2018秋人教版初中数学八年级上册第一次月考试卷1

合集下载

【八年级数学试题】2018年八年级数学上第一次月考试卷(含答案和解释)

【八年级数学试题】2018年八年级数学上第一次月考试卷(含答案和解释)

2018年八年级数学上第一次月考试卷(含答案和解释)
2018学年黑龙江省伊春市上甘岭中学八年级(上)第一次月考数学试卷
参考答案与试题解析
一、选择题(每题3分,共30分)
1.小亮截了四根长分别为5c,6c,10c,13c的木条,任选其中三条组成一个三角形,这样拼成的三角形共有()
A. 1个 B. 2个 c. 3个 D. 4个
考点三角形三边关系.
分析根据任意两边之和大于第三边判断能否构成三角形.
解答解选其中3根组成一个三角形,不同的选法有5c,6c,10c;5c,10c,13c;6c,10c,13c;共3种.
故选c.
点评本题主要考查了三角形的三边关系,要注意三角形形成的条任意两边之和大于第三边,任意两边之差小于第三边.当题目指代不明时,一定要分情况讨论,把符合条的保留下,不符合的舍去.
2.若一个正n边形的一个外角为36°,则n等于()
A. 4 B. 6 c. 8 D. 10
考点多边形内角与外角.
分析利用多边形的外角和即可解决问题.
解答解n=360°÷36°=10.故选D.
点评本题主要考查了正n边形的外角特点.
因为外角和是360度,所以当多边形是正多边形时,每个外角都相等.直接利用外角求多边形的边数是常用的方法.。

人教版八年级上册数学第一次月考考试卷及参考答案

人教版八年级上册数学第一次月考考试卷及参考答案

人教版八年级上册数学第一次月考考试卷及参考答案班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)11的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间2.将抛物线22y x =向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为( ).A .22(2)3y x =++;B .22(2)3y x =-+;C .22(2)3y x =--;D .22(2)3y x =+-.3.若x ,y 的值均扩大为原来的3倍,则下列分式的值保持不变的是( )A .2x x y +-B .22y xC .3223y xD .222()y x y - 4.甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x 个零件,下列方程正确的是( )A .1201508x x =-B .1201508x x =+C .1201508x x =-D .1201508x x =+ 5.下列各组数中,能构成直角三角形的是( )A .4,5,6B .1,1C .6,8,11D .5,12,236.下列运算正确的是( )A .224a a a +=B .3412a a a ⋅=C .3412()a a =D .22()ab ab =7.如图,∠B=∠C=90°,M 是BC 的中点,DM 平分∠ADC ,且∠ADC=110°,则∠MAB=( )A .30°B .35°C .45°D .60°8.如图,过△ABC 的顶点A ,作BC 边上的高,以下作法正确的是( )A .B .C .D .9.如图,//DE BC ,BE 平分ABC ∠,若170∠=,则CBE ∠的度数为( )A .20B .35C .55D .7010.如图,将△ABC 沿DE ,EF 翻折,顶点A ,B 均落在点O 处,且EA 与EB 重合于线段EO ,若∠DOF =142°,则∠C 的度数为( )A .38°B .39°C .42°D .48°二、填空题(本大题共6小题,每小题3分,共18分)1.已知直角三角形的两边长分别为3、4.则第三边长为________.2.因式分解:2218x -=__________.3.若23(1)0m n -++=,则m -n 的值为________.4.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A ,且另三个锐角顶点B ,C ,D 在同一直线上.若AB=2,则CD=________.5.如图,在△ABC 和△DBC 中,∠A=40°,AB=AC=2,∠BDC=140°,BD=CD ,以点D 为顶点作∠MDN=70°,两边分别交AB ,AC 于点M ,N ,连接MN ,则△AMN 的周长为___________.6.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,CE ∥BD ,DE ∥AC .若AC=4,则四边形CODE 的周长是__________.三、解答题(本大题共6小题,共72分)1.解方程:2(1)4x -=2.先化简,再求值:22122()121x x x x x x x x ----÷+++,其中x 满足x 2-2x -2=0.3.若方程组3133x y m x y m +=+⎧⎨+=-⎩的解满足x 为非负数,y 为负数.(1)请写出x y +=_____________;(2)求m 的取值范围;(3)已知4m n +=,且2n >-,求23m n -的取值范围.4.如图,在Rt △ABC 中,∠ACB=90°,∠A=40°,△ABC 的外角∠CBD 的平分线BE 交AC 的延长线于点E .(1)求∠CBE 的度数;(2)过点D 作DF ∥BE ,交AC 的延长线于点F ,求∠F 的度数.5.如图1,在正方形ABCD 中,P 是对角线BD 上的一点,点E 在AD 的延长线上,且PA=PE ,PE 交CD 于F(1)证明:PC=PE ;(2)求∠CPE 的度数;(3)如图2,把正方形ABCD 改为菱形ABCD ,其他条件不变,当∠ABC=120°时,连接CE ,试探究线段AP 与线段CE 的数量关系,并说明理由.6.某商场计划销售A,B两种型号的商品,经调查,用1500元采购A型商品的件数是用600元采购B型商品的件数的2倍,一件A型商品的进价比一件B 型商品的进价多30元.(1)求一件A,B型商品的进价分别为多少元?(2)若该商场购进A,B型商品共100件进行试销,其中A型商品的件数不大于B型的件数,已知A型商品的售价为200元/件,B型商品的售价为180元/件,且全部能售出,求该商品能获得的利润最小是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、B3、D4、D5、B6、C7、B8、A9、B10、A二、填空题(本大题共6小题,每小题3分,共18分)1、52、2(x+3)(x﹣3).3、4415、46、8三、解答题(本大题共6小题,共72分)1、x=-1或x=32、1 23、(1)1;(2)m>2;(3)-2<2m-3n<184、(1) 65°;(2) 25°.5、(1)略(2)90°(3)AP=CE6、(1) B型商品的进价为120元, A型商品的进价为150元;(2) 5500元.。

2017——2018学年第一学期第一次月考八年级数学试卷及答案

2017——2018学年第一学期第一次月考八年级数学试卷及答案

八年级数学参考答案说明:1.如果考生的解答与本参考答案提供的解法不同,可根据提供的解法的评分标准精神进行评分.2.评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅.如果考生的解答在某一步出现错误,影响后继部分而未改变本题的内容和难度,视影响的程度决定对后面给分多少,但原则上不超过后继部分应得分数之半.3.评分标准中,如无特殊说明,均为累计给分.4.评分过程中,只给整数分数.一、选择题(每小题3分,共30分)1.C 2.A 3.C 4.D 5.B 6.D 7.D 8.B 9.B 10.B二、填空题(每小题3分,共15分)11.180 12.略13.60 14.二、四15.48三、解答题(共75分)16.证明:在△ABC和△ADC中,有AB=ADBC=DCAC=AC,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC.…………………………………………………………………………9分17.解:设这个多边形的边数是n,依题意得………………………………………1分(n-2)×180°=4×360°+180°,…5分(n-2)=8+1,n=11.即这个多边形的边数是11.……8分18.解:如图所示,AG就是所求的△ABC中BC边上的高.(没有指明高的结果扣1分,每小题3分共9分)19.解:∵∠B=50°,AD 是BC 边上的高,∴∠BAD=90°-50°=40°,∵∠B=50°,∠C=70°,∴∠BAC=180°-∠B -∠C=180°-50°-70°=60°,∵AE 是∠BAC 的平分线,∴∠BAE=21∠BAC=21×60°=30°, ∴∠AED=∠B +∠BAE=50°+30°=80°.20.证明:∵AB ⊥CD ,DE ⊥CF ,∴∠ABC=∠DEF=90°. 在Rt △ABC 和Rt △DEF 中,AC =DFAB =DE ,∴Rt △ABC ≌Rt △DEF (HL ).∴BC=EF .∴BC -BE=EF -BE .即:CE=BF .………9分21.解:AD 是△ABC 的中线.理由如下:∵BE ⊥AD ,CF ⊥AD ,(已知)∴∠BED=∠CFD=90°,(垂直的定义)在△BDE 和△CDF 中,∠BED =∠CFD (已证)∠BDE =∠CDF (对顶角相等)BE =CF ,(已知)∴△BDE ≌△CDF (AAS ),∴BD=CD .(全等三角形对应边相等)∴AD 是△ABC 的中线.(三角形中线的定义)……………………………………11分(证明8分,理由3分)22.证明:(1)∵BD ⊥AC ,CE ⊥AB (已知),∴∠BEC=∠BDC=90°,∴∠ABD +∠BAC=90°,∠ACE +∠BAC=90°(直角三角形两个锐角互余),∴∠ABD=∠ACE (等角的余角相等),在△ABP 和△QCA 中,BP =AC ∠ABD =∠ACECQ =AB∴△ABP ≌△QCA (SAS ),∴AP=AQ (全等三角形对应边相等).………………………………………………5分(2)由(1)可得∠CAQ=∠P (全等三角形对应角相等),∵BD ⊥AC (已知),即∠P +∠CAP=90°(直角三角形两锐角互余),∴∠CAQ +∠CAP=90°(等量代换),即∠QAP=90°,∴AP ⊥AQ (垂直定义).……………………………………………………………10分∴m -n -3=0且2n -6=0,解得:n=3,m=6,∴OA=6,OB=3;……………………4分(2)∵AP=t ,PO=6-t ,∴△BOP 的面积S=21×(6-t )×3=9-23t=3, 解得t=4,所以当P 在线段OA 上且△POB 的面积等于3时,t 的值是4……………………8分(3)当OP=OB=3时,分为两种情况(如图):第一个图中t=3,第二个图中AP=6+3=9,即t=9;即存在这样的点P ,使△EOP ≌△AOB ,t 的值是3或9.…………………………11分八年级数学参考答案说明:1.如果考生的解答与本参考答案提供的解法不同,可根据提供的解法的评分标准精神进行评分.2.评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅.如果考生的解答在某一步出现错误,影响后继部分而未改变本题的内容和难度,视影响的程度决定对后面给分多少,但原则上不超过后继部分应得分数之半.3.评分标准中,如无特殊说明,均为累计给分.4.评分过程中,只给整数分数.一、选择题(每小题3分,共30分)1.C 2.A 3.C 4.D 5.B 6.D 7. D 8.B 9.B 10.B二、填空题(每小题3分,共15分)11.180 12.略13.60 14.二、四15.48三、解答题(共75分)16.证明:在△ABC和△ADC中,有AB=ADBC=DCAC=AC,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC.…………………………………………………………………………9分17.解:设这个多边形的边数是n,依题意得………………………………………1分(n-2)×180°=4×360°+180°,…5分(n-2)=8+1,n=11.即这个多边形的边数是11.……8分18.解:如图所示,AG就是所求的△ABC中BC边上的高.(没有指明高的结果扣1分,每小题3分共9分)19.解:∵∠B=50°,AD 是BC 边上的高,∴∠BAD=90°-50°=40°,∵∠B=50°,∠C=70°,∴∠BAC=180°-∠B -∠C=180°-50°-70°=60°,∵AE 是∠BAC 的平分线,∴∠BAE=21∠BAC=21×60°=30°,∴∠AED=∠B +∠BAE=50°+30°=80°.20.证明:∵AB ⊥CD ,DE ⊥CF ,∴∠ABC=∠DEF=90°.在Rt △ABC 和Rt △DEF 中,AC =DFAB =,∴Rt △ABC ≌Rt △DEF (HL ).∴BC=EF .∴BC -BE=EF -BE .即:CE=BF .………9分21.解:AD 是△ABC 的中线.理由如下:∵BE ⊥AD ,CF ⊥AD ,(已知)∴∠BED=∠CFD=90°,(垂直的定义)在△BDE 和△CDF 中,∠BED =∠CFD (已证)∠BDE =∠CDF (对顶角相等)BE =CF ,(已知)∴△BDE ≌△CDF (AAS ),∴BD=CD .(全等三角形对应边相等)∴AD 是△ABC 的中线.(三角形中线的定义)……………………………………11分 (证明8分,理由3分)22.证明:(1)∵BD ⊥AC ,CE ⊥AB (已知),∴∠BEC=∠BDC=90°,∴∠ABD +∠BAC=90°,∠ACE +∠BAC=90°(直角三角形两个锐角互余), ∴∠ABD=∠ACE (等角的余角相等),在△ABP 和△QCA 中,BP =AC ∠ABD =∠ACECQ =AB∴△ABP ≌△QCA (SAS ),∴AP=AQ (全等三角形对应边相等).………………………………………………5分(2)由(1)可得∠CAQ=∠P (全等三角形对应角相等),∵BD ⊥AC (已知),即∠P +∠CAP=90°(直角三角形两锐角互余), ∴∠CAQ +∠CAP=90°(等量代换),即∠QAP=90°,∴AP ⊥AQ (垂直定义).……………………………………………………………10分23.解:(1)∵|m−n−3|=0且062=-n∴m -n -3=0且2n -6=0,解得:n=3,m=6,∴OA=6,OB=3;……………………4分(2)∵AP=t ,PO=6-t ,∴△BOP 的面积S=21×(6-t )×3=9-23t=3,解得t=4,所以当P 在线段OA 上且△POB 的面积等于3时,t 的值是4……………………8分(3)当OP=OB=3时,分为两种情况(如图):第一个图中t=3, 第二个图中AP=6+3=9,即t=9;即存在这样的点P ,使△EOP ≌△AOB ,t 的值是3或9.…………………………11分。

