2006年中考数学创新题汇编及解析

合集下载

2006年全国中考数学压轴题全析全解(二)

2006年全国中考数学压轴题全析全解(二)

2006年全国中考数学压轴题全析全解(二)8、(2006吉林长春)如图,在平面直角坐标系中,两个函数621,+-==x y x y 的图象交于点A 。

动点P 从点O 开始沿OA 方向以每秒1个单位的速度运动,作PQ ∥x 轴交直线BC 于点Q ,以PQ 为一边向下作正方形PQMN ,设它与△OAB 重叠部分的面积为S 。

(1)求点A 的坐标。

(2)试求出点P 在线段OA 上运动时,S 与运动时间t (秒)的关系式。

(3)在(2)的条件下,S 是否有最大值?若有,求出t 为何值时,S 有最大值,并求出最大值;若没有,请说明理由。

(4)若点P 经过点A 后继续按原方向、原速度运动,当正方形PQMN 与△OAB 重叠部分面积最大时,运动时间t 满足的条件是____________。

解:(1)由⎪⎩⎪⎨⎧+-==,621,x y x y 可得⎩⎨⎧==.4,4y x ∴A (4,4)。

(2)点P 在y = x 上,OP = t ,则点P 坐标为).22,22(t t 点Q 的纵坐标为t 22,并且点Q 在621+-=x y 上。

∴t x x t 212,62122-=+-=, 即点Q 坐标为)22,212(t t -。

t PQ 22312-=。

当t t 2222312=-时,23=t 。

当时230≤<t , .2623)22312(222t t t t S +-=-=当点P 到达A 点时,24=t ,当2423<t<时, 2)22312(t S -= 144236292+-=t t 。

(3)有最大值,最大值应在230≤<t 中, ,12)22(2312)824(232623222+--=++--=+-=t t t t t S当22=t 时,S 的最大值为12。

(4)212≥t 。

9、(2006湖南常德)把两块全等的直角三角形ABC 和DEF 叠放在一起,使三角板DEF 的锐角顶点D 与三角板ABC 的斜边中点O 重合,其中90ABC DEF ∠=∠=,45C F ∠=∠=,AB=DE=4,把三角板ABC 固定不动,让三角板DEF 绕点O 旋转,设射线DE 与射线AB 相交于点P ,射线DF 与线段BC 相交于点Q 。

2006年中考数学试题汇编及解析 探索型问题

2006年中考数学试题汇编及解析 探索型问题

2006年中考数学试题汇编及解析探索型问题探索型问题这类问题往往涉及面很广,主要是探索题设结论是否存在,或是否成立,或是让学生自己先猜想结论,再进行研究从而得出正确的结论等等,这些题通常有一定的难度,几乎在全国各地的中考数学试卷中都能见到。

1、(2006浙江舟山)如图1,在直角坐标系中,点A的坐标为(1,0),•以OA•为边在第四象限内作等边△AOB,点C为x轴的正半轴上一动点(OC>1),连结BC,•以BC•为边在第四象限内作等边△CBD,直线DA交y轴于点E.(1)试问△OBC与△ABD全等吗?并证明你的结论.(2)随着点C位置的变化,点E的位置是否会发生变化,若没有变化,求出点E•的坐标;若有变化,请说明理由.(3)如图2,以OC为直径作圆,与直线DE分别交于点F、G,设AC=m,AF=n,用含n的代数式表示m.[解析] (1)两个三角形全等∵△AOB、△CBD都是等边三角形∴OBA=∠CBD=60°∴∠OBA+∠ABC=∠CBD+∠ABC即∠OBC=∠ABD∵OB=AB,BC=BD△OBC≌△ABD(2)点E位置不变∵△OBC≌△ABD∴∠BAD=∠BOC=60°∠OAE=180°—60°—60°=60°在Rt△EOA中,EO=OA·tan60°3或∠AEO=30°,得AE=2,∴3∴点E的坐标为(03(3)∵AC=m ,AF=n ,由相交弦定理知1·m=n ·AG ,即AG=m n又∵OC 是直径,∴OE 是圆的切线,OE 2=EG ·EF 在Rt △EOA 中31+ 32=(2—mn)(2+n ) 即2n 2+n —2m-mn=0解得m=222n nn ++.2、(2006浙江金华)如图,平面直角坐标系中,直线AB 与x 轴,y 轴分别交于A (3,0),B (0,3)两点, ,点C 为线段AB 上的一动点,过点C 作CD ⊥x 轴于点D 。

2006年中考专题-猜想、探索型专项训练及答案WORD

2006年中考专题-猜想、探索型专项训练及答案WORD

黄浦区初中毕业生学业考试数学模拟试卷一、填空题:(本题共12小题,每小题3分,满分36分) 1、-1的相反数的倒数是 ;2、=43)(x -____________;3、不等式)1(335+>-x x 的解集是______________;4、在实数范围内因式分解:=+232x x -_____________________;5、若x x 82=,则 x = ;6、函数81+x y =的自变量x 的取值范围是____________________;7、若等边三角形的边长为a ,则它的面积为____________.;8、如果直线b x y +-=2在y 轴上的截距为-2,那么这条直线一定不经过 第 象限;9、已知a b =c d =e f =35 ,b +d +f =50,那么a +c +e = ;10、正多边形的中心角是360,则这个正多边形的边数是 ;11、两圆内切,圆心距为3,一个圆的半径为5,另一个圆的半径为 ; 12、△ABC 是等腰直角三角形,BC 是斜边,将△ABP 绕点A 逆时针旋转 后,能与△ACP ′重合。

如果AP=3,那么PP ′的长等于 。

ABCP ′ P二、单项选择题:(本题共4小题,每小题4分,满分16分)【每题列出的四个答案中,只有一个是正确的,把正确答案的代号填入括号内】13、在Rt △ABC 中,∠C=90°,∠A 的对边为a ,已知∠A 和边a ,求边c ,则下列关系中正确的是( )(A) c=asinA ( B) c= a sinA (C) c=acosA (D) c= acosA14、在平面直角坐标中,点P (1,-3)关于x 轴的对称点坐标是:(A )(1,-3) (B )(-1,3) (C )(-1,-3) (D )(1,3)15、一批运动服按原价八五折出售,每套a 元,则它的原价为: (A )0.85a 元 (B )a 1720元 (C )0.15a 元 (D )a 320元16、如图,A D ∥BC ,∠D=90°,DC=7,AD=2,BC=4.若在边DC 上有点P 使△PAD 和△PBC 相似,则这样的点P 存在的个数有 ( )(A) 1 ( B) 2 (C) 3 (D) 4三、简答题:(本题共5小题,第19、20题,每小题9分,第21、22、23题,每小题10分,满分48分)17、计算: 1212)31(201-)-(--++-πD C BA18、用换元法解方程:xx x x 3121322-=--19、某区在5000名初三学生的数学测试成绩中,随机抽取了部分学生的成绩,经过整理后分成六组,绘制出的频率分布直方图(如图,图中还缺少90~100小组的小长方形),已知从左到右的第一至第五组的频率依次为0.05、0.1、0.3、0.25、0.2,第六小组的频数为25。

06数学中考试卷及专家分析-1

06数学中考试卷及专家分析-1
育网 -
8.精心设置综合试题,有效考查
学生能力,提高试卷区分度
试卷注意到数学能力考试的目的和性质,精 心设置综合试题,综合考查学生的合情说理和 逻辑推理能力、利用数学知识解决实际问题的 能力、以及基本的数学思想方法,又兼顾了高 一级学校选拔新生的需要。 如第10题将平移、面积与相似的综合;16 题继续进行数学概念的判别;24题第(3)问 对面积的求法和对动点的讨论等。
需要更完整的资源请到 新世纪教 育网 -
新中考难度下降的主要原因
新课程改革的目标之一 省级行政部门多次强调 杭州市教育局再三关照 考虑到杭州两区五县市实际水平 四月底全市针对后30%的抽测作用 各校认真研究新课程充分准备新中考
需要更完整的资源请到 新世纪教 育网 -
需要更完整的资源请到 新世纪教 育网 -
教师对新课标的看法
新中考,软着陆, 重基础,稳发展!
---2006杭州新中考反思
需要更完整的资源请到 新世纪教 育网 -
杭州市2006年第一届新中考
形式突变 内容渐变
先测评,再特招,最后考试 综合素质评价 六项内容 三级评定
道德与素养 劳动与技能 实践与探究 交流与合作 运动与健康 审美与艺术
需要更完整的资源请到 新世纪教 育网 -
7.以学生发展为本,为学生保证 公平竞争的同时提供展示水平的空间
试卷难度合理,无论是基础知识的数学题, 还是带有一定开放性、探究性的数学题,均能 贴近学生,背景公平,试题的表述准确、清晰、 科学,绝大多数试题阅读量适中,没有对学生 的分析和思考构成障碍。 试卷起点较低,难易有序,层次性、阶梯 性较为合理,能使各个层次的学生都较好地发 挥出自己的水平。 并把三类常规性的题型改为“仔细选一 选”、“认真填一填”、“全面答一答” , 更具亲和力。 需要更完整的资源请到 新世纪教

