的水平距离为30米,从A 点测得D 点的俯角为30°,测得C 点的俯角为60°,
则建筑物
CD 的高为______米.
(第23题) (第24题) (第25题)
24. 如图,△ACB 内接于⊙O ,D 为弧BC 的中点,ED 切⊙O 于D ,与AB 的延长线相交于E ,AC =2,
AB =6, ED +EB =6,那么AD =
25.如图,正方形OABC ,ADEF 的顶点A ,D ,C 在坐标轴上,点F 在AB 上,点B ,E 在函数1
(0)y x x
=
>的图象上,则点E 的坐标是 . 二、解答题
25.某商店经营一种小商品,进价为2.5元,据市场调查,销售单价是13.5元时平均每天销售量是500件,而销售价每降低1元,平均每天就可以多售出100件
(1)假定每件商品降价x 元,商店每天销售这种小商品的利润是y 元,请写出y 与x 间的函数关系式,并注明x 的取值范围.
(2)每件小商品销售价是多少元时,商店每天销售这种小商品的利润最大?最大利润是多少?(注:销售利润=销售收入-购进成本)
C
27、如图,A 是以BC 为直径的圆O 上一点,AD BC ⊥于点D ,过点B 作圆O 的切线,与CA 的延长线相交于点E G , 是AD 的中点,连结CG 并延长与BE 相交于点F ,延长AF 与CB 的延长线相交于点P 。

(1)求证:BF EF =; (2)求证:PA 是圆O 的切线;
(3)若FG BF =,且圆O
的半径长为BD 和FG
26、如图:⊙O 与直线PC 相切于点C ,直径AB ∥PC ,P A 交⊙O 于D ,BP 交⊙O 于E ,DE 交PC 于F (1)求证:PF 2=EF ·FD (2)当tan ∠APB =
21,tan ∠ABE =3
1
,AP =2时,求PF 的长。

(3)在(2)条件下,连接BD ,判断△ADB 是什么三角形?并证明你的结论。

P F
C
B
27. 已知抛物线y=x2-kx+k+4与x轴正半轴从左到右交于点A(x1,0)和B(x2,0)不同的两点,与Y 轴交于G,H为OG中点,且x12+x22=40
(1)求此抛物线的解析式及顶点C坐标;
(2)若抛物线的对称轴交X轴于D,E为DC中点;过A、B、E三点作圆,过H的直线与该圆相切于P,求直线HP的方程;
(3)设F(m,n)为抛物线上一点,若解析式为y=a的直线MN与抛物线交点为M、N,是否存在实数a,使得△MNF为等边三角形,若存在,求出a的值;若不存在,请说明理由。


28、如图,点P 在y 轴上,⊙P 轴于A B ,两点,连结BP 并延长交⊙P 于C ,过点C 的直线2y x b =+交
x 轴于D ,且⊙P
4AB =. (1)求点B P C ,,的坐标; (2)求证:CD 是⊙P 的切线;
(3)若二次函数2(1)6y x a x =-+++的图象经过点B ,求这个二次函数的解析式,并写出使二次函数值小于一次函数2y x b =+值的x 的取值范围.。

相关文档
最新文档