微电子封装技术的发展现状

合集下载

我国集成电路封装行业发展现状

我国集成电路封装行业发展现状

我国集成电路封装行业发展现状【摘要】我国集成电路封装行业是我国半导体产业链中至关重要的一环,近年来随着科技进步和市场需求的增长,该行业发展呈现出一系列积极的趋势。

市场规模不断扩大,技术水平逐步提升,产业链日益完善,同时国际竞争也在加剧。

我国集成电路封装行业拥有广阔的发展前景,但也需要加强技术创新和品牌建设,以提升核心竞争力。

积极拓展国际市场也是需要重视的方向,加强国际合作,提升我国在全球半导体产业中的地位。

我国集成电路封装行业在未来的发展中充满希望,需要各方共同努力,为行业发展注入更多活力和动力。

【关键词】集成电路封装行业、发展现状、市场规模、技术水平、产业链、国际竞争、前景、技术创新、品牌建设、国际市场、发展趋势。

1. 引言1.1 我国集成电路封装行业发展现状我国集成电路封装行业是电子信息产业中的重要组成部分,随着科技的不断进步和市场需求的不断增长,我国集成电路封装行业也在不断发展壮大。

目前,我国集成电路封装行业呈现出以下几个特点:一是市场规模不断扩大,需求持续增长;二是技术水平不断提升,逐步走向国际先进水平;三是产业链逐渐完善,形成一体化的产业生态系统;四是国际竞争日益加剧,需要我国企业加快发展步伐。

在全球经济一体化的背景下,我国集成电路封装行业面临着更多的机遇和挑战。

要实现我国集成电路封装行业的可持续发展,我们需要加强技术创新和品牌建设,提升企业的竞争力和市场地位。

还需要积极拓展国际市场,加强与国际同行的交流与合作,推动我国集成电路封装行业在全球市场的影响力和竞争力,实现更大的发展突破。

我国集成电路封装行业的前景是广阔的,但也需要不断努力和创新,才能实现行业的长足发展和壮大。

2. 正文2.1 现状概述我国集成电路封装行业发展现状的现状概述:我国集成电路封装行业在近年来取得了长足的发展,成为世界上最重要的封装生产基地之一。

随着中国电子信息产业的快速增长,集成电路封装行业逐渐得到关注和支持,成为整个产业链的重要环节。

微电子封装技术的未来发展方向是什么?

微电子封装技术的未来发展方向是什么?

微电子封装技术的未来发展方向是什么?在当今科技飞速发展的时代,微电子技术无疑是推动社会进步的关键力量之一。

而微电子封装技术作为微电子技术的重要组成部分,其发展方向更是备受关注。

微电子封装技术,简单来说,就是将芯片等微电子元件进行保护、连接、散热等处理,以实现其在电子产品中的可靠应用。

随着电子产品的日益小型化、高性能化和多功能化,对微电子封装技术也提出了更高的要求。

未来,高性能、高密度和微型化将是微电子封装技术的重要发展方向。

在高性能方面,封装技术需要更好地解决信号传输的完整性和电源分配的稳定性问题。

为了实现这一目标,先进的封装材料和结构设计至关重要。

例如,采用低介电常数和低损耗的材料来减少信号延迟和衰减,以及优化电源网络的布局以降低电源噪声。

高密度封装则是为了满足电子产品集成度不断提高的需求。

通过三维封装技术,如芯片堆叠和硅通孔(TSV)技术,可以在有限的空间内集成更多的芯片,从而大大提高系统的性能和功能。

此外,扇出型晶圆级封装(Fanout WLP)技术也是实现高密度封装的重要手段,它能够将芯片的引脚扩展到更大的区域,增加引脚数量和布线密度。

微型化是微电子封装技术永恒的追求。

随着移动设备、可穿戴设备等的普及,对电子产品的尺寸和重量有着极为苛刻的要求。

因此,封装技术需要不断减小封装尺寸,同时提高封装的集成度和性能。

例如,采用更薄的封装基板、更小的封装引脚间距和更精细的封装工艺等。

绿色环保也是微电子封装技术未来发展的一个重要趋势。

随着环保意识的不断增强,电子产品的生产和使用过程中对环境的影响越来越受到关注。

在封装材料方面,将更多地采用无铅、无卤等环保材料,以减少对环境的污染。

同时,封装工艺也将朝着节能、减排的方向发展,提高生产过程的资源利用率和降低废弃物的排放。

此外,异质集成将成为微电子封装技术的一个重要发展方向。

随着各种新型器件和材料的不断涌现,如化合物半导体、MEMS 器件、传感器等,如何将这些不同性质的器件集成在一个封装体内,实现更复杂的系统功能,是未来封装技术面临的挑战之一。

微电子封装技术的发展趋势

微电子封装技术的发展趋势

微电子封装技术的发展趋势本文论述了微电子封装技术的发展历程,发展现状和发展趋势,主要介绍了几种重要的微电子封装技术,包括:BGA 封装技术、CSP封装技术、SIP封装技术、3D封装技术、MCM封装技术等。

1.微电子封装的发展历程IC 封装的引线和安装类型有很多种,按封装安装到电路板上的方式可分为通孔插入式(TH)和表面安装式(SM),或按引线在封装上的具体排列分为成列、四边引出或面阵排列。

微电子封装的发展历程可分为三个阶段:第一阶段:上世纪70 年代以插装型封装为主,70 年代末期发展起来的双列直插封装技术(DIP)。

第二阶段:上世纪80 年代早期引入了表面安装(SM)封装。

比较成熟的类型有模塑封装的小外形(SO)和PLCC 型封装、模压陶瓷中的CERQUAD、层压陶瓷中的无引线式载体(LLCC)和有引线片式载体(LDCC)。

PLCC,CERQUAD,LLCC和LDCC都是四周排列类封装,其引线排列在封装的所有四边。

第三阶段:上世纪90 年代,随着集成技术的进步、设备的改进和深亚微米技术的使用,LSI,VLSI,ULSI相继出现,对集成电路封装要求更加严格,I/O引脚数急剧增加,功耗也随之增大,因此,集成电路封装从四边引线型向平面阵列型发展,出现了球栅阵列封装(BGA),并很快成为主流产品。

2.新型微电子封装技术2.1焊球阵列封装(BGA)阵列封装(BGA)是世界上九十年代初发展起来的一种新型封装。

BGA封装的I/O端子以圆形或柱状焊点按阵列形式分布在封装下面,BGA技术的优点是:I/O引脚数虽然增加了,但引脚间距并没有减小反而增加了,从而提高了组装成品率;虽然它的功耗增加,但BGA能用可控塌陷芯片法焊接,从而可以改善它的电热性能;厚度和重量都较以前的封装技术有所减少;寄生参数减小,信号传输延迟小,使用频率大大提高;组装可用共面焊接,可靠性高。

这种BGA的突出的优点:①电性能更好:BGA用焊球代替引线,引出路径短,减少了引脚延迟、电阻、电容和电感;②封装密度更高;由于焊球是整个平面排列,因此对于同样面积,引脚数更高。

电子封装的现状及发展趋势

电子封装的现状及发展趋势

电子封装的现状及发展趋势现代电子信息技术飞速发展,电子产品向小型化、便携化、多功能化方向发展.电子封装材料和技术使电子器件最终成为有功能的产品.现已研发出多种新型封装材料、技术和工艺.电子封装正在与电子设计和制造一起,共同推动着信息化社会的发展一.电子封装材料现状近年来,封装材料的发展一直呈现快速增长的态势.电子封装材料用于承载电子元器件及其连接线路,并具有良好的电绝缘性.封装对芯片具有机械支撑和环境保护作用,对器件和电路的热性能和可靠性起着重要作用.理想的电子封装材料必须满足以下基本要求: 1)高热导率,低介电常数、低介电损耗,有较好的高频、高功率性能; 2)热膨胀系数(CTE)与Si或GaAs芯片匹配,避免芯片的热应力损坏;3)有足够的强度、刚度,对芯片起到支撑和保护的作用; 4)成本尽可能低,满足大规模商业化应用的要求;5)密度尽可能小(主要指航空航天和移动通信设备),并具有电磁屏蔽和射频屏蔽的特性。