2006年中考数学应用题汇编及解

2006年中考数学应用题汇编及解

一、代数应用题:1、农科所向农民推荐渝江Ⅰ号和渝江Ⅱ号两种新型良种稻谷.在田间管理和土质相同的条件下,Ⅱ号稻谷单位面积的产量比Ⅰ号到谷低20%,但Ⅱ号稻谷的米质好,价格比Ⅰ号高.已知Ⅰ号稻谷国家的收购价是1.6元/千克.(1) 当Ⅱ号稻谷的国家收购价是多少时,在田间管理、图纸和面积相同的两块田丽分别种植Ⅰ号、Ⅱ号稻谷的收益相同?(2) 去年小王在土质、面积相同的两块田里分别种植Ⅰ号、Ⅱ号稻谷,且进行了相同的田间管理.收获后,小王把稻谷全部卖给国家.卖给国家时,Ⅱ号稻谷的国家收购价定为2.2元/千克,Ⅰ号稻谷国家的收购价未变,这样小王卖Ⅱ号稻谷比卖Ⅰ号稻谷多收入1040元,那么小王去年卖给国家的稻谷共有多少千克?[解析] (1)由题意,得1.62120%=-(元);(2)设卖给国家的Ⅰ号稻谷x 千克,根据题意,得(120%) 2.2 1.61040x x -⨯=+. 解得,6500x =(千克)(120%) 1.811700x x x +-==(千克)答:(1)当Ⅱ号稻谷的国家收购价是2元时,种植Ⅰ号、Ⅱ号稻谷的收益相同; (2)小王去年卖给国家的稻谷共为11700千克.2、机械加工需要拥有进行润滑以减少摩擦,某企业加工一台大型机械设备润滑用油90千克,用油的重复利用率为60%,按此计算,加工一台大型机械设备的实际耗油量为36千克.为了建设节约型社会,减少油耗,该企业的甲、乙两个车间都组织了人员为减少实际耗油量进行攻关.(1) 甲车间通过技术革新后,加工一台大型机械设备润滑用油量下降到70千克,用油的重复利用率仍然为60%.问甲车间技术革新后,加工一台大型机械设备的实际耗油量是多少千克?(2) 乙车间通过技术革新后,不仅降低了润滑用油量,同时也提高了用油的重复利用率,并且发现在技术革新的基础上,润滑用油量每减少1千克,用油量的重复利用率将增加1.6%. 这样乙车间加工一台大型机械设备的实际耗油量下降到12千克. 问乙车间技术革新后,加工一台大型机械设备润滑用油量是多少千克?用油的重复利用率是多少?[解析](1)由题意,得70(160%)7040%28⨯-=⨯=(千克) (2)设乙车间加工一台大型机械设备润滑用油量为x 千克, 由题意,得[1(90) 1.6%60%]12x x ⨯--⨯-=部门经理整理,得2657500x x --= 解得:1275,10x x ==-(舍去)(9075) 1.6%60%84%-⨯+=答:(1)技术革新后,甲车间加工一台大型机械设备的实际耗油量是28千克.(2)技术革新后,乙车间加工一台大型机械设备润滑用油量是75千克?用油的重复利用率是84%.3、某高科技产品开发公司现有员工50名,所有员工的月工资情况如下表:(1(2中位数为 元,众数为(3问题,并指出用(2实际水平更合理些;(4)去掉四个管理人员的工资后,请你计算出其他员工的月平均工资y (结果保留整数),并判断y 能否反映该公司员工的月工资实际水平.[解析] (1)由表中数据知有16名;(2)由表中数据知中位数为1700;众数为1600;(3)这个经理的介绍不能反映该公司员工的月工资实际水平.用1700元或1600元来介绍更合理些.(说明:该问中只要写对其中一个数据或相应统计量(中位数或众数)也可以) (4)250050210008400346y ⨯--⨯=≈1713(元).y 能反映.4、某旅游胜地欲开发一座景观山.从山的侧面进行堪测,迎面山坡线ABC 由同一平面内的两段抛物线组成,其中AB 所在的抛物线以A 为顶点、开口向下,BC 所在的抛物线以C 为顶点、开口向上.以过山脚(点C )的水平线为x 轴、过山顶(点A )的铅垂线为y 轴建立平面直角坐标系如图(单位:百米).已知AB 所在抛物线的解析式为8412+-=x y ,BC 所在抛物线的解析式为2)8(41-=x y ,且已知)4,(m B .(1)设),(y x P 是山坡线AB 上任意一点,用y 表示x ,并求点B 的坐标;(2)从山顶开始、沿迎面山坡往山下铺设观景台阶.这种台阶每级的高度为20厘米,长度因坡度的大小而定,但不得小于20厘米,每级台阶的两端点在坡面上(见图). ①分别求出前三级台阶的长度(精确到厘米); ②这种台阶不能一直铺到山脚,为什么?(3)在山坡上的700米高度(点D )处恰好有一小块平地,可以用来建造索道站.索道的起点选择在山脚水平线上的点E 处,1600=OE (米).假设索道DE 可近似地看成一段以E 为顶点、开口向上的抛物线,解析式为2)16(281-=x y .试求索道的最大悬空..高度.[∴8412+-=x y ,0≥x , (…2分) ∴)8(42y x -=,y x -=82(…3分) ∵)4,(m B ,∴482-=m =4,∴)4,4(B(…4分)(2)在山坡线AB 上,y x -=82,)8,0(A①令80=y ,得00=x ;令998.7002.081=-=y ,得08944.0002.021≈=x ∴第一级台阶的长度为08944.001=-x x (百米)894≈(厘米)(…6分)同理,令002.0282⨯-=y 、002.0383⨯-=y ,可得12649.02≈x 、15492.03≈x ∴第二级台阶的长度为03705.012=-x x (百米)371≈(厘米) (…7分) 第三级台阶的长度为02843.023=-x x (百米)284≈(厘米)(…8分)②取点)4,4(B ,又取002.04+=y ,则99900.3998.32≈=x ∵002.0001.099900.34<=-∴这种台阶不能从山顶一直铺到点B ,从而就不能一直铺到山脚 (…10分)(注:事实上这种台阶从山顶开始最多只能铺到700米高度,共500级.从100米高度到700米高度都不能铺设这种台阶.解题时取点具有开放性) ②另解:连接任意一段台阶的两端点P 、Q ,如图 ∵这种台阶的长度不小于它的高度 ∴︒≤∠45PQR当其中有一级台阶的长大于它的高时, ︒<∠45PQR(…9分)在题设图中,作OA BH ⊥于H则︒=∠45ABH ,又第一级台阶的长大于它的高∴这种台阶不能从山顶一直铺到点B ,从而就不能一直铺到山脚(…10分)(3))7,2(D 、)0,16(E 、)4,4(B 、)0,8(C由图可知,只有当索道在BC 上方时,索道的悬空..高度才有可能取最大值(…11分) 索道在BC 上方时,悬空..高度2)16(281-=x y 2)8(41--x )96403(1412-+-=x x 38)320(1432+--=x(…13分)当320=x 时,38max =y∴索道的最大悬空..高度为3800米. 5、有两段长度相等的河渠挖掘任务,分别交给甲、乙两个工程队同时进行挖掘.图11是反映所挖河渠长度y (米)与挖掘时间x (时)之间关系的部分图象.请解答下列问题: (1)乙队开挖到30米时,用了_____小时.开挖6小时时,甲队比乙队多挖了______米; (2)请你求出: ①甲队在0≤x ≤6的时段内,y 与x 之间的函数关系式; PQR时)②乙队在2≤x ≤6的时段内,y 与x 之间的函数关系式; ③开挖几小时后,甲队所挖掘河渠的长度开始超过乙队?(3)如果甲队施工速度不变,乙队在开挖6小时后,施工速度增加到12米/时,结果两队同时完成了任务.问甲队从开挖到完工所挖河渠的长度为多少米?[解析] (1)2;10;(2)①设甲队在0≤x ≤6的时段内y 与x 之间的函数关系式为y =k 1x ,由图可知,函数图象过点(6,60), ∴6 k 1=60,解得k 1=10, ∴y =10x .②设乙队在2≤x ≤6的时段内y 与x 之间的函数关系式为y =k 2x +b ,由图可知,函数图象过点(2,30)、(6,50),∴22230,650.k b k b +=⎧⎨+=⎩ 解得25,20.k b =⎧⎨=⎩∴y =5x +20.③由题意,得10x >5x +20,解得x >4.所以,4小时后,甲队挖掘河渠的长度开始超过乙队.(说明:通过观察图象并用方程来解决问题,正确的也给分) (3)由图可知,甲队速度是:60÷6=10(米/时).设甲队从开挖到完工所挖河渠的长度为z 米,依题意,得6050.1012z z --=解得 z =110.答:甲队从开挖到完工所挖河渠的长度为110米.6、利达经销店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7. 5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元.设每吨材料售价为x (元),该经销店的月利润为y (元). (1)当每吨售价是240元时,计算此时的月销售量;(2)求出y 与x 的二次函数关系式(不要求写出x 的取值范围);(3)请把(2)中的二次函数配方成2()y a x h k =-+的形式,并据此说明,该经销店要获得最大月利润,售价应定为每吨多少元;(4)小静说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由.[解析] (1)5.71024026045⨯-+=60(吨).(2)260(100)(457.5)10xy x -=-+⨯,化简得: 23315240004y x x =-+-.(3)24000315432-+-=x x y 23(210)90754x =--+.利达经销店要获得最大月利润,材料的售价应定为每吨210元.(4)我认为,小静说的不对.理由:方法一:当月利润最大时,x 为210元,而对于月销售额)5.71026045(⨯-+=xx W 23(160)192004x =--+来说, 当x 为160元时,月销售额W 最大. ∴当x 为210元时,月销售额W 不是最大. ∴小静说的不对.方法二:当月利润最大时,x 为210元,此时,月销售额为17325元;而当x 为200元时,月销售额为18000元.∵17325<18000, ∴当月利润最大时,月销售额W 不是最大. ∴小静说的不对.(说明:如果举出其它反例,说理正确,也相应给分)二、几何应用题:8、图10—1是某学校存放学生自行车的车棚的示意图(尺寸如图所示),车棚顶部是圆柱侧面的一部分,其展开图是矩形.图10—2是车棚顶部截面的示意图, AB 所在圆的圆心为O .车棚顶部是用一种帆布覆盖的,求覆盖棚顶的帆布的面积(不考虑接缝等因素,计算结果保留π).[解析]连结OB ,过点O 作OE ⊥AB ,垂足为E ,交AB 于F ,如图1. …………(1分)由垂径定理,可知: E 是AB 中点,F 是AB 中点, ∴EF 是弓形高 .∴AE ==AB 2123,EF =2. …………(2分) 设半径为R 米,则OE =(R -2)米.O BA·图10—2图10—1图1在Rt △AOE 中,由勾股定理,得 R 2=22)32()2(+-R .解得 R =4. ……………………………………………………………………(5分) ∵sin ∠AOE =23=OA AE , ∴ ∠AOE =60°, ………………………………(6分)∴∠AOB =120°. ∴AB 的长为1804120π⨯=38π. ………………………(7分)∴帆布的面积为38π×60=160π(平方米). …………………………………(8分) (说明:本题也可以由相交弦定理求圆的半径的长.对于此种解法,请参照此评分标准相应给分)9、图14-1至图14-7的正方形霓虹灯广告牌ABCD 都是20×20的等距网格(每个小方格的边长均为1个单位长),其对称中心为点O .如图14-1,有一个边长为6个单位长的正方形EFGH 的对称中心也是点O ,它以每秒1个单位长的速度由起始位置向外扩大(即点O 不动,正方形EFGH 经过一秒由6×6扩大为8×8;再经过一秒,由8×8扩大为10×10;……),直到充满正方形ABCD ,再以同样的速度逐步缩小到起始时的大小,然后一直不断地以同样速度再扩大、再缩小.另有一个边长为6个单位长的正方形MNPQ 从如图14-1所示的位置开始,以每秒1个单位长的速度,沿正方形ABCD 的内侧边缘按A →B →C →D →A 移动(即正方形MNPQ 从点P 与点A 重合位置开始,先向左平移,当点Q 与点B 重合时,再向上平移,当点M 与点C 重合时,再向右平移,当点N 与点D 重合时,再向下平移,到达起始位置后仍继续按上述方式移动).正方形EFGH 和正方形MNPQ 从如图14-1的位置同时开始运动,设运动时间为x 秒,它们的重叠部分面积为y 个平方单位.(1)请你在图14-2和图14-3中分别画出x 为2秒、18秒时,正方形EFGH 和正方形MNPQ 的位置及重叠部分(重叠部分用阴影表示),并分别写出重叠部分的面积;(2)①如图14-4,当1≤x ≤3.5时,求y 与x 的函数关系式;②如图14-5,当3.5≤x ≤7时,求y 与x 的函数关系式; ③如图14-6,当7≤x ≤10.5时,求y 与x 的函数关系式; ④如图14-7,当10.5≤x ≤13时,求y 与x 的函数关系式. (3)对于正方形MNPQ 在正方形ABCD 各边上移动一周的过程,请你根据重叠部分面积y 的变化情况,指出y 取得最大值和最小值时,相对应的x 的取值情况,并指出最大值和最小值分别是多少.(说明:问题(3)是额外加分题,加分幅度为1~4分)图14-6D 图14-2 图14-3 D D 图14-4D图14-1 (P ) D N 图14-5D图14-7DP[解析](1)相应的图形如图2-1,2-2.当x =2时,y =3; 当x =18时,y =18.(2)①当1≤x ≤3.5时,如图2-3,延长MN 交AD 于K ,设MN 与HG 交于S ,MQ 与FG 交于T ,则MK =6+x ,SK =TQ =7-x ,从而MS =MK -SK =2x -1,MT =MQ -TQ =6-(7-x )= x -1. ∴y=MT ·MS =(x -1)(2x -1)=2x 2-3x +1.②当3.5≤x ≤7时,如图2-4,设FG 与MQ 交于T ,则 TQ =7-x ,∴MT =MQ -TQ =6-(7-x )=x -1. ∴y=MN ·MT =6(x -1)=6x -6.③当7≤x ≤10.5时,如图2-5,设FG 与MQ 交于T ,则 TQ=x -7,∴MT =MQ -TQ =6-(x -7)=13-x . ∴y = MN ·MT =6(13-x )=78-6x .④当10.5≤x ≤13时,如图2-6,设MN 与EF 交于S ,NP 交FG 于R ,延长NM 交BC 于K ,则MK =14-x ,SK =RP =x -7,∴SM =SK -MK=2x -21,从而SN =MN -SM =27-2x ,NR =NP -RP =13-x . ∴y=NR ·SN =(13-x )(27-2x )=2x 2-53x +351.(说明:以上四种情形,所求得的y 与x 的函数关系式正确的,若不化简不扣分) (3)对于正方形MNPQ ,①在AB 边上移动时,当0≤x ≤1及13≤x ≤14时,y 取得最小值0;当x =7时,y 取得最大值36.②在BC 边上移动时,当14≤x ≤15及27≤x ≤28时,y 取得最小值0;当x =21时,y 取得最大值36. ③在CD 边上移动时,当28≤x ≤29及41≤x ≤42时,y 取得最小值0;图2-4 D 图2-5D P图2-6 DP 图2-3 DQ P 图2-2 D 图2-1 D Q P当x=35时,y取得最大值36.④在DA边上移动时,当42≤x≤43及55≤x≤56时,y取得最小值0;当x=49时,y取得最大值36.。

