硕士研究生高等代数考试大纲
2020年郑州大学915高等代数考研专业课考试大纲(含参考书目)
郑州大学2020年硕士生入学考试初试高等代数考试大纲
明栏里加备注。
郑州大学硕士研究生入学考试
《高等代数》考试大纲
一、考试基本要求及适用范围概述
本《高等代数》考试大纲适用于郑州大学数学与统计学院相关专业的硕士研究生入学考试。
高等代数是数学学科的基础理论课程,主要内容包括多项式理论和线性代数理论。
要求考生系统地理解和掌握高等代数的基本概念和基本理论,掌握多项式、行列式、线性方程组、矩阵、二次型、线性空间、线性变换、λ矩阵、欧氏空间的基本理论,并能综合运用所学的知识分析问题和解决问题。
二、考试形式
硕士研究生入学高等代数考试为闭卷,笔试,考试时间为180分钟,本试卷满分为150分。
试卷结构(题型):填空题、计算题、证明题
三、考试内容及要求
(一)多项式
理解数域的概念.
掌握一元多项式及其次数、首项的定义和运算,性质
掌握带余除法定理,理解整除的概念和基本性质.
理解最大公因式、多项式互素的概念,会用辗转相除法求最大公因式,掌握互素多项式的性质.
理解不可约多项式的概念,理解多项式有根与多项式可约的联系与区别,掌握不可约多项式的性质和因式分解定理.
理解重因式、多项式的微商(导数)的概念,掌握多项式的重因式与其导数的关
命题学院(盖章): 考试科目代码及名称: 915 高等代数
郑州大学硕士研究生入学考试自命题考试大纲 (含参考书目清单)
第 1 页。
《高等代数》考试大纲
《高等代数》考试大纲(一)多项式考试内容数域;一元多项式;整除的概念及性质;最大公因式及辗转相除法;互素的概念及性质;不可约多项式的概念及性质;因式分解及唯一性定理。
考试要求1。
掌握数域、一元多项式的概念,了解一元多项式的运算及性质。
2。
掌握多项式整除的概念,了解相关的性质。
3。
掌握最大公因式的概念,了解辗转相除法。
4。
理解互素的概念,掌握两个一元多项式互素的充分必要条件。
5。
了解不可约多项式的概念及其性质。
6。
了解一般系数的多项式的因式分解定理,掌握复系数与实系数多项式的因式分解定理。
(二)行列式考试内容行列式的概念和基本性质;行列式计算;行列式按行(列)展开;拉普拉斯(Laplace)定理及行列式的乘法法则。
考试要求1。
理解行列式的概念,掌握行列式的性质,了解拉普拉斯(Laplace)定理及行列式的乘法法则。
2。
会应用行列式概念计算行列式,会利用行列式的性质和行列式按行(列)展开定理计算行列式,会运用矩阵的初等行(列)变换计算行列式。
(三)向量和矩阵考试内容向量的线性组合和线性表示;向量组的等价;向量组的线性相关与线性无关;向量组的极大线性无关组;向量组的秩;向量组的秩与矩阵的秩之间的关系。
矩阵的概念;矩阵的基本运算;矩阵的转置、伴随矩阵、逆矩阵的概念和性质;矩阵可逆的充分必要条件;矩阵的初等变换和初等矩阵;矩阵的秩;矩阵的等价;分块矩阵及其运算考试要求1。
理解n维向量、向量的线性组合与线性表示等概念。
2。
理解向量组线性相关、线性无关的定义、熟练掌握判断向量组线性相关、线性无关的方法。
3。
理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩。
4。
理解向量组等价的概念、清楚向量组的秩与矩阵秩的关系。
5。
理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵,熟悉它们的基本性质。
6。
掌握矩阵的数乘、加法、乘法、转置等运算。
掌握方阵的多项式概念。
7。
2023年研究生招生《高等代数》考试大纲
佛山科学技术学院2023年硕士研究生招生考试大纲科目名称:高等代数一、考查目标高等代数是大学数学系本科学生的最基本课程之一,它的主要内容包括多项式理论、行列式、线性方程组、矩阵、二次型、线性空间、线性变换、欧几里得空间、双线性函数。
要求考生比较系统地理解高等代数的基本概念和基本理论,掌握高等代数的基本思想和方法。
二、考试形式与试卷结构考试采用闭卷笔试形式,试卷满分为150分,考试时间为180分钟,其中简答题(40分),计算与解答题(60分),证明题(50分)。
三、考查范围(一)多项式1.一元多项式的因式、带余除法公式及互素的概念及判别;2.复根存在定理;3.根与系数关系;(二)行列式1.行列式的置换、对换、置换奇偶性;2.行列式的定义,基本性质及计算;3.范德蒙得行列式;4.行列式的代数余子式。
(三)矩阵1.矩阵基本运算、分块矩阵运算;2.初等矩阵、初等变换和矩阵的秩;3.矩阵的逆、伴随阵、线性方程组的矩阵形式;4.行列式乘积定理;5.矩阵和转置6.对角阵、三角阵、三对角阵;7.矩阵的迹、方阵多项式;(四)线性方程组求解1.线性方程组有解的充分必要条件;2.消元法;(五)线性空间和线性变换;1.向量的线性相关和线性无关;2.线性空间的定义及性质;3.向量组的秩、线性空间的基及坐标;4.线性变换的矩阵表示;5.矩阵相似;6.不变子空间;7.子空间的直接和、维数公式;8.线性空间的同构。
(六)特征值和特征向量1.特征值和特征多项式;2.特征向量、特征子空间、度数和重数;(七)内积空间1.欧几里得空间的标准正交基,施密特正交化;2.正交变换及其矩阵表示;(八)二次型和对称矩阵1.二次型及其标准形、惯性定理;2.实对称矩阵正定的充分必要条件;四、掌握重点(一)行列式乘积定理及其应用(二)分块矩阵运算及其应用(三)矩阵三角分解及其应用(四)矩阵的秩及其应用(五)线性空间的概念及性质(六)线性变换下的不变子空间及其矩阵表示(七)二次型的标准形(八)实对称矩阵及其性质参考书目:[1]北京大学数学系前代数小组,王萼芳,石生明编,《高等代数》(第五版),高等教育出版社.。