电子封装材料主要包括基板、布线、框架、层间介质和密封材料.1.1基板高电阻率、高热导率和低介电常数是集成电路对封装用基片的最基本要求,同时还应与硅片具有良好的热匹配、易成型、高表面平整度、易金属化、易加工、低成本并具有一定的机械性能电子封装基片材料的种类很多,包括:陶瓷、环氧玻璃、金刚石、金属及金属基复合材料等.1.1.1陶瓷陶瓷是电子封装中常用的一种基片材料,具有较高的绝缘性能和优异的高频特性,同时线膨胀系数与电子元器件非常相近,化学性能非常稳定且热导率高随着美国、日本等发达国家相继研究并推出叠片多层陶瓷基片,陶瓷基片成为当今世界上广泛应用的几种高技术陶瓷之一目前已投人使用的高导热陶瓷基片材料有A12q,AIN,SIC和B或)等.1.1.2环氧玻璃环氧玻璃是进行引脚和塑料封装成本最低的一种,常用于单层、双层或多层印刷板,是一种由环氧树脂和玻璃纤维(基础材料)组成的复合材料.此种材料的力学性能良好,但导热性较差,电性能和线膨胀系数匹配一般.由于其价格低廉,因而在表面安装(SMT)中得到了广泛应用.1.1.3金刚石天然金刚石具有作为半导体器件封装所必需的优良的性能,如高热导率(200W八m·K),25oC)、低介电常数(5.5)、高电阻率(1016n·em)和击穿场强(1000kV/mm).从20世纪60年代起,在微电子界利用金刚石作为半导体器件封装基片,并将金刚石作为散热材料,应用于微波雪崩二极管、GeIMPATT(碰撞雪崩及渡越时间二极管)和激光器,提高了它们的输出功率.但是,受天然金刚石或高温高压下合成金刚石昂贵的价格和尺寸的限制,这种技术无法大规模推广.1.1.4金属基复合材料为了解决单一金属作为电子封装基片材料的缺点,人们研究和开发了低膨胀、高导热金属基复合材料.它与其他电子封装材料相比,可以通过改变增强体的种类、体积分数、排列方式,基体的合金成分或热处理工艺实现材料的热物理性能设计;也可以直接成型,节省材料,降低成本.用于封装基片的金属基复合材料主要为Cu基和Al基复合材料1.2布线材料导体布线由金属化过程完成.基板金属化是为了把芯片安装在基板上和使芯片与其他元器件相连接.为此,要求布线金属具有低的电阻率和好的可焊性,而且与基板接合牢固.金属化的方法有薄膜法和厚膜法,前者由真空蒸镀、溅射、电镀等方法获得,后者由丝网印刷、涂布等方法获得.薄膜导体材料应满足以下要求:电阻率低;与薄膜元件接触电阻小,不产生化学反应和相互扩散;易于成膜和光刻、线条精细;抗电迁移能力强;与基板附着强度高,与基板热膨胀系数匹配好;可焊性好,具有良好的稳定性和耐蚀性;成本低,易成膜及加工.Al是半导体集成电路中最常用的薄膜导体材料,其缺点是抗电子迁移能力差.Cu导体是近年来多层布线中广泛应用的材料.Au,Ag,NICrAu,Ti-Au,Ti-Pt-Au等是主要的薄膜导体.为降低成本,近年来采用Cr-Cu-Au,Cr-Cu-Cr,Cu-Fe-Cu,Ti-Cu-Ni-Au等做导体薄膜.1.3层间介质介质材料在电子封装中起着重要的作用,如保护电路、隔离绝缘和防止信号失真等.它分为有机和无机2种,前者主要为聚合物,后者为SiO2:,Si3N4和玻璃.多层布线的导体间必须绝缘,因此,要求介质有高的绝缘电阻,低的介电常数,膜层致密.1.3.1厚膜多层介质厚膜多层介质要求膜层与导体相容性好,烧结时不与导体发生化学反应和严重扩散,多次烧结不变形,介质层与基板、导体附着牢固,热膨胀系数与基板、导体相匹配,适合丝网印刷.薄膜介质分以下3种:(1)玻璃一陶瓷介质既消除了陶瓷的多孔结构,又克服了玻璃的过流现象,每次烧结陶瓷都能逐渐溶于玻璃中,提高了玻璃的软化温度,适合多次烧结.(2)微晶玻璃.(3)聚合物.1.3.2薄膜多层介质薄膜多层介质可以通过CVD法、溅射和真空蒸镀等薄膜工艺实现,也可以由Si的热氧化形成5102介质膜.有机介质膜主要是聚酞亚胺(PI)类,它通过施转法进行涂布,利用液态流动形成平坦化结构,加热固化成膜,刻蚀成各种图形.此方法简单、安全性强.由于Pl的介电常数低、热稳定性好、耐侵蚀、平坦化好,且原料价廉,内应力小,易于实现多层化,便于元件微细化,成品率高,适合多层布线技术,目前国外对聚合物在封装中的应用进行了大量研究1.4密封材料电子器件和集成电路的密封材料主要是陶瓷和塑料.最早用于封装的材料是陶瓷和金属,随着电路密度和功能的不断提高,对封装技术提出了更多更高的要求,同时也促进了封装材料的发展.即从过去的金属和陶瓷封装为主转向塑料封装.至今,环氧树脂系密封材料占整个电路基板密封材料的90%左右.二.电子封装技术的现状20世纪80年代以前,所有的电子封装都是面向器件的,到20世纪90年代出现了MCM,可以说是面向部件的,封装的概念也在变化.它不再是一个有源元件,而是一个有功能的部件.因此,现代电子封装应该是面向系统或整机的.发展电子封装,即要使系统小型化,高性能、高可靠和低成本.电子封装已经发展到了新阶段,同时赋予了许多新的技术内容.以下是现代电子封装所涉及的几种主要的先进封装技术2.1球栅阵列封装该技术采用多层布线衬底,引线采用焊料球结构,与平面阵列(PGA)(见图1)和四边引线扁平封装(QFP)(见图2)相比,其优点为互连密度高,电、热性能优良,并且可采用表面安装技术,引脚节距为1.27mm或更小.由于多层布线衬底的不同,可有不同类型的球栅阵列封装2,2芯片级封装这是为提高封装密度而发展起来的封装.其芯片面积与封装面积之比大于80%.封装形式主要有芯片上引线(LOC),BGA(microBGA)和面阵列(I一GA)等,是提高封装效率的有效途径.目前,主要用于静态存储器(SRAM)、动态随机存取存储器(DRAM)、管脚数不多的专用集成电路(ASIC)和处理器.它的优点主要是测试、装架、组装、修理和标准化等.2.3直接键接芯片技术这是一种把芯片直接键接到多层衬底或印制电路板上的先进技术,一般有3种方法:引线键合法、载带自动键合法和倒装焊料接合法.第1种方法和目前的芯片工艺相容,是广泛采用的方法,而后者起源于IBM,是最有吸引力和成本最低的方法.2.4倒装法这是一种把芯片电极与衬底连接起来的方法,将芯片的有源面电极做成凸点,使芯片倒装,再将凸点和衬底的电极连接.过去凸点制作采用半导体工艺.目前,最著名的是焊料凸点(Solderbump)制作技术,该技术是把倒装芯片和互连衬底靠可控的焊料塌陷连接在一起,可以减少整体尺寸30%~50%,电性能改善10%~30%,并具有高的性能和可靠性.三.行业前景展望(l)在金属陶瓷方面,应进一步提高材料的热物理性能,研究显微结构对热导率的影响;同时应大力从军用向民用推广,实现规模化生产,降低成本,提高行业在国际上的竞争力.(2)在塑料封装方面,应加大对环氧树脂的研究力度,特别是电子封装专用树脂;同时大力开发与之相配套的固化剂及无机填料.(3)随着封装成本在半导体销售值中所占的比重越来越大,应把电子封装作为一个单独的行业来发展.。