2006年中考数学试题汇编及解析---动态几何型综合

2006年中考数学试题汇编及解析---动态几何型综合

2006年中考数学试题汇编及解析---动态几何型综合纵观近5年全国各地的中考数学试卷,动态几何型综合题常常出现在一张试卷的压轴题位置,估计这一趋势在今后几年的中考中会越来越明显,这类试题往往综合性较强,往往涉及到函数、直线型、圆等初中数学的重点考察对象中的好几个,应加大训练的力度。

1、(2006山东青岛)如图①,有两个形状完全相同的直角三角形ABC 和EFG 叠放在一起(点A 与点E 重合),已知AC =8cm ,BC =6cm ,∠C =90°,EG =4cm ,∠EGF =90°,O 是△EFG 斜边上的中点.如图②,若整个△EFG 从图①的位置出发,以1cm/s 的速度沿射线AB 方向平移,在△EFG 平移的同时,点P 从△EFG 的顶点G 出发,以1cm/s 的速度在直角边GF 上向点F 运动,当点P 到达点F 时,点P 停止运动,△EFG 也随之停止平移.设运动时间为x (s ),FG 的延长线交 AC 于H ,四边形OAHP 的面积为y (cm 2)(不考虑点P 与G 、F 重合的情况).(1)当x 为何值时,OP ∥AC ?(2)求y 与x 之间的函数关系式,并确定自变量x 的取值范围.(3)是否存在某一时刻,使四边形OAHP 面积与△ABC 面积的比为13∶24?若存在,求出x 的值;若不存在,说明理由.(参考数据:1142 =12996,1152 =13225,1162 =13456或4.42 =19.36,4.52 =20.25,4.62 =21.16)[解析] (1)∵Rt △EFG ∽Rt △ABC ,∴BC FG AC EG =,684FG=. ∴FG =864⨯=3cm .∵当P 为FG 的中点时,OP ∥EG ,EG ∥AC , ∴OP ∥AC .∴ x =121FG=21×3=1.5(s ).∴当x 为1.5s 时,OP ∥AC .(2)在Rt △EFG 中,由勾股定理得:EF =5cm . ∵EG ∥AH ,∴△EFG ∽△AFH .∴FH FGAF EF AH EG ==. ∴FHx AH 3554=+=. ∴ AH =54( x +5),FH =53(x +5).过点O 作OD ⊥FP ,垂足为 D .∵点O 为EF 中点, ∴OD =21EG =2cm . ∵FP =3-x ,∴S 四边形OAHP =S △AFH -S △OFP=21·AH ·FH -21·OD ·FP =21·54(x +5)·53(x +5)-21×2×(3-x ) =256x 2+517x +3 (0<x <3).(3)假设存在某一时刻x ,使得四边形OAHP 面积与△ABC 面积的比为13∶24.则S 四边形OAHP =2413×S △ABC ∴256x 2+517x +3=2413×21×6×8 ∴6x 2+85x -250=0 解得 x 1=25, x 2= -350(舍去). ∵0<x <3, ∴当x =25(s )时,四边形OAHP 面积与△ABC 面积的比为13∶24. 2、(2006河北)如图,在Rt △ABC 中,∠C =90°,AC =12,BC =16,动点P 从点A 出发沿AC 边向点C 以每秒3个单位长的速度运动,动点Q 从点C 出发沿CB 边向点B 以每秒4个单位长的速度运动.P ,Q 分别从点A ,C 同时出发,当其中一点到达端点时,另一点也随之停止运动.在运动过程中,△PCQ 关于直线PQ 对称的图形是△PDQ .设运动时间为t (秒).(1)设四边形PCQD 的面积为y ,求y 与t 的函数关系式; (2)t 为何值时,四边形PQBA 是梯形?(3)是否存在时刻t ,使得PD ∥AB ?若存在,求出t 的值;若不存在,请说明理由;(4)通过观察、画图或折纸等方法,猜想是否存在时刻t ,使得PD ⊥AB ?若存在,请估计t的值在括号中的哪个时间段内(0≤t ≤1;1<t ≤2;2<t ≤3;3<t ≤4);若不存在,请简要说明理由.[解析] (1)由题意知 CQ =4t ,PC =12-3t ,∴S △PCQ =t t CQ PC 246212+-=⋅.∵△PCQ 与△PDQ 关于直线PQ 对称, ∴y=2S △PCQ t t 48122+-=. (2)当CQCP CA CB=时,有PQ ∥AB ,而AP 与BQ 不平行,这时四边形PQBA 是梯形,∵CA =12,CB =16,CQ =4t , CP =12-3t ,∴16412312tt =-,解得t =2. ∴当t =2秒时,四边形PQBA 是梯形.(3)设存在时刻t ,使得PD ∥AB ,延长PD 交BC 于点M ,如下图,若PD ∥AB ,则∠QMD =∠B ,又∵∠QDM =∠C =90°,∴Rt △QMD ∽Rt △ABC ,从而ACQDAB QM =, ∵QD =CQ =4t ,AC =12, AB=20, ∴QM =203t . 若PD ∥AB ,则CP CMCA CB=,得20412331216t t t +-=, 解得t =1211. ∴当t =1211秒时,PD ∥AB .(4)存在时刻t ,使得PD ⊥AB .时间段为:2<t ≤3.3、(2006重庆)如图1所示,一张三角形纸片ABC ,∠ACB=90°,AC=8,BC=6.沿斜边AB 的中线PCD 把这张纸片剪成11AC D ∆和22BC D ∆两个三角形(如图2所示).将纸片11AC D ∆沿直线2D B (AB )方向平移(点12,,,A D D B 始终在同一直线上),当点1D 于点B 重合时,停止平移.在平移过程中,11C D 与2BC 交于点E,1AC 与222C D BC 、分别交于点F 、P.(1) 当11AC D ∆平移到如图3所示的位置时,猜想图中的1D E 与2D F 的数量关系,并证明你的猜想; (2) 设平移距离21D D 为x ,11AC D ∆与22BC D ∆重叠部分面积为y ,请写出y 与x 的函数关系式,以及自变量的取值范围;(3)对于(2)中的结论是否存在这样的x 的值,使重叠部分的面积等于原ABC ∆面积的14. 若存在,求x 的值;若不存在,请说明理由.[解析](1)12D E D F =.因为1122C D C D ∥,所以12C AFD ∠=∠.又因为90ACB ∠=︒,CD 是斜边上的中线,所以,DC DA DB ==,即112221C D C D BD AD === 所以,1C A ∠=∠,所以2AFD A ∠=∠ 所以,22AD D F =.同理:11BD D E =.又因为12AD BD =,所以21AD BD =.所以12D E D F =(2)因为在Rt ABC ∆中,8,6AC BC ==,所以由勾股定理,得10.AB =CB D A 图1122图3C 2D 2C 1BD 1A 图2即1211225AD BD C D C D ====又因为21D D x =,所以11225D E BD D F AD x ====-.所以21C F C E x == 在22BC D ∆中,2C 到2BD 的距离就是ABC ∆的AB 边上的高,为245. 设1BED ∆的1BD 边上的高为h ,由探究,得221BC D BED ∆∆∽,所以52455h x-=. 所以24(5)25x h -=.121112(5)225BED S BD h x ∆=⨯⨯=- 又因为1290C C ∠+∠=︒,所以290FPC ∠=︒.又因为2C B ∠=∠,43sin ,cos 55B B ==. 所以234,55PC x PF x == ,22216225FC P S PC PF x ∆=⨯=而2212221126(5)22525BC D BED FC P ABC y S S S S x x ∆∆∆∆=--=--- 所以21824(05)255y x x x =-+≤≤ (3) 存在. 当14ABC y S ∆=时,即218246255x x -+= 整理,得2320250.x x -+=解得,125,53x x ==.即当53x =或5x =时,重叠部分的面积等于原ABC ∆面积的14.4、(2006山东济南)如图1,以矩形OABC 的两边OA 和OC 所在的直线为x 轴、y 轴建立平面直角坐标系,A 点的坐标为(3)C ,0,点的坐标为(04),.将矩形OABC 绕O 点逆时针旋转,使B 点落在y 轴的正半轴上,旋转后的矩形为11111OA B C BC A B ,,相交于点M . (1)求点1B 的坐标与线段1B C 的长;(2)将图1中的矩形111OA B C 沿y 轴向上平移,如图2,矩形222PA B C 是平移过程中的某一位置,22BC A B ,相交于点1M ,点P 运动到C 点停止.设点P 运动的距离为x ,矩形222PA B C 与原矩形OABC 重叠部分的面积为y ,求y 关于x 的函数关系式,并写出x 的取值范围;(3)如图3,当点P 运动到点C 时,平移后的矩形为333PA B C .请你思考如何通过图形变换使矩形333PA B C 与原矩形OABC 重合,请简述你的做法.