2012年云南省普通高考文科数学试题及参考答案
2012年高考真题——文数(新课标卷)Word版 含答案
绝密*启用前2012年普通高等学校招生全国统一考试文科数学注息事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.问答第Ⅰ卷时。
选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动.用橡皮擦干净后,再选涂其它答案标号。
写在本试卷上无效.3.回答第Ⅱ卷时。
将答案写在答题卡上.写在本试卷上无效·4.考试结束后.将本试卷和答且卡一并交回。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。
1、已知集合A={x |x 2-x -2<0},B={x |-1<x <1},则(A )A ⊂≠B (B )B ⊂≠A (C )A=B (D )A∩B=∅(2)复数z =-3+i 2+i的共轭复数是 (A )2+i (B )2-i (C )-1+i (D )-1-i3、在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =12x +1上,则这组样本数据的样本相关系数为(A )-1 (B )0 (C )12(D )1 (4)设F 1、F 2是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为直线x =3a 2上一点,△F 1PF 2是底角为30°的等腰三角形,则E 的离心率为( )(A )12 (B )23 (C )34 (D )455、已知正三角形ABC 的顶点A(1,1),B(1,3),顶点C 在第一象限,若点(x ,y )在△ABC 内部,则z=-x+y 的取值范围是(A )(1-3,2) (B )(0,2) (C )(3-1,2) (D )(0,1+3)(6)如果执行右边的程序框图,输入正整数N(N≥2)和实数a 1,a 2,…,a N ,输出A,B ,则(A )A+B 为a 1,a 2,…,a N 的和(B )A +B 2为a 1,a 2,…,a N 的算术平均数 (C )A 和B 分别是a 1,a 2,…,a N 中最大的数和最小的数(D)A和B分别是a1,a2,…,a N中最小的数和最大的数(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为(A)6(B)9(C)12(D)18(8)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为(A )6π (B )43π (C )46π (D )63π(9)已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f (x )=sin(ωx +φ)图像的两条相邻的对称轴,则φ=(A )π4 (B )π3 (C )π2 (D )3π4(10)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB|=43,则C 的实轴长为(A ) 2 (B )2 2 (C )4 (D )8(11)当0<x ≤12时,4x <log a x ,则a 的取值范围是 (A )(0,22) (B )(22,1) (C )(1,2) (D )(2,2) (12)数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为(A )3690 (B )3660 (C )1845 (D )1830第Ⅱ卷本卷包括必考题和选考题两部分。
2012年高考试题:文科数学(全国卷)——含答案及解析
2012年普通高等学校招生全国统一考试文科数学(必修+选修Ⅰ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页,第Ⅱ卷3至4页。
考试结束后,将本卷和答题卡一并交回。
第Ⅰ卷注意事项:1、答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2、每小题选出答案后,用2B 铅笔把答题卡上对应题目答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。
3、第Ⅰ卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项符合题目要求。
一、选择题(1)已知集合{|}{|}{|}{|}A x xB x xC x xD x x ==是平行四边形,是矩形,是正方形,是菱形,则( ).()()()()A A B B C B C D C D A D⊆⊆⊆⊆【考点】集合【难度】容易【点评】本题考查集合之间的运算关系,即包含关系。
在高一数学强化提高班上学期课程讲座1,第一章《集合》中有详细讲解,在高考精品班数学(文)强化提高班中有对集合相关知识的总结讲解。
(2)函数1(1)y x x =+-≥的反函数为( ). 2()1(0)A yx x =-≥ 2()1(1)B yx x =-≥ 2()1(0)C yx x =+≥ 2()1(1)D yx x =+≥ 【考点】反函数【难度】容易【点评】本题考查反函数的求解方法,注意反函数的定义域即为原函数的值域。
在高一数学强化提高班上学期课程讲座1,第二章《函数与初等函数》中有详细讲解,在高考精品班数学(文)强化提高班中有对函数相关知识的总结讲解。
(3)若函数()s i n [0,2]3x fx ϕϕ+=∈(π)是偶函数,则ϕ=( ).()2A π 2()3B π 3()2C π 5()3D π 【考点】三角函数与偶函数的结合【难度】中等【点评】本题考查三角函数变换,及偶函数的性质。
2012年高考真题——文数(新课标卷)Word版 含答案
绝密*启用前2012年普通高等学校招生全国统一考试文科数学注息事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.问答第Ⅰ卷时。
选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动.用橡皮擦干净后,再选涂其它答案标号。
写在本试卷上无效.3.回答第Ⅱ卷时。
将答案写在答题卡上.写在本试卷上无效·4.考试结束后.将本试卷和答且卡一并交回。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。
1、已知集合A={x |x 2-x -2<0},B={x |-1<x <1},则(A )A ⊂≠B (B )B ⊂≠A (C )A=B (D )A ∩B=∅ (2)复数z =-3+i2+i 的共轭复数是(A )2+i (B )2-i (C )-1+i (D )-1-i 3、在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =12x +1上,则这组样本数据的样本相关系数为(A )-1 (B )0 (C )12 (D )1(4)设F 1、F 2是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为直线x =3a2上一点,△F 1PF 2是底角为30°的等腰三角形,则E 的离心率为( )(A )12 (B )23 (C )34 (D )455、已知正三角形ABC 的顶点A(1,1),B(1,3),顶点C 在第一象限,若点(x ,y )在△ABC 内部,则z =-x+y 的取值范围是(A )(1-3,2) (B )(0,2) (C )(3-1,2) (D )(0,1+3)(6)如果执行右边的程序框图,输入正整数N(N ≥2)和实数a 1,a 2,…,a N ,输出A,B ,则 (A )A+B 为a 1,a 2,…,a N 的和(B )A +B2为a 1,a 2,…,a N 的算术平均数(C )A 和B 分别是a 1,a 2,…,a N 中最大的数和最小的数 (D )A 和B 分别是a 1,a 2,…,a N 中最小的数和最大的数结束(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为(A)6(B)9(C)12(D)18(8)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为(A )6π (B )43π (C )46π (D )63π(9)已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f (x )=sin(ωx +φ)图像的两条相邻的对称轴,则φ=(A )π4 (B )π3 (C )π2 (D )3π4(10)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB|=43,则C 的实轴长为(A ) 2 (B )2 2 (C )4 (D )8(11)当0<x ≤12时,4x <log a x ,则a 的取值范围是(A )(0,22) (B )(22,1) (C )(1,2) (D )(2,2) (12)数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为(A )3690 (B )3660 (C )1845 (D )1830第Ⅱ卷本卷包括必考题和选考题两部分。
2012年(全国卷II)(含答案)高考文科数学
2012年普通高等学校招生全国统一考试(2全国卷)数学(文)试题一、选择题 ( 本大题 共 12 题, 共计 60 分)1.已知集合A ={x |x 是平行四边形},B ={x |x 是矩形},C ={x |x 是正方形},D ={x |x 是菱形},则( )A .AB B .CB C .DC D .AD2.函数1y x =+x ≥-1)的反函数为( ) A .y =x 2-1(x ≥0) B .y =x 2-1(x ≥1) C .y =x 2+1(x ≥0) D .y =x 2+1(x ≥1) 3.若函数()sin 3x f x ϕ+=(φ∈[0,2π])是偶函数,则φ=( ) A .π2B .2π3C .3π2D .5π34.已知α为第二象限角,3sin 5α=,则sin2α=( ) A .2425-B .1225-C .1225D .2425 5.椭圆的中心在原点,焦距为4,一条准线为x =-4,则该椭圆的方程为( )A .2211612x y += B .221128x y += C .22184x y += D .221124x y += 6.已知数列{a n }的前n 项和为S n ,a 1=1,S n =2a n +1,则S n =( )A .2n -1B .13()2n -C .12()3n -D .112n -7. 6位选手依次演讲,其中选手甲不在第一个也不在最后一个演讲,则不同的演讲次序共有( )A .240种B .360种C .480种D .720种8.已知正四棱柱ABCD -A 1B 1C 1D 1中,AB =2,122CC =E 为CC 1的中点,则直线AC 1与平面BED 的距离为( )A.2 BC .2D.19.△ABC中,AB边的高为CD.若CB=a ,CA=b,a·b=0,|a|=1,|b|=2,则AD=()A.1133-a b B.2233-a bC.3355-a b D.4455-a b10.已知F1,F2为双曲线C:x2-y2=2的左、右焦点,点P在C上,|PF1|=2|PF2|,则cos∠F1PF2=()A.14B.35C.34D.4511.已知x=ln π,y=log52,12=ez-,则()A.x<y<z B.z<x<yC.z<y<x D.y<z<x12.正方形ABCD的边长为1,点E在边AB上,点F在边BC上,AE=BF=13.动点P从E出发沿直线向F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当点P第一次碰到E时,P与正方形的边碰撞的次数为() A.8 B.6 C.4 D.3二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.13.(x+12x)8的展开式中x2的系数为__________.14.若x,y满足约束条件10,30,330, x yx yx y-+≥⎧⎪+-≤⎨⎪+-≥⎩则z=3x-y的最小值为__________.15.当函数y=sin x x(0≤x<2π)取得最大值时,x=__________.16.已知正方体ABCD-A1B1C1D1中,E,F分别为BB1,CC1的中点,那么异面直线AE与D1F所成角的余弦值为__________.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.△ABC中,内角A,B,C成等差数列,其对边a,b,c满足2b2=3ac,求A.18.已知数列{a n}中,a1=1,前n项和23n nnS a+=.(1)求a2,a3;(2)求{a n}的通项公式.19.如图,四棱锥P-ABCD中,底面ABCD为菱形,P A⊥底面ABCD,AC=P A=2,E是PC上的一点,PE=2EC.(1)证明:PC⊥平面BED;(2)设二面角A-PB-C为90°,求PD与平面PBC所成角的大小.20.乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换.每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球.(1)求开始第4次发球时,甲、乙的比分为1比2的概率;(2) 求开始第5次发球时,甲得分领先的概率.21.已知函数f(x)=13x3+x2+ax.