辽宁科技大学801高等代数2020年考研专业课初试大纲
辽宁科技大学2020年自命题考试大纲辽宁科技大学2020年全国硕士研究生入学考试《高等代数》考试大纲科目代码:801I.考试性质高等代数是为辽宁科技大学理学院数学一级硕士点各专业招收硕士研究生而设置的具有选拔性质的全国统一入学考试科目,其目的是科学、公平、有效地测试学生掌握大学本科阶段高等代数课程的基本知识、基本理论,以及运用其基础理论和方法分析问题和解决问题的能力,评价的标准是高等学校本科相关专业毕业生能达到的及格或及格以上水平,以保证被录取者具有数学学科的基本素质,并有利于其他高等院校和科研院所相关专业的择优选拔。
II.考查目标高等代数考试内容涵盖多项式、行列式、线性方程组、矩阵、线性空间、线性变换、欧几里德空间等。
要求考生:1)掌握多项式的运算及性质;2)掌握行列式的相关概念及各种计算方法;3)掌握一般线性方程组的相关理论;4)掌握矩阵相关概念及运算;5)掌握二次型的相关理论及运算;6)掌握线性空间及线性变换相关概念及理论;7)掌握欧氏空间的概念及计算。
Ⅲ.考试形式和试卷结构1、试卷满分及考试时间本试卷满分为 150 分,考试时间为 180 分钟2、答题方式答题方式为闭卷,笔试。
3、试卷内容结构多项式理论约20分;行列式计算约 15 分;一般线性方程组约20分;矩阵及其运算约20分;二次型约20分;线性空间约20分;线性变换约15分、欧氏空间约 20 分。
Ⅳ.试卷题型结构题型包括计算题、证明题等。
Ⅴ.考查内容(1)多项式的运算及性质:掌握多项式的运算及性质;掌握最大公因式的概念与求法(辗转相除法);了解代数基本定理、复系数多项式因式分解定理、实系数多项式因式分解定理。
掌握求整系数多项式有理根的理论与方法;了解Eisenstein判别法。
(2)行列式:了解排列、排列的逆序数、偶排列与奇排列的概念与性质;了解n 阶行列式的定义;掌握用行列式的性质计算行列式;掌握行列式按行按列展开的法则;了解克拉默法则。
936_高等代数
高等代数考试科目大纲一、考试性质高等代数是硕士研究生入学考试科目之一,是硕士研究生招生院校自行命题的选拔性考试。
本考试大纲的制定力求反映招生类型的特点,科学、平等、确切、规范地测评考生的相关基础知识控制水平,考生分析问题和解决问题及综合知识运用能力。
应考人员应按照本大纲的内容和要求自行组织学习内容和控制有关知识。
二、评价目标1、要求考生理解该课程的基本概念和基本理论,控制该课程的基本主意。
2、要求考生具有抽象思维能力、逻辑推理能力、空间想象能力、运算能力。
3、要求考生具有综合运用所学的知识分析问题和解决问题的能力。
三、考试范围及其基本要求1、行列式考试范围:n阶行列式的定义,n阶行列式的性质与计算。
基本要求:(1)理解罗列及其逆序数,理解n阶行列式的定义,能利用定义计算行列式的值。
(2)熟练控制行列式的性质,能熟练计算低阶行列式的值,能计算较容易的n阶行列式的值。
2、矩阵考试范围:矩阵及其运算,分块矩阵与矩阵的初等变换,矩阵的秩,可逆矩阵。
基本要求:(1)理解矩阵、单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵、反驳称矩阵、方阵的幂及矩阵的转置等概念,熟练控制矩阵的线性运算、乘法运算、转置及其运算逻辑。
(2)理解分块矩阵、准对角矩阵、初等变换和初等矩阵的概念,熟练控制分块矩阵的运算。
(3)理解初等变换与初等矩阵的概念及基本作用,了解矩阵等价的概念及第 1 页/共 6 页性质,能用矩阵的初等变换化矩阵为标准形。
(4)理解矩阵的子式、矩阵的秩的定义,熟练控制矩阵的秩的性质,能求矩阵的秩。
(5)理解满秩矩阵的概念,控制满秩矩阵的性质。
(6)控制两个方阵与其乘积的秩的关系式,能熟练运用方阵乘积的行列式的公式。
(7)理解可逆矩阵的概念,控制可逆矩阵的性质,控制矩阵可逆的充足须要条件。
(8)理解陪同矩阵的概念,控制陪同矩阵的性质,会用陪同矩阵法求可逆矩阵的逆矩阵,能熟练运用矩阵的初等变换求可逆矩阵的逆矩阵,能解矩阵方程。
考研《高等代数》(学术学位)考试大纲
(3)初等矩阵与初等变换
掌握矩阵的初等变换和初等矩阵的概念,明确二者关系。能熟练进行矩阵的初等变换,能利用初等变换求解线性方程组,并能进行有关证明。
(4) 相似矩阵与矩阵合同
三、主要参考书目
1、《高等代数》(第三版),北京大学数学系几何与代数教研室前代数小组著,高等教育出版社 2003 或之后版本
2、《高等代数(上下册)》(第二版),丘维声著,高等教育出版社,1999 或之后版本
硕士研究生入学考试自命题科目考试大纲
科目代码、名称:
专业类别:
■学术学位□专业学位
适用专业:
数学
一、基本内容
1、多项式
本部分要求掌握一元多项式及其整除问题、多项式函数、最大公因式、重因式和因式分解定理等有关概念和基本结论,能够进行多项式的有关计算和有关问题的证明。
2、行列式
(1)定义与性质
要求熟悉排列、逆序、对换等概念;理解行列式的定义;掌握行列式的性质。
9、欧几里得空间
掌握欧几里得空间的定义与性质,掌握内积、正交性、标准正交基的概念及有关计算方法,能证明有关性质和结论。
二、考试要求(包括考试时间、总分、考试方式、题型、分数比例等)