2023年微电子行业市场发展现状

2023年微电子行业市场发展现状

2023年微电子行业市场发展现状随着科技的不断发展,微电子行业已经变得越来越重要。

现在,微电子行业已经成为电子行业的一个关键组成部分。

在微电子行业中,通过微型工艺技术制造微型芯片,从而将电子元器件制造得更小更精密。

随着各种新的技术的引入,微电子行业市场发展现状已经发生了很大变化,下面是详细介绍。

一、市场规模微电子行业是一个庞大且不断发展壮大的市场。

全球微电子市场规模不断扩大,2019年市场规模为4486.48亿美元,预计到2025年将达到7480.85亿美元。

这一规模的增长主要是因为必须将制造过程更精细化和自动化,同时,不断提高芯片性能要求也对市场规模的增长有贡献。

二、行业竞争微电子行业是一个很有竞争力的行业,核心的厂商数量非常少。

这些核心厂商拥有非常深厚的技术实力,并且可以通过不断的研发来获得市场领先地位。

例如,英特尔、三星、华为、高通等公司拥有丰富的技术积累和资金实力,能够研制出各种高价值的芯片产品,从而保持其在市场中的优势地位。

三、5G技术的发展5G技术的发展对微电子行业的发展起到了重大的推动作用,市场规模也因此得到了迅速的扩大。

5G技术是一种高速、高效、安全的通信技术,是目前通信领域最新的技术,它需要大量的微电子芯片来支撑其系统的稳定运行。

目前,5G技术已经得到全球各大国家和地区的广泛应用,其需求量不断增加,对微电子行业产生了积极的影响。

四、人工智能的发展人工智能是提高微电子芯片性能的关键技术之一,其发展对微电子行业产生了深远的影响。

人工智能技术可以让芯片更加智能化,从而使它可以更好地适应各种不同的应用场景。

随着人工智能技术不断发展,微电子芯片的性能得到了快速提升,这也为微电子行业未来的发展带来了许多机遇。

五、新兴市场的增长随着新兴市场的增长,微电子行业也迎来了新的机遇。

例如,中国是一家非常重要的市场,其规模已经成为全球最大的市场之一。

与此同时,印度、东南亚和中南美洲等新兴市场也蓬勃发展,为微电子行业的发展创造了更多的机会。

微电子封装技术

微电子封装技术

微电子封装技术1. 引言微电子封装技术是在微电子器件制造过程中不可或缺的环节。

封装技术的主要目的是保护芯片免受机械和环境的损害,并提供与外部环境的良好电学和热学连接。

本文将介绍微电子封装技术的发展历程、常见封装类型以及未来的发展趋势。

2. 微电子封装技术的发展历程微电子封装技术起源于二十世纪五十年代的集成电路行业。

当时,集成电路芯片的封装主要采用插入式封装(TO封装)。

随着集成度的提高和尺寸的缩小,TO封装逐渐无法满足发展需求。

在六十年代末,贴片式封装逐渐兴起,为微电子封装技术带来了发展的机遇。

到了二十一世纪初,球栅阵列(BGA)和无线芯片封装技术成为主流。

近年来,微电子封装技术的发展方向逐渐向着三维封装和追求更高性能、更小尺寸的目标发展。

3. 常见的微电子封装类型3.1 插入式封装插入式封装是最早使用的微电子封装技术之一。

它的主要特点是通过将芯片引线插入封装底座中进行连接。

插入式封装一开始使用的是TO封装,后来发展出了DIP(双列直插式封装)、SIP(单列直插式封装)等多种封装类型。

插入式封装的优点是可维修性高,缺点是不适合高密度封装和小尺寸芯片。

3.2 表面贴装封装表面贴装封装是二十世纪六十年代末期兴起的一种封装技术。

它的主要原理是将芯片连接到封装底座上,再将整个芯片-底座组件焊接到印刷电路板(PCB)上。

表面贴装封装可以实现高密度封装和小尺寸芯片,适用于各种类型的集成电路芯片。

常见的表面贴装封装类型有SOIC、QFN、BGA等。

3.3 三维封装三维封装是近年来兴起的一种封装技术。

它的主要原理是在垂直方向上堆叠多个芯片,通过微弧焊接技术进行连接。

三维封装可以实现更高的集成度和更小的尺寸,同时减少芯片间的延迟。

目前,三维封装技术仍在不断研究和改进中,对于未来微电子封装的发展具有重要意义。

4. 微电子封装技术的未来发展趋势随着科技的不断进步,微电子封装技术也在不断发展。

未来,微电子封装技术的发展趋势可以总结为以下几点:1.高集成度:随着芯片制造工艺的不断进步,集成度将继续提高,将有更多的晶体管集成在一个芯片上,这将对封装技术提出更高的要求。

第五章微电子封装技术概况

第五章微电子封装技术概况

CSP(三菱)
芯片尺寸封装原理
主要考虑用尽可能少的封装材料解决电极保护问题
必须注意的是,封装的结果虽然保障了芯片功能的发挥, 但是它只能使芯片性能降低或受到限制,而不能使其自身 性能得到加强。
CSP典型封装技术之一 倒扣组装技术
Flip ship
在裸芯片上的电极上形成焊料凸点,通过钎焊将芯片以 电极面朝下的倒状方式实装在多层布线板上,由于不需要从 芯片向四周引出I/O端子,可布置更多的端子,互联线的长度 大大缩短,减小了RC延迟,可靠性提高
日本厂家把主要精力投向QFP端子间距精细化方面, (但是未能实现0.3mm间距的多端子QFP),因为日本厂家 认为BGA实装后,对中央部分的焊接部位不能观察。
但美国公司的实际应用证明,BGA即使不检测焊 点的质量,也比经过检测的QFP合格率高两个数量级 BGA是目前高密度表面贴装技术的主要代表. 美国康柏公司1991年率先在微机中的ASIC采用了255针脚 的PBGA,从而超过IBM公司,确保了世界第一的微机市场占 有份额。
3、QFP :quad flat package
四周平面引线式封装
引脚向外弯曲 背面
日本式的QFP 封装
美国式QFP 封装
QFP的实用水平,封装尺寸为40mm×40mm, 端子间距为0.4mm,端子数376
QFP是目前表面贴装技术的主要代表之一
周边端子型封装QFP的最大问题是引脚端子的变形, 难保证与印刷电路板的正常焊接,需要熟练的操作者, 日本人特有的细心使半导体用户掌握着高超的技能,处 理微细引脚的多端子QFP得心应手 美国公司的对QFP焊接技术的掌握要差一些,美国 公司用QFP封装形式的集成电路制造的电子产品的合 格率总是赶不上日本公司.
SIP