(1)讨论f(x)的单调性;(2)设f(x)有两个极值点x1,x2,若过两点(x1,f(x1)),(x2,f(x2))的直线l与x 轴的交点在曲线y=f(x)上,求a的值.22.已知抛物线C:y=(x+1)2与圆M:(x-1)2+(y-12)2=r2(r>0)有一个公共点A,且在A处两曲线的切线为同一直线l.(1)求r;(2)设m,n是异于l且与C及M都相切的两条直线,m,n的交点为D,求D到l的距离.2012年普通高等学校招生全国统一考试(2全国卷)数学(文)试题答案解析:1. B ∵正方形组成的集合是矩形组成集合的子集, ∴C B .2. A ∵1y x =+∴y 2=x +1, ∴x =y 2-1,x ,y 互换可得:y =x 2-1. 又∵10y x =+≥.∴反函数中x ≥0,故选A 项. 3.C ∵()sin3x f x ϕ+=是偶函数,∴f (0)=±1. ∴sin 13ϕ=±.∴ππ32k ϕ=+(k ∈Z).∴φ=3k π+3π2(k ∈Z). 又∵φ∈[0,2π],∴当k =0时,3π2ϕ=.故选C 项. 4.A ∵3sin 5α=,且α为第二象限角, ∴24cos 1sin 5αα=-=--.∴3424sin22sin cos 25525ααα⎛⎫==⨯⨯-=- ⎪⎝⎭.故选A 项. 5. C ∵焦距为4,即2c =4,∴c =2.又∵准线x =-4,∴24a c-=-.∴a 2=8.∴b 2=a 2-c 2=8-4=4.∴椭圆的方程为22184x y +=,故选C 项.6.B 当n =1时,S 1=2a 2,又因S 1=a 1=1,所以21 2a=,213 122S=+=.显然只有B项符合.7.C由题意可采用分步乘法计数原理,甲的排法种数为14A,剩余5人进行全排列:55A,故总的情况有:14A·55A=480种.故选C 项.8.D连结AC交BD于点O,连结OE,∵AB=2,∴AC=又1CC=AC=CC1.作CH⊥AC1于点H,交OE于点M.由OE为△ACC1的中位线知,CM⊥OE,M为C H的中点.由BD⊥AC,EC⊥BD知,BD⊥面EOC,∴CM⊥BD.∴CM⊥面BDE.∴HM为直线AC1到平面BDE的距离.又△AC C1为等腰直角三角形,∴CH=2.∴HM=1.9.D∵a·b=0,∴a⊥b.又∵|a|=1,|b|=2,∴||5AB=.∴||5CD==.∴2||25AD ==. ∴4544445()5555AD AB AB ===-=-a b a b .10. C 设|PF 2|=m ,则|PF 1|=2m , 由双曲线定义|PF 1|-|PF 2|=2a , ∴2m -m=.∴m 又24c ==, ∴由余弦定理可得cos ∠F 1PF 2=2221212||||432||||4PF PF c PF PF +-=.11. D ∵x =ln π>1,y =log 52>1log 2=,121e2z -==>=,且12e -<e 0=1,∴y <z <x . 12. B 如图,由题意:tan ∠BEF =12, ∴2112KX =,∴X 2为HD 中点,2312X D X D =,∴313X D =, 4312X C X C =,∴413X C =, 5412X H X H =,∴512X H =, 5612X A X A =,∴613X A =,∴X 6与E 重合,故选B 项. 13.答案:7 解析:∵(x +12x )8展开式的通项为T r +1=8C r x 8-r(12x)r =C r 82-r x 8-2r,令8-2r =2,解得r =3.∴x 2的系数为38C 2-3=7.14.答案:-1解析:由题意画出可行域,由z =3x -y 得y =3x -z ,要使z 取最小值,只需截距最大即可,故直线过A (0,1)时,z 最大.∴z max =3×0-1=-1. 15.答案:5π6解析:y =sin xx=1π2(sin )2sin()23x x x =-. 当y 取最大值时,ππ2π32x k -=+,∴x =2k π+5π6.又∵0≤x <2π,∴5π6x =. 16.答案:35解析:设正方体的棱长为a .连结A 1E ,可知D 1F ∥A 1E ,∴异面直线AE 与D 1F 所成的角可转化为AE 与A 1E 所成的角, 在△AEA 1中,2222213cos 5a a a a a AEA ⎛⎫⎛⎫+++- ⎪ ⎪∠==. 17.解:由A ,B ,C 成等差数列及A +B +C =180°,得B =60°,A +C =120°.由2b 2=3ac 及正弦定理得2sin 2B =3sin A sin C , 故1sin sin 2A C =.cos(A +C )=cos A cos C -sin A sin C =cos A cos C -12, 即cos A cos C -12=12-,cos A cos C =0, cos A =0或cos C =0,所以A =90°或A =30°.18.解:(1)由2243S a =得3(a 1+a 2)=4a 2,解得a 2=3a 1=3; 由3353S a =得3(a 1+a 2+a 3)=5a 3,解得a 3=32(a 1+a 2)=6. (2)由题设知a 1=1.当n >1时有a n =S n -S n -1=12133n n n n a a -++-, 整理得111n n n a a n -+=-. 于是a 1=1,a 2=31a 1,a 3=42a 2,… a n -1=2nn -a n -2,a n =11n n +-a n -1.将以上n 个等式两端分别相乘,整理得(1)2n n n a +=. 综上,{a n }的通项公式(1)2n n n a +=. 19.解法一:(1)证明:因为底面ABCD 为菱形,所以BD ⊥AC .又P A ⊥底面ABCD , 所以PC ⊥BD . 设AC ∩BD =F ,连结EF .因为AC =P A =2,PE =2EC ,故PC =3EC =,FC = 从而PC FC =,ACEC =, 因为PC ACFC EC=,∠FCE =∠PCA , 所以△FCE ∽△PCA ,∠FEC =∠P AC =90°, 由此知PC ⊥EF .PC 与平面BED 内两条相交直线BD ,EF 都垂直,所以PC ⊥平面BED .(2)在平面P AB 内过点A 作AG ⊥PB ,G 为垂足.因为二面角A -PB -C 为90°,所以平面P AB ⊥平面PBC . 又平面P AB ∩平面PBC =PB ,故AG ⊥平面PBC ,AG ⊥BC . BC 与平面P AB 内两条相交直线P A ,AG 都垂直, 故BC ⊥平面P AB ,于是BC ⊥AB ,所以底面ABCD 为正方形,AD =2,2222PD PA AD =+=. 设D 到平面PBC 的距离为d .因为AD ∥BC ,且AD 平面PBC ,BC 平面PBC ,故AD ∥平面PBC ,A ,D 两点到平面PBC 的距离相等,即d =AG 2.设PD 与平面PBC 所成的角为α,则1sin 2d PD α==. 所以PD 与平面PBC 所成的角为30°.解法二:(1)证明:以A 为坐标原点,射线AC 为x 轴的正半轴,建立如图所示的空间直角坐标系A -xyz .设C (220,0),D 2,b,0),其中b >0, 则P (0,0,2),E (23,0,23),B 2b,0). 于是PC =(220,-2),BE =(23,b ,23),DE =(23,-b ,23),从而0PC BE ⋅=,0PC DE ⋅=, 故PC ⊥BE ,PC ⊥DE .又BE ∩DE =E ,所以PC ⊥平面BDE .(2)AP =(0,0,2),AB =b,0). 设m =(x ,y ,z )为平面P AB 的法向量, 则m ·AP =0,m ·AB =0,即2z =0-by =0, 令x =b ,则m =(b,0).设n =(p ,q ,r )为平面PBC 的法向量,则n ·PC =0,n ·BE =0,即20r -=且2033bq r ++=,令p =1,则r =q b =-,n =(1,b-). 因为面P AB ⊥面PBC ,故m·n =0,即20b b-=,故b = 于是n =(1,-1),DP =(2),1cos ,2||||DP DP DP ⋅==n n n ,〈n ,DP 〉=60°. 因为PD 与平面PBC 所成角和〈n ,DP 〉互余,故PD 与平面PBC 所成的角为30°.20.解:记A i 表示事件:第1次和第2次这两次发球,甲共得i 分,i =0,1,2;B i 表示事件:第3次和第4次这两次发球,甲共得i 分,i =0,1,2; A 表示事件:第3次发球,甲得1分;B 表示事件:开始第4次发球时,甲、乙的比分为1比2;C 表示事件:开始第5次发球时,甲得分领先.(1)B =A 0·A +A 1·A , P (A )=0.4,P (A 0)=0.42=0.16,P (A 1)=2×0.6×0.4=0.48, P (B )=P (A 0·A +A 1·A )=P(A0·A)+P(A1·A)=P(A0)P(A)+P(A1)P(A)=0.16×0.4+0.48×(1-0.4)=0.352.(2) P(B0)=0.62=0.36,P(B1)=2×0.4×0.6=0.48,P(B2)=0.42=0.16,P(A2)=0.62=0.36.C=A1·B2+A2·B1+A2·B2P(C)=P(A1·B2+A2·B1+A2·B2)=P(A1·B2)+P(A2·B1)+P(A2·B2)=P(A1)P(B2)+P(A2)P(B1)+P(A2)P(B2)=0.48×0.16+0.36×0.48+0.36×0.16=0.307 2.21.解:(1)f′(x)=x2+2x+a=(x+1)2+a-1.①当a≥1时,f′(x)≥0,且仅当a=1,x=-1时,f′(x)=0,所以f(x)是R上的增函数;②当a<1时,f′(x)=0有两个根x1=-1x2=-1当x∈(-∞,-1时,f′(x)>0,f(x)是增函数;当x∈(-11时,f′(x)<0,f(x)是减函数;当x∈(-1∞)时,f′(x)>0,f(x)是增函数.(2)由题设知,x1,x2为方程f′(x)=0的两个根,故有a<1,x12=-2x1-a,x22=-2x2-a.因此f(x1)=13x13+x12+ax1=13x1(-2x1-a)+x12+ax1=13x12+23ax1=13(-2x1-a)+23ax1=23(a-1)x1-3a.同理,f(x2)=23(a-1)x2-3a.因此直线l 的方程为y =23(a -1)x -3a . 设l 与x 轴的交点为(x 0,0),得02(1)ax a =-, 22322031()[][](12176)32(1)2(1)2(1)24(1)a a a a f x a a a a a a =++=-+----. 由题设知,点(x 0,0)在曲线y =f (x )上,故f (x 0)=0, 解得a =0或23a =或34a =.22.解:(1)设A (x 0,(x 0+1)2),对y =(x +1)2求导得y ′=2(x +1), 故l 的斜率k =2(x 0+1).当x 0=1时,不合题意,所以x 0≠1. 圆心为M (1,12),MA 的斜率2001(1)21x k'x +-=-.由l ⊥MA 知k ·k ′=-1, 即2(x 0+1)·2001(1)21x x +--=-1,解得x 0=0,故A (0,1), r =|MA |=,即2r =. (2)设(t ,(t +1)2)为C 上一点,则在该点处的切线方程为y -(t +1)2=2(t +1)(x -t ),即y =2(t +1)x -t 2+1.若该直线与圆M 相切,则圆心M=化简得t 2(t 2-4t -6)=0,解得t 0=0,12t =22t =抛物线C 在点(t i ,(t i +1)2)(i =0,1,2)处的切线分别为l ,m ,n ,其方程分别为y =2x +1,①y =2(t 1+1)x -t 12+1,② y =2(t 2+1)x -t 22+1,③ ②-③得1222t t x +==. 将x =2代入②得y =-1,故D (2,-1). 所以D 到l的距离d ==.。
2012年高考新课标全国卷文科数学试题(附答案)(最新整理)
2012 年普通高等学校招生全国统一考试(新课标全国卷)文科数学试题一、选择题:本大题共 12 小题,每小题 5 分,在每小题给同的四个选项中,只有一项是符合题目要求的。