考试时间:180分钟
总分:150分
考试方式:笔试,闭卷
题型:填空题,计算与证明题
分数比例:填空题(60分)占40%,计算与证明题(90分)占60%。
(3)线性方程组解的结构
掌握线性方程组解的判定定理,会求有解的线性方程组的通解,熟练掌握线性方程组常用的解
法,并能证明有关结论。
4、矩阵
硕士研究生入学考试科目《高等数学》考试大纲
硕士研究生入学考试科目《高等数学》考试大纲一、考试说明1. 参考教材:《高等数学》第五版(上、下册),同济大学应用数学系主编,高等教育出版社2. 试卷结构及比例题型比例:填空题与选择题约40%解答题(包括证明)约60%内容比例:函数、极限、连续约20%一元函数的微积分学约35%多元函数的微积分学约15%常微分方程约15%幂级数约15%二、考试内容第一单元函数、极限、连续函数的概念及表示法;函数的有界性、单调性、周期性和奇偶性;反函数、复合函数、隐函数和分段函数;基本初等函数的性质及其图形;初等函数简单的应用问题和函数关系的建立;数列极限与函数极限的定义以及它们的性质;函数的左右极限;无穷小;无穷大;无穷小的比较;极限的四则运算;极限存在的两个准则;单调有界准则和夹逼准则;两个重要极限:lim(sinx/x)=1,lim(1+1/x)x=ex→0 x→∞函数连续的概念:函数间断点的类型;初等函数的连续性;闭区间上连续函数的性质(最大值最小值定理和介值定理)第二单元一元函数微分学导数和微分的概念;导数的几何意义和物理意义;函数的可导性与连续性之间的关系;平面曲线的切线和法线;基本初等函数的导数;导数和微分的四则运算;反函数、复合函数、隐函数以及参数方程所确定的函数的微分法;高阶导数的概念;某些简单函数的n阶导数;一阶微分形式的不变性;微分在近似计算中的应用;Rolle定理,Lagronge中值定理,Cauchy 中值定理,Taylor定理,L’Hospital法则.函数极值及其求法,函数增减性和函数图形的凹凸性的判定,函数图形的拐点及其求法,渐近线,描绘函数图形,函数最大值和最小值的求法及其简单应用。
第三单元一元函数积分学原函数和不定积分的概念,不定积分的基本性质,基本积分公式,定积分的概念和性质,积分中值定理,变上限定积分及其导数,NewTon-Leibniz公式,不定积分和定积分的换元积分法与分部积分法,有理函数、三角函数的有理式、简单无理函数的积分,广义积分的概念及计算,定积分的应用,定积分的近似计算法。
《高等代数》考试大纲
《高等代数》考试大纲一、本大纲适用于报考苏州科技学院基础数学专业的硕士研究生入学考试。
主要考核高等代数课程的基本概念、基本理论与基本计算方法。
二、考试内容与要求(一)多项式内容:1、数域及一元多项式的概念和运算2、多项式的整除性、带余除法、最大公因式3、多项式的因式分解、重因式、多项式函数及多项式的根4、复数域,实数域和有理数域上多项式的因式分解5、多元多项式及对称多项式要求:理解一元多项式的有关概念,掌握多项式的运算,最大公因式和有理根的求法,互素,有无重因式的判别方法,能够熟练运用一元多项式的基本概念、基本理论和基本方法证明多项式中的一些问题。
了解多元多项式。
(二)行列式内容:1、n阶行列式的定义和性质2、行列式按行(列)展开的公式3、拉普拉斯定理4、克兰姆法则要求:理解行列式的概念,行列式的性质,掌握行列式的计算方法,克兰姆法则的运用。
(三)线性方程组内容:1、线性方程组的消元法2、n维向量的概念、运算、性质3、向量组的线性相关性4、矩阵的秩,线性方程组有解的判别法5、线性方程组的解结构要求:能熟练运用消元法解线性方程组,掌握矩阵的秩、向量组的秩及极大线性无关组的求法,掌握向量组的线性相关性的基本概念和结论,矩阵秩的相关概念和方法。
能够熟练利用向量组的有关知识分析讨论关于线性方程组的一些问题并能正确使用有解判别法。
(四)矩阵内容:1、矩阵的运算、性质2、可逆矩阵的概念、性质,逆矩阵的求法3、矩阵的分块运算、应用4、初等矩阵与初等变换的关系,用初等变换求逆矩阵的方法要求:能熟练地进行矩阵的运算,熟悉矩阵乘积的行列式及秩的定理,掌握可逆矩阵的概念、性质、初等变换和初等矩阵的关系。
掌握矩阵分块的应用及用初等变换求逆矩阵的方法。
(五)二次型内容:1、二次型的定义及表示,二次型的标准型2、标准型的唯一性3、正定二次型的定义及判定要求:熟悉二次型的几种表示方法,知道二次型经过非退化线性替换仍变为二次型以及前后两个二次型的关系,掌握二次型化为标准型的方法,理解复二次型和实二次型的规范形的唯一性,掌握实二次型正定的判别方法(六)线性空间内容:1、线性空间的定义和性质2、向量组的线性相关性、基、维数和坐标,基变换和坐标变换3、子空间、子空间的交与和、直和要求:深刻理解线性空间的概念和性质,初步了解公理化思想方法,理解基、维数、坐标和子空间的概念,掌握基、维数、坐标的求法,基变换公式和坐标变换公式,维数公式的应用,和是直和的判别方法,理解同构的概念及相关结论。
初试科目考试大纲-904数学分析与高等代数
浙江师范大学硕士研究生入学考试初试科目考试大纲科目代码、名称: 904数学分析与高等代数适用专业: 045104学科教学(数学)一、考试形式与试卷结构(一)试卷满分及考试时间本试卷满分为150分,考试时间为180分钟。
(二)答题方式答题方式为闭卷、笔试。
试卷由试题和答题纸组成;答案必须写在答题纸相应的位置上;答题纸一般由考点提供。