人教版八年级数学上册第一次月考题及答案.doc

人教版八年级数学上册第一次月考题及答案.doc

八年级上数学第一次月考试卷一、选择题(每小题2分,共12分) 1.下列图形是轴对称图形的是( )2.下面各选项中右边图形与左边图形成轴对称的是( )3.如图,在△ABC 中,BC=8㎝,AB 的垂直平分线交AB 于点D ,交边AC 于点E ,△BCE 的周长等于18㎝,则AC 的长等于( )A.6㎝B.8㎝C.10㎝D.12㎝4.如图,在△ABC 与△DEF 中,已有条件A B=DE ,还需添加两个条件才能使△ABC ≌△DEF ,不能添加的一组条件是( )A. ∠B=∠E ,BC=EFB.BC=EF ,AC=DFC. ∠A=∠D ,∠B=∠ED. ∠A=∠D ,BC=EF5.将一个长方形纸片依次按图①、图②的方式对折,然后沿图③中的虚线裁剪,最后将图④的纸片再展开铺平,所得到的图案是( )E D C B AF E D C B A C 2B 2A 2C 1B 1A 1l CB A 向右对折()向上对折()A BC D A B C D 3题图 4题图 6题图图① 图② 图③ 图④ A B C D6.如图,△111C B A 与△ABC 关于直线l 对称,将△111C B A 向右平移得到△222C B A ,由此得到下列判断:①AB ∥22B A ;②∠A=∠2A ;③AB= 22B A ,其中正确的是( ) A. ①② B. ②③ C. ①③ D. ①②③二、填空题(每小题3分,共24分)7.点P (-3,4)关于y 轴对称的点的坐标是 .8.如图,若△ABC ≌△EFC ,且CF=3㎝,CE=6㎝,则AF= ㎝. 9.在坐标平面内,点A 和点B 关于x 轴对称,若点A 到x 轴的距离是3㎝,则点B 到x 轴的距离为 ㎝. 10如图所示,该图形有 条对称轴.11.如图,△ABC ≌△111C B A ,且∠A :∠B :∠ACB=1:3:5,则∠1A 等于 度.12.如图所示,∠1=∠2,要使△ABD ≌△ACD ,需添加的一个条件是 (只添加一个条件即可).13.如图,已知BD ⊥AE 于B ,DC ⊥AF 于C ,且DB=DC ,∠BAC=40°,∠ADG=130°,则∠DGF= 度.14.如图,直线1l 、2l 、3l 表示三条互相交叉的公路,要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有 个三、解答题(每小题5分,共20分)15.已知点M (3a -b ,5)与点N (9,2a +3b )关于x 轴对称,求a 、b 的值.F E C B A B 1A 1CB A 21DC B A l 1l 2l 3GF E D C BA 8题图 9题图 11题图 12题图 13题图 14题图16.如图,△AB C ≌△DEF ,求证:AD=BE.17.如图,AB=AC,BD=CD,求证:∠B=∠C.18.如图,两个班的学生分别在M 、N 两处参加植树劳动,现要在道路AB 、AC 的交叉区域内设一个茶水供应点P, 使P 到两条道路的距离相等,且使PM=PN,有一同学说:“只要作一个角平分线、一条线段的垂直平分线,这个茶水供应点的位置就确定了”,你认为这位同学说得对吗?请说明理由,并通过作图找出这一点,不写作法,保留作图痕迹.四、解答题(每小题7分,共28分)19.如图,l 是该对称图形的对称轴.(1)试写出图中三组对应相等的线段: ; (2)试写出三组对应相等的角: ; (3)图中面积相等的三角形有 对.F E DC B AD CB AN MC BlO FE D CB A 16题图 17题图 18题图 19题图20.如图,在Rt △ABC 中,∠C=90°.(1)如果BD 是∠ABC 的平分线,DE ⊥AB, DC=3,那么易知DE= .(2)如果在AB 上取点E,使BE=BC ,然后画DE ⊥AB 交AC 于点D ,那么BD 就是∠ABC 的平分线. 请写出证明过程.21.如图,方格纸中每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC 的顶点在格点上,点B 的坐标为(5,-4),请你作出△///C B A 和△//////C B A , 使△///C B A 与△ABC 关于y 轴对称,使△//////C B A 与△ABC 关于x 轴对称,并写出/B 的坐标.22.如图所示,AB=AD,BC=CD,AC 、BD 相交于点E,由这些条件你能推出哪些结论?(不再添加辅助线,不再标注其他字母,不写推理过程,只要求写出四个你认为正确的结论).ED C B A x y–1–2–3–4–5–6–71234567–1–2–3–4–5–6123456CB AO EDC B A20题图21题图 22题图五、解答题(每小题8分,共16分)23.如图,在8×6正方形方格中,点A 、B 、C 在小正方形的顶点上. (1)在图中画出与△ABC 关于直线l 成轴对称的△A //C B ; (2)线段/CC 被直线l ;(3)在直线l 上找一点P ,使PB+PC 的长最短,不写作法,保留作图痕迹.24.如图,给出五个等量关系:①AD=BC; ②AC=BD; ③CE=DE; ④∠D=∠C ;⑤∠DAB=∠CBA.请你以其中两个为条件,另三个中的一个为结论,推出一个正确的结论,并加以证明(只需写出一种情况). 已知: 求证: 证明:六、解答题(每小题10分,共20分)25.如图,在长方形纸片ABCD 中,四个内角均为直角,AB=CD,AD=BC,将长方形纸片ABCD 沿对角线BD 进行折叠,点C 的对称点为/C ,B /C 交AD 于点E.(1)五边形ABD /C E 轴对称图形(填“是”或“不是”); (2)试说明△ABE ≌△/C DE ;(3)关于某条直线成轴对称的图形有几对,直接写出这几对成轴对称的图形.C B A l ED C A 23题图 24题图26.问题情境:如图①,在直角三角形ABC 中,∠BAC=90°,AD ⊥BC 于点D,可知: ∠BAD=∠C (不需要证明);特例探究:如图②,∠MAN=90°,射线AE 在这个角的内部,点B 、C 在∠MAN 的边AM 、AN 上,且AB=AC, CF ⊥AE 于点F,BD ⊥AE 于点D.证明:△ABD ≌△CAF;归纳证明:如图③,点BC 在∠MAN 的边AM 、AN 上,点EF 在∠MAN 内部的射线AD 上,∠1、∠2分别是△ABE 、△CAF 的外角.已知A B=AC, ∠1=∠2=∠BAC.求证:△ABE ≌△CAF;拓展应用:如图④,在△ABC 中,AB=AC ,AB >BC.点D 在边BC 上,CD=2BD ,点E 、F 在线段AD上,∠1=∠2=∠BAC.若△ABC 的面积为15,则△ACF 与△BDE 的面积之和为 .C /ED BA D CB A EDC B A N M F 21ED C B A NMF 21E D C B A F25题图 26题图 图① 图② 图③ 图④【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

2018-2019初中八年级上册数学第一次月考试题

2018-2019初中八年级上册数学第一次月考试题

O D CBA 第11题图班级: 姓名: 学号:………………………密…………………………………封………………………………………线…………………………………………………第10题图F C E B A D 第7题图 ④ ①② ③2018-2019学年八年级上学期数学第一次月考测试卷(考试时间120分钟,满分120分)一、选择题(每小题3分,共30分) 1、下列命题正确的是( ) A .全等三角形是指形状相同的两个三角形 B .全等三角形是指面积相同的两个三角形 C .两个周长相等的三角形是全等三角形 D .全等三角形的周长、面积分别相等 2、如图所示表示三条相互交叉的公路,现要建一个货物中转站, 要求它到三条公路的距离相等,则可供选择的地址有( ) A.1处 B.2处 C.3处 D.4处 3、下图中的轴对称图形有( ).A .(1),(2)B .(1),(4)C .(2),(3)D .(3),(4)4、下列判断中错误..的是( ) A .有两角和一边对应相等的两个三角形全等B .有两边和一角对应相等的两个三角形全等C .有两边和其中一边上的中线对应相等的两个三角形全等D .有一边对应相等的两个等边三角形全等5、如图,AB 垂直平分CD ,若AC=1.6cm ,BC=2.3cm ,则四边形ABCD的周长是( )cm.A.3.9B.7.8C.4D.4.66、如图,点P 是∠BAC 的平分线AD 上一点,PE ⊥AC 于点E .已知PE =3,则点P 到AB 的距离是( ) A .3 B .4 C .5 D .67、如图,∠B 和∠C 的平分线相交于点F ,过点F 作DE ∥BC 交AB 于点D ,交AC 于点E ,若BD+CE=9,则线段DE 的长为( ) A .9 B .8 C .7 D .68、下列条件中不能作出唯一直角三角形的是( )A. 已知两个锐角B. 已知一条直角边和一个锐角C. 已知两条直角边D. 已知一条直角边和斜边 9、如图,在直角ABC △中,90C =∠,AB 的垂直平分线交AB 于D , 交AC 于E ,且2EBC EBA =∠∠,则A ∠等于( )A.20 B.22.5 C.25 D.27.5 10、如图,在直角三角形ABC 中,∠C =90°,AC =10cm ,BC =5cm ,线段PQ =AB , P 、Q 两点分别在AC 和AC 的垂线AX 上移动,则当AP = 时,才能使△ABC 和△APQ 全等.二、填空题(每小题3分,共18分) 11、如图,线段AC 与BD 交于点O ,且OA=OC, 请添加一个条件,使△OAB ≌△OCD,这个条件可以是______________________. 12、如图,50ABC AD ∠=,垂直平分线段BC 于点D ABC ∠,的平分线BE 交AD 于点E ,连结EC ,则∠C 的度数是 . 13、如图,△ABC 中,AB=AC=17,BC=16,DE 垂直平分AB ,则△BCD 的周长是14、如图,已知△ABC 的周长是21,OB,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =3,△ABC 的面积是___________15、如图,有一块边长为4的正方形塑料模板ABCD ,将一块足够大的直角三角板的直角顶点落在A 点,两条直角边分别与CD 交于点F ,与CB 延长线交于点E .则四边形AECF 的面积是 .16、如图,已知△ABC 的六个元素,下面甲、乙、丙三个三角形中标出了某些元素,则与△ABC 全等的三角形是 .三.解答题(共72分)座 号C D B E A 第12题图 A B Ca b c 74 41 65 b a 41 甲 74 c b 乙 65 74 a 丙 第13题图 A D F C B E第15题图 第6题图 D CA E 第9题图 A D O CB 第14题图 A B第5题图17、(作图6分)近年来,国家实施“村村通”工程和农村医疗卫生改革,某县计划在张村、李村之间建一座定点医疗站P ,张、李两村座落在两相交公路内(如图所示).医疗站必须满足下列条件:①使其到两公路距离相等,②到张、李两村的距离也相等,请你通过作图确定P 点的位置. 18、(7分)完成下面的证明过程: 如图,已知:AD ∥BC ,AD =CB ,AE =CF. 求证:∠D =∠B. 证明:∵AD ∥BC ,∴∠A =∠ (两直线平行, 相等). ∵AE =CF , ∴AF = . 在△AFD 和△CEB 中,AD _____,A ____,AF _____,⎧=⎪∠=∠⎨⎪=⎩∴△AFD ≌△CEB ( ). ∴∠D =∠B.19、(8分)已知:如图,直线AD 与BC 交于点O ,OA OD =,OB OC =.求证:AB CD ∥.20、(9分)如图,D 是AB 上一点,DF 交AC 于点E,DE=FE,FC//AB.AE 与CE 有什么关系?证明你的结论。

2018--2019学年度第一学期人教版八年级月考第一次数学试卷

2018--2019学年度第一学期人教版八年级月考第一次数学试卷

绝密★启用前2018--2019学年度第一学期人教版八年级月考第一次数学试卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.做题时要平心静气,不要漏做。