(1)已知集合 A={x |x 2−x −2<0},B={x |−1<x <1},则(A )A ⊂≠B (B )B ⊂≠A (C )A=B(D )A ∩B=∅-3 + i (2)复数 z =的共轭复数是2 + i(A ) 2 + i(B ) 2 - i(C ) -1+ i(D ) -1- i(3)在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的1散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线 y =数据的样本相关系数为 x +1 上,则这组样本21 (A )−1(B )0(C )2(D )1x 2 y 2(4)设 F 1 , F 2 是椭圆 E : a 2 + b2 =1( a > b >0)的3a左、 右焦点, P 为直线 x = 上一点,△ F 2 PF 12是底角为300 的等腰三角形,则 E 的离心率为 1 2 3 4 (A )(B )(C )D .2345(5) 已知正三角形 ABC 的顶点 A (1,1),B (1,3),顶点 C 在第一象限,若点(x ,y )在△ABC 内部,则 z = -x + y 的取值范围是 (A )(1- 3,2)(B )(0,2)(C )( 3-1,2)(D )(0,1+ 3)(6) 如果执行右边的程序框图,输入正整数 N ( N ≥2)和实数 a 1, a 2 ,…, a N ,输出 A ,B ,则 (A ) A + B 为 a 1 , a 2 ,…, a N 的和 A + B (B )为 a , a ,…, a 的算术平均数 21 2 N(C ) A 和 B 分别为 a 1 , a 2 ,…, a N 中的最大数和最小数3 2 10 n n + n1(D ) A 和 B 分别为 a 1 , a 2 ,…, a N 中的最小数和最大数(7) 如图,网格上小正方形的边长为 1,粗线画出的是某几何体的三视图,则此几何体的体积为 (A )6 (B )9 (C )12 (D )18 (8)平面截球 O 的球面所得圆的半径为 1,球心 O 到平面的距离为2,则此球的体积为(A ) 6π (B )4 3π (C )4 6π(D )6 3π(9)已知>0, 0 << ,直线 x =和 x =5是函数 f (x ) = sin(x +) 图像的两条44相邻的对称轴,则=π (A )4 π (B )3 π (C )2 3π (D ) 4(10)等轴双曲线C 的中心在原点,焦点在 x 轴上, C 与抛物线 y 2 = 16x 的准线交于 A 、B 两点, | AB | = 4 ,则C 的实轴长为(A ) (B ) 2 (11)当 0< x ≤1时, 4x< log 2 a2 (C )4 (D )8x ,则 a 的取值范围是2(A )(0, 2 ) (B )( 2,1) (C )(1, 2)(D )( 2,2)(12)数列{ a }满足 a + (-1)na = 2n -1,则{ a }的前 60 项和为(A )3690 (B )3660 (C )1845 (D )1830二.填空题:本大题共 4 小题,每小题 5 分。
云南省2012年第一次省统测数学(文科)
2012年云南省第一次高中毕业生复习统一检测文科数学一、填空题1.已知集合{}{}1,2,1,3S T ==,则ST =A .{}1B .{}2,3C .{}1,2,3D .{}1,2,1,3 2.抛物线22x y =的焦点坐标是 A .1,02⎛⎫⎪⎝⎭ B .10,2⎛⎫⎪⎝⎭C .()1,0D .()0,1 3.函数()()tan 2f x x π=+的最小正周期等于 A .2π B .π C .2π D .4π4.已知i 是虚数单位,1222,13z i z i =+=-,那么复数212z z z =在复平面内对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限 5.如果函数213xy x-=+在x t =时取得极小值,那么t = A .3 B .1 C .-1 D .-36.下图是一个几何体的三视图,其中正视图是边长为2的等边三角形,侧视图是直角边长分别为11的半圆,则该几何体的体积等于ABCD .12π正视图 侧视图俯视图7.已知n S 是等比数列{}n a 的前n 项和,1a 和3a 的等差中项等于15,如果4120S =,那么2012200920093S S -= A .18 B .25 C .32 D .398.已知()()0,1,3,4==-a b ,则向量a 在向量b 方向上的投影等于 A .4- B .45-C .45D .4 9.已知椭圆22:1259x y E +=的长轴的两个端点分别为1A 、2A ,点P 在椭圆E 上,如果12A PA ∆的面积等于9,那么12PA PA ⋅=A .14425-B .14425C .8125-D .812510.已知,αβ是两个互相垂直的平面,,m n 是一对异面直线,下列四个结论: ① //,m n αβ⊂;② ,//m n αβ⊥;③ ,m n αβ⊥⊥;④ //,//m n αβ,且m 与α的距离等于n 与β的距离.其中是m n ⊥的充分条件的为 A .① B .② C .③ D .④11.运行下图所示的程序,如果输出结果为1320sum =,那么判断框中应填 A .9i ≥ B .10i ≥ C .9i ≤ D .10i ≤12.某校对高三年级学生进行体检,并将高三男生的体重()kg 数据进行整理后分成五组,绘制成下图所示的频率分布直方图.如果规定,高三男生的体重结果只分偏胖、偏瘦和正常三个类型,超过65kg 属于偏胖,低于55kg 属于偏瘦.已知图中从左到右第一、第三、第四、第五小组的频率分别为0.25,0.2,0.1,0.05,第二小组的频数为400.若该校高三男生的体重没有55kg 和65kg ,则该校高三年级的男生总数和体重正常的频率分别为 A .1000,0.5 B .800,0.5 C .800,0.6 D .1000,0.6二、填空题13.在一个水平放置的底面半径等于6的圆柱形量杯中装有适量的水,现放入一个半径等于r 的实心球,如果球完全浸没于水中且无水溢出,水面高度恰好上升r ,那么r =____.14.已知()2log ,03,0x x f x x >⎧=⎨≤⎩,计算()1f f =⎡⎤⎣⎦____3_____. 15.设数列{}n a 的前n 项和为n S ,如果112,33n n n a S a +==,那么9a =___15_____. 16.如果直线10ax by ++=被圆2225x y +=截得的弦长等于8,那么2235a b+的最小值等于______72+.)三、解答题17.已知A 、B 、C 是ABC ∆的三个内角,A 、B 、C 对的边分别为a 、b 、c ,设平面向量()()2cos ,sin ,cos ,sin ,3B C C B =-=⋅=m n m n . (Ⅰ)求cos A 的值;(Ⅱ)设3,a ABC =∆的面积S =,求b c +的值. (Ⅰ)23-(Ⅱ)我得到226,1bc b c =+=,根据此b 、c 无实数解,不知道是不是我计算错了……18.盒子内装有4张卡片,上面分别写着数字1,1,2,2,每张卡片被取到的概率相等.先从盒子中随机任取1张卡片,记下在上面的数字x ,然后放回盒子内搅匀,再从盒子中随机任取1张卡片,记下它上面的数字y . (Ⅰ)求2x y +=的概率P ; (Ⅱ)设“函数()()231855f t t x y t =-++在区间()2,4内有且只有一个零点”为事件A ,求A 的概率()P A .(Ⅰ)14 (Ⅱ)1219.如图,在空间几何体SABCD 中,四边形ABCD 为矩形,,,SD AD SD AB ⊥⊥2,4,AD AB SD ===(Ⅰ)证明:平面SDB ⊥平面ABCD ; (Ⅱ)求SA 与平面SDB 所成角的正弦值.20.双曲线S 的中心在原点,焦点在x 轴上,离心率e =350y -+=上的点与双曲线S . (Ⅰ)求双曲线S 的方程;(Ⅱ)设经过点()2,0-,斜率等于k 的直线与双曲线S 交与A 、B 两点,且以A 、B 、()0,1P 为顶点的ABP ∆是以AB 为底的等腰三角形,求k 的值.(Ⅰ)2212x y -=(Ⅱ)k =或0(此处不知道是否算错,答案比较不一般……) 21.已知实数a 是常数,()()27ln 1f x x a x =+-+,当1x >时,()f x 是增函数. (Ⅰ)求a 的取值范围; (Ⅱ)设n 是正整数,证明:()221111111ln 1722n n n ⎛⎫⎛⎫⨯+++++++>+ ⎪ ⎪⎝⎭⎝⎭. 解析:(Ⅰ)52a ≥; (Ⅱ)看到不等式的左边可以理解为21117n n⋅+的累加,可以考虑到不等式的右边也可以写成n 项的累加()231ln 1ln ln ln 12n n n++=+++即只要证明:21111ln 7n n n n+⋅+>()*n N ∈ ① 即可 根据题意我们可以联想到原函数,其中有ln x ,不妨令1n x n +=,得11n x n+=>(这样刚好满足原函数在1x >时为增函数)代入①并整理可得2567ln x x x +-> ②即:只要能够证明②,就可以得到①对任意的*n N ∈成立 根据原函数当52a ≥时在()1,+∞上为增函数 即()()()()227ln 1111f x x a x f x =+-+>=++ 整理得:22217ln x ax a x +--> ③ 结合②式,令52a =时,③式即可转化为②式如图,四边形ABCD 是○· O 的内接四边形,BD 不经过点O ,AC 平分∠BAD ,经过点C 的直线分别交AB 、AD 的延长线于E 、F ,且2CD AB DF =⋅.证明: (Ⅰ)△ABC ∽△CDF ;(Ⅱ)EF 是○· O 的切线.23.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,()()1,0,2,0A B 是两个定点,曲线C 的参数方程为22x t y t⎧=⎨=⎩(t 为参数).(Ⅰ)讲曲线C 的参数方程化为普通方程;(Ⅱ)以()1,0A 为极点,AB 为长度单位,射线AB 为极轴建立极坐标系,求曲线C 的极坐标方程 (Ⅰ)24y x = (Ⅱ)cos 2ρρθ=+已知实数a 、b 、c 、d 满足22223,2365a b c d a b c d +++=+++=. 证明:(Ⅰ)()2222236b c d b c d ++≤++;(Ⅱ)3122a -≤.解析:x y z === 即b c d === 2222x y z ≤++ ①由柯西不等式可得()2222222111236x y z x y z ⎛⎫≤++++=++ ⎪⎝⎭ 所以原式得证(Ⅱ)将(Ⅰ)中的不等式两边都用a 表示,就可以解出a 的取值范围,就是(Ⅱ)的解,得证。
2012年高考新课标全国卷文科数学试题(附答案)
学习资料收集于网络,仅供参考学习资料收集于网络,仅供参考学习资料学习资料2012年普通高等学校招生全国统一考试(新课标全国卷)文科数学试题一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。
合题目要求的。
(1)已知集合A={x |x 2−x −2<0},B={x |−1<x <1},则,则(A )A ̹B (B )B ̹A (C )A=B (D )A ∩B=Æ (2)复数z =32ii-++的共轭复数是的共轭复数是 (A )2i + (B )2i - (C )1i -+ (D )1i --(3)在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线112y x =+上,则这组样本数据的样本相关系数为数据的样本相关系数为(A )−1 (B )0 (C )12(D )1 (4)设1F ,2F 是椭圆E :2222x y a b+=1(a >b >0)的)的左、左、 右焦点,P 为直线32ax =上一点,△21F PF是底角为030的等腰三角形,则E 的离心率为的离心率为 (A )12(B )23(C )34D .45(5)已知正三角形ABC 的顶点A (1,1),B (1,3),顶点C 在第一象限,若点(x ,y )在△ABC内部,则z x y =-+的取值范围是的取值范围是(A )(1-3,2) (B )(0,2) (C )(3-1,2) (D )(0,1+3) (6)如果执行右边的程序框图,输入正整数N (N ≥2)和实数1a ,2a ,…,N a ,输出A ,B ,则 (A )A +B 为1a ,2a ,…,N a 的和的和 (B )2A B +为1a ,2a ,…,N a 的算术平均数的算术平均数(C )A 和B 分别为1a ,2a ,…,N a 中的最大数中的最大数和最小数和最小数(D )A 和B 分别为1a ,2a ,…,N a 中的最小数和最大数中的最小数和最大数 (7)如图,网格上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为某几何体的三视图,则此几何体的体积为 (A )6 (B )9 (C )12 (D )18(8)平面a 截球O 的球面所得圆的半径为1,球心O 到平面a 的距离为2,则此球的体积为(A )6π (B )43π (C )46π (D )63π (9)已知w >0,0j p <<,直线x =4p 和x =54p是函数()sin()f x x w j =+图像的两条相邻的对称轴,则j=(A )π4 (B )π3 (C )π2 (D )3π4(1010)等轴双曲线)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准线交于A 、B 两点,||AB =43,则C 的实轴长为的实轴长为(A )2 (B )22 (C )4 (D )8 (11)当0<x ≤12时,4log xa x <,则a 的取值范围是的取值范围是 (A )(0,22) (B )(22,1)(C )(1,2) (D )(2,2) (12)数列{n a }满足1(1)21nn naan++-=-,则{n a }的前60项和为项和为(A )3690 (B )3660 (C )1845 (D )1830二.填空题:本大题共4小题,每小题5分。
2012年(全国卷II)(含答案)高考文科数学
A.y=x2-1(x≥0)
B.y=x2-1(x≥1)
C.y=x2+1(x≥0)
D.y=x2+1(x≥1)
3.若函数 f (x)
sin x 3
(φ∈[0,2π])是偶函数,则 φ=(
)
A. π 2
B.
2π 3
C.
3π 2
D.
5π 3
4.已知 α 为第二象限角,sin
3 5
,则
sin2α=(
)
A. 24 25
22.已知抛物线 C:y=(x+1) 与圆 M:(x-1) +(y- 1 ) =r (r>0)有一个
2
2
22 2
公共点 A,且在 A 处两曲线的切线为同一直线 l.
(1)求 r;
(2)设 m,n 是异于 l 且与 C 及 M 都相切的两条直线,m,n 的交点为 D,求
D 到 l 的距离.
4
2012年普通高等学校招生全国统一考试(2 全国卷)
|PF1|=2|PF2|,则 cos∠F1PF2=(
A. 1 4
B.
3 5
)
C.
3 4
D.