微电子封装技术的研究现状及其应用展望

微电子封装技术的研究现状及其应用展望

微电子封装技术的研究现状及其应用展望近年来,随着电子产品的快速普及和电子化程度的不断提高,微电子封装技术越来越引起人们的重视。

微电子封装技术主要是将电子器件、芯片及其他微型电子元器件封装在合适的封装材料中以保护它们免受机械损伤和外部环境的影响。

本文将分析现有微电子封装技术的研究现状,并探讨其未来的应用前景。

一、微电子封装技术的研究现状随着电子元器件不断地微型化、多功能化、高集成化和高可靠化,微电子封装技术越来越得到广泛的应用和发展。

在微电子封装技术中,主要有以下几种常用的封装方式:1. 线路板封装技术线路板封装技术(PCB)是较为常见的一种微电子封装技术。

这种方式主要利用印刷板制成印刷电路板,并通过它与芯片之间实现联系,使其具有一定能力。

通常,PCB 封装技术可用于集成电路和大多数微型传感器中的有效信号接口。

2. QFP 封装技术QFP 封装技术指的是方形封装技术,它是一种常见的微电子封装技术,这种技术的特点在于其实现方式非常灵活,具有高密度、高可靠的特点。

这种技术可以用于各种芯片、集成电路、传感器和其他各种微型电子元器件的封装。

3. BGA 封装技术BGA 封装技术指的是球格阵列封装技术,这种技术主要利用钎接技术将芯片连接到小球上。

BGA 封装技术常用于高密度封装尺寸的芯片和集成电路中,并具有高可靠和高信号性能等特点。

它目前被广泛应用于计算机芯片、消费电子、汽车电子、无人机和航空电子等领域中。

4. CSP 封装技术CSP 封装技术指的是芯片级封装技术,该技术是近年来发展起来的一种新型微电子封装技术,主要是使用钎接工艺将芯片封装在封装材料上。

CSP 封装技术具有极小的尺寸和高密度、高可靠性、高信号性能和高互连和生产效率等优点,因此,它被广泛地应用于各种电子元器件和集成电路中。

二、微电子封装技术的应用展望微电子封装技术具有比传统封装技术更高的密度、高速度、高可靠性和多功能的优点,因此,它的应用前景是广阔的。

微电子封装的概述和技术要求

微电子封装的概述和技术要求

微电子封装的概述和技术要求
近年来,各种各样的电子产品已经在工业、农业、国防和日常生活中得到了广泛的应用。

伴随着电子科学技术的蓬勃发展,使得微电子工业发展迅猛,这很大程度上是得益于微电子封装技术的高速发展。

当今全球正迎来以电子计算机为核心的电子信息技术时代,随着它的发展,越来越要求电子产品要具有高性能、多功能、高可靠、小型化、薄型化、便捷化以及将大众化普及所要求的低成等特点。

这样必然要求微电子封装要更好、更轻、更薄、封装密度更高,更好的电性能和热性能,更高的可靠性,更高的性能价格比。

一、微电子封装的概述
1、微电子封装的概念
微电子封装是指利用膜技术及微细加工技术,将芯片及其他要素在框架或基板上布置、粘贴固定及连接,引出连线端子并通过可塑性绝缘介质灌封固定,构成整体立体结构的工艺。

在更广的意义上讲,是指将封装体与基板连接固定,装配成完整的系统或电子设备,并确定整个系统综合性能的工程。

2、微电子封装的目的
微电子封装的目的在于保护芯片不受或少受外界环境的影响,并为之提供一个良好的工作条件,以使电路具有稳定、正常的功能。

3、微电子封装的技术领域
微电子封装技术涵盖的技术面积广,属于复杂的系统工程。

它涉及物理、化学、化工、材料、机械、电气与自动化等各门学科,也使用金属、陶瓷、玻璃、高分子等各种各样的材料,因此微电子封装是一门跨学科知识整合的科学,整合了产品的电气特性、热传导特性、可靠性、材料与工艺技术的应用以及成本价格等因素,以达到最佳化目的的工程技术。