一、单选题(计30分)1.(本题3分)如图,点E,F在线段BC上,△ABF≌△DCE,点A与点D,点B与点C是对应点,AF与DE 交于点M.若∠DEC=36°,则∠AME=( )A.54°B.60°C.72°D.75°2.(本题3分)下列长度的三条线段能组成三角形的是()A.1,2,3 B.1, 3 C.3,4,8 D.4,5,63.(本题3分)在三角形中,最大的内角不小于()A.30°B.45°C.60°D.90°4.(本题3分)一个多边形的每个内角都是144°,这个多边形是()A.八边形 B.十边形C.十二边形 D.十四边形5.(本题3分)在中,,,则的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定6.(本题3分)如图,∠BAC=90°,BD⊥DE,CE⊥DE,添加下列条件后仍不能使△ABD≌△CAE的条件是()A.AD=AE B.AB=AC C.BD=AE D.AD=CEA.3B.4C.6D.98.(本题3分)已知三角形两边长分别为3和9,则该三角形第三边的长可能是()A.6 B.11 C.12 D.139.(本题3分)三角形的角平分线、中线和高:( )A.都是线段B.不都是线段C.都是直线D.都是射线10.(本题3分)如图,△ABC中,∠C=40°,点D在BA的延长线上,∠CAD=110°,则∠B的度数为()A.40°B.60°C.70°D.80°二、填空题(计32分)11.(本题4分)王师傅常用角尺平分一个角,如图所示,学生小明可用三角尺平分一个角,他们在∠AOB两边上分别取OM、ON,使OM=ON,前者使角尺两边相同刻度分别与M、N重合,角尺顶点为P;后者分别过M、N作OA、OB的垂线,交点为P,则均可得到△OMP≌△ONP,其依据分别是____________.12.(本题4分)如图,AD、AM、AH分别△ABC的角平分线、中线和高.(1)因为AD是△ABC的角平分线,所以∠_____=∠_____=12∠_____;(2)因为AM是△ABC的中线,所以_____=_____=12_____;(3)因为AH是△ABC的高,所以∠_____=∠_____=90°.14.(本题4分)超重机的底座、输电线路的支架、自行车的斜支架等,都是采用三角形结构,这样做的数学道理是利用了______________.15.(本题4分)Rt⊿ABC中,∠C=90º,∠B=30º,则边AC与AB的数量关系是 .16.(本题4分)已知在△ABC中,AB=AC=6cm,BE⊥AC于点E,且BE=4cm,则AB边上的高CD的长度为__________.17.(本题4分)如图,△ABC中,BD是∠ ABC的角平分线,DE ∥ BC交AB 于 E,∠A=60º,∠BDC=95º,则∠BED的度数是______.18.(本题4分)若一个正多边形的每一个外角都是30,那么从某一个项点出发的所有对角线会将其分成_____个三角形三、解答题(计58分)19.(本题8分)已知:如图所示,△ABC中,∠BAC=90°,AB=AC,分别过点B、C作经过点A的直线l的垂线段BD、CE,垂足分别D、E.(1)求证:DE=BD+CE.(2)如果过点A的直线经过∠BAC的内部,那么上述结论还成立吗?请画出图形,直接给出你的结论(不用证明).20.(本题8分)如图△ABC,延长CB到D,延长BC到E,∠A=80°,∠ACE=140°求∠ABD的度数.21.(本题8分)(6分)已知:如图,同一直线上有四点B、E、C、F,且AB∥DE,AC∥DF,BE=CF.求证:AB=DE.22.(本题8分)(本题8分)如图,若AE是△ABC边上的高,∠EAC的角平分线AD交BC于D,∠ACB=40°,求∠ADE.23.(本题8分)认真阅读下面关于三角形内外角平分线的研究片断,完成所提出的问题.探究1:如图(1)在△ABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现∠BOC=90°+12∠A,理由如下:∵BO和CO分别是∠ABC和∠ACB的角平分线,∴∠1=12∠ABC,∠2=12∠ACB.∴∠1+∠2=12(∠ABC+∠ACB)=12(180°-∠A)=90°-12∠A.∴∠BOC=180°-(∠1+∠2)=180°-(90°-12∠A)=90°+12∠A探究2:如图(2)中,O是∠AB C与外角∠ACD的平分线BO和CO的交点,试分析∠BOC与∠A有怎样的关系?请说明理由.24.(本题9分)如图,BN为∠ABC的平分线,P为BN上一点,且PD⊥BC于点D,AB+BC=2BD.求证:∠BAP+∠BCP=180°25.(本题9分)如图,AB=AD,BC=DC,求证:∠ABC=∠ADC.参考答案1.C【解析】已知△ABF≌△DCE,根据全等三角形的对应角相等可得∠DEC=∠AFB=36°,根据三角形外角的性质可得∠AME=∠DEC+∠AFB=72°,故选C.2.D【解析】试题解析:A、1+2=3,不能组成三角形,故本选项错误;B、3,不能组成三角形,故本选项错误;C、3+4<8,不能组成三角形,故本选项错误;D、4+5>6,能组成三角形,故本选项正确.故选D.考点:三角形三边关系.3.C【解析】解:∵三角形的内角和等于180°,180°÷3=60°,∴最大的角不小于60°.故选C.4.B.【解析】试题解析:∵一个多边形的每个内角都是144°,∴这个多边形的每个外角都是=36°,∴这个多边形的边数360°÷36°=10.故选B.考点:多边形内角与外角.5.B【解析】分析:根据已知条件得到∠A+∠B+∠B+∠C=134°+136°=270°①,根据三角形的内角和定理得到∠A+∠B+∠C=180°②,①-②得即可得到结论.详解:∵在△ABC中,∠A+∠B=134°,∠B+∠C=136°,∴∠A+∠B+∠B+∠C=134°+136°=270°①,∵∠A+∠B+∠C=180°②,①-②得,∠B=90°,∴△ABC的形状是直角三角形,故选:B.点睛:本题考查了三角形内角和定理.6.A【解析】∵∠BAC=90°,BD⊥DE,CE⊥DE,∴∠D=∠E=∠BAC=90°,∴∠B+∠BAD=90°,∠BAD+∠CAE=90°,∴∠B=∠CAE,A. AD和AE不是对应边,即不能判断△ABD≌△CAE,故本选项正确;B. 在△ABD和△CAE中{D EB CAEAB AC∠=∠∠=∠=,∴△ABD≌△CAE(AAS),故本选项错误;C. 在△ABD和△CAE中{B CAED EBD AE∠=∠∠=∠=,∴△ABD≌△CAE(AAS),故本选项错误;D. 在△ABD和△CAE中{D EB CAEAD CE∠=∠∠=∠=,∴△ABD≌△CAE(AAS),故本选项错误;故选A.点睛:根据垂直推出∠B+∠BAD=90°,∠BAD+∠CAE=90°,推出∠B=∠CAE,根据AD和AE不是对应边相等,即可判断A;根据AAS即可判断B;根据AAS即可判断C;根据AAS即可判断D.7.A【解析】解:对角线的数量:6-3=3条,故选A.点睛:此题主要考查了多边形的对角线,解答此类题目可以直接记忆:一个n边形一个顶点出发,可以连的对角线的条数是n-3.8.B【解析】根据三角形三边关系:两边之和大于第三边,两边之差小于第三边,可以确定第三边的取值范围是在6和12之间的数,故选B.9.B【解析】试题解析:三角形的角平分线、中线和高都是线段.故选A.10.C【解析】解:∠B=∠CAD-∠C=110°-40°=70°.故选C.11.SSS,HL【解析】【分析】根据作图过程可得MO=NO,MP=NP,再利用SSS可判定△MPO≌△NPO,可得OP是∠AOB的平分线;根据题意得出Rt△MOP≌Rt△NOP(HL),进而得出射线OP为∠AOB的角平分线.【详解】方法Ⅰ:在△MPO和△NPO中,∵MO=NO,PO=PO,MP=PN,∴△MPO≌△PNO(SSS),∴∠AOP=∠BOP;方法Ⅱ:在Rt△MOP和Rt△NOP中,∵,∴Rt△MOP≌Rt△NOP(HL),∴∠MOP=∠NOP,即射线OP为∠AOB的角平分线.故答案为:SSS,HL.【点睛】本题主要考查了基本作图,以及全等三角形的判定,关键是掌握判定三角形全等的方法.12.(1)BAD、CAD、BAC;(2)BM、CM、BC;(3)AHB、AHC.【解析】(1)根据三角形角平分线的定义知:角平分线平分该角;(2)根据三角形的中线的定义知:中线平分该中线所在的线段;(3)根据三角形的高的定义知,高与高所在的直线垂直.解:(1)∵AD是△ABC的角平分线,∴∠BAD=∠CAD=12∠BAC;(2)∵AM是△ABC的中线,∴BM=CM=12 BC;(3)∵AH是△ABC的高,∴AH⊥BC,∴∠AHB=∠AHC=90°;故答案是:(1)BAD、CAD、BAC;(2)BM、CM、BC;(3)AHB、AHC.13.7【解析】分析:根据非负数的性质直接求出,,根据三角形的三边关系可直接求出边长详解:,满足,根据三角形的三边关系,得即:为奇数,则7.故答案为:7.点睛:此题主要考查了非负数的性质以及三角形的三边关系,三角形任意两边之和大于第三边. 14.三角形的稳定性【解析】这样做的数学道理是利用了“三角形的稳定性”.15.AB=2AC.【解析】试题解析:如图所示,在Rt△ABC中,∠C=90°,∠B=30°,则AB=2AC.考点:含30度角的直角三角形.16.4cm【解析】试题解析:∵BE⊥AC,CD⊥AB,∴S△ABC=12AB·CD=12AC·BE,∵AB=AC,∴CD=BE=4c m.故答案为:4c m.17.110°.【解析】试题分析:由∠BDC=95°可得∠ADB=85°,根据三角形的内角和定理可得∠EBD=35°.根据平行线的性质和角平分线的定义可证得∠EDB=∠EBD=35°,再由三角形的内角和定理可得∠DEB=110°.考点:三角形的内角和定理;平行线的性质.18.10【解析】本题考查了多边形的内角与外角的关系. 根据正多边形的每一个外角都相等,多边形的边数=360°÷30°,从某一个项点出发的所有对角线会将其分成n-2个三角形解析解答解:∵这个正多边形的边数:360°÷30°=12,∴这个正多边形是正12边形.∴12-2=1019.(1)见解析;(2)上述结论不成立.【解析】试题分析:(1)由垂线的定义和角的互余关系得出由AAS证明≌,得出对应边相等由即可得出结论;(2)由垂线的定义和角的互余关系得出由AAS证明≌,得出对应边相等由之间的和差关系,即可得出结论.试题解析:(1)∵∠BAC=,∴∠BAD+∠CAE=,∵BD⊥l,CE⊥l,∴∠ADB=∠CEA=,∴∠BAD+∠ABD=,∴∠ABD=∠CAE.在△ABD和△CAE中,∴△ABD≌△CAE(AAS),∴BD=AE,AD=CE,∵AD+AE=DE,∴BD+CE=DE;(2)上述结论不成立,如图所示,BD=DE+CE.证明:∵∠BAC=,∴∠BAD+∠CAE=,∵BD⊥l,CE⊥l,∴∠ADB=∠CEA=,∴∠BAD+∠ABD=,∴∠ABD=∠CAE.在△ABD和△CAE中,∴△ABD≌△CAE(AAS),∴BD=AE,AD=CE,∵AD+DE=AE,∴BD=DE+CE.如图所示,CE=DE+BD,证明:证明:∵∠BAC=,∴∠BAD+∠CAE=,∵BD⊥l,CE⊥l,∴∠ADB=∠CEA=,∴∠BAD+∠ABD=,∴∠ABD=∠CAE.在△ABD和△CAE中,∴△ABD≌△CAE(AAS),∴BD=AE,AD=CE,∵AE+DE=AD,∴CE=DE+BD.20.120°.【解析】试题分析:首先根据邻补角的性质可得∠ACB=40°,然后再根据三角形的一个外角等于和它不相邻的两个内角的和可得答案.试题解析:∵∠ACE=140°,∴∠ACB=40°,∵∠A=80°,∴∠1=40°+80°=120°.21.见解析【解析】试题分析:由BE=CF 可得BC=EF ,然后由AB ∥DE ,AC ∥DF ,可得∠B=∠DEF ,∠ACB=∠F ,根据ASA 证明△ABC ≌△DEF 即可得出结论..试题解析:证明:∵BE=CF (已知),∴BE+EC=CF+BC ,即BC=EF ;又∵AB ∥DE ,AC ∥DF ,∴∠B=∠DEF (两直线平行,同位角相等),∠ACB=∠F (两直线平行,同位角相等);∴在△ABC 和△DEF 中,BC B DEF ACB F EF∠=∠∠=∠⎧⎪=⎨⎪⎩, ∴△ABC ≌△DEF (ASA ),∴AB=DE (全等三角形的对应边相等).考点:全等三角形的判定与性质.22.65°.【解析】试题分析:应用三角形内角和定理求出∠EAC 的度数,再应用角平分线的定义求得∠DAE 的度数,应用三角形内角和定理求得∠ADE 的度数.试题解析:解:因为AE 是△ABC 的高,所以∠AEC=90°,由三角形内角和定理得∠EAC=90°-40°=50°,因为AD 平分∠EAC ,所以∠EAD=25°,所以∠ADE=90°-25°=65°.考点:三角形内角和定理;角平分线的定义.23.∠BOC=12∠A.【解析】试题分析:根据提供的信息,由三角形的一个外角等于与它不相邻的两个内角的和,用∠A与∠1表示出∠2,再利用∠O与∠1表示出∠2,然后整理即可得到∠BOC与∠A的关系;试题解析:解:结论:∠BOC=12∠A.理由如下:∵BO和CO分别是∠ABC和∠ACD的角平分线,∴∠1=12∠ABC,∠2=12∠ACD.又∵∠ACD是△ABC的一外角,∴∠ACD=∠A+∠ABC,∴∠2=12(∠A+∠ABC)=12∠A+∠1.∵∠2是△BOC的一外角,∴∠BOC=∠2﹣∠1=12∠A+∠1﹣∠1=12∠A,即∠BOC=12∠A.点睛:本题考查了三角形外角的性质与内角和定理,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键,读懂题目提供的信息,然后利用提供信息的思路也很重要.24.见解析【解析】【分析】过点P作PE⊥AB于点E.根据角平分线性质得PE=PD,再证Rt△PBE≌Rt△PBD(HL),得BE=BD.由AB+BC=2BD,BC=BD+CD,AB=BE-AE,得BE-AE+BD+CD=2BD,故AE=CD;再证△PEA≌△PDC(SAS),得∠PAE=∠BCP,由∠BAP+∠PAE=180°,得∠BAP+BCP=180°.【详解】证明:过点P作PE⊥AB于点E.∵BN平分∠ABC,PD⊥BC,PE⊥AB,∴PE=PD,∠BEP=∠BDP=90°.在Rt△PBE和Rt△PB D中,∵PB=PB,PE=PD,∴Rt△PBE≌Rt△PBD(HL),∴BE=BD.∵AB+BC=2BD,BC=BD+CD,AB=BE-AE,∴BE-AE+BD+CD=2BD,∴AE=CD.在△PEA和△PDC中,∵PE=PD,∠PEA=∠PDC,AE=CD,∴△PEA≌△PDC(SAS)∴∠PAE=∠PCD,即∠PAE=∠BCP.∵∠BAP+∠PAE=180°,∴∠BAP+BCP=180°.【点睛】本题考核知识点:角平分线性质定理,全等三角形判定和性质. 解题关键点:熟记角平分线性质定理,全等三角形判定和性质.25.详见解析.【解析】试题分析:连接AC,根据SSS证明△ABC与△ADC全等,再利用全等三角形的性质证明即可.试题解析:连接AC,在△ABC与△ADC中,AB=AD,BC=DC,AC=AC,∴△ABC≌△ADC(SSS),∴∠ABC=∠ADC.考点:全等三角形的判定与性质.。