4 5
1
11.已知 x=ln π,y=log52, z=e 2 ,则( )
A.x<y<z
B.z<x<y
C.z<y<x
D.y<z<x
12.正方形 ABCD 的边长为 1,点 E 在边 AB 上,点 F 在边 BC 上,AE=
BF=
1 3
.动点
P
从
E
出发沿直线向
F
运动,每当碰到正方形的边时反弹,反弹
时反射角等于入射角.当点 P 第一次碰到 E 时,P 与正方形的边碰撞的次数为
2012年高考新课标全国卷文科数学试题(附答案)
2012年普通高等学校招生全国统一考试(新课标全国卷)文科数学试题一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。
(1)已知集合A={x |x 2−x −2<0},B={x |−1<x <1},则(A )A ⊂≠B (B )B ⊂≠A (C )A=B (D )A ∩B=∅ (2)复数z =32ii-++的共轭复数是 (A )2i + (B )2i - (C )1i -+ (D )1i --(3)在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线112y x =+上,则这组样本数据的样本相关系数为(A )−1 (B )0 (C )12(D )1(4)设1F ,2F 是椭圆E :2222x y a b+=1(a >b >0)的左、 右焦点,P 为直线32ax =上一点,△21F PF 是底角为030的等腰三角形,则E 的离心率为 (A )12 (B )23 (C )34 D .45(5)已知正三角形ABC 的顶点A (1,1),B (1,3),顶点C 在第一象限,若点(x ,y )在△ABC内部,则z x y =-+的取值范围是(A )(1-3,2) (B )(0,2) (C )(3-1,2) (D )(0,1+3) (6)如果执行右边的程序框图,输入正整数N (N ≥2)和实数1a ,2a ,…,N a ,输出A ,B ,则 (A )A +B 为1a ,2a ,…,N a 的和 (B )2A B+为1a ,2a ,…,N a 的算术平均数 (C )A 和B 分别为1a ,2a ,…,N a 中的最大数和最小数(D )A 和B 分别为1a ,2a ,…,N a 中的最小数和最大数 (7)如图,网格上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为 (A )6 (B )9 (C )12 (D )18(8)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为(A )6π (B )43π (C )46π (D )63π (9)已知ω>0,0ϕπ<<,直线x =4π和x =54π是函数()sin()f x x ωϕ=+图像的两条相邻的对称轴,则ϕ=(A )π4 (B )π3 (C )π2 (D )3π4(10)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准线交于A 、B 两点,||AB =43,则C 的实轴长为(A )2 (B )22 (C )4 (D )8 (11)当0<x ≤12时,4log xa x <,则a 的取值范围是(A )(0,22) (B )(22,1) (C )(1,2) (D )(2,2) (12)数列{n a }满足1(1)21nn n a a n ++-=-,则{n a }的前60项和为(A )3690 (B )3660 (C )1845 (D )1830二.填空题:本大题共4小题,每小题5分。
新课标.2012年高考文科数学试题及答案
绝密*启用前2012年普通高等学校招生全国统一考试(新课标卷)文科数学注息事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.问答第Ⅰ卷时。
选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动.用橡皮擦干净后,再选涂其它答案标号。
写在本试卷上无效.3.回答第Ⅱ卷时。
将答案写在答题卡上.写在本试卷上无效·4.考试结束后.将本试卷和答且卡一并交回。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。
1、已知集合A={x |x 2-x -2<0},B={x |-1<x <1},则(A )A ⊂≠B (B )B ⊂≠A (C )A=B (D )A ∩B=∅(2)复数z =-3+i 2+i 的共轭复数是(A )2+i (B )2-i (C )-1+i (D )-1-i3、在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =12x +1上,则这组样本数据的样本相关系数为(A )-1 (B )0 (C )12 (D )1(4)设F 1、F 2是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为直线x =3a 2上一点,△F 1PF 2是底角为30°的等腰三角形,则E 的离心率为( )(A )12 (B )23 (C )34 (D )455、已知正三角形ABC 的顶点A(1,1),B(1,3),顶点C 在第一象限,若点(x ,y )在△ABC 内部,则z =-x+y 的取值范围是(A )(1-3,2) (B )(0,2) (C )(3-1,2) (D )(0,1+3)(6)如果执行右边的程序框图,输入正整数N(N ≥2)和实数a 1,a 2,…,a N ,输出A,B ,则(A )A+B 为a 1,a 2,…,a N 的和(B )A +B 2为a 1,a 2,…,a N 的算术平均数(C )A 和B 分别是a 1,a 2,…,a N 中最大的数和最小的数(D )A 和B 分别是a 1,a 2,…,a N 中最小的数和最大的数(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为(A)6(B)9(C)12(D)18(8)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为(A )6π (B )43π (C )46π (D )63π(9)已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f (x )=sin(ωx +φ)图像的两条相邻的对称轴,则φ=(A )π4 (B )π3 (C )π2 (D )3π4(10)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB|=43,则C 的实轴长为(A ) 2 (B )2 2 (C )4 (D )8(11)当0<x ≤12时,4x <log a x ,则a 的取值范围是(A )(0,22) (B )(22,1) (C )(1,2) (D )(2,2)(12)数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为(A )3690 (B )3660 (C )1845 (D )1830第Ⅱ卷本卷包括必考题和选考题两部分。
2012年云南省普通高考文科数学试题及参考答案
2012年云南省普通高考文科数学试题及参考答案注息事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.问答第Ⅰ卷时。
选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动.用橡皮擦干净后,再选涂其它答案标号。
写在本试卷上无效.3.回答第Ⅱ卷时。
将答案写在答题卡上.写在本试卷上无效·4.考试结束后.将本试卷和答且卡一并交回。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。
1.已知集合A={x |x 2-x -2<0},B={x |-1<x <1},则( )(A )A B (B )B A (C )A=B (D )A ∩B= 2.复数z =-3+i2+i的共轭复数是 ( )(A )2+i (B )2-i (C )-1+i (D )-1-i 3.在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =12x +1上,则这组样本数据的样本相关系数为 ( )(A )-1 (B )0 (C )12(D )14.设F 1、F 2是椭圆E :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,P 为直线x =3a2上一点,△F 1PF 2是底角为30°的等腰三角形,则E 的离心率为( ) (A )12 (B )23 (C )34 (D )455.已知正三角形ABC 的顶点A(1,1),B(1,3),顶点C 在第一象限,若点(x ,y )在△ABC 内部,则z=-x+y 的取值范围是( )(A )(1-3,2) (B )(0,2) (C )(3-1,2) (D )(0,1+3) 6.如果执行右边的程序框图,输入正整数N(N ≥2)和实数a 1,a 2,…,a N ,输出A,B ,则( ) (A )A+B 为a 1,a 2,…,a N 的和(B )A +B 2为a 1,a 2,…,a N 的算术平均数(C )A 和B 分别是a 1,a 2,…,a N 中最大的数和最小的数(D )A 和B 分别是a 1,a 2,…,a N 中最小的数和最大开始A=xB=xx >A 否是输入N ,a 1,a 2,…,a Nx <Bk =1,A =a 1,B=a 1k =k+1x =a k是否 否是k ≥N的数7.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( ) (A )6 (B )9 (C )12 (D )188.平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为 ( )(A )6π (B )43π (C )46π (D )63π9.已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f (x )=sin(ωx +φ)图像的两条相邻的对称轴,则φ=( )(A )π4 (B )π3 (C )π2 (D )3π410.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB|=43,则C 的实轴长为( )(A ) 2 (B )2 2 (C )4 (D )811.当0<x ≤12时,4x<log a x ,则a 的取值范围是 ( )(A )(0,22) (B )(22,1) (C )(1,2) (D )(2,2) 12.数列{a n }满足a n +1+(-1)na n =2n -1,则{a n }的前60项和为( )(A )3690 (B )3660 (C )1845 (D )1830第Ⅱ卷本卷包括必考题和选考题两部分。
云南省普通高考文科数学试题及参考答案
2012年云南省普通高考文科数学试题及参考答案注息事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.问答第Ⅰ卷时。
选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动.用橡皮擦干净后,再选涂其它答案标号。
写在本试卷上无效.3.回答第Ⅱ卷时。
将答案写在答题卡上.写在本试卷上无效·4.考试结束后.将本试卷和答且卡一并交回。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。
1.已知集合A={x |x 2-x -2<0},B={x |-1<x <1},则( )(A )A ⊂≠B (B )B ⊂≠A (C )A=B (D )A ∩B=∅ 2.复数z =-3+i2+i的共轭复数是 ( )(A )2+i (B )2-i (C )-1+i (D )-1-i 3.在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =12x +1上,则这组样本数据的样本相关系数为 ( )(A )-1 (B )0 (C )12 (D )14.设F 1、F 2是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为直线x =3a2上一点,△F 1PF 2是底角为30°的等腰三角形,则E 的离心率为( ) (A )12 (B )23 (C )34 (D )455.已知正三角形ABC 的顶点A(1,1),B(1,3),顶点C 在第一象限,若点(x ,y )在△ABC 内部,则z =-x+y 的取值范围是( )(A )(1-3,2) (B )(0,2) (C )(3-1,2) (D )(0,1+3)6.如果执行右边的程序框图,输入正整数N(N ≥2)和实数a 1,a 2,…,a N ,输出A,B ,则( ) (A )A+B 为a 1,a 2,…,a N 的和(B )A +B 2为a 1,a 2,…,a N 的算术平均数(C )A 和B 分别是a 1,a 2,…,a N 中最大的数和最小的数 (D )A 和B 分别是a 1,a 2,…,a N 中最小的数和最大的数7.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( ) (A )6 (B )9 (C )12 (D )18 8.平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为 ( )(A )6π (B )43π (C )46π (D )63π 9.已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f (x )=sin(ωx +φ)图像的两条相邻的对称轴,则φ=( )(A )π4 (B )π3 (C )π2 (D )3π410.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB|=43,则C 的实轴长为( )(A ) 2 (B )2 2 (C )4 (D )8 11.当0<x ≤12时,4x <log a x ,则a 的取值范围是 ( )(A )(0,22) (B )(22,1) (C )(1,2) (D )(2,2) 12.数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为( )(A )3690 (B )3660 (C )1845 (D )1830第Ⅱ卷本卷包括必考题和选考题两部分。
2012年云南省高考数学试卷(文科)(全国新课标)(附答案解析)