在微电子产品功能与层次提升的追求中,开发新型封装技术的重要性不亚于电路的设计与工艺技术,世界各国的电子工业都在全力研究开发,以期得到在该领域的技术领先地位。

微电子器件封装技术的优化与创新

微电子器件封装技术的优化与创新

微电子器件封装技术的优化与创新微电子器件是现代电子技术的基础,它的封装技术也是电子制造业中不可或缺的一部分。

随着科技的发展和创新,微电子器件封装技术也在不断地进行优化和创新,以满足日益增长的市场需求。

本文将探讨微电子器件封装技术的优化与创新,以及未来的发展趋势。

一、微电子器件封装技术的发展历程微电子器件封装技术最初出现在20世纪50年代。

当时的封装方式主要是使用外框、连接线、引脚等元器件进行封装。

后来,随着集成电路技术的不断发展,微电子器件的封装技术也在不断地进行更新换代。

目前,微电子器件的封装方式主要分为裸芯片封装和模块化封装两种。

其中,裸芯片封装是指将芯片直接固定在印刷电路板上,并进行导线连接,免去其他部件的使用;而模块化封装则是将芯片、电源、传感器等元器件放置在一起,形成一个整体模块。

二、微电子器件封装技术的优化与创新1. 封装材料的多元化在传统的微电子器件封装技术中,使用的封装材料主要是塑料和陶瓷。

但随着人们对封装材料性能的要求不断提高,越来越多的新型封装材料也被引入使用。

例如,金属基板、硅胶、环氧树脂等材料的应用,可以提高封装材料的耐热性、耐腐蚀性以及抗震动性能,进一步提高了微电子器件的可靠性和性能稳定性。

2. 封装工艺的精细化封装工艺的精细化是微电子器件封装技术创新的另一个方向。

目前,很多公司都在研究和使用微纳米技术,将封装工艺做的更加细致化。

例如,采用微纳米技术可以实现微纳米级别的电子线路制作和微型结构制造,使得微电子器件封装更加精细化。

3. 三维封装技术三维封装技术是指将芯片垂直堆叠,以达到空间利用效率的最大化。

与传统封装技术相比,三维封装技术具有更小的体积、更高的集成度和更快的传输速度等优点。

这种技术的应用已经广泛进入到手机、电脑、平板等产品中,有望成为未来微电子器件封装技术的发展趋势。

三、未来的发展趋势1. 大规模集成未来的微电子器件封装技术将实现更高的功率密度、更多的信号处理功能、更快的运算速度和更低的功耗水平。

微电子技术的发展现状与未来趋势分析

微电子技术的发展现状与未来趋势分析

微电子技术的发展现状与未来趋势分析追溯微电子技术的历史,我们可以发现它已经在过去数十年间实现了蓬勃发展。

微电子技术通过将电子元器件电缆化、小型化和高度集成化,从而使得电子设备的性能大幅提升,其潜力和前景也越来越显著。

首先,让我们来看看微电子技术领域目前的现状。

我们可以将其划分为两个方面:硬件技术和应用领域。

在硬件技术方面,微电子技术的发展主要包括集成电路技术、封装技术和芯片制造技术等。

集成电路技术是微电子技术的核心,它将数百万甚至上亿个晶体管集成在一个芯片上,从而实现了电子设备的高度集成化。

随着半导体工艺的不断进步,集成电路的密度也在不断提高,使得芯片的性能得以极大地增强。

另一方面,封装技术则是为了保护芯片以及将其连接到电子产品中。

目前,3D封装和薄膜封装是封装技术的主要发展方向。

而芯片制造技术则是研究如何制造高度集成芯片的技术,包括光刻技术、薄膜沉积技术等。

在应用领域方面,微电子技术已经广泛应用于各个领域。

信息技术是微电子技术的一个重要应用领域,例如移动通信、计算机硬件和互联网等。

这些应用领域的发展离不开微电子技术的推动。

另外,医疗卫生领域也是微电子技术的重要应用领域之一。

微电子技术可以用于制造医学传感器、可植入芯片和医学成像设备,从而提供了更加精确和高效的医疗服务。

更为重要的是,微电子技术还在能源、交通和环境保护等领域发挥着重要作用。

通过微电子技术的应用,我们可以实现能源的高效利用、交通的智能化和环境的监控与保护。

接下来,让我们展望一下微电子技术未来的发展趋势。

从目前的发展态势来看,未来微电子技术可能呈现以下几个趋势。

首先,随着智能化和物联网技术的快速发展,微电子技术将会更加智能化。

例如,智能手机和智能家居等设备的普及,将需要更加高效和智能的微电子技术。

微电子技术将不仅仅解决硬件技术问题,还将涉及到软件开发、人工智能等方面的问题。

其次,随着人工智能技术的发展,微电子技术将逐渐融入到人工智能技术中。

2024年微电子封装市场发展现状

2024年微电子封装市场发展现状

微电子封装市场发展现状引言微电子封装是电子行业的一个重要领域,涉及到电子元器件的封装和连接技术。

随着科技的不断进步和应用需求的增长,微电子封装市场正面临着巨大的发展机遇。

本文将对微电子封装市场的现状进行分析和评估,为读者提供市场发展的全面了解。

市场概述微电子封装市场广泛应用于电子设备、通信设备、汽车电子、医疗设备等行业。

随着智能手机、物联网、5G通信等新技术的兴起,对微电子封装的需求不断增长。

根据市场研究机构的数据显示,微电子封装市场规模在过去几年中保持稳定增长,并有望在未来几年内保持良好的发展趋势。

技术进展微电子封装市场的发展得益于技术的不断进步。

随着微电子封装技术的不断升级,封装密度和性能得到了显著提升,同时尺寸和功耗也得到了有效控制。

新的封装技术,例如薄型封装、多芯片封装和三维封装等,为微电子封装市场注入了新的活力。

市场挑战微电子封装市场面临着一些挑战。

首先,封装成本较高,这限制了一些应用领域的发展。

其次,封装技术的发展速度较慢,难以满足新兴应用对性能和功耗的需求。

此外,市场竞争激烈,技术壁垒较高,对企业的创新能力提出了更高的要求。

发展趋势微电子封装市场在未来几年中有望保持持续增长。

首先,5G通信的商用化将推动微电子封装市场的快速发展。

其次,人工智能、物联网等新兴技术的普及将提高对微电子封装的需求。

此外,节能环保、小型化等市场需求也将促进微电子封装技术的创新和升级。

市场竞争格局微电子封装市场竞争激烈,主要厂商包括英特尔、三星电子、台积电、中芯国际等。

这些企业在封装技术研发、生产能力和市场份额方面具有较强优势。

此外,新兴企业也在不断涌现,通过技术创新和市场定位寻求突破。

结论微电子封装市场是一个充满机遇与挑战并存的市场。

随着新技术的不断涌现和应用领域的不断扩展,微电子封装市场有望进一步发展壮大。

为保持竞争力,企业需加强技术创新、提高生产效率,并关注市场趋势的变化,及时调整发展战略。

微电子封装技术的发展与应用

微电子封装技术的发展与应用

微电子封装技术的发展与应用目录:一、引言二、微电子封装技术的基本概念三、微电子封装技术的发展历程1. 初期封装技术的应用2. 现代封装技术的创新四、微电子封装技术在电子产品中的广泛应用1. 通信设备领域2. 汽车电子领域3. 智能家居领域五、微电子封装技术的未来发展趋势六、总结一、引言微电子封装技术是当今电子行业中的重要领域之一,随着科技的不断进步和市场的需求多样化,微电子封装技术得到了广泛的应用和发展。

本文将从微电子封装技术的基本概念、发展历程、应用领域以及未来发展趋势等方面进行介绍与分析。

二、微电子封装技术的基本概念微电子封装技术是指将电子芯片等微电子器件封装到适当的介质中,保护器件免受环境的干扰和损坏的一种技术。

它起到了连接电子器件和外部电路、防护器件和传导热量等多种功能。

目前常见的微电子封装技术有DIP(Dual In-line Package)、SIP(Single In-line Package)、QFP(Quad Flat Package)和BGA (Ball Grid Array)等。

这些封装技术在形状、引脚布局和焊接方式上有所不同,适用于不同类型的电子器件。

三、微电子封装技术的发展历程1. 初期封装技术的应用早期的微电子封装技术主要采用DIP和SIP等传统封装方式。

这些封装方式简单、可靠,但体积较大、重量较重,不适用于如今追求小型化、轻便化的电子产品。

随着科技的发展,人们对电子产品的要求也越来越高,进一步推动了封装技术的创新。

2. 现代封装技术的创新为了满足电子产品小型化、轻便化的需求,现代封装技术不断创新。

QFP和BGA等新型封装技术应运而生,它们具有体积小、重量轻、引脚布局合理等优点,在电子产品中得到了广泛应用。

同时,新材料的应用以及制造工艺的改进也促进了封装技术的发展。

四、微电子封装技术在电子产品中的广泛应用1. 通信设备领域在通信设备领域,微电子封装技术的应用尤为广泛。

微电子封装技术及发展趋势综述

微电子封装技术及发展趋势综述

和s i —A L丝 。焊点强度高可满足 7 0 微 米以上尺 寸和艰巨的焊接需要。这种焊接方式 的优点是灵 活、 方便 , 主要缺点 是 引线过 长 、 压 焊过 重 , 易 引起 短 路或失效。
图 1 微 电子封装 的级别
图2 WB技 术
1 微 电子封 装关键 技术
1 . 1 . 2 T A B技 术
技术 , 2 0 1 1 , 3 2 ( 4 ) : 1 9 7—2 0 1 .
[ 5 ]郎鹏 , 高志方, 牛 艳 红 .3 D封 装 与 硅 通孔 ( T S V) 工 艺 [ J ] . 电子工艺技术 , 2 0 0 9 , 3 0 ( 6 ) : 7 5—8 1 . [ 6 ]杨光育 , 杨建 宁 , 韩依 楠 . 电 子产 品 3 D _ - 立体 组 装技 术 [ J ] . 电子工艺技术 , 2 0 0 8 , 2 9 ( 1 ) : 3 3—3 4 . [ 7 ]张为 民, 郑红 宇 , 严伟 . 电子封装 与微组装 密闭的特点 与 发展趋势 [ J ] . 国防制造技术 , 2 0 1 0 , 2 ( 1 ) : 6 0—6 2 .
[ 2 ]高尚通 . 跨世纪 的微 电子封 装[ J ] . 半 导体情报 , 2 0 0 0 ,3 7
( 6 ) : 1 —7 .
ME MS 器件与传统的各类传感器相 比, 具有体 积小 、 重量 轻、 功耗低 、 可靠性高等特点 , 在航 空 、 航 天、 生 物 医学等 领域 都有 十分 广 阔的应 用前景 。
总之 , 微 电子封装技术是微 电子制造技术 的延 伸, 其 发展 的快慢 以及 所 达 到 的 技术 水 平 和 生 产 规 模, 直接影响整机产品或电子 系统 的发展。微 电子 封装技术的发展动力来源于电子 产品的更新换代 , 代产 品造 就一 代 技 术 , 未 来 的技 术 发展 还 会 沿 袭