2018-2019学年人教版八年级(上)第一次月考数学试卷新人教版含答案解析

2018-2019学年人教版八年级(上)第一次月考数学试卷新人教版含答案解析

2018-2019学年人教版八年级(上)第一次月考数学试卷一、选择题(本大题共10小题,每小题2分,共20分)1.(2分)(2017•成武县校级模拟)以下列各组线段为边,能组成三角形的是()A.2,3,5B.3,3,6C.2,5,8D.4,5,62.(2分)(2017秋•江海区校级月考)若a、b、c是△ABC的三边的长,则化简|a﹣b﹣c|﹣|b﹣c﹣a|+|a+b﹣c|=()A.a+b+c B.﹣a+3b﹣c C.a+b﹣c D.2b﹣2c3.(2分)(2016•龙岩模拟)已知△ABC中,∠A=20°,∠B=∠C,那么三角形△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.正三角形4.(2分)(2015春•黄州区校级期末)正n边形的内角和等于1080°,则n的值为()A.7B.8C.9D.105.(2分)(2008•福州)已知三角形的两边长分别为4cm和9cm,则下列长度的四条线段中能作为第三边的是()A.13cm B.6cm C.5cm D.4cm6.(2分)(2014•包头)长为9,6,5,4的四根木条,选其中三根组成三角形,选法有()A.1种B.2种C.3种D.4种7.(2分)(2018秋•海南区期中)n边形的每个外角都为24°,则边数n为()A.13B.14C.15D.168.(2分)(2017秋•讷河市校级期中)如图,AD是△ABC边BC的中线,E、F分别是AD、BE的中点,若△BFD的面积为6,则△ABC的面积等于()A.18B.24C.48D.369.(2分)(2016春•普宁市期末)下面四个图形中,线段BE是△ABC的高的图是()A.B.C.D.10.(2分)(2014秋•娄底期末)已知,如图,△ABC≌△DEF,AC∥DF,BC∥EF.则不正确的等式是()A.AC=DF B.AD=BE C.DF=EF D.BC=EF二、填空题(本大题共10小题,每小题3分,共30分)11.(3分)(2016春•芦溪县期末)一扇窗户打开后,用窗钩可将其固定,这里所运用的几何原理是.12.(3分)(2013秋•常山县期末)已知等腰三角形的两边长分别为3和6,则其周长为.13.(3分)(2017春•高唐县期末)如图,∠A+∠B+∠C+∠D+∠E+∠F=度.14.(3分)(2004•济宁)如图,AB、CD相交于点O,AD=CB,请你补充一个条件,使得△AOD≌△COB,你补充的条件是.15.(3分)(2014•广州)已知OC是∠AOB的平分线,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为点D、E,PD=10,则PE的长度为.16.(3分)(2019•东台市一模)等腰三角形一腰上的高与另一腰的夹角为30°,则它的顶角为.17.(3分)(2016•乌鲁木齐)一个多边形的内角和是外角和的2倍,则这个多边形的边数为.18.(3分)(2017秋•前郭县校级月考)已知等腰三角形底边为8,一腰上的中线分此三角形的周长成两部分,其差为2,则腰长为.19.(3分)(2010春•高州市期末)在三角形△ABC中,∠C=90°,∠A=2∠B,则∠A =.20.(3分)(2017春•平川区校级期中)若实数x,y满足|x﹣5|+(y﹣8)2=0,则以x,y 的值为边长的等腰三角形的周长为.三、解答题(本大题共6小题,共30分)21.(5分)(2017秋•前郭县校级月考)如图,△ABC≌△DEF,CF=3cm,求EB的长.22.(5分)(2017秋•前郭县校级月考)如图,CE是△ABC的外角∠ACD的平分线,若∠B =35°,∠ACE=60°,求∠A的度数.23.(5分)(2018秋•江城区校级月考)如图,AC=AD,BC=BD,求证:AB平分∠CAD.24.(5分)(2017秋•邵阳县校级期中)已知:如图,AB=DC,AB∥DC,求证:AD=BC.25.(5分)(2018•昆明二模)如图所示,AC=AE,∠1=∠2,AB=AD.求证:BC=DE.26.(5分)(2017秋•安图县月考)如图,已知AB=AC,AD=AE,BD=CE,且B,D,E 三点共线,求证:∠3=∠1+∠2.四、解答题(本大题共5小题,共40分)27.(7分)(2017秋•前郭县校级月考)如图,已知:点B、F、C、E在一条直线上,FB=CE,AC=DF,∠A=∠D=90°.求证:AB∥DE.28.(7分)(2017秋•前郭县校级月考)如图:AB=CD,AE=DF,CE=FB.求证:AF=DE.29.(8分)(2018秋•新罗区校级月考)如图,点A、B、C在同一直线上,点E在BD上,且△ABD≌△EBC,AB=2cm,BC=3cm.(1)求DE的长;(2)判断AC与BD的位置关系,并说明理由.(3)判断直线AD与直线CE的位置关系,并说明理由.30.(8分)(2013秋•永定县校级期中)(1)如图1,△ABC中,∠BAC=90°,AB=AC,AE是过A点的一条直线,且B、C在AE的异侧,BD⊥AE于D,CE⊥AE于E,求证:BD=DE+CE.(2)若直线AE绕点A旋转到图2的位置时(BD<CE),其余条件不变,问BD与DE、CE的关系如何?请予以证明.31.(10分)(2017秋•前郭县校级月考)如图,∠CBF、∠ACG是△ABC的外角,∠ACG 的平分线所在的直线分别与∠ABC、∠CBF的平分线BD、BE交于点D、E.(1)求∠DBE的度数;(2)若∠A=70°,求∠D的度数;(3)若∠A=a,则∠D=,∠E=(用含a的式子表示)2017-2018学年人教版八年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题2分,共20分)1.(2分)(2017•成武县校级模拟)以下列各组线段为边,能组成三角形的是()A.2,3,5B.3,3,6C.2,5,8D.4,5,6【解答】解:A、2+3=5,故不能构成三角形,故选项错误;B、3+3=6,故不能构成三角形,故选项错误;C、2+5<8,故不能构成三角形,故选项错误;D、4+5>6,故,能构成三角形,故选项正确.故选:D.2.(2分)(2017秋•江海区校级月考)若a、b、c是△ABC的三边的长,则化简|a﹣b﹣c|﹣|b﹣c﹣a|+|a+b﹣c|=()A.a+b+c B.﹣a+3b﹣c C.a+b﹣c D.2b﹣2c【解答】解:|a﹣b﹣c|﹣|b﹣c﹣a|+|a+b﹣c|,=﹣a+b+c﹣(﹣b+c+a)+(a+b﹣c),=﹣a+b+c+b﹣c﹣a+a+b﹣c,=﹣a+3b﹣c,故选:B.3.(2分)(2016•龙岩模拟)已知△ABC中,∠A=20°,∠B=∠C,那么三角形△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.正三角形【解答】解:∵∠A=20°,∴∠B=∠C(180°﹣20°)=80°,∴三角形△ABC是锐角三角形.故选:A.4.(2分)(2015春•黄州区校级期末)正n边形的内角和等于1080°,则n的值为()A.7B.8C.9D.10【解答】解:由题意可得:(n﹣2)×180°=1080°,解得n=8.故选:B.5.(2分)(2008•福州)已知三角形的两边长分别为4cm和9cm,则下列长度的四条线段中能作为第三边的是()A.13cm B.6cm C.5cm D.4cm【解答】解:根据三角形的三边关系,得:第三边应大于两边之差,且小于两边之和,即9﹣4=5,9+4=13.∴第三边取值范围应该为:5<第三边长度<13,故只有B选项符合条件.故选:B.6.(2分)(2014•包头)长为9,6,5,4的四根木条,选其中三根组成三角形,选法有()A.1种B.2种C.3种D.4种【解答】解:四根木条的所有组合:9,6,5和9,6,4和9,5,4和6,5,4;根据三角形的三边关系,得能组成三角形的有9,6,5和9,6,4和6,5,4.故选:C.7.(2分)(2018秋•海南区期中)n边形的每个外角都为24°,则边数n为()A.13B.14C.15D.16【解答】解:∵一个多边形的每个外角都等于24°,∴多边形的边数为360°÷24°=15.故选:C.8.(2分)(2017秋•讷河市校级期中)如图,AD是△ABC边BC的中线,E、F分别是AD、BE的中点,若△BFD的面积为6,则△ABC的面积等于()A.18B.24C.48D.36【解答】解:∵F是BE的中点,∴BF=EF,∴S△EFD=S△BFD,又∵S△BDE=S△EFD+S△BFD,∴S△BDE=2S△BFD=2×6=12.同理,S△ABC=2S△ABD=2×2S△BDE=4×12=48.故选:C.9.(2分)(2016春•普宁市期末)下面四个图形中,线段BE是△ABC的高的图是()A.B.C.D.【解答】解:A选项中,BE与AC不垂直;B选项中,BE与AC不垂直;C选项中,BE与AC不垂直;∴线段BE是△ABC的高的图是D选项.故选:D.10.(2分)(2014秋•娄底期末)已知,如图,△ABC≌△DEF,AC∥DF,BC∥EF.则不正确的等式是()A.AC=DF B.AD=BE C.DF=EF D.BC=EF【解答】解:A、∵△ABC≌△DEF,∴AC=DF,故此结论正确;B、∵△ABC≌△DEF,∴AB=DE;∵DB是公共边,∴AB﹣BD=DE﹣BD,即AD=BE;故此结论正确;C、∵△ABC≌△DEF,∴AC=DF,故此结论DF=EF错误;D、∵△ABC≌△DEF,∴BC=EF,故此结论正确;故选:C.二、填空题(本大题共10小题,每小题3分,共30分)11.(3分)(2016春•芦溪县期末)一扇窗户打开后,用窗钩可将其固定,这里所运用的几何原理是三角形的稳定性.【解答】解:一扇窗户打开后,用窗钩可将其固定,这里所运用的几何原理是三角形的稳定性.故答案为:三角形的稳定性.12.(3分)(2013秋•常山县期末)已知等腰三角形的两边长分别为3和6,则其周长为15.【解答】解:当等腰三角形的腰为3时,三边为3,3,6,3+3=6,三边关系不成立,当等腰三角形的腰为6时,三边为3,6,6,三边关系成立,周长为3+6+6=15.故答案为:15.13.(3分)(2017春•高唐县期末)如图,∠A+∠B+∠C+∠D+∠E+∠F=360度.【解答】解:如右图所示,∵∠AHG=∠A+∠B,∠DNG=∠C+∠D,∠EGN=∠E+∠F,∴∠AHG+∠DNG+∠EGN=∠A+∠B+∠C+∠D+∠E+∠F,又∵∠AHG、∠DNG、∠EGN是△GHN的三个不同的外角,∴∠AHG+∠DNG+∠EGN=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.故答案为:360°.14.(3分)(2004•济宁)如图,AB、CD相交于点O,AD=CB,请你补充一个条件,使得△AOD≌△COB,你补充的条件是∠A=∠C或∠ADO=∠CBO.【解答】解:添加条件可以是:∠A=∠C或∠ADC=∠ABC.∵添加∠A=∠C根据AAS判定△AOD≌△COB,添加∠ADC=∠ABC根据ASA判定△AOD≌△COB,故填空答案:∠A=∠C或∠ADC=∠ABC.15.(3分)(2014•广州)已知OC是∠AOB的平分线,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为点D、E,PD=10,则PE的长度为10.【解答】解:∵OC是∠AOB的平分线,PD⊥OA,PE⊥OB,∴PE=PD=10.故答案为:10.16.(3分)(2019•东台市一模)等腰三角形一腰上的高与另一腰的夹角为30°,则它的顶角为60°或120°.【解答】解:当高在三角形内部时,顶角是120°;当高在三角形外部时,顶角是60°.故答案为:60°或120°.17.(3分)(2016•乌鲁木齐)一个多边形的内角和是外角和的2倍,则这个多边形的边数为6.【解答】解:∵多边形的外角和是360度,多边形的内角和是外角和的2倍,则内角和是720度,720÷180+2=6,∴这个多边形是六边形.故答案为:6.18.(3分)(2017秋•前郭县校级月考)已知等腰三角形底边为8,一腰上的中线分此三角形的周长成两部分,其差为2,则腰长为6或10.【解答】解:如图,设等腰三角形的腰长是x.当AD+AC与BC+BD的差是2时,即x+x﹣(x+8)=2,解得:x=10,10,10,8能够组成三角形,符合题意;当BC+BD与AD+AC的差是2时,即8x﹣(x+x)=2,解得:x=6,6,6,8能够组成三角形,符合题意.综上所述,腰长是6或10.故答案为6或10.19.(3分)(2010春•高州市期末)在三角形△ABC中,∠C=90°,∠A=2∠B,则∠A=60°.【解答】解:设∠B为x,则∠A=2x,根据三角形内角和定理,x+2x=90°,∴x=30°∴∠A=60°.故答案为60°.20.(3分)(2017春•平川区校级期中)若实数x,y满足|x﹣5|+(y﹣8)2=0,则以x,y 的值为边长的等腰三角形的周长为18或21.【解答】解:根据题意得,x﹣5=0,y﹣8=0,解得x=5,y=8,①5是腰长时,三角形的三边分别为5、5、8,∵5+5>8,∴不组成三角形,周长为18;②5是底边时,三角形的三边分别为5、8、8,能组成三角形,周长=8+8+5=21.综上所述,等腰三角形的周长是18或21.故答案为:18或21.三、解答题(本大题共6小题,共30分)21.(5分)(2017秋•前郭县校级月考)如图,△ABC≌△DEF,CF=3cm,求EB的长.【解答】解:∵△ABC≌△DEF,∴BC=EF,∴BC﹣EC=EF﹣EC,即BE=CF=3cm.22.(5分)(2017秋•前郭县校级月考)如图,CE是△ABC的外角∠ACD的平分线,若∠B =35°,∠ACE=60°,求∠A的度数.【解答】解:∵∠ACE=60°,CE是△ABC的外角∠ACD的平分线,∠ACD=2∠ACE=120°,∵∠ACD=∠A+∠B,∠B=35°,∴∠A=∠ACD﹣∠B=85°.23.(5分)(2018秋•江城区校级月考)如图,AC=AD,BC=BD,求证:AB平分∠CAD.【解答】证明:在△ABC和△ABD中,,∴△ABC≌△ABD,∴∠CAB=∠DAB,∴AB平分∠CAD,24.(5分)(2017秋•邵阳县校级期中)已知:如图,AB=DC,AB∥DC,求证:AD=BC.【解答】证明:∵AB∥DC,∴∠BAC=∠DCA,在△BAC和△DCA中,,∴△BAC≌△DCA(SAS),∴BC=AD.25.(5分)(2018•昆明二模)如图所示,AC=AE,∠1=∠2,AB=AD.求证:BC=DE.【解答】证明:∵∠1=∠2,∴∠CAB=∠EAD在△CAB和△EAD中,∴△CAB≌△EAD(SAS)26.(5分)(2017秋•安图县月考)如图,已知AB=AC,AD=AE,BD=CE,且B,D,E 三点共线,求证:∠3=∠1+∠2.【解答】证明:在△ABD和△ACE中,,∴△ABD≌△ACE,∴∠BAD=∠1,∠ABD=∠2,∵∠3=∠BAD+∠ABD,∴∠3=∠1+∠2.四、解答题(本大题共5小题,共40分)27.(7分)(2017秋•前郭县校级月考)如图,已知:点B、F、C、E在一条直线上,FB=CE,AC=DF,∠A=∠D=90°.求证:AB∥DE.【解答】证明:如图,∵FB=CE,∴FB+FC=CE+FC,即BC=EF.又∵∠A=∠D=90°,在Rt△ABC与Rt△DEF中,,∴Rt△ABC≌Rt△DEF(HL),∴∠B=∠FED,∴AB∥DE.28.(7分)(2017秋•前郭县校级月考)如图:AB=CD,AE=DF,CE=FB.求证:AF=DE.【解答】证明:∵CE=FB,∴CE+EF=FB+EF,即CF=BE,在△ABE和△DCF中,∵,∴△ABE≌△DCF(SSS),∴∠B=∠C,在△ABF和△DCE中,∴△ABF≌△DCE(SAS),∴AF=DE.29.(8分)(2018秋•新罗区校级月考)如图,点A、B、C在同一直线上,点E在BD上,且△ABD≌△EBC,AB=2cm,BC=3cm.(1)求DE的长;(2)判断AC与BD的位置关系,并说明理由.(3)判断直线AD与直线CE的位置关系,并说明理由.【解答】解:(1)∵△ABD≌△EBC,∴BD=BC=3cm,BE=AB=2cm,∴DE=BD﹣BE=1cm;(2)DB与AC垂直,理由:∵△ABD≌△EBC,∴∠ABD=∠EBC,又A、B、C在一条直线上,∴∠EBC=90°,∴DB与AC垂直.(3)直线AD与直线CE垂直.理由:如图,延长CE交AD于F,∵△ABD≌△EBC,∴∠D=∠C,∵Rt△ABD中,∠A+∠D=90°,∴∠A+∠C=90°,∴∠AFC=90°,即CE⊥AD.30.(8分)(2013秋•永定县校级期中)(1)如图1,△ABC中,∠BAC=90°,AB=AC,AE是过A点的一条直线,且B、C在AE的异侧,BD⊥AE于D,CE⊥AE于E,求证:BD=DE+CE.(2)若直线AE绕点A旋转到图2的位置时(BD<CE),其余条件不变,问BD与DE、CE的关系如何?请予以证明.【解答】解:(1)∵∠BAC=90°,BD⊥AE,CE⊥AE,∴∠BDA=∠AEC=90°,∵∠ABD+∠BAE=90°,∠CAE+∠BAE=90°∴∠ABD=∠CAE,∵AB=AC,在△ABD和△CAE中,∵,∴△ABD≌△CAE(AAS),∴BD=AE,AD=CE,∵AE=AD+DE,∴BD=DE+CE;(2)BD=DE﹣CE;∵∠BAC=90°,BD⊥AE,CE⊥AE,∴∠BDA=∠AEC=90°,∴∠ABD+∠DAB=∠DAB+∠CAE,∴∠ABD=∠CAE,∵AB=AC,在△ABD和△CAE中,∵,∴△ABD≌△CAE(AAS),∴BD=AE,AD=CE,∴AD+AE=BD+CE,∵DE=BD+CE,∴BD=DE﹣CE.31.(10分)(2017秋•前郭县校级月考)如图,∠CBF、∠ACG是△ABC的外角,∠ACG 的平分线所在的直线分别与∠ABC、∠CBF的平分线BD、BE交于点D、E.(1)求∠DBE的度数;(2)若∠A=70°,求∠D的度数;(3)若∠A=a,则∠D=α,∠E=90°α(用含a的式子表示)【解答】解:(1)∵BD平分∠ABC,BE平分∠CBF,∴∠DBC ABC,∠CBE CBF,∴∠DBC+∠CBE(∠ABC+∠CBF)=90°,∴∠DBE=90°;(2)∵CD平分∠ACG,BD平分∠ABC,∴∠DCG ACG,∠DBC ABC,∵∠ACD=∠A+∠ABC,∴2∠DCG=∠ACF=∠A+∠ABC=∠A+2∠DBC,∵∠DCG=∠D+∠DBC,∴2∠DCG=2∠D+2∠DBC,∴∠A+2∠DBC=2∠D+2∠DBC,∴∠D A=35°;(3)由(2)知∠D A,∵∠A=α,∴∠D,∵∠DBE=90°,∴∠E=90°α.故答案为:,90°.。