[解析](1)如图1,因为15OB OB ===,所以点1B 的坐标为(05),.11541B C OB OC =-=-=.(2)在矩形111OA B C 沿y 轴向上平移到P 点与C 点重合的过程中,点1A 运动到矩形OABC 的边BC 上时,求得P 点移动的距离115x =. 当自变量x 的取值范围为1105x <≤时,如图2,由2122B CM B A P △∽△,得1334x CM +=,此时,2221113334(1)224B A P B CM xy S S x +=-=⨯⨯-⨯+△△. 即23(1)68y x =-++(或23345848y x x =--+).当自变量x 的取值范围为1145x ≤≤时,求得122(4)3PCM y S x '==-△(或221632333y x x =-+).1C 3C(3)部分参考答案:①把矩形333PA B C 沿3BPA ∠的角平分线所在直线对折.②把矩形333PA B C 绕C 点顺时针旋转,使点3A 与点B 重合,再沿y 轴向下平移4个单位长度. ③把矩形333PA B C 绕C 点顺时针旋转,使点3A 与点B 重合,再沿BC 所在的直线对折. ④把矩形333PA B C 沿y 轴向下平移4个单位长度,再绕O 点顺时针旋转,使点3A 与点A 重合.5、(2006山东济南)如图1,已知Rt ABC △中,30CAB ∠= ,5BC =.过点A 作AE AB ⊥,且15AE =,连接BE 交AC 于点P . (1)求PA 的长;(2)以点A 为圆心,AP 为半径作⊙A ,试判断BE 与⊙A 是否相切,并说明理由;(3)如图2,过点C 作CD AE ⊥,垂足为D .以点A 为圆心,r 为半径作⊙A ;以点C 为圆心,R 为半径作⊙C .若r 和R 的大小是可变化的,并且在变化过程中保持⊙A 和⊙C 相切..,且使D 点在⊙A 的内部,B 点在⊙A 的外部,求r 和R 的变化范围.[解析](1) 在Rt ABC △中,305CAB BC ∠==,, 210AC BC ∴==.AE BC ∥,APE CPB ∴△∽△. ::3:1PA PC AE BC ∴==. :3:4PA AC ∴=,3101542PA ⨯==. (2)BE 与⊙A 相切.在Rt ABE △中,AB =15AE =,CCD图1图2tanAE ABE AB ∴∠===60ABE ∴∠= . 又30PAB ∠=,9090ABE PAB APB ∴∠+∠=∴∠=,, BE ∴与⊙A 相切.(3)因为5AD AB ==,r 的变化范围为5r <<当⊙A 与⊙C 外切时,10R r +=,所以R 的变化范围为105R -<;当⊙A 与⊙C 内切时,10R r -=,所以R 的变化范围为1510R <<+ 6、(2006浙江金华)如图,平面直角坐标系中,直线AB 与x 轴,y 轴分别交于A (3,0),B (0,3)两点, ,点C 为线段AB 上的一动点,过点C 作CD ⊥x 轴于点D .(1)求直线AB 的解析式;(2)若S 梯形OBCD 求点C 的坐标; (3)在第一象限内是否存在点P ,使得以P,O,B 为顶点的 三角形与△OBA 相似.若存在,请求出所有符合条件 的点P 的坐标;若不存在,请说明理由.[解析] (1)直线AB 解析式为:y=33-x+3. (2)方法一:设点C坐标为(x ,33-x+3),那么OD =x ,CD =33-x+3. ∴OBCD S 梯形=()2CD CD OB ⨯+=3632+-x . 由题意:3632+-x =334,解得4,221==x x (舍去) ∴ C(2,33)方法二:∵ 23321=⨯=∆OB OA S AOB ,OBCD S 梯形=334,∴63=∆ACD S . 由OA=3OB ,得∠BAO =30°,AD=3CD .∴ ACD S ∆=21CD ×AD =223CD =63.可得CD =33. ∴ AD=1,OD =2.∴C (2,33). (3)当∠OBP =Rt ∠时,如图①若△BOP ∽△OBA ,则∠BOP =∠BAO=30°,BP=3OB=3,∴1P (3,33). ②若△BPO ∽△OBA ,则∠BPO =∠BAO=30°,OP=33OB=1. ∴2P (1,3).当∠OPB =Rt ∠时③ 过点P 作OP ⊥BC 于点P(如图),此时△PBO ∽△OBA ,∠BOP =∠BAO =30°过点P 作PM ⊥OA 于点M .方法一: 在Rt △PBO 中,BP =21OB =23,OP =3BP =23. ∵ 在Rt △P MO 中,∠OPM =30°, ∴ OM =21OP =43;PM =3OM =433.∴3P (43,433). 方法二:设P(x ,33-x+3),得OM =x ,PM =33-x+3 由∠BOP =∠BAO,得∠POM =∠ABO .∵tan ∠POM==OMPM =x x 333+-,tan ∠ABOC=OBOA =3.∴33x+3=3x ,解得x =43.此时,3P (43,433).④若△POB ∽△OBA(如图),则∠OBP=∠BAO =30°,∠POM =30°. ∴ PM =33OM =43. ∴ 4P (43,43)(由对称性也可得到点4P 的坐标). 7、(2006河北课改)图14-1至图14-7的正方形霓虹灯广告牌ABCD 都是20×20的等距网格(每个小方格的边长均为1个单位长),其对称中心为点O .如图14-1,有一个边长为6个单位长的正方形EFGH 的对称中心也是点O ,它以每秒1个单位长的速度由起始位置向外扩大(即点O 不动,正方形EFGH 经过一秒由6×6扩大为8×8;再经过一秒,由8×8扩大为10×10;……),直到充满正方形ABCD ,再以同样的速度逐步缩小到起始时的大小,然后一直不断地以同样速度再扩大、再缩小.另有一个边长为6个单位长的正方形MNPQ 从如图14-1所示的位置开始,以每秒1个单位长的速度,沿正方形ABCD 的内侧边缘按A →B →C →D →A 移动(即正方形MNPQ 从点P 与点A 重合位置开始,先向左平移,当点Q 与点B 重合时,再向上平移,当点M 与点C 重合时,再向右平移,当点N 与点D 重合时,再向下平移,到达起始位置后仍继续按上述方式移动).正方形EFGH 和正方形MNPQ 从如图14-1的位置同时开始运动,设运动时间为x 秒,它们的重叠部分面积为y 个平方单位.(1)请你在图14-2和图14-3中分别画出x 为2秒、18秒时,正方形EFGH 和正方形MNPQ 的位置及重叠部分(重叠部分用阴影表示),并分别写出重叠部分的面积;(2)①如图14-4,当1≤x ≤3.5时,求y 与x 的函数关系式;②如图14-5,当3.5≤x ≤7时,求y 与x 的函数关系式; ③如图14-6,当7≤x ≤10.5时,求y 与x 的函数关系式; ④如图14-7,当10.5≤x ≤13时,求y 与x 的函数关系式.(3)对于正方形MNPQ 在正方形ABCD 各边上移动一周的过程,请你根据重叠部分面积y 的变化情况,指出y 取得最大值和最小值时,相对应的x 的取值情况,并指出最大值和最小值分别是多少. D 图14-2 图 D DD图14-1(P ) D N D[解析] (1)相应的图形如图2-1,2-2.当x =2时,y =3; 当x =18时,y =18.(2)①当1≤x ≤3.5时,如图2-3,延长MN 交AD 于K ,设MN 与HG 交于S ,MQ 与FG 交于T ,则MK =6+x ,SK =TQ =7-x ,从而MS =MK -SK =2x -1,MT =MQ -TQ =6-(7-x )= x -1. ∴y=MT ·MS =(x -1)(2x -1)=2x 2-3x +1.②当3.5≤x ≤7时,如图2-4,设FG 与MQ 交于T ,则 TQ =7-x ,∴MT =MQ -TQ =6-(7-x )=x -1. ∴y=MN ·MT =6(x -1)=6x -6.③当7≤x ≤10.5时,如图2-5,设FG 与MQ 交于T ,则 TQ=x -7,∴MT =MQ -TQ =6-(x -7)=13-x . ∴y = MN ·MT =6(13-x )=78-6x .④当10.5≤x ≤13时,如图2-6,设MN 与EF 交于S ,NP 交FG 于R ,延长NM 交BC 于K ,则MK =14-x ,SK =RP =x -7,图2-4D 图2-5D P图2-6D图2-3DQP 图2-2D 图2-1D QP∴SM=SK-MK=2x-21,从而SN=MN-SM=27-2x,NR=NP-RP=13-x.∴y=NR·SN=(13-x)(27-2x)=2x2-53x+351.(3)对于正方形MNPQ,①在AB边上移动时,当0≤x≤1及13≤x≤14时,y取得最小值0;当x=7时,y取得最大值36.②在BC边上移动时,当14≤x≤15及27≤x≤28时,y取得最小值0;当x=21时,y取得最大值36.③在CD边上移动时,当28≤x≤29及41≤x≤42时,y取得最小值0;当x=35时,y取得最大值36.④在DA边上移动时,当42≤x≤43及55≤x≤56时,y取得最小值0;当x=49时,y取得最大值36.。