微电子行业的封装技术资料

微电子行业的封装技术资料

微电子行业的封装技术资料封装技术是微电子行业中的关键环节,它涉及到将微电子器件封装成集成电路,保护其免受外界环境的影响,并提供良好的导电、传热和机械保护等功能。

本文将对微电子封装技术进行详细介绍。

一、封装技术的背景与现状随着微电子器件不断发展,其封装方式也在不断演变。

最初的微电子封装是使用插件式封装,而现在主要采用集成电路封装。

这种封装方式可在小型、轻薄、可靠、高性能的芯片上提供功能强大的封装。

二、封装技术的分类与特点封装技术可根据封装材料和封装方式进行分类。

常见的封装材料包括塑料封装、金属封装和陶瓷封装等。

封装方式有无引脚封装和多引脚封装等。

不同的封装材料和封装方式在导热性能、散热效果、电气性能等方面有所不同。

三、封装技术中的关键环节封装技术中的关键环节包括电路设计、晶圆制备、封装材料选择、封装工艺等。

电路设计要求合理布局,兼顾信号传输和供电等需要;晶圆制备需要严格的工艺流程,确保芯片的质量;封装材料的选择要考虑导热性能、尺寸匹配等因素;封装工艺则涉及到焊接、封装注意事项描写、封装尺寸控制等多个步骤,要保证每个步骤都能准确无误地完成。

四、封装技术的发展趋势随着技术的发展,封装技术也在不断创新。

目前,微电子行业封装技术的发展趋势主要表现在以下几个方面:1. 三维封装技术的应用将进一步提高芯片的集成度和性能。

2. 基于微纳尺度材料和技术的封装将提供更好的导热性和电气性能。

3. 模块化封装技术将使芯片的维修更加方便。

4. 绿色环保封装技术将成为未来发展的重要趋势。

五、封装技术的挑战与前景尽管封装技术在微电子行业中发挥着至关重要的作用,但仍面临一些挑战。

如封装材料的热膨胀系数不匹配、封装工艺的复杂性、芯片密度过高导致的散热问题等。

未来,随着科技的不断进步,这些挑战将得到有效解决,封装技术将进一步提升,为微电子行业带来更多的发展机遇。

总结:微电子行业的封装技术是一项复杂而关键的技术,它直接影响着微电子器件的性能和可靠性。

浅谈我国微电子技术的现状和趋势发展_孙小红

浅谈我国微电子技术的现状和趋势发展_孙小红

百花园地2008 - 04浅谈我国微电子技术的现状和趋势发展★天津电子信息职业技术学院 孙小红 关键词: 微电子技术 微电子产业 集成 晶圆 封装检测 微电 子 技 术 是 电 子 信 息 产 业 的 基 础 和 心 脏, 是当代发展最快的技术之一。

在我国, 电子 信息产业已成为国民经济的支柱性产业, 作为 支撑信息产业的微电子技术, 近年来在我国出 现、 崛起并以突飞猛进的速度发展起来。

微电 子 技 术 已 成为 衡 量 一个 国家 科 学 技 术 进步 和 综合国力的重要标志。

一、 微电子技术简介 1.微电子技术 微 电 子 技 术 是 指 以 集 成 电路 (IC ) 技术为 代 表, 制 造 和 使用 微 小 型 电 子 元 件 、 器件和电 路, 实 现 电 子系 统 功能 的新 型技 术 学 科 , 它也 特指大规模集成电路的制造和运用技术。

目前, 采用微电子技术制成的集成电路芯 片 (微 芯 片) 已 发 展 到进 入 GSI (超 大规 模 集 成 电路 ) 时代。

用微芯片制作的手提式超级计算 机、 便携式电话等已遍及人们的生活。

微电子 技 术 的发 展 将 促 使 计算 机 及 通 信 产 业 更 新 换 代, 大大改变人们生产、 生活的面貌。

2.集成电路产业 集 成 电路 (IC ) 的 生 产 制 造 可 分 为 三 个过 程: IC 设计、 IC 制造、 IC 封装和成品测试。

(1 ) IC 的 设 计 大 致 分 为 三 个 阶 段 : 逻 辑设 计、 电路设计、 图形设计 IC 的设 计 具 体 通 过 五 个过 程 完 成 : 功能 描述-逻 辑 设 计-电路模 拟分 析 -电路 布 局 - 制 版。

首先要对一个芯片做完整的功能描述。

根 据功能描述, 设计电路图, 使其达到最佳性能。

之后进行逻辑设计, 用已有的基本逻辑单元将 描述电路功能的数学函数进一步地具体化, 并 经过检验。

2023年集成电路封装行业市场发展现状

2023年集成电路封装行业市场发展现状

2023年集成电路封装行业市场发展现状集成电路封装行业是电子信息产业的关键支撑产业,为集成电路的物理保护与引脚连接提供必不可少的保障。

当前,随着信息技术的高速发展,电子产品应用日益广泛,封装行业在加工工艺、产品质量和市场规模等方面都出现了许多新的变化。

一、市场规模扩大随着5G技术的飞速发展,移动互联网的普及以及人工智能、物联网等技术的广泛应用,集成电路的市场需求空前增长。

据统计,2019年全球集成电路封装市场规模约为490亿美元,预计至2025年将达到840亿美元以上,市场规模持续扩大。

二、技术水平提高集成电路封装技术越来越高级化、微型化,这要求封装企业不断提高技术水平,逐步实现智能化和自动化生产。

目前,世界上集成电路封装技术领先的厂商主要集中在美国、日本、台湾等地,我国封装技术也在不断提升,已具备在先进封装领域中的竞争力。

三、产业链联动优化集成电路封装行业不仅关注技术,对产业链上下游环节的统筹规划也越来越重视。

封装企业与芯片设计公司、设备供应商、测试企业等形成了良性互动,实现产业链联动优化,提升了整体产业的开发、设计、封装、测试、销售等各环节的效率,推动了行业的发展。

四、环保节能发展在集成电路封装行业的制造过程中,会产生许多废气、废水和废渣等,对环境造成不良影响。

为此,近年来封装行业也逐渐意识到环保节能的重要性,并在生产和技术方面进行了调整和创新。

推广无铅封装、具有环保优势的工艺技术和设备,实现清洁生产,并降低资源消耗和环境污染。

总之,随着信息技术的飞速发展,集成电路封装行业面临的机遇与挑战都更多样化、复杂化,必须推行创新、开拓市场,不断提升技术和服务水平,才能在激烈的市场竞争中立于不败之地。