(三)试卷内容结构各部分内容所占分值为:数学分析约80分高等代数约50分综合分析题约20分(四)试卷题型结构计算题:6大题,约80分。
证明分析题:3大题,约50分。
论述分析题:1大题,约20分。
二、考查目标(复习要求)全日制攻读教育硕士专业学位入学考试数学分析与高等代数考试内容包括数学分析、高等代数二门数学学科基础课程及用高等数学观点理解初等数学问题及教学的内容,要求考生系统掌握相关学科的基本知识、基础理论和基本方法,理解数学分析和高等代数中反映出的数学思想与方法,并能运用相关理论和方法分析、解决具有一定实际背景的数学问题,以及能利用数学分析、高等代数中的知识、数学思想理解、讨论初等数学问题及相关教学问题。
三、考查范围或考试内容概要第一部分:数学分析考查内容1、数列极限数列极限概念、收敛数列的定理、数列极限存在的条件2、函数极限函数极限概念、函数极限的定理、两个重要极限、无穷大量与无穷小量3、函数的连续性连续性概念、连续函数的性质4、导数与微分导数的概念、求导法则、微分、高阶导数与高阶微分5、中值定理与导数应用微分学基本定理、函数的单调性与极值6、不定积分不定积分概念与基本积分公式、换元法积分法与分部积分法7、定积分定积分概念、可积条件、定积分的性质、定积分的计算8、定积分的应用平面图形的面积、旋转体的侧面积9、级数正项级数、函数项级数、幂级数、傅里叶级数10、多元函数微分学偏导数与全微分、复合函数微分法、高阶偏导数与高阶全微分、泰勒公式与极值问题第二部分:高等代数考查内容多项式、行列式、线性方向组、矩阵、线性空间、线性变换第三部分:高观点下的初等数学考查内容利用数学分析、高等数学的知识及数学思想审视初等数学问题及相关教学问题。
云南财经大学806高等代数2020年考研专业课初试大纲
云南财经大学硕士研究生高等代数入学考试大纲本大纲适用于硕士研究生《高等代数》科目的入学考试,考试参考书目为:1.张禾瑞、郝鈵新主编,《高等代数》,高等教育出版社,2007年6月第五版;2.北京大学数学系代数小组主编,《高等代数》,高等教育出版社,2013年8月第四版。
《高等代数》的考试目的在于考核考生对《高等代数》课程的基本理论体系和知识结构的掌握情况及熟练程度,检测考生抽象思维、逻辑推理能力、计算能力,以及综合运用知识点解决问题的能力,由此来达到判断考生是否具有进一步深造的基本素质和培养潜力。
第一章多项式多项式理论是高等代数的重要内容之一。
虽然它在高等代数的课程中是一个相对独立而自成体系的部分,但却为高等代数所讲的内容提供了理论依据。
多项式理论中的一些重要定理和方法,在进一步学习数学理论和解决问题时常常要用到。
一元多项式的内容十分丰富,重点是整除与因式分解的理论。
最基本的结论是带余除法定理、最大公因式的存在定理、因式分解的唯一性定理。
把握这两个重点及这三个定理非常重要。
一、学习要求理解数域F上一元多项式的定义。
掌握多项式的运算及运算律。
理解和掌握最大公因式的概念、性质、求法。
理解和掌握不可约多项式的定义及性质,理解因式分解及唯一性定理。
掌握多项式函数的概念,余数定理,多项式的根及性质。
熟练掌握复(实)系数多项式分解定理及标准分解式。
理解有理系数多项式的分解与整系数多项式分解的关系。
掌握本原多项式的定义、高斯引理、整系数多项式的有理根的性质、Eisenstein判别法。
二、考核知识点1.一元多项式的定义和运算2.多项式的整除性3.最大公因式4.多项式的分解5.重因式6.多项式函数,多项式的根。
研究生考试大纲研究生考试7.《高等代数》考试大纲
《高等代数》考试大纲一、课程简介高等代数是数学专业的基础课之一。
主要内容包括:多项式理论;线性方程组;行列式;矩阵;二次型;线性变换;欧氏空间等。
本课程不仅注重讲授代数学的基本知识,更强调对于学生的代数学基本思想和基本方法的训练、线性代数基本计算的训练以及综合运用分析、几何、代数方法处理问题的初步训练。
既有较强的抽象性和概括性,又具有广泛的应用性。
对于培养学生的逻辑推理能力、抽象思维能力和运算能力有着重要作用。
二、考查目标主要考察考生对高等代数的基本理论和基本方法的理解和掌握情况及抽象思维能力、逻辑推理能力和运算能力。
三、考试内容及要求第一章多项式一、考核知识点1、熟练掌握一元多项式整除的概念及性质。
2、熟练掌握最大公因式的求法、性质及多项式互素的充要条件。
3、熟悉因式分解定理的内容,了解标准分解式的概念。
4、熟悉重因式的概念,熟练掌握k重因式的判定方法。
5、熟悉有关多项式函数的概念、余数定理。
6、熟练掌握代数基本定理,复系数多项式、实系数多项式因式分解定理的内容。
7、掌握本原多项式的概念。
熟练掌握有理系数多项式与整系数多项式因式分解的关系。
熟练掌握整系数多项式有理根的性质和求法。
熟练掌握Eisenstein 判别法及应用。
二、考核要求识记:数域的概念,一元多项式的概念和运算性质,次数定理, 整除的概念和常用性质,带余除法,最大公因式的概念和性质,不可约多项式的概念和性质,因式分解及唯一性定理,标准分解式的概念,重因式的概念、性质,多项式函数的概念、性质及根,代数基本定理,复系数与实系数多项式的因式分解定理,本原多项式的概念、性质,Eisenstein判别法。
简单应用:1、会求解或证明最大公因式。
2、会求有理系数多项式的有理根。
第二章行列式一、考核知识点1、掌握排列、逆序数、奇排列、偶排列的概念,熟悉对换的概念和性质。
2、深刻理解n级行列式的概念。
会用定义确定行列式各项的符号及简单行列式的值。
3、熟练掌握行列式的性质,并利用行列式性质计算行列式。