2012年云南省高考数学试卷(文科)(全国新课标)一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1. 已知集合A={x|x2−x−2<0},B={x|−1<x<1},则()A.A⊊BB.B⊊AC.A=BD.A∩B=⌀2. 复数z=−3+i2+i的共轭复数是()A.2+iB.2−iC.−1+iD.−1−i3. 在一组样本数据(x1, y1),(x2, y2),…,(x n, y n)(n≥2,x1,x2,…,x n不全相等)的散点图中,若所有样本点(x i, y i)(i=1, 2,…,n)都在直线y=12x+1上,则这组样本数据的样本相关系数为( )A.−1B.0C.12D.14. 设F1,F2是椭圆E:x2a2+y2b2=1(a>b>0)的左、右焦点,P为直线x=3a2上一点,△F2PF1是底角为30∘的等腰三角形,则E的离心率为( )A.1 2B.23C.34D.455. 已知正三角形ABC的顶点A(1, 1),B(1, 3),顶点C在第一象限,若点(x, y)在△ABC内部,则z=−x+y的取值范围是()A.(1−√3, 2)B.(0, 2)C.(√3−1, 2)D.(0, 1+√3)6. 如果执行右边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a n,输出A,B,则()A.A+B为a1,a2,…,a n的和B.A+B2为a1,a2,…,a n的算术平均数C.A和B分别是a1,a2,…,a n中最大的数和最小的数D.A和B分别是a1,a2,…,a n中最小的数和最大的数7. 如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.6B.9C.12D.188. 平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为√2,则此球的体积为( ) A.√6π B.4√3π C.4√6π D.6√3π9. 已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f(x)=sin (ωx +φ)图象的两条相邻的对称轴,则φ=( ) A.π4 B.π3C.π2D.3π410. 等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB|=4√3,则C 的实轴长为( ) A.√2 B.2√2 C.4 D.811. 当0<x ≤12时,4x <log a x ,则a 的取值范围是( )A.(0, √22)B.(√22, 1) C.(1, √2) D.(√2, 2)12. 数列{a n }满足a n+1+(−1)n a n =2n −1,则{a n }的前60项和为( ) A.3690 B.3660 C.1845 D.1830二.填空题:本大题共4小题,每小题5分.曲线y =x(3ln x +1)在点(1, 1)处的切线方程为________.等比数列{a n }的前n 项和为S n ,若S 3+3S 2=0,则公比q =________.已知向量a →,b →夹角为45∘,且|a →|=1,|2a →−b →|=√10,则|b →|=________.设函数f(x)=(x+1)2+sin xx 2+1的最大值为M ,最小值为m ,则M +m =________.三、解答题:解答应写出文字说明,证明过程或演算步骤.已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,c =√3a sin C −c cos A . (1)求A ;(2)若a =2,△ABC 的面积为√3,求b ,c .某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花做垃圾处理.(1)若花店一天购进17枝玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,n ∈N )的函数解析式;(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:100天的日利润(单位:元)的平均数;②若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.如图,三棱柱ABC −A 1B 1C 1中,侧棱垂直底面,∠ACB =90∘,AC =BC =12AA 1,D 是棱AA 1的中点.(Ⅰ)证明:平面BDC 1⊥平面BDC(Ⅱ)平面BDC 1分此棱柱为两部分,求这两部分体积的比.设抛物线C:x 2=2py(p >0)的焦点为F ,准线为l ,A ∈C ,已知以F 为圆心,FA 为半径的圆F 交l 于B ,D 两点; (1)若∠BFD =90∘,△ABD 的面积为4√2,求p 的值及圆F 的方程;(2)若A ,B ,F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m ,n 距离的比值.设函数f(x)=e x −ax −2. (1)求f(x)的单调区间;(2)若a =1,k 为整数,且当x >0时,(x −k)f′(x)+x +1>0,求k 的最大值.如图,D ,E 分别为△ABC 边AB ,AC 的中点,直线DE 交△ABC 的外接圆于F ,G 两点,若CF // AB ,证明:(1)CD =BC ;(2)△BCD ∽△GBD .选修4−4;坐标系与参数方程已知曲线C 1的参数方程是{x =2cos arpℎiy =3sin arpℎi (φ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立坐标系,曲线C 2的坐标系方程是ρ=2,正方形ABCD 的顶点都在C 2上,且A ,B ,C ,D 依逆时针次序排列,点A 的极坐标为(2, π3).(1)求点A ,B ,C ,D 的直角坐标;(2)设P 为C 1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.已知函数f(x)=|x +a|+|x −2|.(1)当a =−3时,求不等式f(x)≥3的解集;(2)若f(x)≤|x −4|的解集包含[1, 2],求a 的取值范围.参考答案与试题解析2012年云南省高考数学试卷(文科)(全国新课标)一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.【答案】B【考点】集合的包含关系判断及应用【解析】先求出集合A,然后根据集合之间的关系可判断【解答】解:由题意可得,A={x|−1<x<2},∵B={x|−1<x<1},在集合B中的元素都属于集合A,但是在集合A中的元素不一定在集合B中,例如x=32∴B⊊A.故选B.2.【答案】D【考点】共轭复数复数代数形式的混合运算【解析】利用复数的分子、分母同乘分母的共轭复数,把复数化为a+bi的形式,然后求法共轭复数即可.【解答】解:复数z=−3+i2+i =(−3+i)(2−i)(2+i)(2−i)=−5+5i5=−1+i,所以复数z的共轭复数为:−1−i.故选D.3.【答案】D【考点】相关系数【解析】所有样本点(x i, y i)(i=1, 2,…,n)都在直线y=12x+1上,故这组样本数据完全正相关,故其相关系数为1.【解答】解:由题设知,所有样本点(x i, y i)(i=1, 2,…,n)都在直线y=12x+1上,∴这组样本数据完全正相关,故其相关系数为1,故选D.4.【答案】C【考点】椭圆的离心率【解析】利用△F2PF1是底角为30∘的等腰三角形,可得|PF2|=|F2F1|,根据P为直线x=3a2上一点,可建立方程,由此可求椭圆的离心率.【解答】解:∵△F2PF1是底角为30∘的等腰三角形,∴|PF2|=|F2F1|,∠PF2E=60∘,∵P为直线x=3a2上一点,∴|PF2|⋅cos60∘=3a2−c,∴2(32a−c)=2c,∴e=ca=34.故选C.5.【答案】A【考点】简单线性规划【解析】由A,B及△ABC为正三角形可得,可求C的坐标,然后把三角形的各顶点代入可求z的值,进而判断最大与最小值,即可求解范围【解答】设C(a, b),(a>0, b>0)由A(1, 1),B(1, 3),及△ABC为正三角形可得,AB=AC=BC=2即(a−1)2+(b−1)2=(a−1)2+(b−3)2=4∴b=2,a=1+√3即C(1+√3, 2)则此时直线AB的方程x=1,AC的方程为y−1=√33(x−1),直线BC的方程为y−3=−√33(x−1)当直线x−y+z=0经过点A(1, 1)时,z=0,经过点B(1, 3)z=2,经过点C(1+√3, 2)时,z=1−√3∴z max=2,z min=1−√36.【答案】C【考点】程序框图循环结构的应用【解析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是求出a1,a2,…,a n 中最大的数和最小的数.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知,该程序的作用是:求出a1,a2,…,a n中最大的数和最小的数其中A为a1,a2,…,a n中最大的数,B为a1,a2,…,a n中最小的数故选:C.7.【答案】B【考点】由三视图求体积【解析】通过三视图判断几何体的特征,利用三视图的数据求出几何体的体积即可.【解答】解:该几何体是三棱锥,底面是俯视图,三棱锥的高为3;底面三角形斜边长为6,高为3的等腰直角三角形,此几何体的体积为V=13×12×6×3×3=9.故选B.8.【答案】B【考点】球的表面积和体积【解析】此题暂无解析【解答】略9. 【答案】A【考点】由y=Asin(ωx+φ)的部分图象确定其解析式【解析】此题暂无解析【解答】解:由题意可知,函数f(x)的周期T=2×(5π4−π4)=2π,故ω=1,所以f(x)=sin(x+φ).令x+φ=kπ+π2(k∈Z),将x=π4代入可得φ=kπ+π4(k∈Z).又因为0<φ<π,所以φ=π4.故选A.10.【答案】C【考点】圆锥曲线【解析】设等轴双曲线C:x2−y2=a2(a>0),y2=16x的准线l:x=−4,由C与抛物线y2=16x的准线交于A,B两点,|AB|=4√3,能求出C的实轴长.【解答】解:设等轴双曲线C:x2−y2=a2(a>0),y2=16x的准线l:x=−4,∵C与抛物线y2=16x的准线l:x=−4交于A,B两点,|AB|=4√3,∴A(−4, 2√3),B(−4, −2√3),将A点坐标代入双曲线方程得a2=(−4)2−(2√3)2=4,∴a=2,2a=4.故选C.11.【答案】B【考点】对数函数图象与性质的综合应用【解析】此题暂无解析【解答】解:当0<x≤12时,1<4x≤2.要使4x<log a x,则由对数函数的性质可得0<a<1.数形结合可知只需2<logax,∴ {0<a <1,log a a 2<log a x ,即{0<a <1,a 2>x 对0<x ≤12时恒成立,∴ {0<a <1,a 2>12.解得√22<a <1. 故选 B . 12. 【答案】 D【考点】 数列的求和 数列递推式【解析】由题意可得 a 2−a 1=1,a 3+a 2=3,a 4−a 3=5,a 5+a 4=7,a 6−a 5=9,a 7+a 6=11,…a 50−a 49=97,变形可得a 3+a 1=2,a 4+a 2=8,a 7+a 5=2,a 8+a 6=24,a 9+a 7=2,a 12+a 10=40,a 13+a 11=2,a 16+a 14=56,…利用数列的结构特征,求出{a n }的前60项和. 【解答】解:由于数列{a n }满足a n+1+(−1)n a n =2n −1,故有a 2−a 1=1,a 3+a 2=3,a 4−a 3=5,a 5+a 4=7,a 6−a 5=9,a 7+a 6=11,…,a 50−a 49=97, 从而可得a 3+a 1=2,a 4+a 2=8,a 7+a 5=2,a 8+a 6=24,a 11+a 9=2,a 12+a 10=40,a 15+a 13=2,a 16+a 14=56,…从第一项开始,依次取2个相邻奇数项的和都等于2,从第二项开始,依次取2个相邻偶数项的和构成以8为首项,以16为公差的等差数列, 所以数列{a n }的前60项和为15×2+(15×8+15×142×16)=1830.故选D .二.填空题:本大题共4小题,每小题5分. 【答案】 y =4x −3 【考点】利用导数研究曲线上某点切线方程 【解析】先求导函数,求出切线的斜率,再求切线的方程. 【解答】求导函数,可得y′=3ln x +4, 当x =1时,y′=4,∴ 曲线y =x(3ln x +1)在点(1, 1)处的切线方程为y −1=4(x −1),即y =4x −3. 【答案】 −2【考点】等比数列的前n 项和 【解析】由题意可得,q ≠1,由S 3+3S 2=0,代入等比数列的求和公式可求q 【解答】解:由题意可得,q ≠1 ∵ S 3+3S 2=0 ∴a 1(1−q 3)1−q+3a 1(1−q 2)1−q=0∴ q 3+3q 2−4=0 ∴ (q −1)(q +2)2=0 ∵ q ≠1 ∴ q =−2 故答案为:−2 【答案】3√2【考点】平面向量数量积的性质及其运算 数量积表示两个向量的夹角 【解析】由已知可得,a →⋅b →=|a →||b →|cos 45=√22|b →|,代入|2a →−b →|=√(2a →−b →)2=√4a →2−4a →⋅b →+b →2=√4−2√2|b →|+|b →|2=√10可求 【解答】∵ <a →,b →>=45,|a →|=1 ∴ a →⋅b →=|a →||b →|cos 45=√22|b →| ∴ |2a →−b →|=√(2a →−b →)2=√4a →2−4a →⋅b →+b →2=√4−2√2|b →|+|b →|2=√10 解得|b →|=3√2【答案】 2【考点】函数的最值及其几何意义 【解析】 函数可化为f(x)=(x+1)2+sin xx 2+1=1+2x+sin x x 2+1,令g(x)=2x+sin x x 2+1,则g(x)=2x+sin x x 2+1为奇函数,从而函数g(x)=2x+sin x x 2+1的最大值与最小值的和为0,由此可得函数f(x)=(x+1)2+sin xx 2+1的最大值与最小值的和.【解答】 函数可化为f(x)=(x+1)2+sin xx 2+1=1+2x+sin x x 2+1,令g(x)=2x+sin x x 2+1,则g(x)=2x+sin xx 2+1为奇函数,∴ g(x)=2x+sin x x 2+1的最大值与最小值的和为0.∴ 函数f(x)=(x+1)2+sin xx 2+1的最大值与最小值的和为1+1+0=2.即M +m =2.三、解答题:解答应写出文字说明,证明过程或演算步骤. 