2006年沈阳中考数学真题及答案解析

2006年沈阳中考数学真题及答案解析

辽宁省沈阳市2006年中考数学试题课标卷一、选择题(每小题 3分,共24分)1.下列物体中,主视图为如图 1的是()3.如图是几种汽车的标志,其中是轴对称图形的有() D. 8f2x -4> 0 ,.……X的解集表示在数轴上,正确的是(6 -x 36 .下列事件:(1)阴天会下雨;(2)随机掷一枚均匀的硬币,正面朝上; 生月份相同;(4) 2008年奥运会在北京举行.其中不确定事件有(A. 1个B. 2个C. 3个D. 4个7 .估算V24+3的值( )A .在5和6之间 B.在6和7之间 C.在7和8之间D .在8和9之间8 .已知点I 为4ABC 的内心,/ BIC=130 ° ,则/ BAC 的度数是(A. 65°B. 75°C. 80°D, 100°二、填空题(每小题 3分,共24分)9 . 2006年是我国公民义务植树运动开展 25周年,25年来我市累计植树科学记数法表示为 株.10 .分解因式:2x 2-4x+2=11 .如图,已知△ ABC 的一边BC 与以AC 为直径的。

O 相切于点 C,若BC=4, AB=5 , 贝U cosB=../ 3、47 A. (a ) =a 4 3 7 B. a +a =a C. (-a)4|_( -a)3 =a 7 5 3 2D. a 丁 a = aD AD, 4个5.把不等式组(3) 12名同学中,有两人的出154000000株,这个数字可以用C. 6A. 1B. 5 C,E ....... k —3,,…,、…F …一一,一一…12 .如果反比例函数 y=——的图象位于第二、四象限内,那么满足条件的正整数 k 的值是.13 .已知等腰三角形 ABC 中,AB=AC,D 为BC 边上一点,连接AD ,若△ ACD 和4ABD 都是等腰三角形, 则/ C 的度数是(1)如果A, D 两点的坐标分别是(1, 1)和(0, 1),请你在方格纸中建立平面直角坐标系,并直接写出点 B,点C 的坐标;(2)请根据你所学过的平移、旋转或轴对称等知识,说明图中“格点四边形图案”是如何通过“格点△ ABC 图案”变换得到的.20 . 一个不透明的袋子中装有三个完全相同的小球,分别标有数字 3, 4, 5.从袋子中随机取出一个小球,用小球上的数字作为十位上的数字,然后放回,再取出一个小球,用小球上的数字作为个位上的数字,这 样组成一个两位数.试问:按这种方法能组成哪些两位数?十位上的数字与个位上的数字之和为 9的两位数的概率是多少?用列表法或画树状图法加以说明.四、(每小题10分,共20分)21 .某工程队在我市实施棚户区改造过程中承包了一项拆迁工程, 原计划每天拆迁1250m 2,因为准备工作不足,第一天少拆迁了 20%.从第二天开始,该工程队加快了拆迁速度,第三天拆迁了 1440m 2.求:(1)该工程队第一天拆迁的面积;(2)若该工程队第二天、第三天每天的拆迁面积比前一天增长的百分数相同,求这个百分数.22 .学校鼓励学生参加社会实践,小萌所在班级的研究性学习小组在假期对她们所在城市的一家晚报的读14 .如图,已知△ ABC s^DBE AB=6 , DB=8 , 15 .观察下列等式:21=2, 22 =4, 23 =8,SA ABC : SA DBE =24 =16 , 25 = 32 , 26 = 64 ,B27 =128,…….通过观察,用你所发现的规律确定 22006的个位数字是16 .如图,已知在。

2006年全国中考数学压轴题全解全析

2006年全国中考数学压轴题全解全析

2006年全国中考数学压轴题全解全析(完整版第三辑)21、(湖南郴州卷)已知抛物线2y ax bx c =++经过0P E ⎫⎪⎪⎝⎭及原点(00)O ,.(1)求抛物线的解析式.(2)过P 点作平行于x 轴的直线PC 交y 轴于C 点,在抛物线对称轴右侧且位于直线PC 下方的抛物线上,任取一点Q ,过点Q 作直线QA 平行于y 轴交x 轴于A 点,交直线PC 于B 点,直线QA 与直线PC 及两坐标轴围成矩形OABC (如图).是否存在点Q ,使得OPC△与PQB △相似?若存在,求出Q 点的坐标;若不存在,请说明理由.(3)如果符合(2)中的Q 点在x 轴的上方,连结OQ ,矩形OABC 内的四个三角形OPC PQB OQP OQA ,,,△△△△之间存在怎样的关系?为什么?[解] (1)由已知可得:3375040a a c ⎧=⎪⎪+=⎨⎪=⎪⎩解之得,23a b c =-=,因而得,抛物线的解析式为:223y x x =-. (2)存在.设Q 点的坐标为()m n ,,则2233n m m =-+,要使OCP PBQ △∽△,则有=2233m m +-=,解之得,12m m ==. 当1m 2n =,即为P 点,所以得2)Q要使OCP QPB △∽△,则有33n -=,即223333m +=解之得,12m m ==m =时,即为P 点,当1m =3n =-,所以得3)Q -.故存在两个Q 点使得OCP △与PBQ △相似.Q点的坐标为3)-.(3)在Rt OCP △中,因为tan CP COP OC ∠==30COP ∠=. 当Q点的坐标为时,30BPQ COP ∠=∠= . 所以90OPQ OCP B QAO ∠=∠=∠=∠= .因此,OPC PQB OPQ OAQ ,,,△△△△都是直角三角形. 又在Rt OAQ △中,因为tan 3QA QOA AO ∠==.所以30QOA ∠= . 即有30POQ QOA QPB COP ∠=∠=∠=∠=.所以OPC PQB OQP OQA △∽△∽△∽△,又因为QP OP QA OA ,⊥⊥30POQ AOQ ∠=∠= ,所以OQA OQP △≌△.[点评]本题是一道涉及函数、相似、三角等知识的综合题,解决第3题的关键在于通过观察得出对结果的合理猜想在进行证明,难度应该不会很大。