硕士研究生入学考试大纲高等代数
目录I 考查目标 (2)II 考试形式和试卷结构 (2)III 考查内容 (2)IV. 题型示例及参考答案 (4)全国硕士研究生入学统一考试高等代数考试大纲I 考查目标要求考生比较系统地理解高等代数的基本概念和基本理论,掌握高等代数的基本思想和方法具有抽象思维能力、逻辑推理能力、运算能力和综合运用所学的知识分析问题和解决问题的能力。
II 考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间180分钟。
二、答题方式答题方式为闭卷、笔试。
三、试卷内容与题型结构计算题(30%)、证明题(70%)III 考查内容一、多项式1.熟练掌握多项式因式分解理论及整除理论。
2.掌握多项式、不可约多项式、最大公因式、重因式的概念;掌握整除、互素、不可约等概念的联系与区别。
3.掌握带余除法、辗转相除法、艾森斯坦因(Eisenstein)判别法。
4.会求两个多项式的最大公因式,会求有理系数多项式的有理根,会判别两个多项式互素。
二、行列式1.熟练掌握行列式的性质及行列式的计算。
2.掌握n阶行列式的定义。
3.掌握克拉默(Cramer)法则。
三、线性方程组1.熟练掌握向量线性相关性的概念、性质、判别法,会求向量组的秩及最大线性无关组。
2.掌握基础解系的概念及计算,熟练掌握线性方程组的解的判别定理,以及齐次和非齐次线性方程组的求解。
3.熟练掌握矩阵的秩的概念及计算。
四、矩阵1.熟练掌握矩阵、可逆矩阵、初等矩阵的概念与性质。
2.理解分块矩阵的概念,掌握分块矩阵的运算及思想方法。
3.熟练掌握矩阵的加法、减法、乘法,数乘、转置等运算。
4.熟练掌握可逆矩阵的判别方法及逆矩阵的计算。
5.能熟练使用矩阵的初等变换方法。
五、二次型1.掌握二次型的标准形、实二次型的规范形的概念。
2.熟练掌握正定二次型的概念、性质、判别方法。
3.掌握化二次型为标准形的思想方法。
4.理解合同矩阵的概念及背景。
六、线性空间1.掌握线性空间、子空间的概念及判定方法。
820高等代数考试大纲
黑龙江大学硕士研究生入学考试大纲考试科目名称:高等代数考试科目代码:[820]一、考试内容及要求一、行列式1.内容:行列式概念及性质,行列式按行(列)展开。
2.要求:①理解数域的概念,控制常见的数域和最小数域。
②理解n阶行列式的定义,控制行列式性质。
③能用行列式定义、性质(包括按行(列)展开的性质)递推及归纳法等计算行列式。
二、矩阵1.内容:矩阵的概念,矩阵运算,逆矩阵和克莱姆法则,分块矩阵,初等变换和初等阵,矩阵的等价分解,矩阵的秩,初等块矩阵及等价分解的应用。
2.要求:①理解矩阵概念及相关运算法则,能熟练地举行矩阵的相关运算,控制行列式乘法定理。
②理解逆矩阵的概念,控制陪同矩阵求逆主意,控制矩阵可逆充要条件并用于判别,理解克莱姆法则并用于求解线性方程组。
③了解分块矩阵的运算法则,确切用于计算。
④理解三种初等变换及相应的初等阵,了解初等阵是可逆阵的乘法生成元。
⑤理解矩阵的等价分解,理解矩阵秩的定义,能用初等变换求矩阵秩及逆矩阵。
⑥能利用等价分解、分块矩阵、初等矩阵及归纳法等解决一些矩阵分解,求秩相关的计算和证实问题。
三、n维向量与线性方程组1.内容:n维向量,向量的线性相关性,向量组的秩,消去法解线性方程组,线性方程组解的判定,线性方程组解的结构。
2.要求:①控制n维向量线性表出,线性相关,线性无关的概念,能举行判别及相关的证实。
②理解向量组的秩,矩阵的三秩相等定理,控制向量组的秩以及极大无关组的概念,会求极大无关组以及向量组的秩。
③能用消去法解线性方程组,异常能对带参数的方程组举行解的情况的研究。
④控制齐次方程组基础解系定理,普通线性方程组解的结构定理,并能用于解决有关问题。
四、特征值与特征向量1.内容:特征值与特征向量,相似矩阵,R n空间内积,正交阵,实对称阵的正交对角化。
2.要求:①控制特征值与特征向量的概念及求法。
②理解矩阵相似的概念,理解矩阵相似于对角阵的充要条件及充足条件,会举行相关的计算和证实。
宁波大学2023年硕士研究生自命题科目考试大纲 871高等代数
2023年宁波大学硕士研究生招生考试初试科目考试大纲科目代码、名称: 871高等代数一、考试形式与试卷结构(一)试卷满分值及考试时间本试卷满分为150分,考试时间为180分钟。
(二)答题方式答题方式为闭卷、笔试。
试卷由试题和答题纸组成;答案必须写在答题纸(由考点提供)相应的位置上。
(三)试卷内容结构考试内容主要包括多项式理论、行列式、线性方程组、矩阵理论、二次型、线性空间、线性变换、λ-矩阵、欧氏空间九个部分。
二、考查范围或考试内容概要(一)多项式理论:多项式的整除,最大公因式,多项式的互素,不可约多项式与因式分解,重因式重根的判别,多项式函数与多项式的根.重点掌握:重要定理的证明,如多项式的整除性质,Eisenstein判别法,不可约多项式的性质, 整系数多项式的因式分解定理等. 运用多项式理论证明有关问题,如与多项式的互素和不可约多项式的性质有关问题的证明与应用以及用多项式函数方法证明有关的问题.(二)行列式:行列式的定义、性质和常用计算方法(如:三角形法、加边法、降阶法、递推法、按一行一列展开法、Laplace展开法、范得蒙行列式法).重点掌握:n阶行列式的计算及应用.(三)线性方程组:向量组线性相(无)关的判别(相应齐次线性方程组有无非零解、性质判别法、行列式判别法、矩阵秩判别法).