【答案】解:(1)c =√3a sin C −c cos A , 由正弦定理得:√3sin A sin C −sin C cos A −sin C =0, 即sin C ⋅(√3sin A −cos A −1)=0, 又sin C ≠0,所以√3sin A −cos A −1=0,即2sin (A −π6)=1, 所以A =π3;(2)S △ABC =12bc sin A =√3,所以bc =4,a =2,由余弦定理得:a 2=b 2+c 2−2bc cos A ,即4=b 2+c 2−bc , 即有{bc =4,b 2+c 2−bc =4,解得b =c =2. 【考点】三角形的面积公式 解三角形 余弦定理 正弦定理 【解析】(1)由正弦定理有:√3sin A sin C −sin C cos A −sin C =0,可以求出A ; (2)有三角形面积以及余弦定理,可以求出b 、c . 【解答】解:(1)c =√3a sin C −c cos A , 由正弦定理得:√3sin A sin C −sin C cos A −sin C =0, 即sin C ⋅(√3sin A −cos A −1)=0, 又sin C ≠0,所以√3sin A −cos A −1=0,即2sin (A −π6)=1,所以A =π3;(2)S △ABC =12bc sin A =√3,所以bc =4,a =2,由余弦定理得:a 2=b 2+c 2−2bc cos A ,即4=b 2+c 2−bc , 即有{bc =4,b 2+c 2−bc =4,解得b =c =2.【答案】解:(1)当日需求量n ≥17时,利润y =85; 当日需求量n <17时,利润y =10n −85; ∴ 利润y 关于当天需求量n 的函数解析式为 y ={10n −85,n <17,85,n ≥17(n ∈N).(2)①这100天的日利润的平均数为55×10+65×20+75×16+85×54100=76.4元;②当天的利润不少于75元,当且仅当日需求量不少于16枝,故当天的利润不少于75元的概率为P =0.16+0.16+0.15+0.13+0.1=0.7. 【考点】函数模型的选择与应用 用频率估计概率 众数、中位数、平均数【解析】(Ⅰ)根据卖出一枝可得利润5元,卖不出一枝可得赔本5元,即可建立分段函数; (Ⅱ)(i)这100天的日利润的平均数,利用100天的销售量除以100即可得到结论;(ii)当天的利润不少于75元,当且仅当日需求量不少于16枝,故可求当天的利润不少于75元的概率. 【解答】解:(1)当日需求量n ≥17时,利润y =85; 当日需求量n <17时,利润y =10n −85; ∴ 利润y 关于当天需求量n 的函数解析式为 y ={10n −85,n <17,85,n ≥17(n ∈N).(2)①这100天的日利润的平均数为55×10+65×20+75×16+85×54100=76.4元;②当天的利润不少于75元,当且仅当日需求量不少于16枝,故当天的利润不少于75元的概率为P =0.16+0.16+0.15+0.13+0.1=0.7. 【答案】 证明:(1)由题意知BC ⊥CC 1,BC ⊥AC ,CC 1∩AC =C ,∴ BC ⊥平面ACC 1A 1,又DC 1⊂平面ACC 1A 1, ∴ DC 1⊥BC .由题设知∠A 1DC 1=∠ADC =45∘,∴ ∠CDC 1=90∘,即DC 1⊥DC ,又DC ∩BC =C , ∴ DC 1⊥平面BDC ,又DC 1⊂平面BDC 1, ∴ 平面BDC 1⊥平面BDC ;(2)设棱锥B −DACC 1的体积为V 1,AC =1,由题意得V 1=13×1+22×1×1=12,又三棱柱ABC −A 1B 1C 1的体积V =1, ∴ (V −V 1):V 1=1:1,∴ 平面BDC 1分此棱柱两部分体积的比为1:1. 【考点】平面与平面垂直柱体、锥体、台体的体积计算 棱柱的结构特征【解析】(Ⅰ)由题意易证DC 1⊥平面BDC ,再由面面垂直的判定定理即可证得平面BDC 1⊥平面BDC ; (Ⅱ)设棱锥B −DACC 1的体积为V 1,AC =1,易求V 1=13×1+22×1×1=12,三棱柱ABC −A 1B 1C 1的体积V =1,于是可得(V −V 1):V 1=1:1,从而可得答案.【解答】 证明:(1)由题意知BC ⊥CC 1,BC ⊥AC ,CC 1∩AC =C , ∴ BC ⊥平面ACC 1A 1,又DC 1⊂平面ACC 1A 1, ∴ DC 1⊥BC .由题设知∠A 1DC 1=∠ADC =45∘,∴ ∠CDC 1=90∘,即DC 1⊥DC ,又DC ∩BC =C , ∴ DC 1⊥平面BDC ,又DC 1⊂平面BDC 1, ∴ 平面BDC 1⊥平面BDC ;(2)设棱锥B −DACC 1的体积为V 1,AC =1,由题意得V 1=13×1+22×1×1=12,又三棱柱ABC −A 1B 1C 1的体积V =1, ∴ (V −V 1):V 1=1:1,∴ 平面BDC 1分此棱柱两部分体积的比为1:1. 【答案】 解:(1)由对称性知:△BFD 是等腰直角△,斜边|BD|=2p 点A 到准线l 的距离d =|FA|=|FB|=√2p , ∵ △ABD 的面积S △ABD =4√2, ∴ 12×BD ×d =12×2p ×√2p =4√2,解得p =2,所以F 坐标为(0, 1), ∴ 圆F 的方程为x 2+(y −1)2=8. (2)由题设A(x 0,x 022p )(x 0>0),则F(0,p2), ∵ A ,B ,F 三点在同一直线m 上,又AB 为圆F 的直径,故A ,B 关于点F 对称.由点A ,B 关于点F 对称得:B(−x 0,p −x 022p )⇒p −x 022p =−p2⇔x 02=3p 2得:A(√3p ,3p 2),直线m :y =3p 2−p 2√3p+p2⇔x −√3y +√3p 2=0,x 2=2py ⇔y =x 22p⇒y′=x p=√33⇒x =√33p ⇒切点P(√3p 3,p 6) 直线n :y −p6=√33(x −√3p3)⇔x −√3y −√36p =0坐标原点到m ,n 距离的比值为√3p 2:√3p6=3.【考点】圆锥曲线 圆的标准方程 抛物线的求解 【解析】(1)由对称性知:△BFD 是等腰直角△,斜边|BD|=2p 点A 到准线l 的距离d =|FA|=|FB|=√2p ,由△ABD 的面积S △ABD =4√2,知12×BD ×d =12×2p ×√2p =4√2,由此能求出圆F 的方程.(2)由对称性设A(x 0,x 022p )(x 0>0),则F(0,p2)点A ,B 关于点F 对称得:B(−x 0,p −x 022p )⇒p −x 022p =−p2⇔x 02=3p 2,得:A(√3p ,3p 2),由此能求出坐标原点到m ,n 距离的比值.【解答】 解:(1)由对称性知:△BFD 是等腰直角△,斜边|BD|=2p 点A 到准线l 的距离d =|FA|=|FB|=√2p , ∵ △ABD 的面积S △ABD =4√2, ∴ 12×BD ×d =12×2p ×√2p =4√2,解得p =2,所以F 坐标为(0, 1), ∴ 圆F 的方程为x 2+(y −1)2=8. (2)由题设A(x 0,x 022p)(x 0>0),则F(0,p2),∵ A ,B ,F 三点在同一直线m 上,又AB 为圆F 的直径,故A ,B 关于点F 对称.由点A ,B 关于点F 对称得:B(−x 0,p −x 022p )⇒p −x 022p =−p2⇔x 02=3p 2得:A(√3p ,3p2),直线m :y =3p 2−p2√3p+p2⇔x −√3y +√3p 2=0,x 2=2py ⇔y =x 22p ⇒y′=xp =√33⇒x =√33p ⇒切点P(√3p3,p 6) 直线n :y −p6=√33(x −√3p3)⇔x −√3y −√36p =0坐标原点到m ,n 距离的比值为√3p 2:√3p6=3.【答案】解:(1)函数f(x)=e x−ax−2的定义域是R,f′(x)=e x−a,若a≤0,则f′(x)=e x−a≥0,所以函数f(x)=e x−ax−2在(−∞, +∞)上单调递增.若a>0,则当x∈(−∞, ln a)时,f′(x)=e x−a<0;当x∈(ln a, +∞)时,f′(x)=e x−a>0;所以,f(x)在(−∞, ln a)上单调递减,在(ln a, +∞)上单调递增.(2)由于a=1,所以(x−k)f´(x)+x+1=(x−k)(e x−1)+x+1.故当x>0时,(x−k)f´(x)+x+1>0,等价于k<x+1e x−1+x(x>0)①.令g(x)=x+1e x−1+x,则g′(x)=−xe x−1(e x−1)2+1=e x(e x−x−2)(e x−1)2,由(1)知,当a=1时,函数ℎ(x)=e x−x−2在(0, +∞)上单调递增,而ℎ(1)<0,ℎ(2)>0,所以ℎ(x)=e x−x−2在(0, +∞)上存在唯一的零点,故g′(x)在(0, +∞)上存在唯一的零点,设此零点为α,则有α∈(1, 2),当x∈(0, α)时,g′(x)<0;当x∈(α, +∞)时,g′(x)>0;所以g(x)在(0, +∞)上的最小值为g(α).又由g′(α)=0,可得eα=α+2所以g(α)=α+1∈(2, 3),由于①式等价于k<g(α),故整数k的最大值为2.【考点】利用导数研究不等式恒成立问题利用导数研究函数的单调性【解析】(1)求函数的单调区间,可先求出函数的导数,由于函数中含有字母a,故应按a的取值范围进行分类讨论研究函数的单调性,给出单调区间;(2)由题设条件结合(1),将不等式,(x−k)f´(x)+x+1>0在x>0时成立转化为k<x+1e x−1+x(x>0)成立,由此问题转化为求g(x)=x+1e x−1+x在x>0上的最小值问题,求导,确定出函数的最小值,即可得出k 的最大值;【解答】解:(1)函数f(x)=e x−ax−2的定义域是R,f′(x)=e x−a,若a≤0,则f′(x)=e x−a≥0,所以函数f(x)=e x−ax−2在(−∞, +∞)上单调递增.若a>0,则当x∈(−∞, ln a)时,f′(x)=e x−a<0;当x∈(ln a, +∞)时,f′(x)=e x−a>0;所以,f(x)在(−∞, ln a)上单调递减,在(ln a, +∞)上单调递增.(2)由于a=1,所以(x−k)f´(x)+x+1=(x−k)(e x−1)+x+1.故当x>0时,(x−k)f´(x)+x+1>0,等价于k<x+1e x−1+x(x>0)①.令g(x)=x+1e x−1+x,则g′(x)=−xex−1(e x−1)2+1=e x(e x−x−2)(e x−1)2,由(1)知,当a=1时,函数ℎ(x)=e x−x−2在(0, +∞)上单调递增,而ℎ(1)<0,ℎ(2)>0,所以ℎ(x)=e x−x−2在(0, +∞)上存在唯一的零点,故g′(x)在(0, +∞)上存在唯一的零点,设此零点为α,则有α∈(1, 2),当x∈(0, α)时,g′(x)<0;当x∈(α, +∞)时,g′(x)>0;所以g(x)在(0, +∞)上的最小值为g(α).又由g′(α)=0,可得eα=α+2所以g(α)=α+1∈(2, 3),由于①式等价于k<g(α),故整数k的最大值为2.【答案】∵D,E分别为△ABC边AB,AC的中点∴DF // BC,AD=DB∵AB // CF,∴四边形BDFC是平行四边形∴CF // BD,CF=BD∴CF // AD,CF=AD∴四边形ADCF是平行四边形∴AF=CD∵BĈ=AF̂,∴BC=AF,∴CD=BC.由(1)知BĈ=AF̂,所以BF̂=AĈ.所以∠BGD=∠DBC.因为GF // BC,所以∠BDG=∠ADF=∠DBC=∠BDC.所以△BCD∼△GBD.【考点】相似三角形的判定【解析】(1)根据D,E分别为△ABC边AB,AC的中点,可得DE // BC,证明四边形ADCF是平行四边形,即可得到结论;(2)证明两组对应角相等,即可证得△BCD∼△GBD.【解答】∵D,E分别为△ABC边AB,AC的中点∴DF // BC,AD=DB∵AB // CF,∴四边形BDFC是平行四边形∴CF // BD,CF=BD∴CF // AD,CF=AD∴四边形ADCF是平行四边形∴ AF =CD∵ BĈ=AF ̂,∴ BC =AF ,∴ CD =BC . 由(1)知BĈ=AF ̂,所以BF ̂=AC ̂. 所以∠BGD =∠DBC .因为GF // BC ,所以∠BDG =∠ADF =∠DBC =∠BDC . 所以△BCD ∼△GBD .【答案】点A ,B ,C ,D 的极坐标为(2,π3),(2,5π6),(2,4π3),(2,11π6)点A ,B ,C ,D 的直角坐标为(1,√3),(−√3,1),(−1,−√3),(√3,−1) 设P(x 0, y 0),则{x 0=2cos arpℎiy 0=3sin arpℎi(arpℎi 为参数)t =|PA|2+|PB|2+|PC|2+|PD|2=4x 2+4y 2+16=32+20sin 2φ ∵ sin 2φ∈[0, 1] ∴ t ∈[32, 52]【考点】圆的极坐标方程直线的极坐标方程与直角坐标方程的互化 椭圆的参数方程【解析】(1)确定点A ,B ,C ,D 的极坐标,即可得点A ,B ,C ,D 的直角坐标;(2)利用参数方程设出P 的坐标,借助于三角函数,即可求得|PA|2+|PB|2+|PC|2+|PD|2的取值范围. 【解答】点A ,B ,C ,D 的极坐标为(2,π3),(2,5π6),(2,4π3),(2,11π6)点A ,B ,C ,D 的直角坐标为(1,√3),(−√3,1),(−1,−√3),(√3,−1) 设P(x 0, y 0),则{x 0=2cos arpℎiy 0=3sin arpℎi(arpℎi 为参数)t =|PA|2+|PB|2+|PC|2+|PD|2=4x 2+4y 2+16=32+20sin 2φ ∵ sin 2φ∈[0, 1] ∴ t ∈[32, 52]【答案】解:(1)当a =−3时,f(x)≥3, 即|x −3|+|x −2|≥3,即{x ≤2,3−x +2−x ≥3,或{2<x <3,3−x +x −2≥3,或{x ≥3,x −3+x −2≥3, 解得x ≤1或x ≥4.所以当a =−3时,不等式f(x)≥3的解集为{x|x ≤1或x ≥4}. (2)原命题即f(x)≤|x −4|在[1, 2]上恒成立, 等价于|x +a|+2−x ≤4−x 在[1, 2]上恒成立, 等价于|x +a|≤2, 等价于−2≤x +a ≤2,−2−x ≤a ≤2−x 在[1, 2]上恒成立.故当1≤x ≤2时,−2−x 的最大值为−2−1=−3, 2−x 的最小值为0,故a 的取值范围为[−3, 0]. 【考点】绝对值不等式的解法与证明 【解析】(1)不等式等价于{x ≤23−x +2−x ≥3,或{2<x <33−x +x −2≥3,或{x ≥3x −3+x −2≥3,求出每个不等式组的解集,再取并集即得所求.(2)原命题等价于−2−x ≤a ≤2−x 在[1, 2]上恒成立,由此求得求a 的取值范围. 【解答】解:(1)当a =−3时,f(x)≥3, 即|x −3|+|x −2|≥3,即{x ≤2,3−x +2−x ≥3,或{2<x <3,3−x +x −2≥3, 或{x ≥3,x −3+x −2≥3, 解得x ≤1或x ≥4.所以当a =−3时,不等式f(x)≥3的解集为{x|x ≤1或x ≥4}. (2)原命题即f(x)≤|x −4|在[1, 2]上恒成立, 等价于|x +a|+2−x ≤4−x 在[1, 2]上恒成立, 等价于|x +a|≤2, 等价于−2≤x +a ≤2,−2−x ≤a ≤2−x 在[1, 2]上恒成立.故当1≤x ≤2时,−2−x 的最大值为−2−1=−3, 2−x 的最小值为0,故a 的取值范围为[−3, 0].。