2024年芯片封装设备市场前景分析

2024年芯片封装设备市场前景分析

2024年芯片封装设备市场前景分析引言近年来,随着电子产品市场的不断发展壮大,芯片封装设备市场也得到了迅猛的发展。

芯片封装设备是集成电路制造过程中的重要设备之一,主要用于将芯片封装在塑料或陶瓷外壳中,保护芯片的正常运行。

本文将对芯片封装设备市场的发展现状和前景进行分析。

市场发展现状目前,全球范围内芯片封装设备市场呈现出快速增长的趋势。

主要原因有以下几点:1.电子产品市场不断扩大:随着人们对电子产品的需求日益增长,电子产品市场规模持续扩大,使得芯片封装设备市场需求量不断增加。

2.技术不断进步:随着科技的不断创新,芯片封装设备的技术水平也在不断提高,生产效率和封装质量得到了显著提升,进一步增加了市场需求。

3.制造成本下降:随着制造工艺和设备技术的成熟,芯片封装设备的制造成本不断下降,使得企业更容易购买和使用这些设备,进一步推动了市场的发展。

市场前景分析未来几年,芯片封装设备市场具有广阔的发展前景。

以下是市场前景的几个主要因素:1.5G技术的普及:随着5G技术的商用化,对芯片封装设备的需求将大幅增加。

5G技术需要更高性能的芯片进行支持,这将促使企业加大对芯片封装设备的投资,以满足市场对高性能芯片的需求。

2.物联网行业的快速发展:物联网作为未来的发展趋势,将带动芯片封装设备市场的需求。

物联网需要大量的传感器和芯片进行数据采集和处理,这将使得芯片封装设备市场进一步得到扩大。

3.人工智能技术的兴起:人工智能技术在各行各业得到广泛应用,对计算能力要求较高的芯片需求持续增长。

这将进一步推动芯片封装设备市场的发展。

4.新兴经济体需求增加:随着新兴经济体的经济发展和人民生活水平的提高,对电子产品的需求不断增加,这将进一步推动芯片封装设备市场的发展。

总之,芯片封装设备市场将在技术推动和需求拉动下继续保持快速增长的态势,市场前景广阔。

结论从目前市场发展现状和未来市场前景来看,芯片封装设备市场具有巨大的发展潜力。

随着科技的不断进步和各行业对高性能芯片的需求增加,芯片封装设备市场将持续保持快速增长的态势。

电子封装总结报告范文

电子封装总结报告范文

一、报告背景随着电子技术的飞速发展,电子产品的性能和功能不断提升,对电子封装技术的要求也越来越高。

电子封装技术作为电子产品的重要组成部分,对于提高电子产品的可靠性、稳定性和性能具有重要意义。

本报告旨在总结近年来电子封装技术的发展现状,分析存在的问题,并提出未来发展趋势。

二、电子封装技术发展现状1. 3D封装技术近年来,3D封装技术成为电子封装领域的研究热点。

3D封装技术通过垂直堆叠多个芯片,提高了芯片的集成度和性能。

目前,3D封装技术主要分为硅通孔(TSV)、倒装芯片(FC)和异构集成(Heterogeneous Integration)等类型。

2. 基于纳米技术的封装技术纳米技术在电子封装领域的应用越来越广泛,如纳米压印、纳米自组装等。

这些技术可以提高封装的精度和性能,降低制造成本。

3. 新型封装材料新型封装材料的研究和应用为电子封装技术的发展提供了有力支持。

例如,聚酰亚胺(PI)、聚对苯二甲酸乙二醇酯(PET)等材料在高温、高压、高频等环境下具有优异的性能。

4. 封装测试与可靠性随着电子封装技术的不断发展,封装测试与可靠性研究成为重点关注领域。

通过测试和评估封装性能,确保电子产品的质量和可靠性。

三、存在的问题1. 封装成本较高随着封装技术的不断发展,封装成本逐渐提高。

如何降低封装成本,提高性价比成为电子封装领域的重要课题。

2. 封装可靠性问题电子封装技术在高温、高压等恶劣环境下容易产生可靠性问题。

如何提高封装的可靠性,延长产品使用寿命成为研究重点。

3. 封装工艺复杂电子封装工艺复杂,涉及多个环节。

如何优化封装工艺,提高生产效率成为电子封装领域的一大挑战。

四、未来发展趋势1. 高性能封装技术未来电子封装技术将朝着高性能、低功耗、小型化方向发展。

例如,硅通孔(TSV)技术将继续发展,以满足更高集成度的需求。

2. 绿色封装技术随着环保意识的不断提高,绿色封装技术将成为电子封装领域的重要发展方向。

例如,可回收、可降解的封装材料将得到广泛应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Welding Technology Vol.38No.11Nov.2009·专题综述·微电子封装技术的发展现状张满(淮阴工学院机械系,江苏淮安223001)摘要:论述了微电子封装技术的发展历程、发展现状及发展趋势,主要介绍了微电子封装技术中的芯片级互联技术与微电子装联技术。

芯片级互联技术包括引线键合技术、载带自动焊技术、倒装芯片技术。

倒装芯片技术是目前半导体封装的主流技术。

微电子装联技术包括波峰焊和再流焊。

再流焊技术有可能取代波峰焊技术,成为板级电路组装焊接技术的主流。

从微电子封装技术的发展历程可以看出,IC 芯片与微电子封装技术是相互促进、协调发展、密不可分的,微电子封装技术将向小型化、高性能并满足环保要求的方向发展。

关键词:微电子封装;倒装芯片;再流焊;发展现状中图分类号:TN6;TG454文献标志码:A收稿日期:2009-06-04文章编号:1002-025X (2009)11-0001-050前言上世纪90年代以来,以“3C ”,即计算机(computer )、通信(communication )和家用电器等消费类电子产品(consumer electronics )为代表的IT 产业得到迅猛发展[1]。

微电子产业已经成为当今世界第一大产业,也是我国国民经济的支柱产业。

现代微电子产业逐渐演变为设计、制造和封装三个独立产业[2]。

微电子封装技术是支持IT 产业发展的关键技术,作为微电子产业的一部分,近年来发展迅速。

微电子封装是将数十万乃至数百万个半导体元件(即集成电路芯片)组装成一个紧凑的封装体,由外界提供电源,并与外界进行信息交流。

微电子封装可以保证IC 在处理过程中芯片免受机械应力、环境应力(例如潮气和污染)以及静电破坏。

封装必须满足器件的各种性能要求,例如在电学(电感、电容、串扰)、热学(功率耗散、结温)、质量、可靠性以及成本控制方面的各项性能指标要求。

现代电子产品高性能的普遍要求、计算机技术的高速发展和LSI ,VLSI ,ULSI 的普及应用,对PCB 的依赖性越来越大,要求越来越高。

PCB 制作工艺中的高密度、多层化、细线路等技术的应用越来越广泛。

微电子封装越来越受到人们的重视。

目前,表面贴装技术(SMT )是微电子连接技术发展的主流,而表面贴装器件、设备及生产工艺技术是SMT 的三大要素。

SMT 元器件及其装配技术也正快速进入各种电子产品,并将替代现行的PCB 通孔基板插装方法,成为新的PCB 制作支柱工艺而推广到整个电子行业。

1微电子封装的发展历程IC 封装的引线和安装类型有很多种,按封装安装到电路板上的方式可分为通孔插入式(TH )和表面安装式(SM ),或按引线在封装上的具体排列分为成列、四边引出或面阵排列。

微电子封装的发展历程可分为3个阶段:第1阶段,上世纪70年代以插装型封装为主,70年代末期发展起来的双列直插封装技术(DIP )可应用于模塑料、模压陶瓷和层压陶瓷3种封装技术中,可以用于I /O 数从8~64的器件,这类封装所使用的印刷线路板PWB 成本很高。

与DIP 相比,面阵列封装(如针栅阵列PGA )可以增加TH 类封装的引线数,同时显著减小PWB 的面积。

PGA 系列可以应用于层压的塑料和陶瓷两类技术,其引线可超过1000。

值得注意的是,DIP 和PGA 等TH 封装由于引线节距的限制无法实现高密度封装。

第2阶段,上世纪80年代早期引入了表面安装1焊接技术第38卷第11期2009年11月·专题综述·(SM)封装。

比较成熟的类型有模塑封装的小外形(SO)和PLCC型封装、模压陶瓷中的CERQUAD、层压陶瓷中的无引线式载体(LLCC)和有引线片式载体(LDCC)。

PLCC,CERQUAD,LLCC和LDCC 都是四周排列类封装,其引线排列在封装的所有四边。

由于保持所有引线共面性难度的限制,PLCC的最大等效引脚数为124。

为满足更多引出端数和更高密度的需求,出现了一种新的封装系列,即封装四边都带翼型引线的四边引线扁平封装(QFP)。

与DIP相比,QFP的封装尺寸大大减小,且QFP具有操作方便、可靠性高、适合用SMT表面安装技术在PCB上安装布线,封装外形尺寸小,寄生参数减小,适合高频应用。

Intel公司的CPU,如Intel80386就采用的PQFP[3]。

第3阶段,上世纪90年代,随着集成技术的进步、设备的改进和深亚微米技术的使用,LSI,VLSI,ULSI相继出现,对集成电路封装要求更加严格,I/O 引脚数急剧增加,功耗也随之增大,因此,集成电路封装从四边引线型向平面阵列型发展,出现了球栅阵列封装(BGA),并很快成为主流产品。