向量组极大线性无关组的性质、向量组之间秩的大小关系(向量组(Ι)可由向量组(Ⅱ)线性表示,则(Ι)的秩小于等于(Ⅱ)的秩)及三个推论、矩阵的秩(行秩和列秩、矩阵秩的行列式判别法、矩阵秩的计算)、Cramer法则,线性方程组有(无)解的判别定理、齐次线性方程组有非零解条件(用系数矩阵的秩进行判别、用行列式判别、用方程个数判别)、基础解系的计算及其性质、齐次线性方程组通解的求法,非齐次线性方程组的解法和解的结构.重点掌握:向量组线性相(无)关的判别、向量组之间秩与矩阵的秩、齐次线性方程组有非零解条件及基础解系的性质、非齐次线性方程组解的结构与其导出组的基础解系的性质.(四)矩阵理论:矩阵的运算,矩阵的初等变换与初等矩阵的关系及其应用(求解线性方程组、求逆矩阵、求向量组的秩)、矩阵的等价标准形、矩阵可逆的条件(与行列式、矩阵的秩、初等矩阵的关系)、伴随矩阵及其性质、分块矩阵(包括矩阵乘法的常用分块方法并证明与矩阵相关的问题)、矩阵的常用分解(如:等价分解,满秩分解,实可逆阵的正交三角分解,Jordan分解),几种特殊矩阵的常用性质(如:准对角阵,对称矩阵与反对称矩阵,伴随矩阵、幂等矩阵,幂零矩阵,正交矩阵等).重点掌握:利用分块矩阵的初等变换证明有关矩阵秩的等式与不等式,矩阵的逆与伴随矩阵的性质与求法,应用矩阵理论解决一些相关问题.(五)二次型理论:化二次型为标准形和规范形,实二次型在合同变换之下的规范型以及在正交变换之下的特征值标准型的求法、惯性定律的应用,正定、半正定矩阵的判别及应用、正定矩阵的一些重要结论及其应用.重点掌握:正定和半正定矩阵有关的证明,实二次型在合同变换之下的规范型以及在正交变换之下的特征值标准型的计算.(六)线性空间:线性空间、子空间的定义及性质、求线性空间中一个向量组的秩、求线性(子)空间的基与维数的方法、基扩充定理,维数公式,基变换与坐标变换,生成子空间,子空间直和,一些常见的子空间(线性方程组解的解空间、矩阵空间、多项式空间、函数空间、线性变换的特征子空间和不变子空间).重点掌握:向量组的线性相关与线性无关的综合证明,求线性(子)空间的基与维数的方法,维数公式的证明及应用,特别是子空间直和的有关证明.(七)线性变换:线性变换的定义与运算,线性变换与n阶矩阵的对应定理,矩阵的特征多项式(包括最小多项式)及其有关性质,求线性变换的矩阵和特征值以及特征向量的方法,线性无关特征向量的判别及最大个数,实对称矩阵的特征值和特征向量的性质,特征子空间,不变子空间,核与值域的定理. 线性变换(包括矩阵)可对角化的条件(特征向量判别法,最小多项式判别法),Hamilton-Caylay定理.重点掌握:线性变换(包括矩阵)的对角化,求线性变换的矩阵和特征值以及特征向量的方法,线性变换(矩阵)的特征值以及特征向量的性质,线性变换的核与值域.(八)λ-矩阵:λ-矩阵的初等变换,λ-矩阵的标准型,行列式因子,不变因子,初等因子,三种因子之间的关系,Jordan标准型理论.重点掌握:求矩阵的Jordan标准型.(九)欧氏空间: 内积和欧氏空间的定义及简单性质(柯西-施瓦兹不等式,三角不等式,勾股定理等). 度量矩阵与标准正交基的求法以及性质的证明和应用,正交变换(正交矩阵)的等价条件,对称变换,求正交矩阵T,使实对称矩阵A正交相似于对角矩阵.重点掌握:欧氏空间的概念,标准正交基,Schimidt正交化方法,正交变换和对称变换.参考教材或主要参考书《高等代数》(第五版)北京大学编,高等教育出版社,2019年。
全国硕士研究生数学考试大纲
全国硕士研究生数学考试大纲一、考试性质全国硕士研究生数学考试是教育部规定的研究生招生考试中最重要的部分,旨在科学、公平、准确地评价研究生的数学知识和能力,是选拔人才的重要标准。
本大纲规定了考试的目标、内容、形式和评价标准。
二、考试目标本考试的目标是考查考生对数学基本概念、理论和方法的理解和掌握程度,以及运用数学知识分析问题和解决问题的能力。
三、考试内容和要求1、高等数学部分:(1)函数、极限、连续:理解函数的概念,掌握函数的性质和计算方法,了解极限的概念和基本性质,掌握极限的求法,理解连续函数的概念,会判断函数连续性。
(2)一元函数微分学:掌握导数的定义和计算方法,会求函数的极值和最值,了解微分中值定理及其应用。
(3)一元函数积分学:掌握定积分的概念和计算方法,掌握不定积分的计算方法,理解积分在实际问题中的应用。
(4)多元函数微积分学:理解多元函数的概念和性质,掌握偏导数和全微分的计算方法,掌握二重积分的计算方法。
(5)常微分方程:理解常微分方程的概念和基本性质,掌握常微分方程的初值问题、边值问题的求解方法。
2、线性代数部分:(1)行列式:理解行列式的概念和性质,掌握行列式的计算方法。
(2)矩阵:理解矩阵的概念和性质,掌握矩阵的运算方法,了解矩阵的逆和特征值的概念和计算方法。
(3)向量:理解向量的概念和性质,掌握向量的运算方法。
(4)线性方程组:理解线性方程组的概念和性质,掌握线性方程组的求解方法。
(5)矩阵的特征值和特征向量:理解矩阵的特征值和特征向量的概念和性质,掌握特征值和特征向量的计算方法。
(6)二次型:理解二次型的概念和性质,掌握二次型的化简和相似对角化方法。
四、考试形式和试卷结构1、考试形式:闭卷笔试。
2、试卷结构:试卷包括选择题、填空题、计算题和应用题等题型。
选择题和填空题分值约占40%,计算题和应用题分值约占60%。
试卷难度结构一般为容易题约占30%,中等难度题约占50%,较难题约占20%。
华中师范大学硕士研究生入学《高等代数》考试大纲