2006年中考数学试题分类汇编及解析---圆---新人教范文

2006年中考数学试题分类汇编及解析---圆---新人教范文

1、(2006浙江嘉兴)如图,已知△ABC ,6==BC AC ,︒=∠90C .O 是AB的中点,⊙O 与AC 相切于点D 、与BC 相切于点E .设⊙O 交OB 交CB 的延长线于G .(1)BFG ∠与BGF ∠是否相等?为什么? (2)求由DG 、GE 和弧ED 所围成图形的面积(阴影部分).[解析] (1)BGF BFG ∠=∠(…1分) 连OD ,∵OF OD =(⊙O 的半径),∴OFD ODF ∠=∠ (…2分)∵⊙O 与AC 相切于点D ,∴AC OD ⊥又∵︒=∠90C ,即AC GC ⊥,∴GC OD //, ∴ODF BGF ∠=∠ 又∵OFD BFG ∠=∠,∴BGF BFG ∠=∠ (2)连OE ,则ODCE 为正方形且边长为3∵BGF BFG ∠=∠∴323-=-==OF OB BF BG 从而233+=+=BG CB CG∴阴影部分的面积=△DCG 的面积-(正方形ODCE 的面积-扇形ODE 的面积))3413()233(32122⋅--+⋅⋅=π=2922949-+π2、(2006山东日照)阅读下面的材料:如图(1),在以AB 为直径的半圆O 内有一点P ,AP 、BP 的延长线分别交半圆O 于点C 、D .求证:AP ·AC+BP ·BD=AB 2.证明:连结AD 、BC ,过P 作PM ⊥AB ,则∠ADB =∠AMP =90o,∴点D 、M 在以AP 为直径的圆上;同理:M 、C 在以BP 为直径的圆上. 由割线定理得: AP ·AC=AM ·AB ,BP ·BD=BM ·BA , 所以,AP ·AC+BP ·BD=AM ·AB+BM ·AB=AB ·(AM+BM )=AB 2.当点P 在半圆周上时,也有AP ·AC+BP ·BD=AP 2+BP 2=AB 2成立,那么:(1)如图(2)当点P 在半圆周外时,结论AP ·AC+BP ·BD=AB 2是否成立?为什么? (2)如图(3)当点P 在切线BE 外侧时,你能得到什么结论?将你得到的结论写出来.[解析] (1)成立.证明:如图(2),∵∠PCM=∠PDM=900,∴点C 、D 在以PM 为直径的圆上,∴AC ·AP=AM ·MD ,BD ·BP=BM ·BC , ∴AC ·AP+BD ·BP=AM ·MD+BM ·BC ,由已知,AM ·MD+BM ·BC=AB 2, ∴AP ·AC+BP ·BD=AB 2. (2)如图(3),过P 作PM ⊥AB ,交AB 的延长线于M ,连结AD 、BC ,则C 、M 在以PB 为直径的圆上,∴AP ·AC=AB ·AM ,① D 、M 在以PA 为直径的圆上,∴BP ·BD=AB ·BM ,② 由图象可知:AB=AM-BM ,③由①②③可得:AP ·AC-BP ·BD=AB ·(AM-BM )=AB 2.3、(2006山东济南)如图1,已知Rt ABC △中,30CAB ∠=,5BC =.过点A作AE AB ⊥,且15AE =,连接BE 交AC 于点P . (1)求PA 的长;(2)以点A 为圆心,AP 为半径作⊙A ,试判断BE 与⊙A 是否相切,并说明理由;(3)如图2,过点C 作CD AE ⊥,垂足为D .以点A 为圆心,r 为半径作⊙A ;以点C 为圆心,R 为半径作⊙C .若r 和R 的大小是可变化的,并且在变化过程中保持⊙A 和⊙C 相.切.,且使D 点在⊙A 的内部,B 点在⊙A 的外部,求r 和R 的变化范围.[解析](1)在Rt ABC △中,305CAB BC ∠==,,210AC BC ∴==.AE BC ∥,APE CPB ∴△∽△. ::3:1PA PC AE BC ∴==.CD图1图2:3:4PA AC ∴=,3101542PA ⨯==. (2)BE 与⊙A 相切.在Rt ABE △中,AB =15AE =,tanAE ABE AB ∴∠===60ABE ∴∠=. 又30PAB ∠=,9090ABE PAB APB ∴∠+∠=∴∠=,,BE ∴与⊙A 相切.(3)因为5AD AB ==,r 的变化范围为5r <<当⊙A 与⊙C 外切时,10R r +=,所以R 的变化范围为105R -<<;当⊙A 与⊙C 内切时,10R r -=,所以R 的变化范围为1510R <<+4、(2006江苏盐城)如图,已知:C 是以AB 为直径的半圆O 上一点,CH ⊥AB于点H ,直线AC 与过B 点的切线相交于点D ,E 为CH 中点,连接AE 并延长交BD于点F ,直线CF 交直线AB 于点G . (1)求证:点F 是BD 中点; (2)求证:CG 是⊙O 的切线; (3)若FB=FE=2,求⊙O 的半径.[解析](1)证明:∵CH ⊥AB ,DB ⊥AB ,∴△AEH ∽AFB ,△ACE ∽△ADF ∴FDCEAF AE BF EH ==,∵HE =EC ,∴BF =FD ′ (2)方法一:连接CB 、OC ,∵AB 是直径,∴∠ACB =90°∵F 是BD 中点, ∴∠BCF=∠CBF=90°-∠CBA=∠CAB=∠ACO ∴∠OCF=90°,∴CG 是⊙O 的切线方法二:可证明△OCF ≌△OBF(参照方法一标准得分) (3)解:由FC=FB=FE 得:∠FCE=∠FEC 可证得:FA =FG ,且AB =BG由切割线定理得:(2+FG )2=BG ×AG=2BG 2 ○1在Rt △BGF 中,由勾股定理得:BG 2=FG 2-BF 2 ○2 由○1、○2得:FG 2-4FG-12=0 解之得:FG 1=6,FG 2=-2(舍去) ∴AB =BG =24 ∴⊙O 半径为225、(2006山东烟台)如图,从⊙O 外一点A 作⊙O 的切线AB 、AC ,切点分别为B 、C ,且⊙O 直经BD=6,连结CD 、AO 。

江苏省徐州市2006年中考数学试题及答案解析(word版)

江苏省徐州市2006年中考数学试题及答案解析(word版)