人教版八年级数学上册第一次月考试题含答案

人教版八年级数学上册第一次月考试题含答案

人教版八年级数学试题江苏省无锡市宜兴市2017-2018学年八年级数学上学期第一次月考试题考试时间:90分钟满分:100分一、选择题(共10题,每题3分,共30分)1.下面有4个汽车标志图案,其中不是轴对称图形的是()A. B. C. D.2.下列说法正确的是()A.面积相等的两个三角形全等 B.周长相等的两个三角形全等C.形状相同的两个三角形全等 D.成轴对称的两个三角形全等3、如果两个三角形有两边及一角对应相等,那么这两个三角形()A .一定全等B .一定不全等C .不一定全等D .面积相等4.如图,△ABC与△A′B′C′关于直线l对称,则∠B的度数为()A.30° B.50° C.90° D.100°第4题第5题第6题5.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.∠BAC=∠DAC B.CB=CD C.∠BCA=∠DCA D.∠B=∠D=90°6.一块三角形玻璃样板不慎被小强同学碰破,成了四片完整四碎片(如图所示),聪明的小强经过仔细的考虑认为只要带其中的两块碎片去玻璃店就可以让师傅画一块与以前一样的玻璃样板.你认为下列四个答案中考虑最全面的是()A.带其中的任意两块去都可以 B.带1、2或2、3去就可以了C.带1、4或3、4去就可以了 D.带1、4或2、4或3、4去均可7.如图,△ABC≌△DEF,点A与D,B与E分别是对应顶点,且测BC=5cm,BF=7cm,则BE 长为()A.1cm B .2cm C .3cm D .4cm第7题第8题第9题8.如图,是4×4正方形网格,其中已有4个小方格涂成了黑色.现在要从其余白色小方格中选出一个也涂成黑色,使整个黑色部分图形构成轴对称图形,这样的白色小方格有()A.1个 B.2个C.3个 D.4个9.如图,AB=AC,AC≠BC,AH⊥BC于H,BD⊥AC于D,CE⊥AB于E,AH、BD、CE交于点O,图中全等直角三角形的对数()A.3 B.4 C.5 D.610.如图,AE⊥AB,且AE=AB,BC⊥CD,且BC=CD,请按照图中所标注的数据计算图中实线所围成的图形的面积S是()A.30 B.50 C.60 D.80第10题二、填空题(共8题,每空2分,共18分)11.工人师傅在做完门框后,为防止变形常常像图中所示的那样上两条斜拉的木条(即图中的AB,CD两根木条),这样做的依据是.12.在“线段、角、三角形、圆、等腰梯形”这五个图形中,是轴对称图形的有个,其中对称轴最多的是.13.如图,若△ABC≌△ADE,且∠B=60°,∠C=30°,则∠DAE= .第11题第13题第15题14.若△ABC≌△DEF,且△ABC的周长为12,若AB=5,EF=4,AC= .15.如图,∠1=∠2,要使△ABE≌△ACE,还需添加一个条件是(填上你认为适当的一个条件即可).16.如图,△ABC 中,∠C=90°,AC=BC ,AD 是∠BAC 的角平分线,DE ⊥AB 于E ,若AB=10cm ,则△DBE 的周长等于 。

人教版八年级上册数学第一次月考数学试卷及答案

人教版八年级上册数学第一次月考数学试卷及答案

人教版八年级上册数学第一次月考数学试卷及答案人教版数学八年级上册第一次月考数学试卷一、选择题(共10小题,每小题3分,共30分)1.以下列各组线段为边,能组成三角形的是()A。