第一部分考试说明一、考试性质《高等代数》是全国硕士研究生入学考试数学各专业的考试课程,是选拔优秀本科毕业生进入硕士生学习阶段的重要基础课程,它的评价标准是普通高等学校优秀本科毕业生能达到及格及以上水平。
考试对象应为应届本科毕业生,或大学本科毕业后工作两年以上或具有同等学历的在职人员。
二、考试范围基本覆盖全日制普通本科院校数学各专业开设的《高等代数》课程的主要内容。
具体包括:多项式理论、行列式理论、线性方程组理论、矩阵与向量、二次型、向量空间、线性映射与线性变换、矩阵的特征系与相似对角化、若当标准型、欧氏空间基本理论等。
三、考试形式与试卷结构(一)答卷方式:闭卷,笔试;所列题目全部为必答题。
(二)答题时间:180分钟。
(三)各部分的考查比例:多项式理论:13%行列式、线性方程组与矩阵:33%线性空间与线性变换20%二次型与欧氏空间27%综合题7%(四)参考书目1、樊恽、刘宏伟编,《线性代数与解析几何教程》(上、下册),科学出版社,2009年8月第1版;(或以下参考书2)2、樊恽、郑延履编,《线性代数与几何引论》,科学出版社,2004年8月第1版。
第二部分考查要点一、行列式1.行列式的定义与性质。
2.低阶行列式,高阶规律性较强的行列式计算或证明。
二、矩阵、向量、线性方程组1.矩阵的基本运算2.线性相关、线性无关3.向量组与矩阵的秩4.求解线性方程组、线性方程组解的结构理论三、二次型1.对称矩阵、二次型化为标准形问题2.实向量空间的内积、正交矩阵、主轴定理、惯性定理;实对称矩阵的标准正交对角化。
3.实二次型的正定性问题的判断、证明等四、向量空间、线性映射、线性变换1.向量空间与子空间的概念2.线性映射、线性变换及其矩阵3.基底变换、坐标变换、矩阵变换4.子空间的和、直和5.线性映射、线性变换的像与核、不变子空间五、多项式1.整除、相伴、最大公因式2.因式分解、多项式的根六、矩阵的特征系与相似对角化、矩阵相似标准型1.特征值、特征向量与相似对角化2.零化多项式、极小多项式与矩阵的相似对角化3.若当标准型七、欧氏空间1.一般欧氏空间。
843高等代数
辽宁大学2020年全国硕士研究生招生考试初试自命题科目考试大纲科目代码:843 科目名称:高等代数满分:150分《高等代数》考试大纲1. 行列式1.1了解排列的概念及性质。
1.2 熟练掌握行列式的概念、性质。
1.3 掌握行列式的计算方法。
1.4 熟悉克拉姆法则。
1.5 对矩阵及矩阵的初等变换有初步的了解。
2. 线性方程组2.1 掌握n维向量及n维向量空间的概念,熟练掌握向量的运算。
2.2 熟练掌握向量组的线性相关性,理解向量组的极大无关组。
2.3 深刻理解向量组的秩和矩阵的秩的定义,掌握矩阵秩的计算方法。
2.4 熟练掌握线性方程组的有解判别定理。
2.5 正确理解和掌握齐次线性方程组的基础解系的概念和计算方法,熟练掌握线性方程组的解的结构定理,会求解线性方程组。
3. 矩阵3.1 了解矩阵概念的一些背景。
3.2 熟练掌握矩阵的运算及运算律。
3.3 掌握矩阵乘积的行列式定理,矩阵乘积的秩与它的因子的秩的关系。
3.4 深入理解矩阵可逆、逆矩阵、伴随矩阵等概念,掌握方阵可逆的充要条,会用公式法求矩阵的逆矩阵。
3.5 理解分块矩阵的意义,掌握分块矩阵的运算及性质。
3.6 正确理解和掌握初等矩阵、初等变换的概念及它们的关系,熟练掌握利用初等变换方法求矩阵的逆矩阵。
3.7 了解分块乘法的初等变换,会将矩阵分块与初等变换结合进行矩阵运算。
4. 二次型4.1正确理解二次型非退化线性替换的概念,掌握二次型的矩阵表示,掌握矩阵合同的概念与性质。
4.2 掌握化二次型为标准形的方法。
4.3 深刻理解对称矩阵与二次型的关系,掌握对称矩阵的性质。
4.4 掌握惯性定理,熟练掌握正定二次型的等价条件。
4.5 掌握半正定二次型的等价条件。
5. 线性空间5.1 掌握集合与映射的相关概念。
5.2 熟练掌握线性空间及其基于维数等相关概念。
5.3 会求线性空间的基与维数。
5.4 掌握基变换与坐标变换的公式,。
5.5 熟练掌握线性子空间的概念及其判定方法。
南京信息工程大学2022年硕士研究生招生考试自命题科目考试大纲高等代数
南京信息工程大学硕士研究生招生入学考试考试大纲科目代码:802科目名称:高等代数第一部分目标与基本要求试题主要考核考生对高等代数的基础理论、基本知识和基本技能掌握的程度,以及运用所学理论分析、解决问题的能力。
第二部分具体内容1、多项式(1)了解数域的概念;一元多项式的概念(2)掌握整除、最大公因式、重因式、最小公倍式、可约、不可约、互素、多项式函数等概念;(3)掌握辗转相除法、Eisenstein判别法以及整系数多项式有理根的求法;(4)掌握实系数、复系数多项式的性质。
2、行列式(1)了解n级排列、n级行列式、子式及代数余子式的概念;(2)n级行列式的基本性质、行列式的按一行(列)展开方法;Cramer法则;n级行列式的计算。
3、线性方程组(1)了解n维向量空间概念;(2)理解向量的线性相关、线性无关、极大无关组、矩阵的秩、自由未知量、增广矩阵等概念;(3)掌握线性方程组有解判别定理;线性方程组解的结构;极大无关组的求法,求解线性方程组的初等变换法;向量线性相关、线性无关性的证明。
4、矩阵(1)了解矩阵的概念;伴随矩阵及矩阵的逆的概念、矩阵等价的概念;(2)理解初等变换与初等矩阵的关系;矩阵的运算法则;(3)掌握矩阵的简单分块、性质及其运算法则;积秩定理;矩阵逆的求法。