2012年普通高等学校招生全国统一考试 数学试卷含答案(文科)
2012年普通高等学校招生全国统一考试(课标全国卷)文数本卷满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={x|x2-x-2<0},B={x|-1<x<1},则( )A.A⫋BB.B⫋AC.A=BD.A∩B=⌀2.复数z=-的共轭复数是( )A.2+iB.2-IC.-1+iD.-1-i3.在一组样本数据(x1,y1),(x2,y2),…,(x n,y n)(n≥2,x1,x2,…,x n不全相等)的散点图中,若所有样本点(x i,y i)(i=1,2,…,n)都在直线y=x+1上,则这组样本数据的样本相关系数为( )A.-1B.0C.D.14.设F1、F2是椭圆E:+=1(a>b>0)的左、右焦点,P为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为( )A. B. C. D.5.已知正三角形ABC的顶点A(1,1),B(1,3),顶点C在第一象限,若点(x,y)在△ABC内部,则z=-x+y的取值范围是( )A.(1-,2)B.(0,2)C.(-1,2)D.(0,1+)6.如果执行如图的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a N,输出A,B,则( )A.A+B为a1,a2,…,a N的和B.为a1,a2,…,a N的算术平均数C.A和B分别是a1,a2,…,a N中最大的数和最小的数D.A和B分别是a1,a2,…,a N中最小的数和最大的数7.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A.6B.9C.12D.188.平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,则此球的体积为( )A. B.4 C.4 D.69.已知ω>0,0<φ<π,直线x=和x=是函数f(x)=sin(ωx+φ)图象的两条相邻的对称轴,则φ=( )A. B. C. D.10.等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于A,B两点,|AB|=4,则C的实轴长为( )A. B.2 C.4 D.811.当0<x≤时,4x<log a x,则a的取值范围是( )A.,B.,C.(1,D.(,2)12.数列{a n}满足a n+1+(-1)n a n=2n-1,则{a n}的前60项和为( )A.3 690B.3 660C.1 845D.1 830第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.曲线y=x(3ln x+1)在点(1,1)处的切线方程为.14.等比数列{a n}的前n项和为S n,若S3+3S2=0,则公比q= .15.已知向量a,b夹角为45°,且|a|=1,|2a-b|=,则|b|= .16.设函数f(x)=()的最大值为M,最小值为m,则M+m= .三、解答题(解答应写出文字说明、证明过程或演算步骤)17.(本小题满分12分)已知a,b,c分别为△ABC三个内角A,B,C的对边,c=(Ⅰ)求A;(Ⅱ)若a=2,△ABC的面积为,求b,c.18.(本小题满分12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花作垃圾处理.(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式;(i)假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数; (ii)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.19.(本小题满分12分)如图,三棱柱ABC-A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中点. (Ⅰ)证明:平面BDC1⊥平面BDC;(Ⅱ)平面BDC1分此棱柱为两部分,求这两部分体积的比.20.(本小题满分12分)设抛物线C:x2=2py(p>0)的焦点为F,准线为l.A为C上一点,已知以F为圆心,FA为半径的圆F交l于B,D两点.(Ⅰ)若∠BFD=90°,△ABD的面积为4,求p的值及圆F的方程;(Ⅱ)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.21.(本小题满分12分)设函数f(x)=e x-ax-2.(Ⅰ)求f(x)的单调区间;(Ⅱ)若a=1,k为整数,且当x>0时,(x-k)f '(x)+x+1>0,求k的最大值.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题计分.作答时请写清题号.22.(本小题满分10分)选修4—1:几何证明选讲如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点.若CF∥AB,证明:(Ⅰ)CD=BC;(Ⅱ)△BCD∽△GBD.23.(本小题满分10分)选修4—4:坐标系与参数方程已知曲线C1的参数方程是,(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=2.正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为,.(Ⅰ)求点A,B,C,D的直角坐标;(Ⅱ)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.24.(本小题满分10分)选修4—5:不等式选讲已知函数f(x)=|x+a|+|x-2|.(Ⅰ)当a=-3时,求不等式f(x)≥3的解集;(Ⅱ)若f(x)≤|x-4|的解集包含[1,2],求a的取值范围.2012年普通高等学校招生全国统一考试(课标全国卷)一、选择题1.B A={x|-1<x<2},B={x|-1<x<1},则B⫋A,故选B.评析本题考查了集合的关系以及二次不等式的解法.=-=-1+i,=-1-i,故选D.2.D z=-=(-)(-)()(-)评析本题考查了复数的运算,易忽略共轭复数而错选.3.D 所有点均在直线上,则样本相关系数最大即为1,故选D.评析本题考查了线性回归,掌握线性回归系数的含义是解题关键,本题易错选C.4.C 设直线x=a与x轴交于点Q,由题意得∠PF2Q=60°,|F2P|=|F1F2|=2c,|F2Q|=a-c,∴a-c=×2c,e==,故选C.评析本题考查了椭圆的基本性质,考查了方程的思想,灵活解三角形对求解至关重要. 5.A 由题意知区域为△ABC(不含边界).当直线-x+y-z=0过点C(1+,2)时,z min=1-;当过点B(1,3)时,z max=2.故选A.评析本题考查了简单的线性规划,考查了数形结合的思想.正确理解直线的斜率、截距的几何意义是求解的关键.6.C 不妨令N=3,a1<a2<a3,则有k=1,A=a1,B=a1;x=a2,A=a2;x=a3,A=a3,故输出A=a3,B=a1,选C. 评析本题考查了流程图,考查了由一般到特殊的转化思想.7.B 由三视图可得,该几何体为三棱锥S-ABC,其中底面△ABC为等腰三角形,底边AC=6,AC 边上的高为3,SB⊥底面ABC,且SB=3,所以该几何体的体积V=××6×3×3=9.故选B.评析本题考查了三视图和三棱锥的体积,考查了空间想象能力.由三视图正确得到该几何体的直观图是求解的关键.8.B 如图,设平面α截球O所得圆的圆心为O1,则|OO1|=,|O1A|=1,∴球的半径R=|OA|==.∴球的体积V=πR3=4π.故选B.评析本题考查了球的基础知识,利用勾股定理求球的半径是关键.9.A 由题意得=2-,∴ω=1,∴f(x)=sin(x+φ),则+φ=kπ+(k∈Z),φ=kπ+(k∈Z),又0<φ<π,∴φ=,故选A.评析本题考查了三角函数的图象和性质,掌握相邻对称轴的距离为周期的一半是关键.10.C 由题意可得A(-4,2).∵点A在双曲线x2-y2=a2上,∴16-12=a2,a=2,∴双曲线的实轴长2a=4.故选C.评析本题考查了双曲线和抛物线的基础知识,考查了方程的数学思想,要注意双曲线的实轴长为2a.11.B 易知0<a<1,则函数y=4x与y=log a x的大致图象如图,则只需满足log a>2,解得a>,故选B.评析本题考查了利用数形结合解指数、对数不等式.12.D 当n=2k时,a2k+1+a2k=4k-1,当n=2k-1时,a2k-a2k-1=4k-3,∴a2k+1+a2k-1=2,∴a2k+1+a2k+3=2,∴a2k-1=a2k+3,∴a1=a5=…=a61.∴a1+a2+a3+…+a60=(a2+a3)+(a4+a5)+…+(a60+a61)=3+7+11+…+(2×60-1)=()=30×61=1 830.评析本题考查了数列求和及其综合应用,考查了分类讨论及等价转化的数学思想.二、填空题13.答案y=4x-3解析y'=3ln x+1+x·=3ln x+4,k=y'|x=1=4,切线方程为y-1=4(x-1),即y=4x-3.评析本题考查了导数的几何意义,考查了运算求解能力.14.答案-2解析由S 3+3S2=0得4a1+4a2+a3=0,有4+4q+q2=0,解得q=-2.评析本题考查了等比数列的运算,直接利用定义求解可达到事半功倍的效果.15.答案3解析把|2a-b|=两边平方得4|a|2-4|a|·|b|·cos 45°+|b|2=10.∵|a|=1,∴|b|2-2|b|-6=0.∴|b|=3或|b|=-(舍去).评析本题考查了向量的基本运算,考查了方程的思想.通过“平方”把向量问题转化为数量问题是求解的关键.16.答案 2解析f(x)==1+,令g(x)=,则g(x)为奇函数,有g(x)max+g(x)min=0,故M+m=2.评析本题考查了函数性质的应用,运用了奇函数的值域关于原点对称的特征,考查了转化与化归的思想方法.三、解答题17.解析(Ⅰ)由c=asin C-c·cos A及正弦定理得·sin A·sin C-cos A·sin C-sin C=0.由于sin C≠0,所以sin-=.又0<A<π,故A=.(Ⅱ)△ABC的面积S=bcsin A=,故bc=4.而a2=b2+c2-2bccos A,故b2+c2=8.解得b=c=2.评析本题考查了正、余弦定理和三角公式,考查了方程的思想,灵活利用正、余弦定理是求解关键,正确的转化是本题的难点.18.解析(Ⅰ)当日需求量n≥17时,利润y=85.当日需求量n<17时,利润y=10n-85.所以y关于n的函数解析式为y=-,,,(n∈N).(Ⅱ)(i)这100天中有10天的日利润为55元,20天的日利润为65元,16天的日利润为75元,54天的日利润为85元,所以这100天的日利润的平均数为(55×10+65×20+75×16+85×54)=76.4.(ii)利润不低于75元当且仅当日需求量不少于16枝.故当天的利润不少于75元的概率为P=0.16+0.16+0.15+0.13+0.1=0.7.评析本题考查概率统计,考查运用样本频率估计总体概率及运算求解能力.19.解析(Ⅰ)证明:由题设知BC⊥CC 1,BC⊥AC,CC1∩AC=C,所以BC⊥平面ACC1A1.又DC1⊂平面ACC1A1,所以DC1⊥BC.由题设知∠A1DC1=∠ADC=45°,所以∠CDC1=90°,即DC1⊥DC.又DC∩BC=C,所以DC1⊥平面BDC.又DC1⊂平面BDC1,故平面BDC1⊥平面BDC.(Ⅱ)设棱锥B-DACC1的体积为V1,AC=1.由题意得V1=××1×1=.又三棱柱ABC-A1B1C1的体积V=1,所以(V-V1)∶V1=1∶1.故平面BDC1分此棱柱所得两部分体积的比为1∶1.评析本题考查了线面垂直的判定,考查了体积问题,同时考查了空间想象能力,属中档难度.20.解析(Ⅰ)由已知可得△BFD为等腰直角三角形,|BD|=2p,圆F的半径|FA|=p.由抛物线定义可知A到l的距离d=|FA|=p.因为△ABD的面积为4所以|BD|·d=4即·2p·p=4解得p=-2(舍去),p=2.所以F(0,1),圆F的方程为x2+(y-1)2=8.(Ⅱ)因为A,B,F三点在同一直线m上,所以AB为圆F的直径,∠ADB=90°.由抛物线定义知|AD|=|FA|=|AB|,所以∠ABD=30°,m的斜率为或-.当m的斜率为时,由已知可设n:y=x+b,代入x2=2py得x2-px-2pb=0.由于n与C只有一个公共点,故Δ=p2+8pb=0.解得b=-.因为m的截距b1=,||||=3,所以坐标原点到m,n距离的比值为3.当m的斜率为-时,由图形对称性可知,坐标原点到m,n距离的比值为3.评析本题考查了直线、圆、抛物线的位置关系,考查了分类讨论的方法和数形结合的思想.21.解析(Ⅰ)f(x)的定义域为(-∞,+∞), f '(x)=e x-a.若a≤0,则f '(x)>0,所以f(x)在(-∞,+∞)上单调递增.若a>0,则当x∈(-∞,ln a)时, f '(x)<0;当x∈(ln a,+∞)时, f '(x)>0,所以, f(x)在(-∞,ln a)上单调递减,在(ln a,+∞)上单调递增.(Ⅱ)由于a=1,所以(x-k)f '(x)+x+1=(x-k)(e x-1)+x+1.故当x>0时,(x-k)f '(x)+x+1>0等价于k<-+x(x>0).①令g(x)=-+x,则g'(x)=--(-)+1=(--)(-).由(Ⅰ)知,函数h(x)=e x-x-2在(0,+∞)上单调递增.而h(1)<0,h(2)>0,所以h(x)在(0,+∞)上存在唯一的零点.故g'(x)在(0,+∞)上存在唯一的零点.设此零点为α,则α∈(1,2).当x∈(0,α)时,g'(x)<0;当x∈(α,+∞)时,g'(x)>0.所以g(x)在(0,+∞)上的最小值为g(α).又由g'(α)=0,可得eα=α+2,所以g(α)=α+1∈(2,3).由于①式等价于k<g(α),故整数k的最大值为2.评析本题考查了函数与导数的综合应用,判断出导数的零点范围是求解第(Ⅱ)问的关键.22.证明(Ⅰ)因为D,E分别为AB,AC的中点,所以DE∥BC.又已知CF∥AB,故四边形BCFD是平行四边形,所以CF=BD=AD.而CF∥AD,连结AF,所以四边形ADCF是平行四边形,故CD=AF.因为CF∥AB,所以BC=AF,故CD=BC.(Ⅱ)因为FG∥BC,故GB=CF.由(Ⅰ)可知BD=CF,所以GB=BD.而∠DGB=∠EFC=∠DBC,故△BCD∽△GBD.评析本题考查了直线和圆的位置关系,处理好平行的关系是关键.23.解析(Ⅰ)由已知可得A ,,B2cos+,2sin+,C2cos+π,2sin+π,D2cos+,2sin+,即A(1,),B(-,1),C(-1,-),D(,-1).(Ⅱ)设P(2cos φ,3sin φ),令S=|PA|2+|PB|2+|PC|2+|PD|2,则S=16cos2φ+36sin2φ+16=32+20sin2φ.因为0≤sin2φ≤1,所以S的取值范围是[32,52].评析本题考查了曲线的参数方程和极坐标方程.考查了函数的思想方法,正确“互化”是关键,难点是建立函数S=f(φ).24.解析(Ⅰ)当a=-3时,f(x)=-,, ,,-,.当x≤2时,由f(x)≥3得-2x+5≥3,解得x≤1;当2<x<3时, f(x)≥3无解;当x≥3时,由f(x)≥3得2x-5≥3,解得x≥4.所以f(x)≥3的解集为{x|x≤1或x≥4}.(Ⅱ)f(x)≤|x-4|⇔|x-4|-|x-2|≥|x+a|.当x∈[1,2]时,|x-4|-|x-2|≥|x+a|⇔4-x-(2-x)≥|x+a|⇔-2-a≤x≤2-a.由条件得-2-a≤1且2-a≥2,即-3≤a≤0.故满足条件的a的取值范围为[-3,0].评析本题考查了含绝对值不等式的解法,运用零点法分类讨论解含绝对值的不等式,考查了运算求解能力.。