3cm,4cm,5cmB。

4cm,6cm,10cmC。

1cm,1cm,3cmD。

3cm,4cm,9cm2.已知等腰三角形的一边长等于4,一边长等于9,则它的周长为()A。

22B。

17C。

17或22D。

263.一个三角形的两边长分别为3和8,第三边长是一个偶数,则第三边的长不能为()A。

6B。

8C。

10D。

124.在如图中,正确画出AC边上高的是()A。

B。

C。

D。

5.如图,线段AD把△ABC分为面积相等的两部分,则线段AD是()A。

三角形的角平分线B。

三角形的中线C。

三角形的高D。

以上都不对6.适合条件∠A=∠B=∠C的三角形是()A。

锐角三角形B。

等边三角形C。

钝角三角形D。

直角三角形7.过多边形的一个顶点的所有对角线把多边形分成8个三角形,这个多边形的边数是()A。

8B。

9C。

10D。

118.若一个多边形的内角和等于1080°,则这个多边形的边数是()A。

9B。

8C。

7D。

69.一个多边形的内角和比它的外角和的2倍还大180°,这个多边形的边数是()A。

5B。

6C。

7D。

810.三角形的一个外角是锐角,则此三角形的形状是()A。

锐角三角形B。

钝角三角形C。

直角三角形D。

无法确定二、填空题(共10小题,每小题3分,共30分)13.如图,共有10个三角形。

14.如图所示,∠CAB的外角等于120°,∠B等于40°,则∠C的度数是 100°。

15.如图,∠1,∠2,∠3是△XXX的不同的三个外角,则∠1+∠2+∠3= 360°。

16.要使五边形木架(用5根木条钉成)不变形,至少要再钉2根木条。

17.一个多边形截去一个角后,所形成的一个新多边形的内角和为2520°,则原多边形是11边形。

人教版八年级数学上册第一次月考试题含答案

人教版八年级数学上册第一次月考试题含答案

山东省莒县第三协作区2017-2018学年八年级数学上学期第一次月考试题一、选择题(1—8每题3分,9—12每题4分,共40分)1.下列图标中,是轴对称图形的是( )A.(1)(4) B.(2)(4) C.(2)(3) D.(1)(2)2.△ABC≌△A′B′C′,其中∠A′=50°,∠B′=70°,则∠C的度数为()A.55° B.60° C.70° D.75°3.某同学把一块三角形的玻璃打碎成了3块(如图2),现在要到玻璃店去配一块完全一样的玻璃,那么最省事方法是()A.带①去 B.带②去 C.带③去 D.①②③都带去4.和点P(-3,2)关于y轴对称的点是( )A.(3,2) B.(-3,2) C.(3,-2) D.(-3,-2)5.已知12∠=∠,AC AD =,增加下列条件:①AB AE =;②BC ED =;③C D ∠=∠;④B E ∠=∠。

其中能使ABC AED ∆≅∆的条件有( )A. 4个B. 3个C. 2个D. 1个(第3题)) (第7题) (第5题) 6.等腰三角形的一个角为50°,则这个等腰三角形的顶角可能为( ) A .50° B .65° C .80° D .50°或80°7.如图,已知∠ABC =∠BAD ,添加下列条件还不能判定△ABC ≌△BAD 的是( )A .AC =BDB .∠CAB =∠DBAC .∠C =∠D D .BC =AD8.如图,一艘海轮位于灯塔P 的南偏东70°方向的M 处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P 的北偏东40°方向的N 处,则N 处与灯塔P 的距离为( )A .40海里B .60海里C .70海里D .80海里(第8题) (第9题) (第11题) (第12题)9.在平面直角坐标系xOy 中,已知点A(2,-2),在y 轴上确定一点P ,使△AOP 为等腰三角形,则符合条件的点P 有( )A .1个B .2个C .3个D .4个10.如图,在Rt △ABC 中,∠C =90°,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线AP 交 边BC 于点D ,若CD =4,AB =15,则△ABD 的面积是( ) A .15 B .30 C .45 D .6011.如图,在△ABC 和△CDE 中,若∠ACB =∠CED =90°,AB =CD ,BC =DE ,则下列结论中不正确的是( )A .△ABC ≌△CDEB .CE =AC C .AB ⊥CD D .E 为BC 的中点12.如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连接BF,CE.下列说法:①CE=BF;②△ABD和△ACD的面积相等;③BF∥CE;④△BDF≌△CDE.其中正确的有()A.1个 B.2个 C.3个 D.4个二、填空题(每题4分,共16分)13.已知点A(a,-2)和B(3,2),当满足条件________时,点A和点B关于x轴对称.14.如图,已知方格纸中是4个相同的正方形,则∠1+∠2+∠3=____度.(第14题)(第16题)15、一个汽车车牌在水中的倒影为,则该车的牌照号码是________.16、如图:△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm,则△ABC的周长为________.三、解答题(共64分)17.(8)如图,已知A(0,4),B(-2,2),C(3,0).(1)作△ABC关于x轴对称的△A1B1C1;(2)写出点A1,B1,C1的坐标;(3)△A1B1C1的面积S△A1B1C1=________.(第17题)18(10).如图,点B,F,C,E在直线l上(点F,点C之间不能直接测量),点A,D在l异侧,测得AB=DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF;(2)指出图中所有平行的线段,并说明理由.19.(10)如图,已知在△ABC中,D为BC上的一点,DA平分∠EDC,且∠E=∠B,DE=DC,求证:AB =AC.20.(10)如图,在△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连接EC.(1)求∠ECD的度数;(2)若CE=5,求BC的长.(第20题)21.(12)已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2.(1)求证:BD=CE;(2)求证:∠M=∠N.22.(14分)如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°.(1)当点D在AC上时,如图①,线段BD,CE有怎样的数量关系和位置关系?请证明你的猜想;(2)将图①中的△ADE绕点A顺时针旋转α(0°<α<90°),如图②,线段BD,CE有怎样的数量关系和位置关系?请说明理由.八年级数学月考答案一、选择题1.D 2.B 3.C 4.A5.B 6.D 7.A 8.D 9.D 10.B 1 1.D 12.D 二、填空 13.a =3 14.135 15.w5236499 16.19cm 三、17.解:(1)如图.(第17题)(2)A 1(0,-4),B 1(-2,-2),C 1(3,0).(3)718.(1)证明:∵BF =CE ,∴BF +FC =FC +CE ,即BC =EF ,在△ABC 和△DEF 中,⎩⎪⎨⎪⎧AB =DE ,AC =DF ,BC =EF ,∴△ABC ≌△DEF(SSS ) (2)结论:AB ∥DE ,AC ∥DF.理由:∵△ABC ≌△DEF ,∴∠ABC =∠DEF ,∠ACB =∠DFE ,∴AB ∥DE ,AC ∥DF19a.证明:∵DA 平分∠EDC ,∴∠ADE =∠ADC.又∵DE =DC ,AD =AD ,∴△AED ≌△ACD(SAS ).∴∠E =∠C.又∵∠E =∠B ,∴∠B =∠C.∴AB =AC.20.解:(1)∵DE 垂直平分AC , ∴AE =CE ,∴∠ECD =∠A =36°. (2)∵AB =AC ,∠A =36°, ∴∠ABC =∠ACB =72°. ∵∠BEC =∠A +∠ACE =72°, ∴∠B =∠BEC ,∴BC =CE =5.21.(1)证明:在△ABD 和△ACE 中,⎩⎪⎨⎪⎧AB =AC ,∠1=∠2,AD =AE ,∴△ABD ≌△ACE(SAS ),∴BD =CE(2)证明:∵∠1=∠2,∴∠1+∠DAE =∠2+∠DAE ,即∠BAN =∠CAM ,由(1)得:△ABD ≌△ACE ,∴∠B =∠C ,在△ACM 和△ABN中,⎩⎪⎨⎪⎧∠C =∠B ,AC =AB ,∠CAM =∠BAN ,∴△ACM ≌△ABN(ASA ),∴∠M =∠N 22.解:(1)BD =CE ,BD ⊥CE.证明:延长BD 交CE 于点M ,易证△ABD ≌△ACE(SAS ),∴BD =CE ,∠ABD =∠ACE ,∵∠BME =∠MBC +∠BCM =∠MBC +∠ACE +∠ACB =∠MBC +∠ABD +∠ACB =∠ABC +∠ACB =90°,∴BD⊥CE (2)仍有BD =CE ,BD ⊥CE ,理由同(1)专项训练二 概率初步一、选择题1.(徐州中考)下列事件中的不可能事件是( )A .通常加热到100℃时,水沸腾B .抛掷2枚正方体骰子,都是6点朝上C .经过有交通信号灯的路口,遇到红灯D .任意画一个三角形,其内角和是360° 2.小张抛一枚质地均匀的硬币,出现正面朝上的可能性是( ) A .25% B .50% C .75% D .85%3.(2016·贵阳中考)2016年5月,为保证“中国大数据产业峰会及中国电子商务创新发展峰会”在贵阳顺利召开,组委会决定从“神州专车”中抽调200辆车作为服务用车,其中帕萨特60辆、狮跑40辆、君越80辆、迈腾20辆,现随机从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率是( )A.110B.15C.310D.254.(金华中考)小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为( )A.14B.13C.12D.345.在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出2个小球,两球恰好是一个黄球和一个红球的概率为( )A.12B.13C.14D.166.现有两枚质地均匀的正方体骰子,每枚骰子的六个面上都分别标有数字1、2、3、4、5、6.同时投掷这两枚骰子,以朝上一面所标的数字为掷得的结果,那么所得结果之和为9的概率是( )A.13B.16C.19D.1127.分别转动图中两个转盘一次,当转盘停止转动时,两个指针分别落在某个数所表示的区域,则两个数的和是2的倍数或3的倍数的概率等于( )A.316B.38C.58D.1316第7题图 第8题图8.(2016·呼和浩特中考)如图,△ABC 是一块绿化带,将阴影部分修建为花圃,已知AB =15,AC =9,BC =12,阴影部分是△ABC 的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为( )A.16B.π6C.π8D.π5二、填空题9.已知四个点的坐标分别是(-1,1),(2,2),⎝ ⎛⎭⎪⎫23,32,⎝ ⎛⎭⎪⎫-5,-15,从中随机选取一个点,在反比例函数y =1x 图象上的概率是________.10.(黄石中考)如图所示,一只蚂蚁从A 点出发到D ,E ,F 处寻觅食物.假定蚂蚁在每个岔路口都可能随机选择一条向左下或右下的路径(比如A 岔路口可以向左下到达B 处,也可以向右下到达C 处,其中A ,B ,C 都是岔路口).那么,蚂蚁从A 出发到达E 处的概率是________.11.(贵阳中考)现有50张大小、质地及背面图案均相同的《西游记》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为________.12.(荆门中考)荆楚学校为了了解九年级学生“一分钟内跳绳次数”的情况,随机选取了3名女生和2名男生,则从这5名学生中,选取2名同时跳绳,恰好选中一男一女的概率是________.13.(重庆中考)点P 的坐标是(a ,b ),从-2,-1,0,1,2这五个数中任取一个数作为a 的值,再从余下的四个数中任取一个数作为b 的值,则点P (a ,b )在平面直角坐标系中第二象限内的概率是________.14.★从-1,1,2这三个数字中,随机抽取一个数记为a ,那么,使关于x 的一次函数y =2x +a 的图象与x 轴、y 轴围成的三角形的面积为14,且使关于x 的不等式组⎩⎨⎧x +2≤a ,1-x ≤2a有解的概率为________.三、解答题15.(南昌中考)在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m (m >1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A ,请完成下列表格:(2)先从袋子中取出m 个红球,再放入m 个一样的黑球并摇匀,随机摸出1个黑球的概率等于45,求m 的值.16.(菏泽中考)锐锐参加我市电视台组织的“牡丹杯”智力竞答节目,答对最后两道单选题就顺利通关,第一道单选题有3个选项,第二道单选题有4个选项,这两道题锐锐都不会,不过锐锐还有两个“求助”可以用(使用“求助”一次可以让主持人去掉其中一题的一个错误选项).(1)如果锐锐两次“求助”都在第一道题中使用,那么锐锐通关的概率是________;(2)如果锐锐两次“求助”都在第二道题中使用,那么锐锐通关的概率是________;(3)如果锐锐将每道题各用一次“求助”,请用树状图或者列表来分析他顺利通关的概率.17.(丹东中考)甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;(2)若两人抽取的数字之和为2的倍数,则甲获胜;若抽取的数字之和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.18.一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3,3,5,x,甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个球上数字之和,记录后将小球放回袋中搅匀,进行重复实验.实验数据如下表:(1)如果实验继续进行下去,根据上表数据,出现“和为8”的频率稳定在它的概率附近,估计出现“和为8”的概率是________;(2)如果摸出的这两个小球上数字之和为9的概率是13,那么x的值可以取4吗?请用列表法或画树状图法说明理由;如果x的值不可以取4,请写出一个符合要求的x的值.参考答案与解析1.D 2.B 3.C 4.A 5.A 6.C 7.C8.B 解析:∵AB =15,BC =12,AC =9,∴AB 2=BC 2+AC 2,∴△ABC 为直角三角形,∴△ABC 的内切圆半径为12+9-152=3,∴S △ABC =12AC ·BC =12×12×9=54,S 圆=9π,∴小鸟落在花圃上的概率为9π54=π6.9.12 10.12 11.15 12.35 13.15 14.13 15.解:(1)4 2或3 (2)根据题意得6+m 10=45,解得m =2,所以m 的值为2. 16.解:(1)14 解析:第一道肯定能对,第二道对的概率为14,所以锐锐通关的概率为14;(2)16 解析:锐锐两次“求助”都在第二道题中使用,则第一道题对的概率为13,第二道题对的概率为12,所以锐锐能通关的概率为12×13=16;(3)锐锐将每道题各用一次“求助”,分别用A ,B 表示剩下的第一道单选题的2个选项,a ,b ,c 表示剩下的第二道单选题的3个选项,树状图如图所示.共有6种等可能的结果,锐锐顺利通关的只有1种情况,∴锐锐顺利通关的概率为16.17.解:(1)所有可能出现的结果如下表,从表格可以看出,总共有9种结果,每种结果出现的可能性相同,其中两人抽取相同数字的结果有3种,所以两人抽取相同数字的概率为13;(2)不公平.从表格可以看出,两人抽取数字之和为2的倍数有5种,两人抽取数字之和为5的倍数有3种,所以甲获胜的概率为59,乙获胜的概率为13.∵59>13,∴甲获胜的概率大,游戏不公平.2 3 52 2 23 2 5 2 3 2 3 3 3 5 3 52 53 5 5 518.解:(1)0.33(2)图略,当x 为4时,数字和为9的概率为212=16≠13,所以x 不能取4;当x =6时,摸出的两个小球上数字之和为9的概率是13.。