5、二次型(1)了解二次型的概念及其矩阵表示;二次型的标准形及其实、复规范形的概念;(2)掌握正惯性指数、负惯性指数、符号差的概念;矩阵的主子式及顺序主子式概念;矩阵合同的概念;(3)掌握矩阵(二次型)的正定、半正定、不定的概念及其判定;二次型化为标准形的方法(包括化二次型为标准形之合同变换阵的求法)。
6、线性空间(1)了解集合、映射的概念;线性空间的定义与简单性质;(2)理解基变换与坐标变换的概念及其求法;(3)掌握维数、基与坐标的计算;线性子空间、子空间的交与和、直和的概念及其基本性质;子空间的交与和的求法;维数公式及其运用。
《高等代数》考试大纲
五邑大学2021年硕士学位研究生招生《高等代数》课程考试大纲一、课程的性质,目的和任务高等代数是数学(数学与应用数学,数学教育)专业的一门重要基础课程。
通过本课程的教学,应培养学生良好的数学素养,打下较扎实的代数学理论基础,提高学生的抽象思维的能力和逻辑推理能力,并掌握较系统的代数基础知识,为学习后继课程服务。
二、基本要求这门课程大致分为两部分:多项式理论和线性代数。
前者以数域上一元多项式的因式分解理论为中心内容;后者主要讲授线性方程组的理论,向量空间和线性变换。
本课程应着重于基本理论的讲授和基本技能的培养和训练,不适求内容上的完备和全面.三、考试范围(一)多项式理论1. 数域 (A)2. 整除的概念 (A)3. 最大公因式. (A)4. 因式分解定理. (A)5. 重因式. (A)6. 多项式函数. (A)8. 复系数与实系数多项式的因式分解. (A)9. 有理系数多项式. (A)*10.多元多项式. (B)*11.对称多程式. (B)(二) 行列式1. 排列. (A)2. n阶行列式的定义和性质. (A)3. 行列式的依行和依列展开. (A)4. 行列式的计算. (A)5. Crammer法则(克莱姆法则). (A)6. Laplace(拉普拉斯)定理. 行列式的乘法规则. (A)(三)线性方程组1. 线性方程组的消元法. (A)2. n维向量空间 (A)3. 线性相关性. (A)4. 矩阵的秩. (A)5. 线性方组有解的判定定理. (A)6. 线性方程组解的结构. (A)7. 二元高次方程. (B)(四) 矩阵1. 矩阵的概念与运算. (A)2. 矩阵乘积的行列式与秩. (A)3. 矩阵的逆. (A)4. 矩阵的分块. (A)5. 初等矩阵. (A)(五) 二次型1. 二次型的矩阵表示. (A)2. 标准形. (A)3. 唯一性. (A)4. 正定二次型. (A)(六) 线性空间1. 线性空间的定义与简单性质. (A)2. 维数.基与坐标. (A)3. 基变换. (A)4. 线性子空间 (A)5. 子空间的交与和. (A)6. 子空间的直和. (A)7. 线性空间的同构. (A)(七) 线性变换1. 定义和例子 (B)2. 线性变换的运算. (A)3. 线性变换的矩阵. (A)4. 特征值与特征向量. (A)5. 对角矩阵. (A)6. 线性变换的值域与核. (A)7. 不变子空间. (A)8. Jordan标准形介绍. (B)(八) 入一矩阵1. 入一矩阵. (A)2. 入一矩阵在初等变换下的标准形. (A)3. 不变因子. (A)4. 矩阵相似条件. (A)5. 初等因子. (A)*6.Jordan标准形的理论推导. (C)(九) 欧几里得空间1. 定义与基本性质. (A)2. 标准正交基. (A)3. 同构. (A)4. 正交变换. (A)5. 子空间. (A)6. 对称矩阵的准形. (A)四、主要教材和参考书1. 北京大学数学力学系,高等代数(第二版),高教出版社。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河南理工大学研究生入学考试
《高等代数》考试大纲
一.多项式理论021-
一元多项式的概念、运算及带余除法,多项式的整除,最大公因式,多项式的互素,不可约多项式,多项式因式分解问题的理论,多项式的重因式,多项式函数及多项式根,有理系数多项式的有理根。
同济大学四平路
二. 行列式336 26038
掌握n阶行列式的概念与性质;会运用行列式性质,通过降阶和三角化的方法及其综合使用,较熟练地计算行列式;掌握克莱姆法则。
考
三. 线性方程组院
用矩阵的初等变换解一般线性方程组,矩阵的秩,线性方程组有解的判别定理及其应用,n个未知量n个方程的齐次线性方程组有非零解的充要条件,基础解系,一般线性方程组通解。
112室
四. 矩阵
矩阵运算,逆矩阵,矩阵乘积的行列式及秩的定理,初等矩阵,初等矩阵与初等变换的关系,求逆矩阵的理论与方法,矩阵的分块。
研
五. 二次型同济
二次型的概念,矩阵的合同概念及其性质;掌握将二次型化为标准形的方法;熟练掌握复数域与实数域上二次型的规范形;掌握正定二次型的概念和判别法。
六. 向量空间021-
向量空间的概念,向量空间的子空间,子空间的交与和,子空间的直和,向量组的线性相关性,向量空间中基与维数,向量坐标,过渡矩阵,向量空间同构。
48号
七. 线性变换共
线性变换的概念,线性变换的矩阵,矩阵相似、特征值、特征向量,线性变换的值域与核的求法,不变子空间,矩阵对角化的理论与方法,哈米尔顿-凯莱定理,
最小多项式求法。
3362 3039
八. 欧氏空间课
两个向量的内积,欧氏空间,向量的长度、两个向量的夹角,度量矩阵,标准正交基,正交变换和正交矩阵,正交相似矩阵,对称变换与对称矩阵。
021-
主要参考书:北京大学,高等代数(第三版)同济。