江苏省徐州市2006年中考数学试题及答案解析(word版)(本卷满分150分,考试时间120分钟)一、填空题(本大题共10小题,第1~9题每题2分,第10题4分,共22分)1.我市某一天的最高气温是8℃,最低气温是﹣2℃,那么这一天的最高气温比最低气温高℃.2..3.分解因式:228a-4.5.函数y6.如图1,请在括号内填上正确的理由:因为DAC C∠=∠(已知),所以AD∥BC().7.在比例尺为1︰5 000的地图上,量得甲、乙两地的距离是3 cm,则甲、乙两地的实际距离是 m.8.如图2,四边形ABCD是用四个全等的等腰梯形拼成的,则∠A = °.9.如图3,点A、B、C、D都在⊙O上,若∠A = 65°,则∠D = °.10.某校“环保小组”的学生到某居民小区随机调查了20户居民一天丢弃废塑料袋的情况,统计结果如下表:请根据表中提供的信息回答:这20户居民一天丢弃废塑料袋的众数是______个;若该小区共有居民500户,你估计该小区居民一个月(按30天计算)共丢弃废塑料袋个.(图2)A BCD(图3)(图1)二、选择题(本大题共5小题,每小题4分,共20分. 在每小题给出的四个选项中,只有一项是正确的,请把正确选项的字母代号填在题 后的括号内)11.不等式组 2461x x >⎧⎨-≤-⎩,的解集是 ( )A .5-≤2x <B .2x >C .x ≤5D .2x <≤ 512.下面的图形都是由6个全等的正方形组成的,其中是正方体的展开图的是 ( )A .B .C .D .13.已知1x 、2x 是方程2560x x --=的两个根,则代数式2212x x +的值是 ( )A .37B .26C .13D .1014.已知点(1x ,2-),(2x ,2),(3x ,3)都在反比例函数6y x=的图象上,则下列关系中 正确的是 ( ) A .123x x x << B .132x x x << C .321x x x << D .231x x x <<15.如图4,圆心角都是90°的扇形OAB 与扇形OCD 叠放在一起,OA = 3,OC = 1,分别连结AC 、BD ,则图中阴影部分的面积为 ( )A .1π2B .πC .2πD .4πB(图4)三、解答题(本大题共4小题,每小题8分,共32分)16.计算:0113(()3---.17.解方程:2311x x=-+.18.已知:如图5,△ABC中,AB = AC,D为BC上一点,过点D作DE//AB交AC于点E.求证:∠C =∠CDE.19.⑴在如图6﹣1所示的平面直角坐标系中画出点A(2,3),再画出点A关于y轴的对称点A',则点A'的坐标为;⑵在图6﹣1中画出过点A和原点O的直线l,则直线l的函数关系式为;再画出直线l关于y轴对称的直线l',则直线l'的函数关系式为;⑶在图6﹣2中画出直线24y x=+(即直线m),再画出直线m关于y轴对称的直线m',则直线m'的函数关系式为;⑷请你根据自己在解决以上问题的过程中所获得的经验回答:直线y kx b=+(k、b为常数,0k≠)关于y轴对称的直线的函数关系式为.(图6﹣1)(图6﹣2)(图5)ED CBA四、解答题(本大题有A 类、B 类两题,A 类题6分,B 类题8分, 你可以根据自己的学习情况,在两类题中只选做...1.题.,如果两类题 都做,则以A 类题计分)20.(A 类) 如图7-1,飞机P 在目标A 的正上方1100 m 处,飞行员测得地面目标B 的俯角30α=︒,求地面目标A 、B 之间的距离.(结果保留根号)(B 类) 如图7-2,两建筑物AB 、CD 的水平距离BC =30 m ,从点A 测得点C 的俯角60α=︒,测得点D 的仰角45β=︒,求两建筑物AB 、CD 的高.(结果保留根号) 我选做的是 类题,解答如下:五、解答题(本大题共2小题,每小题9分,共18分)21.根据《徐州市统计局关于2005年国民经济和社会发展的统计公报》,2005年底徐州市各类教育在校学生数约为190万.各类教育在校学生数占在校学生总数的百分比如图8所示.请回答下列问题:⑴ 接受幼儿和小学教育的总人数是 万人;⑵ 已知接受小学教育的人数比接受幼儿教育的人数的5倍少2.6万人,那么接受幼儿教育和小学教育的人数各是多少万人?(写出解题过程) ⑶ 根据本题提供的材料,你还能得到什么信息?请写出两条.αPA B (图7-1)(图7-2)βαABC D(图8)各类教育在校学生数占在校学生总数的百分比0.460.430.11各类教育幼儿和小学教育普通中学教育其它教育222⑴ 请在表内的空格中填入适当的数;⑵ 设2y x bx c =++,则当x 取何值时,0y >?⑶ 请说明经过怎样平移函数2yx bx c =++的图象得到函数2y x =的图象?六、解答题(本大题共2小题,每小题9分,共18分)23.将两张宽度相等的矩形纸片叠放在一起得到如图9所示的四边 形ABCD .⑴ 求证:四边形ABCD 是菱形;⑵ 如果两张矩形纸片的长都是8,宽都是2.那么菱形ABCD 的周长是否存在最大值或最小值?如果存在,请求出来;如果不存在,请简要说明理由.24.已知:如图10,AB 是⊙O 的直径,PA 是⊙O 的切线.过点B 作BC // OP 交⊙O 于点C ,连结AC .⑴ 求证:△ABC ∽△POA ;⑵ 若AB = 2,PA BC 的长.(结果保留根号)(图9) D CB A (图10)OPBCA七、解答题(本大题只有1小题,10分)25.如图11﹣1,△ABC 为等边三角形,面积为S .D 1、E 1、F 1分别是△ABC 三边上的点,且12112AD BE CF AB ===,连结11D E 、11E F 、11F D ,可得△111D E F 是等边三角形,此时△11AD F 的面积114S S =,△111D E F 的面积114S S '=.⑴ 当D 2、E 2、F 2分别是等边△ABC 三边上的点,且22213AD BE CF AB ===时如图11﹣2,① 求证:△222D E F 是等边三角形;② 若用S 表示△22AD F 的面积2S ,则S 2 = ;若用S 表示△222D E F 的面积2S ',则2S '= . ⑵ 按照上述思路探索下去,并填空:当D n 、E n 、F n 分别是等边△ABC 三边上的的点,11n n n AD BE CF AB n ===+时,(n 为正整数)△D n E n F n 是 三角形;若用S 表示△AD n F n 的面积S n ,则S n = ;若用S 表示△D n E n F n 的面积n S ',则nS '= .A BCD E F 111(图11-1)(图11-2)D E F 222A B C八、解答题(本大题只有1小题,10分)26.如图12,在平面直角坐标系中,直线212y x =-+与x 轴交于点A ,与y 轴交于点B ,与直线y x =交于点C .⑴ 求点C 的坐标; ⑵ 求△OAC 的面积;⑶ 若P 为线段OA (不含O 、A 两点)上的一个动点,过点P 作PD ∥AB 交直线OC 于点D ,连结PC .设OP = t ,△PDC 的面积为S ,求S 与t 之间的函数关系式;S 是否存在最大值?如果存在,请求出来;如果不存在,请简要说明理由.(图12)九、解答题(本大题只有1小题,12分)27. 在平面直角坐标系中,已知矩形ABCD 中,边2AB =,边1AD =,且AB 、AD 分别在x 轴、y 轴的正半轴上,点A 与坐标原点重合.将矩形折叠,使点A 落在边DC 上,设点A '是点A 落在边DC 上的对应点.⑴ 当矩形ABCD 沿直线12y x b =-+折叠时(如图13-1),求点A '的坐标和b 的值;⑵ 当矩形ABCD 沿直线y kx b =+折叠时,① 求点A '的坐标(用k 表示);求出k 和b 之间的关系式; ② 如果我们把折痕所在的直线与矩形的位置分 为如图13-2、13-3、13- 4所示的三种情形, 请你分别写出每种情形时k 的取值范围. (将答案直接填在每种情形下的横线上)k 的取值范围是 ; k 的取值范围是;k 的取值范围是 ;。

2005-2006年度最新中考数学创新题集锦(含答案)

2005-2006年度最新中考数学创新题集锦(含答案)

新世纪教育网精选资料版权全部@新世纪教育网2011 年江苏淮安数学中考试题一、选择题(共8 小题)1、( 2011?淮安) 3 的相反数是()A、﹣ 3B、﹣C、D、32、( 2011?淮安)以下交通标记是轴对称图形的是()A、B、C、D、3、( 2011?淮安)据第六次全国人口普查数据公报,淮安市常住人口约为480 万人. 480 万(4800000)用科学记数法可表示为()4567A 、 4.8 ×10B 、 4.8 ×10C、 4.8 ×10D、 4.8 ×104、( 2011?淮安)以下图的几何体的主视图是()A、B、C、D、5、( 2011?淮安)在菱形ABCD 中, AB=5cm ,则此菱形的周长为()A 、 5cm B、 15cm C、 20cm D 、25cm6、( 2011?淮安)某地域连续 5 天的最高气温(单位:℃)分别是:30,33,24,29,24.这组数据的中位数是()A、29B、28C、24D、97、( 2011?淮安)不等式的解集是()A 、 x<﹣ 2B 、 x<﹣ 1C、 x< 0D、x> 28、( 2011?淮安)如图,反比率函数的图象经过点 A (﹣ 1,﹣ 2).则当x> 1 时,函数值 y 的取值范围是()A 、 y> 1B、 0< y< l C、 y> 2D、 0< y< 2二、填空题(共10 小题)426.9、( 2011?淮安)计算: a?a =a10、( 2011?淮安)如图,在△ ABC中,D、E分别是边AB 、 AC 的中点, BC=8 ,则 DE= 4.11、( 2011?淮安)分解因式:ax+ay= a( x+y ).12、( 2011?淮安)如图,直线a、 b 被直线 c 所截, a∥ b,∠ 1=70 °,则∠ 2=110 °.13、( 2011?淮安)一元二次方程 x 2﹣ 4=0 的解是x=±2 .14、( 2002?盐城)抛物线y=x 2﹣ 2x+3 的极点坐标是(1, 2).15、( 2011?淮安)在半径为6cm 的圆中, 60°的圆心角所对的弧长等于2π .16、( 2011?淮安)有一箱规格同样的红、黄两种颜色的小塑料球共1000个.为了预计这两种颜色的球各有多少个,小明将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后.发现摸到红球的频次约为0.6,据此能够预计红球的个数约为 600 .17、( 2011?淮安)在四边形ABCD中,AB=DC,AD=BC,请再增添一个条件,使四边形ABCD 是矩形.你增添的条件是对角线相等.(写出一种即可)18、( 2011?淮安)如图,在Rt△ ABC 中,∠ ABC=90°,∠ ACB=30°,将△ ABC 绕点 A 按逆时针方向旋转15°后获取△ AB 1C1, B1C1交 AC 于点 D ,假如 AD=2,则△ ABC的周长等于3+.三、解答题(共10 小题)19、( 2011?淮安)( 1)计算:;2(2)化简:( a+b) +b( a﹣ b).20、( 2011?淮安)如图,四边形 ABCD 是平行四边形, E、F 分别是 BC .AD 上的点,∠1=∠ 2 求证:△ ABE ≌△ CDF.21、( 2011?淮安)如图,有牌面数字都是2,3,4 的两组牌.从毎组牌中各随机摸出一张,请用画树状图或列表的方法,求摸出的两张牌的牌面数字之和为 6 的概率.22、( 2011?淮安)七( 1)班的大课间活动丰富多彩,小峰与小月进行跳绳竞赛.在同样的时间内,小峰跳了100 个,小月跳了140 个.假如小月比小峰毎分钟多跳20 个,试求出小峰毎分钟跳绳多少个?23、( 2011?淮安)图 1 为平川上一幢建筑物与铁塔图,图 2 为其表示图.建筑物AB 与铁塔 CD 都垂直于地面, BD=30m ,在 A 点测得 D 点的俯角为 45°,测得 C 点的仰角为 60°.求铁塔 CD 的高度.24、( 2011?淮安)阳光中学九(1)班同学在一次综合实践活动中,对本县居民参加“全民医保“状况进行了检查.同学们利用节假日随机检查了2000 人,对换查结果进行了系统分析.绘制出两幅不完好的统计图:(注:图中 A 表示“城镇员工基本医疗保险”,B表示“城镇居民基本医疗保险”;C表示“新型乡村合作医疗”;D表示其余状况)(1)补全条形统计图;(2)在本次检查中, B 类人数占被检查人数的百分比为25%;(3)据认识,国家对 B 类人员每人每年补贴155 元,已知该县人口约80 万人,请预计该县 B 类人员每年享受国家补贴共多少万元?25、( 2011?淮安)如图,AD 是⊙ O 的弦,AB 经过圆心 O,交⊙ O 于点 C.∠DAB= ∠ B=30°.(1)直线 BD 能否与⊙ O 相切?为何?(2)连结 CD,若 CD=5 ,求 AB 的长.226、( 2011?淮安)如图.已知二次函数 y=﹣ x +bx+3 的图象与 x 轴的一个交点为 A( 4,0),与 y 轴交于点 B .(1)求此二次函数关系式和点B 的坐标;(2)在 x 轴的正半轴上能否存在点 P.使得△PAB 是以 AB 为底边的等腰三角形?若存在,求出点 P 的坐标;若不存在,请说明原因.27、( 2011?淮安)小华察看钟面(图1),认识到钟面上的分针每小时旋转360 度,时针毎小时旋转 30 度.他为了进一步研究钟面上分针与时针的旋转规律,从下午2: 00 开始对钟面进行了一个小时的察看.为了研究方便,他将分针与分针开端地点OP(图2)的夹角记为 y1,时针与 OP 的夹角记为 y2度(夹角是指不大于平角的角),旋转时间记为t 分钟.观察结束后,他利用获取的数据绘制成图象(图 3 ),并求出y1与 t 的函数关系式:请你达成:(1)求出图 3 中 y2与 t 的函数关系式;(2)直接写出 A 、 B 两点的坐标,并解说这两点的实质意义;(3)若小华持续察看一个小时,请你在题图 3 中补全图象.28、( 2011?淮安)如图,在 Rt △ ABC 中,∠ C=90°,AC=8 ,BC=6 ,点 P 在 AB 上, AP=2 ,点 E、F 同时从点 P 出发,分别沿 PA 、PB 以每秒 1 个单位长度的速度向点 A 、B 匀速运动,点 E 抵达点 A 后马上以原速度沿 AB 向点 B 运动,点 F 运动到点 B 时停止,点 E 也随之停止.在点E、F 运动过程中,以 EF 为边作正方形 EFGH ,使它与△ABC 在线段 AB 的同侧.设E、 F 运动的时间为t/ 秒( t>0),正方形EFGH 与△ ABC 重叠部分面积为S.(1)当时 t=1 时,正方形EFGH 的边长是1.当t=3时,正方形EFGH 的边长是4.(2)当 0< t ≤2时,求 S 与 t 的函数关系式;(3)直接答出:在整个运动过程中,当t 为何值时, S 最大?最大面积是多少?答案与评分标准一、选择题(共8 小题)1、( 2011?淮安) 3 的相反数是()A、﹣ 3B、﹣C、D、3考点:相反数。