人教版2018-2019学年度第一学期八年级数学上册第一次月考试题

人教版2018-2019学年度第一学期八年级数学上册第一次月考试题

2018-2019学年度第一学期八年级数学第一次月考试卷(题)选择题(每小题3分,共30分)下列各组线段,能组成三角形的是(),3 cm,5 cm B. 5 cm,6 cm,10 cmcm,1 cm,3 cm D. 3 cm,4 cm,8 cm.已知某三角形的两边长是5和6,则此三角形的第三边长的取值可以是()A.2 B.9 C.11 D.13.一个三角形的三条高的交点在三角形的外部,那么这个三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.以上都不对一个多边形的内角和是它的外角和的2倍,这个多边形边数是()条 B. 6条 C. 7条 D. 8条两边长分别为7cm和8cm的等腰三角形,则这个等腰三角形的周长是()A.16cmB.17cmC.22cm或23cmD.11cm∥CD,DB⊥BC,∠2=50°,则∠1的度数是( )A.40° B.50° C.60° D.140°如图,AB∥CD,E是BC延长线上一点,若∠B=50°,∠D=20°,则∠E的度数为()A.20°B.30°C.40°D.50°8.点E,F在线段BC上,△ABF≌△DCE,点A与点D,点B与点C是对应顶点,AF与DE交于点M,则∠DCE=( )A.∠B B.∠A C.∠EMF D.∠AFB9.如图,小明不小心把一块三角形的玻璃打碎成了三块,现要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A.带①去;B.带②去;C.带③去;D.带①和②去10.如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使BC边恰好落在AC边上,若∠A=25°,则∠BDC等于()A.45° B.60° C.70° D.75°二、填空题(每小题3分,共24分)11.用20cm长的铁丝围成一边为10cm的等腰三角形,则该三角形的另外两边是12若三角形有一个外角小于60度,那么这个三角形为三角形。

人教版八年级(上)第一次月考数学试卷及答案

人教版八年级(上)第一次月考数学试卷及答案

人教版八年级(上)第一次月考数学试卷及答案人教版八年级(上)第一次月考数学试卷一、选择题(共12小题,每小题4分,满分48分)1.以下长度的三条线段中,能够组成三角形的是()。

A。

2cm,3cm,4cmB。

1cm,4cm,2cmC。

1cm,2cm,3cmD。

6cm,2cm,3cm2.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()。

A。

带①去B。

带②去C。

带③去D。

带①和②去3.能够把一个任意三角形分成面积相等的两部分的是()。

A。

角平分线B。

中线C。

高D。

A、B、C都可以4.下面四个图形中,线段BE是△ABC的高的图形是()。

A。

B。

C。

D。

5.适合条件∠A=∠B=∠C的△ABC是()。

A。

锐角三角形B。

直角三角形C。

钝角三角形D。

等边三角形6.一个多边形的内角和比它的外角和的2倍还大180°,这个多边形的边数是()。

A。

5B。

6C。

7D。

87.下列命题正确的是()。

A。

三角形的角平分线,中线,高均在三角形内部B。

三角形中至少有一个内角不小于60°C。

直角三角形仅有一条高D。

直角三角形斜边上的高等于斜边的一半8.如图,在△ABC中,AB=AC,∠BAD=∠CAD,则下列结论:①△ABD≌△ACD,②∠B=∠C,③BD=CD,④AD⊥BC。

其中正确的个数有()。

A。

1个B。

2个C。

3个D。

4个9.如图,在△ABC中,AD平分∠XXX于D,XXX于E,∠B=40°,∠BAC=82°,则∠DAE=()。

A。

7°B。

8°C。

9°D。

10°10.已知,如图AB=CD,BC=AD,∠B=23°,则∠D=()。

A。

67°B。

46°C。

23°D。

不能确定11.如图,EA∥DF,AE=DF,要使△AEC≌△DFB,只要()。

A。

AB=CDB。

人教版八年级数学上册第一次月考试卷附答案

人教版八年级数学上册第一次月考试卷附答案

人教版八年级数学上册第一次月考试卷附答案一、选择题(共10小题;共20分)1. 如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带去.A. B. C. D. 和2. 下列几组线段能组成三角形的是,3. 下列各图中,正确画出边上的高的是A. B.C. D.4. 能够单独密铺的正多边形是A. 正五边形B. 正六边形C. 正七边形D. 正八边形5. 一个多边形的内角和为,则这个多边形的边数为A. B. C. D.6. 适合条件的三角形是A. 锐角三形B. 直角三形C. 钝角三形D. 都有可能7. 下列说法中正确的是A. 两个直角三角形全等B. 两个等腰三角形全等C. 两个等边三角形全等D. 两条直角边对应相等的直角三角形全等8. 如图,已知,那么添加下列一个条件后,仍无法判定的是A. B.C. D.9. 下列命题中:()形状相同的两个三角形是全等形;()在两个全等三角形中,相等的角是对应角,相等的边是对应边;()全等三角形对应边上的高、中线及对应角平分线分别相等,其中真命题的个数有A. 个B. 个C. 个D. 个10. 如图,平分,,,垂足分别为,.下列结论中不一定成立的是A. B. 平分C. D. 垂直平分二、填空题(共6小题;共18分)11. 如图,共有个三角形.12. 如图,的一个外角等于,,则的度数是.13. 已知一个多边形的内角和是外角和的倍,则此多边形是边形.14. 如图,若,且,,则度.15. 如图,,分别是锐角三角形和锐角三角形中,边上的高,且,,若使,请你补充条件.(填写一个你认为适当的条件即可)16. 如图,已知在中,,,平分,于.若,则的周长为.三、解答题(共9小题;共112分)17. 如图,求的度数.18. (1)下列图形中具有稳定性的是;(只填图形序号)(2)对不具有稳定性的图形,请适当地添加线段,使之具有稳定性.19. 已知等腰三角形的一边等于,另一边等于,求此三角形的周长.20. 如图,是的外角,平分,平分,且,交于点,求证:.21. 已知:如图,,,求证:.22. 完成下面的证明过程.已知:如图,,于,于,.求证:.证明:,(两直线平行,内错角相等),,,,,,在和中,.23. 如图,已知平分,,求证:.24. 如图,点,,,在同一直线上,,,.求证:.25. 如图,已知,,于,且,能否在中找到与相等的线段,并说明理由.答案第一部分1. C 【解析】第一块,仅保留了原三角形的一个角和部分边,不符合任何判定方法;第二块,仅保留了原三角形的一部分边,所以该块不行;第三块,不但保留了原三角形的两个角还保留了其中一个边,所以符合判定,所以应该拿这块去.2. C3. D4. B5. C【解析】本题考查多边形内角和公式.,.6. B7. D8. C9. C10. D第二部分11.12.13. 六14.15. (答案不唯一)16.第三部分17. 连接,(对顶角相等),(等式性质),(等量代换).(三角形内角和定理),(等量代换).18. (1)①④⑥(2)如图所示:19. ()当三角形的三边是时,周长是;()当三角形的三边是时,周长是.故它的周长是或.20. ,.,.平分,,,.21. 在和中,,.22. ;;;;;;23. 平分,,在和中,,,.24. ,,即,,,,,在和中,,.25. 在中与相等的线段是.理由:,,于,,..在和中,.,..所以在中与相等的线段是.。

2018年八年级第一学期数学月考试卷

2018年八年级第一学期数学月考试卷

2018-2019学年第一学期第一次月考八年级数学试题本试卷分卷I 和卷Ⅱ两部分;卷I 为选择题,卷Ⅱ为非选择题。

本试卷满分为120 分,考试时间为120分钟一.选择题(共16小题,1-10小题每小题3分,11-16小题每小题2分,共42分) 1.如图,以AB 为边的三角形共有( )个. A .5B .4C .3D .22.下列图形具有稳定性的是( ) A .B .C .D .3.下列长度的三条线段能组成三角形的是( ) A .1,2,3 B .5,4,2C .2,2,4D .4,6,114.已知∠A ,∠B 为直角△ABC 两锐角,∠B=54°,则∠A=( ) A .60° B .36° C .56° D .46°5.三角形的下列四种线段中一定能将三角形分成面积相等的两部分的是( ) A .角平分线 B .中位线C .高D .中线6.如果三角形的三个内角的度数比是2:3:4,则它是( ) A .锐角三角形 B .钝角三角形 C .直角三角形 D .钝角或直角三角形7.如图,在△ABC 中,BC 边上的高是( ) A .AF B .BH C .CD D .EC8.一个多边形的内角和是720°,这个多边形的边数是( ) A .4B .5C .6D .79.如图,点D 在△ABC 边AB 的延长线上,DE ∥BC .若∠A=35°,∠C=24°,则∠D 的度数是( )A .24°B .59°C .60°D .69°10.正十边形的每一个内角的度数为( ) A .120°B .135°C .140°D .144°11.一副三角板有两个三角形,如图叠放在一起,则∠α的度数是( ) A .120°B .135°C .150°D .165°12.已知一个三角形的两边长分别为8和2,则这个三角形的第三边长可能是( ) A .4B .6C .8D .1013.一个多边形的边数由原来的3增加到n 时(n >3,且n 为正整数),它的外角和( ) A .增加(n ﹣2)×180° B .减小(n ﹣2)×180° C .增加(n ﹣1)×180° D .没有改变14.如图,在△ABC 中,∠C=78°,若沿图中虚线截去∠C ,则∠1+∠2=( ) A .282°B .180°C .258°D .360°15.下列说法不正确的是( ) A .三角形的三条高线交于一点 B .直角三角形有三条高C .三角形的三条角平分线交于一点D .三角形的三条中线交于一点16.如图,将△ABC 沿DE ,EF 翻折,顶点A ,B 均落在点O 处,且EA 与EB 重合于线段EO ,若∠DOF=142°,则∠C 的度数为( ) A .38° B .39° C .42° D .48°1题16题二.填空题(共3小题,每空3分,共12分)17.图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5= 度.18.一个三角形的两边长分别是2和4,第三边长为偶数,则这个三角形的周长是.19.如图,在△ABC中,∠A=α,∠ABC的平分线与∠ACD的平分线交于点A1,得∠A1,则∠A1= .∠A1BC的平分线与∠A1CD的平分线交于点A2,得∠A2,…,∠A2018BC的平分线与∠A2018CD的平分线交于点A2019,得∠A2019,则∠A2019= .三.解答题(共7小题,共66分)20.(本题8分)如图,在小学我们通过观察、实验的方法得到了“三角形内角和是180°”的结论.小明通过这学期的学习知道:由观察、实验、归纳、类比、猜想得到的结论还需要通过证明来确认它的正确性.受到实验方法1的启发,小明形成了证明该结论的想法:实验1的拼接方法直观上看,是把∠1和∠2移动到∠3的右侧,且使这三个角的顶点重合,如果把这种拼接方法抽象为几何图形,那么利用平行线的性质就可以解决问题了.小明的证明过程如下:已知:如图,△ABC.求证:∠A+∠B+∠C=180°.证明:延长BC,过点C作CM∥BA.∴∠A=∠1(两直线平行,内错角相等),∠B=∠2(两直线平行,同位角相等).∵∠1+∠2+∠ACB=180°(平角定义),∴∠A+∠B+∠ACB=180°.请你参考小明解决问题的思路与方法,写出通过实验方法2证明该结论的过程.21.(本题9分)如图,AD平分∠EAC,∠B=70°,∠C=60°,求∠CAD的度数.22.(本题9分)“佳园工艺店”打算制作一批有两边长分别是7分米,3分米,第三边长为奇数(单位:分米)的不同规格的三角形木框.(1)要制作满足上述条件的三角形木框共有种,请说明原因.(2)若每种规格的三角形木框只制作一个,制作这种木框的木条的售价为8元╱分米,问至少需要多少钱购买材料?(忽略接头)23.(本题9分)小月和小东在一起探究有关“多边形内角和”的问题,两人互相出题考对方,小月给小东出了这样的一个题目:一个四边形的各个内角的度数之比为1:2:3:6,求各个内角的度数.小东想了想,说:“这道题目有问题”(1)请你指出问题出在哪里;(2)他们经过研究后,改变题目中的一个数,使这道题没有问题,请你也尝试一下,换一个合适的数,使这道题目没有问题,并进行解答.24.(本题10分)如图,已知△ABC的周长为21cm,AB=6cm,BC边上的中线AD=5cm,△ABD 的周长为15cm,求AC的长.25.(本题10分)如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.26.(本题11分)如图,在△ABC中,BO、CO分别平分∠ABC和∠ACB.计算:(1)若∠A=60°,求∠BOC的度数;(2)若∠A=100°,则∠BOC的度数是多少?(3)若∠A=120°,则∠BOC的度数又是多少?(4)由(1)、(2)、(3),你发现了什么规律?请用一个等式将这个规律表示出来.。