2012云南省高考数学试卷
1、作文:(40分)阅读材料:一位妇女走进一家新开张的花店,却看不到花瓶,也看不到任何鲜花,店里只有上帝站在柜台后面。
“你想要什么都可以提出来。
”上帝说。
“我想要幸福。
我想要安宁、金钱、被人理解的能力。
我想死后能够上天堂。
而且我也想让我的朋友们都能得到这一切。
”上帝从他身后的架子上取下一个罐子,打开罐盖,从中取出一些颗粒状的东西,递给那位妇女。
“你把这些种子拿走,”上帝说,“把它们拿去种,因为我们这里不出售成果。
”要求:请体会材料的内容及其含义,构思作文,自主确定题目。
字数在400字左右(不能以诗歌形式出现。
文章中请不要出现真实的校名、人名)。
2、判断。
1、小数都比整数小。
()2、把一根长为1米的绳子分成5段,每段长1/5米。
()3、甲数的1/4等于乙数的1/6,则甲乙两数之比为2:3。
()4、任何一个质数加上1,必定是合数。
()5、半径为2厘米的加,圆的周长和面积相等。
()3、What's the main purpose of the passage?A. To test your IQ.B. To teach you how to prevent acne.C. To promote the selling of a certain kind of soap.D. To teach you how to deal with acne breakouts.4、本题应使用深度优先遍历,从主调函数进入dfs(v)时,开始记数,若退出dfs()前,已访问完有向图的全部顶点(设为n个),则有向图有根,v为根结点。
将n个顶点从1到n编号,各调用一次dfs()过程,就可以求出全部的根结点。
题中有向图的邻接表存储结构、记顶点个数的变量、以及访问标记数组等均设计为全局变量。
建立有向图g的邻接表存储结构参见上面第2题,这里只给出判断有向图是否有根的算法。
int num=0, visited[]=0 //num记访问顶点个数,访问数组visited初始化。
2012年(全国卷II)(含答案)高考文科数学
2012年普通高等学校招生全国统一考试(2全国卷)数学(文)试题一、选择题 ( 本大题 共 12 题, 共计 60 分)1.已知集合A ={x |x 是平行四边形},B ={x |x 是矩形},C ={x |x 是正方形},D ={x |x 是菱形},则( )A .AB B .CB C .DC D .AD2.函数1y x =+x ≥-1)的反函数为( ) A .y =x 2-1(x ≥0) B .y =x 2-1(x ≥1) C .y =x 2+1(x ≥0) D .y =x 2+1(x ≥1) 3.若函数()sin 3x f x ϕ+=(φ∈[0,2π])是偶函数,则φ=( ) A .π2 B .2π3 C .3π2 D .5π34.已知α为第二象限角,3sin 5α=,则sin2α=( ) A .2425-B .1225-C .1225D .2425 5.椭圆的中心在原点,焦距为4,一条准线为x =-4,则该椭圆的方程为( )A .2211612x y += B .221128x y += C .22184x y += D .221124x y += 6.已知数列{a n }的前n 项和为S n ,a 1=1,S n =2a n +1,则S n =( )A .2n -1B .13()2n -C .12()3n -D .112n -7. 6位选手依次演讲,其中选手甲不在第一个也不在最后一个演讲,则不同的演讲次序共有( )A .240种B .360种C .480种D .720种8.已知正四棱柱ABCD -A 1B 1C 1D 1中,AB =2,122CC =E 为CC 1的中点,则直线AC 1与平面BED 的距离为( )A.2 BC .2D.19.△ABC中,AB边的高为CD.若CB =a,CA=b,a·b=0,|a|=1,|b|=2,则AD=()A.1133-a b B.2233-a bC.3355-a b D.4455-a b10.已知F1,F2为双曲线C:x2-y2=2的左、右焦点,点P在C上,|PF1|=2|PF2|,则cos∠F1PF2=()A.14B.35C.34D.4511.已知x=ln π,y=log52,12=ez-,则()A.x<y<z B.z<x<y C.z<y<x D.y<z<x12.正方形ABCD的边长为1,点E在边AB上,点F在边BC上,AE=BF=1 3 .动点P从E出发沿直线向F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当点P第一次碰到E时,P与正方形的边碰撞的次数为()A.8 B.6 C.4 D.3二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.13.(x+12x)8的展开式中x2的系数为__________.14.若x,y满足约束条件10,30,330, x yx yx y-+≥⎧⎪+-≤⎨⎪+-≥⎩则z=3x-y的最小值为__________.15.当函数y=sin x x(0≤x<2π)取得最大值时,x=__________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年云南省普通高考文科数学试题及参考答案
注息事项:
1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.问答第Ⅰ卷时。
选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动.用橡皮擦干净后,再选涂其它答案标号。
写在本试卷上无效.
3.回答第Ⅱ卷时。
将答案写在答题卡上.写在本试卷上无效·
4.考试结束后.将本试卷和答且卡一并交回。
第Ⅰ卷
一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。
1.已知集合A={x |x 2-x -2<0},B={x |-1<x <1},则( )
(A )A ⊂≠B (B )B ⊂≠A (C )A=B (D )A ∩B=∅ 2.复数z =-3+i
2+i
的共轭复数是 ( )
(A )2+i (B )2-i (C )-1+i (D )-1-i 3.在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =1
2x +1上,则这组样本数据的样本相
关系数为 ( )
(A )-1 (B )0 (C )1
2 (D )1
4.设F 1、F 2是椭圆E :x 2a 2+y 2
b 2=1(a >b >0)的左、右
焦点,P 为直线x =3a
2上一点,△F 1PF 2是底角为
30°的等腰三角形,则E 的离心率为( ) (A )12 (B )23 (C )34 (D )45
5.已知正三角形ABC 的顶点A(1,1),B(1,3),顶点C 在第一象限,若点(x ,y )在△ABC 内部,则z =-x+y 的取值范围是( )
(A )(1-3,2) (B )(0,2) (C )(3-1,2) (D )(0,1+3)
6.如果执行右边的程序框图,输入正整数N(N ≥2)和实数a 1,a 2,…,a N ,输出A,B ,则( ) (A )A+B 为a 1,a 2,…,a N 的和
(B )A +B 2
为a 1,a 2,…,a N 的算术平均数
(C )A 和B 分别是a 1,a 2,…,a N 中最大的数和最小的数 (D )A 和B 分别是a 1,a 2,…,a N 中最小的数和最大
的数
7.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( ) (A )6 (B )9 (C )12 (D )18 8.平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为 ( )
(A )6π (B )43π (C )46π (D )63π 9.已知ω>0,0<φ<π,直线x =π4和x =5π
4是函数f (x )=sin(ωx +φ)图
像的两条相邻的对称轴,则φ=( )
(A )π4 (B )π3 (C )π2 (D )3π
4
10.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB|=43,则C 的实轴长为( )
(A ) 2 (B )2 2 (C )4 (D )8 11.当0<x ≤1
2时,4x <log a x ,则a 的取值范围是 ( )
(A )(0,
22) (B )(2
2
,1) (C )(1,2) (D )(2,2) 12.数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为( )
(A )3690 (B )3660 (C )1845 (D )1830
第Ⅱ卷
本卷包括必考题和选考题两部分。
第13题-第21题为必考题,每个试题考生都必须作答,第22-24题为选考题,考生根据要求作答。
二.填空题:本大题共4小题,每小题5分。
13.曲线y =x (3ln x +1)在点(1,1)处的切线方程为________
14.等比数列{a n }的前n 项和为S n ,若S 3+3S 2=0,则公比q =_______
15.已知向量a ,b 夹角为45°
,且|a |=1,|2a -b |=10,则|b |=
16.设函数f (x )=(x +1)2+sin x x 2+1的最大值为M ,最小值为m ,则M+m =____
三、解答题:解答应写出文字说明,证明过程或演算步骤。
17.(本小题满分12分)
已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,c = 3a sinC -c cosA (1) 求A
(2) 若a =2,△ABC 的面积为3,求b ,c
18.(本小题满分12分)
某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售。
如果当天卖不完,剩下的玫瑰花做垃圾处理。
(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,n ∈N )的函数解析式。
数;
(2)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率。
19.(本小题满分12分)
如图,三棱柱ABC -A 1B 1C 1中,侧棱垂直底面,∠ACB=90°,AC=BC=1
2
AA 1,D 是棱AA 1的中点
(I)证明:平面BDC 1⊥平面BDC (Ⅱ)平面BDC 1分此棱柱为两部分,求这两部分体积的比。
20.(本小题满分12分)
设抛物线C :x 2=2py (p >0)的焦点为F ,准线为l ,A 为C 上一点,已知以F 为圆心,FA 为半径的圆F 交l 于B ,D 两点。
(I )若∠BFD =90°,△ABD 的面积为42,求p 的值及圆F 的方程;
(II )若A ,B ,F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m ,n 距离的比值。
21.(本小题满分12分)
设函数f (x )= e x -ax -2 (Ⅰ)求f (x )的单调区间
(Ⅱ)若a =1,k 为整数,且当x >0时,(x -k ) f ´(x )+x +1>0,求k 的最大值
请考生在第22,23,24题中任选一题做答,如果多做,则按所做的第一题计分,做答时请写清楚题号。
B 1 C
B
A D
C 1
A 1
22.(本小题满分10分)选修4-1:几何证明选讲 如图,D ,E 分别为△ABC 边AB ,AC 的中点,直线DE 交△ABC 的外接圆于F ,G 两点,若CF//AB ,证明:
(Ⅰ)CD=BC ;
(Ⅱ)△BCD ∽△GBD
23.本小题满分10分)选修4—4;坐标系与参数方程
已知曲线C 1的参数方程是⎩
⎪⎨⎪⎧
x =2cos φ
y =3sin φ(φ为参数),以坐标原点为极点,x 轴的正半轴为极轴
建立极坐标系,曲线C 2的极坐标方程是ρ=2.正方形ABCD 的顶点都在C 2上,且A 、B 、C 、D 以逆时针次序排列,点A 的极坐标为(2,π
3
)
(Ⅰ)求点A 、B 、C 、D 的直角坐标;
(Ⅱ)设P 为C 1上任意一点,求|PA| 2+ |PB|2 + |PC| 2+|PD|2的取值范围。
24.(本小题满分10分)选修4—5:不等式选讲 已知函数f (x ) = |x + a | + |x -2|.
(Ⅰ)当a =-3时,求不等式f (x )≥3的解集;
(Ⅱ)若f (x )≤|x -4|的解集包含[1,2],求a 的取值范围。
F
G。