90年代后期,新的封装形式不断涌现并获得应用,相继又开发出了各种封装体积更小的芯片尺寸封装(CSP)。

与此同时,多芯片组件(MCM)发展迅速。

MCM是将多个半导体集成电路元件以裸芯片的状态搭载在不同类型的布线基板上,经过整体封装而构成的具有多芯片的电子组件。

封装技术的发展越来越趋向于小型化、低功耗、高密度,典型的主流技术就是BGA技术和CSP技术。

BGA技术有很多种形式,如陶瓷封装BGA (CBGA)、塑料封装BGA(PBGA)以及Micro BGA (μBGA)。

与PQFP相比,BGA引线短,因此热噪声和热阻抗很小,散热好,耦合的电噪声小。

同时,BGA封装面积更小、引脚数量更多,且BGA封装更适于大规模组装生产,组装生产合格率大大提高。

随着对高I/O引出端数和高性能封装需求的增长,工业上已经转向用BGA(球栅阵列封装)代替QFP[4]。

2电子装联技术表面组装技术采用软钎焊技术,把表面组装元器件钎焊到印制板的焊盘上,使它与印制板之间建立可靠的电器和机械连接,从而实现具有一定可靠性的电路功能。

这种焊接技术的主要特点是:用钎剂将要钎焊的金属表面净化(去除氧化物),使之对钎料具有良好的润湿性;供给熔融钎料润湿金属表面;在钎料和钎焊金属间形成金属间化合物。

在表面组装技术中,根据熔融钎料的供给方式主要采用波峰焊和再流焊这2种软钎焊技术。

2.1波峰焊波峰焊是将熔化的钎料,经电动泵或电磁泵喷流成设计要求的钎料波峰,使预先装有电子元器件的印制板通过钎料波峰,实现元器件焊端或引脚与印制板焊盘之间机械与电气连接的软钎焊。

波峰焊主要用于通孔插装组件和采用混合组装方式的表面组装组件的焊接。

在采用波峰焊焊接SMC/SMD时,由于引线对钎料的遮蔽作用、钎料尾流的“钎料遮蔽”效应以及元器件对截流的钎剂气泡的遮蔽效应等因素,容易产生漏焊、桥接和钎缝不充实等缺陷,难以保证钎接的可靠性。

为了克服这些缺陷,双波峰焊应运而生。

双波峰焊有2个波峰,第1个波峰是窄喷嘴流速快的“湍流”波峰,钎料具有较高的垂直压力,提高了对表面组装元器件焊端的渗透性,增大了钎料的润湿性,同时克服了钎料“遮蔽”效应,大大减少了漏焊、桥接和钎缝不充实等缺陷,提高了钎焊可靠性。

第2个波峰是流速慢的“平滑”波峰,有利于形成充实的钎缝,可有效去除过量的钎料修正钎焊面,最终保证了钎焊可靠性。

双波峰焊在SMT中应用广泛。

针对波峰焊产生的缺陷问题,M Liukkonen等人[5]利用自组织映射神经元网络研究了波峰焊过程中焊接工艺参数与焊点缺陷之间的关系。

研究表明,自组织映射神经元网络适用于波峰焊接过程,能够有效地发现钎焊工艺参数与钎焊点缺陷之间一些有意义的联系。

由于铅及其化合物属剧毒物质,无铅钎料在波峰焊中的使用势在必行。

文献[6]利用正交试验法研究了无铅波峰焊焊接工艺与焊接质量的关系,研究表明,影响钎焊质量的因素按主次顺序排列为:钎剂类型、锡炉温度、预热温度、传送带速度。

采用Sn-Cu 钎料时的最佳工艺参数是:钎剂类型选用IF2005C,预热温度为120℃,锡炉温度为260℃,传送带速度2Welding Technology Vol.38No.11Nov.2009·专题综述·为1.2m/min。

2.2再流焊再流焊是通过重新熔化预先分配到印制板焊盘上的焊膏,实现表面组装元器件焊端或引脚与印刷板焊盘之间机械与电气连接的软钎焊。

与波峰焊相比,再流焊具有明显的优点,钎料中不会混入不纯物,钎焊时能正确保持组成;可采用局部加热技术,在同一基板上用不同的再流焊焊接工艺;受熔融钎料表面张力的作用,元器件贴放位置有一定偏离时可以自动纠正偏离;不需要把元器件直接浸渍在熔融钎料中,元器件受到的热冲击小;仅在需要位置施放钎料,可控制钎料施加量,避免桥接等缺陷。

再流焊包括气相、红外、热风循环、热板、光束、激光、工具加热等再流焊技术。

其中红外再流应用最普遍,工具加热再流是最实用的局部再流技术,气相再流最有效,热风循环再流正在推广,光束和激光再流适用于军事电路组件的焊接。

随着免清洗和无铅钎焊的要求,出现了氮气气氛钎焊技术。

适应无铅钎焊的耐高温再流焊成为该技术重要的发展方向[7]。

激光以其可局部加热、快速升温和冷却、不需直接接触元器件、易于实现自动化等优点,特别适合钎焊封装密度高、需要高可靠性的电子元器件。

薛松柏等人[8]研究了激光再流焊焊接速度对SOP器件焊点力学性能的影响,分别采用Sn-Pb钎料及Sn-Ag-Cu无铅钎料对器件进行了激光再流焊,并与红外再流焊焊接质量进行了对比。

研究表明,无铅钎料焊点的最大值高于Sn-Pb钎料焊点的最大值。

激光再流焊时,Sn-Pb钎料焊点强度最大值比红外再流焊的焊点强度高出了28.8%;Sn-Ag-Cu无铅钎料激光再流焊时,焊点抗拉强度的最大值比红外再流焊的焊点强度高出了20.2%。

再流焊过程中PCB过大的热变形,一方面可能造成元器件偏移或虚钎等组装故障,另一方面,可能使钎焊界面产生较大的工艺应力和微裂缝,严重影响焊点的组装质量和长期可靠性。

文献[9]对无铅PCB组件再流焊焊接工艺的热变形进行了仿真分析。

采用ANSYS软件建立了FR-4PCB高密度组装组件的三维有限元模型,设计了3种不同的PCB边界条件,分别进行了无铅再流焊热变形仿真分析,计算得出PCB在不同边界条件下的翘曲度。

研究表明,在无铅钎焊条件下,对PCB边缘沿厚度方向的夹持极大地减小了PCB的热变形,实现了应力最小化和变形最小化的双重目标。

随着表面组装密度的继续提高和表面组装技术的深入发展,再流焊技术有可能取代波峰焊技术,成为板级电路组装焊接技术的主流[10]。

3芯片级互联技术电子封装有4种基础技术,即成膜技术、微互联技术、基板技术、封装与密封技术。

微互联技术起着承上启下的作用,无论是芯片装连在载体上还是封装在基板上,都要用到微互联技术,微互联技术可以说是电子制造的基础技术和专有技术。

微互联技术包括引线键合技术(WB)、载带自动焊技术(TAB)、倒装芯片技术(FC)等。

相关文档
最新文档