人教版八年级上册数学第一次月考考试卷(附答案)

人教版八年级上册数学第一次月考考试卷(附答案)

人教版八年级上册数学第一次月考考试卷(附答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.12-的相反数是()A.2-B.2 C.12-D.122.矩形具有而平行四边形不一定具有的性质是()A.对边相等B.对角相等C.对角线相等D.对角线互相平分3.下列计算正确的是()A= B.3=C2= D=4.在平面直角坐标系中,点A(﹣3,2),B(3,5),C(x,y),若AC∥x 轴,则线段BC的最小值及此时点C的坐标分别为()A.6,(﹣3,5) B.10,(3,﹣5)C.1,(3,4) D.3,(3,2)5.若 =(b为整数),则a的值可以是()A.15B.27 C.24 D.206.一个整数815550…0用科学记数法表示为8.1555×1010,则原数中“0”的个数为()A.4 B.6 C.7 D.107.在平面直角坐标中,点M(-2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限8.已知a=2018x+2018,b=2018x+2019,c=2018x+2020,则a2+b2+c2-ab-ac-bc的值是()A.0 B.1 C.2 D.39.如图,将△ABC 放在正方形网格图中(图中每个小正方形的边长均为1),点A ,B ,C 恰好在网格图中的格点上,那么△ABC 中BC 边上的高是( )A .102B .104C .105D .510.如图,在矩形纸片ABCD 中,AB=3,点E 在边BC 上,将△ABE 沿直线AE 折叠,点B 恰好落在对角线AC 上的点F 处,若∠EAC=∠ECA ,则AC 的长是( )A .33B .6C .4D .5二、填空题(本大题共6小题,每小题3分,共18分)1.已知2320x y --=,则23(10)(10)x y ÷=_______.2.若(x+p)与(x+5)的乘积中不含x 的一次项,则p =__________.3.在△ABC 中,AB=15,AC=13,高AD=12,则ABC ∆的周长为____________.4.如图,四边形ACDF 是正方形,CEA ∠和ABF ∠都是直角,且点,,E A B 三点共线,4AB =,则阴影部分的面积是__________.5.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是AO 、AD 的中点,若AB=6cm ,BC=8cm ,则AEF 的周长=______cm .6.如图,在平行四边形ABCD 中,连接BD ,且BD =CD ,过点A 作AM ⊥BD 于点M ,过点D 作DN ⊥AB 于点N ,且DN =32,在DB 的延长线上取一点P ,满足∠ABD =∠MAP +∠PAB ,则AP =________.三、解答题(本大题共6小题,共72分)1.解分式方程:1x x -﹣1=233x x -.2.先化简,再求值:(x +2)(x -2)+x(4-x),其中x =14.3.已知22a b -=,且1a ≥,0b ≤.(1)求b 的取值范围(2)设2m a b =+,求m 的最大值.4.如图,已知AC 平分∠BAD ,CE ⊥AB 于E ,CF ⊥AD 于F ,且BC=CD .(1)求证:△BCE ≌△DCF ;(2)求证:AB+AD=2AE.5.如图,有一个直角三角形纸片,两直角边6AC =cm ,8BC = cm ,现将直角边沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?6.班级组织同学乘大巴车前往“研学旅行”基地开展爱国教育活动,基地离学校有90公里,队伍8:00从学校出发.苏老师因有事情,8:30从学校自驾小车以大巴1.5倍的速度追赶,追上大巴后继续前行,结果比队伍提前15分钟到达基地.问:(1)大巴与小车的平均速度各是多少?(2)苏老师追上大巴的地点到基地的路程有多远?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、C3、D4、D5、D6、B7、B8、D9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、1002、-53、32或424、85、96、6三、解答题(本大题共6小题,共72分)1、分式方程的解为x=1.5.2、-3.3、(1)12b-≤≤;(2)24、略5、CD的长为3cm.6、(1)大巴的平均速度为40公里/时,则小车的平均速度为60公里/时;(2)苏老师追上大巴的地点到基地的路程有30公里。

人教版8年级上册第一次月考数学试题

人教版8年级上册第一次月考数学试题

.用边长相等的黑色正三角形与白色正六边形镶嵌图案,按图①②③所示的规律依次下去,,这个三角形一定是()D.无法判定9.一个多边形截取一个角后,形成另一个多边形的内角和是1620°,则原来多边形的边数是( ) A .10 B .11C .12D .以上都有可能10.如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时,则∠A 与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是( ) A .∠A=∠1+∠2 B .2∠A=∠1+∠2 C .3∠A=2∠1+∠2D .3∠A=2(∠1+∠2)二.填空题(共6小题,满分18分,每小题3分)11.要想使一个六边形活动支架ABCDEF 稳固且不变形,至少需要增加 根木条才能固定. 12.一个正多边形的每个外角为60°,那么这个正多边形的内角和是 .13.一个多边形的一个外角为α,且该多边形的内角和与α的和等于840°,则这个多边形的边数为 ,α= 度.14.如图所示:在△AEC 中,AE 边上的高是 .15.若等腰三角形的周长为10cm ,其中一边长为2cm ,则该等腰三角形的底边长为 .16.如图,∠CAD 和∠CBD 的平分线相交于点P .设∠CAD 、∠CBD 、∠C 、∠D 的度数依次为a 、b 、c 、d ,用仅含其中2个字母的代数式来表示∠P 的度数: .三.解答题(共72分)17.(6分)已知△ABC 中,ABC ∠为钝角.请你按要求作图(不写作法,但要保留作图痕迹):(1)过点A 作BC 的垂线AD;(2)作BC A ∠的角平分线交AC 于E; (3)取AB 中点F,连结CF .18.(6分)△ABC 中,AB=AC ,且AC 上的中线BD 把这个三角形的周长分成了12cm 和6cm 的两部分,求这个三角形的腰长和底边的长.19.(8分)已知a ,b ,c 是△ABC 的三边长,a=4,b=6,设三角形的周长是x .BCA(1)直接写出c 的取值范围;(2)若x 是小于18的偶数①求c 的长;②判断△ABC 的形状.20.(8分)如图,ABC ∆中, ABC ∠=BAC ∠,BAC ∠的外角平分线交BC 的延长线于点D,若∠ADC =CAD ∠21,求∠ABC 的度数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

宁津县实验中学2018-2019学年度第一学期第一次月考
八年级数学试题 2018.9
一.选择题
1.已知三角形的两边长分别为 2 cm和7 cm,周长是偶数,则这个三角形是()
A.不等边三角形.
B.等腰三角形.
C.等边三角形.
D.直角三角形.
2.如图,王师傅用4根木条钉成一个四边形木架,要使这个木架不变形,他至
少要再订上木条的根数是()
A.0.
B.1.
C.2. D3.
3.将一副常规的三角尺如图放置,则图中∠AOB的度数是()
A.75°.
B. 95°.
C. 105°.
D.120°
4.下列说法错误的是()
A.一个三角形中至少有一个角不少于60°
B.三角形的中线不可能在三角形的外部. .
C.三角形的中线把三角形的面积平均分成相等的两部分
D.直角三角形只有一条高.
5.如果一个多边形的每一个外角都是45°,那么这个多边形的内角和是()
A.540°.
B.720°.
C. 1080°.
D.1260°.
6.下列说法:
①全等三角形的形状相同、大小相等
②全等三角形的对应边相等、对应角相等
③面积相等的两个三角形全等
④全等三角形的周长相等
其中正确的说法为()
A.①②③④
B. ①②③
C. ②③④
D. ①②④
7.在ΔABC 和ΔDEF 中,已知∠C =∠D, ∠B=∠E,要判断这两个三角形全等,还需添加条件( )
A. AB=ED.
B.AB=FD.
C.AC=F
D. D. ∠A =∠F.
8.如图,点P 是AB 上任一点,∠ABC=∠AB D,从下列各条件中补充一个条件, 不一定能推出ΔAPC ≌ΔAPD.的是( )
A. BC=BD.
B. ∠ACB=∠ADB.
C.AC=A
D. D. ∠CAB=∠DAB
9.已知ΔABC 是等边三角形,点D 、E 分别在AC 、BC 边上,且AD=CE,AE 与BD 交于点F,则∠AFD 的度数为( )
A.60°
B.45°
C.75°
D. 70°
10.如图ΔABC 中,∠B =∠C,BD=CF,BE=CD, ∠EDF=α,则下列结论正确的是( )
A.2α+∠A=90°
B. .2α+∠A=180°
C.α+∠A=90°
D.α+∠A=180 11、一个数的平方根与它的立方根相等,则这个数是( )
A .0
B .1
C .0或1
D .0或±1
12、我国国土面积约为9.6×106m 2,由四舍五入得到的近似数9.6×106( )
A .有三个有效数字,精确到百分位
B .有三个有效数字,精确到百万分位
C .有两个有效数字,精确到十分位
D .有两个有效数字,精确到十万位
二、填空题(本大题共10小题,共30分)
13、等腰三角形一边长为8,一边长为4,则它的周长为 。

14、在 100010001.0,16,8.0,3
,722,
)2(3
0--π(两个1之间依次多一个0)这6个数中,无理数有 个 15、若a 、b 满足
0213
=-++b a ,则a b 的立方根为 。

16、如果把直角三角形的两条直角边同时扩大到原来的5倍,那么斜边扩大到原来的

三.解答题
17、(本题满分14分,每小题7分)
(1)求下列各式中的x
①(满分3分)8
-
x
(3-
)1
=
②(满分4分)25
x
+
)1
(2=
(2)已知某数的平方根是a+3和2a-15,b的立方根是2,求b-a的平方根。

18、(本题满分10分)
已知,如图,四边形ABCD 中,∠ABC=∠ADC=90°,M 、N 分别是AC 、BD 的中点,则结论:(1)MD=MB ;(2)MN ⊥BD 成立吗?请说明理由。

19、(本题满分12分)如图,有一块四边形花圃ABCD ,∠A=90°,AD=6m ,AB=8m ,BC=24m ,DC=26m ,若在这块花圃上种植花草,已知每种植1m 2需50元,则共需多少元?
20、(本题满分12分)如图,细心观察图形,认真分析各式,然后再解答问题。

21,21)1(12=
=+S 22,31)2(22==+S 2
3
,41)3(32==+S (1)用含有n (n 是正整数)的等式表示上述变化规律 。

(2)推算出OA 10的长为 。

(3)求S 12+S 22+S 32+……+S 102的值。

21.(7分)如图,已知AE ⊥BC,AD 平分∠BAE ,∠ADB=110°,∠CAE=20°.求∠B 的度数。

N
M
D
C B A
S n
S 3
S 2A 4
S 1
A n
A 3
A 2
A 1
O D
C
B
A
(7分)如图, 在ΔABC与ΔDCB 中, AC与BD 交于点E,且,∠A=∠D,AB=DC 22.
⑴.求证:ΔABE≌ΔDCE
⑵.当∠AEB=70°时,求∠EBC的度数。

23.(10分)在ΔABC中,∠ABC的平分线与在∠ACE的平分线相交于点D。

⑴.若∠ABC=60°,∠ACB=40°,求∠A和∠D的度数。

⑵.由⑴小题的计算结果,猜想,∠A和∠D有什么数量关系,并加以证明。

24. (10分)如图(1)在ΔABC中,∠ACB=90°,AC=BC,直线MN经过点C,
且AD⊥MN于点D,BE⊥MN于点E。

(1)求证:①ΔADC≌ΔCEB ②DE=AD+BE
(2)当直线MN绕点C旋转到图(2)的位置时,DE、AD、BE 有怎样的关系?并加以证明。

1. B
2. B
3.C 4 .D 5. C 6 .D 7 C 8 .C 9. A 10 B 11.A 12.D 13、20 14、3 15、1 16、5
17、(1)①x=-1 ②x=4或x=-6 (2)±2 18、(1)(2)均成立 理由略 19 7200元20、(1)2
,11)(2n S n n n =
+=+ (2)1010=OA (3)S 12+S 22+S 32+……+S 102=2
55
21.∠B=50°
22. ⑴4分 在 ABE 和 DCE 中.
∴ABE ≌ DCE
⑵3分∠EBC=35°
23. ∠A=80°,∠D=40°(5分) ∠A=2∠D (2分)
证明:∵CD 平分∠ACE ∴∠ACE=2∠DCE 又∠DCE=∠D+∠DBC ∴2∠DCE=2∠D+2∠DBC ∵BD 平分∠ABC ∴∠ABC=2∠DBC 即∠ACE=2∠D+∠ABC 而∠ACE=∠A+∠ABC
∴2∠D=∠A (3分) 24. 证出ΔADC ≌ΔCEB 得4分
由 ΔADC ≌ΔCEB 得AD=CE DC=BE ∴DC+CE=AD+BE 即DE=AD+BE(2分) (2)DE=AD-BE (1分)
易证ΔADC ≌ΔCEB ∴AD=CE CD=BE 又DE=CE-CD ∴DE=AD-BE (3分)。

相关文档
最新文档