2006年中考数学试题汇编及解析探索型问题点击下载-推荐下载

2006年中考数学试题汇编及解析探索型问题点击下载-推荐下载
x+
3
x+
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术通关,1系电过,力管根保线据护敷生高设产中技工资术艺料0不高试仅中卷可资配以料置解试技决卷术吊要是顶求指层,机配对组置电在不气进规设行范备继高进电中行保资空护料载高试与中卷带资问负料题荷试2下卷2,高总而中体且资配可料置保试时障卷,各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并22工且22作尽22下可22都能22可地护以缩1关正小于常故管工障路作高高;中中对资资于料料继试试电卷卷保破连护坏接进范管行围口整,处核或理对者高定对中值某资,些料审异试核常卷与高弯校中扁对资度图料固纸试定,卷盒编工位写况置复进.杂行保设自护备动层与处防装理腐置,跨高尤接中其地资要线料避弯试免曲卷错半调误径试高标方中高案资等,料,编试要5写、卷求重电保技要气护术设设装交备备置底4高调、动。中试电作管资高气,线料中课并敷3试资件且、设卷料中拒管技试试调绝路术验卷试动敷中方技作设包案术,技含以来术线及避槽系免、统不管启必架动要等方高多案中项;资方对料式整试,套卷为启突解动然决过停高程机中中。语高因文中此电资,气料电课试力件卷高中电中管气资壁设料薄备试、进卷接行保口调护不试装严工置等作调问并试题且技,进术合行,理过要利关求用运电管行力线高保敷中护设资装技料置术试做。卷到线技准缆术确敷指灵设导活原。。则对对:于于在调差分试动线过保盒程护处中装,高置当中高不资中同料资电试料压卷试回技卷路术调交问试叉题技时,术,作是应为指采调发用试电金人机属员一隔,变板需压进要器行在组隔事在开前发处掌生理握内;图部同纸故一资障线料时槽、,内设需,备要强制进电造行回厂外路家部须出电同具源时高高切中中断资资习料料题试试电卷卷源试切,验除线报从缆告而敷与采设相用完关高毕技中,术资要资料进料试行,卷检并主查且要和了保检解护测现装处场置理设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

2006年全国中考数学压轴题全解全析完整版第一辑

2006年全国中考数学压轴题全解全析完整版第一辑

A D E FC BO 图2 AD E F C B O 图12006年全国中考数学压轴题全解全析 一年一度的中考结束了,中考数学中的压轴题向来是广大师生非常关注的,因为这些试题往往在很大程度上决定了考分的高下,为了帮助大家迎接明年的中考,特别制作了此资料,希望能对大家有一定的帮助。

1、(北京课改B 卷)我们给出如下定义:若一个四边形的两条对角线相等,则称这个四边形为等对角线四边形.请解答下列问题:(1)写出你所学过的特殊四边形中是等对角线四边形的两种图形的名称;(2)探究:当等对角线四边形中两条对角线所夹锐角为60º时,这对60º角所对的两边之和与其中一条对角线的大小关系,并证明你的结论.[解] (1)答案不唯一,如正方形、矩形、等腰梯形等等.(2)结论:等对角线四边形中两条对角线所夹锐角为60º时,这对60º角所对的两边之和大于或等于一条对角线的长. 已知:四边形ABCD 中,对角线AC ,BD 交于点O ,AC =BD ,∠AOD =60º. 求证:BC +AD≥AC . 证明:过点D 作DF ∥AC ,在DF 上截取DE ,使DE =AC .连结CE ,BE . 则∠EDO =60º,四边形ACED 是平行四边形. ∴△BDE 是等边三角形,CE =AD . ∴DE =BE =AC . ①当BC 与CE 不在同一条直线上时(如图1),在△BCE 中,有BC +CE >BE .∴BC +AD >AC . ②当BC 与CE 在同一条直线上时(如图2), 则BC +CE =BE . 因此BC +AD =AC .综合①、②,得BC +AD ≥AC . 即等对角线四边形中两条对角线所夹角为60º时,这对60º角所对的两边之和大于或等于其中一条对角线的长.[点评]本题是一道探索题,是近年来中考命题的热点问题,在第2小题中要求学生先猜想可能的结论,再进行证明,这对学生的确有较高的能力要求,而在探索结论前可以自己先画几个草图,做到心中有数再去努力求证;很多学生往往会忽略特殊情况没有进行讨论,应当予以关注,总之这是一道新课标形势下的优秀压轴题。

06数学中考试卷及专家分析

06数学中考试卷及专家分析

2006年杭州市各类高中招生考试数学参考答案及评分标准一. 选择题(每小题3分, 共45分)二. 填空题(每小题4分, 共20分) 16. (3x +1)(x + 1 ) 17.3218. 2,3,4 (有一个给2分,少一个扣1分) 19. 6.5; 13 . 20. 1 ; 3– 1三. 解答题(6小题共55分) 21.(本小题满分7分)选对4个数 (不管是否能运算后得到正整数) --- 3分 运算结果正确且符合运算符号要求 --- 4分 (结果正确不符合运算符号要求或符合运算符号要求运算不正确也可得2分)22. (本小题满分8分)(1) 由条件可知四边形HECF 为矩形.HE EH EHF HEC Rt HF EC =⎧⎪∠=∠=∠⇒⎨⎪=⎩HEF EHC ∆≅∆; (2) 由(1)可得 HFE HCB ∠=∠, 又FHE CHB Rt ∠=∠=∠,所以HEF ∆∽HBC ∆. --- (1), (2)各4分(第22题)23. (本小题满分8分) 原题即解不等式 27544232x x -+⋅≤<, --- 1分分别解两个不等式, 解得726x <≤. --- 4分 在数轴上表示如右图. --- 3分24. (本小题满分10分) (1) ∵PA 是圆O 的切线, ∴OA ⊥PA,在Rt △APO 中,tan ∠POA ==3,∴∠POA=60°. --- 3分 (2) 设AB 与PO 相交于点D ,如图,∵点B 与点A 关于直线PO 对称, ∴AB ⊥PO ,且AB = 2AD ,在Rt △ADO 中,AD = OAsin60°=23,∴AB = 2AD= 43. --- 4分 (3) 设阴影部分面积为S ,则S = S △OAP –S 扇形AOC , 而S △OAP = 83, S 扇形AOC = 38π, ∴S =8(3–3π). --- 3分25. (本小题满分10分)(1) 由题意, 1x =时, 2y =; 2x =时, 246y =+=.代入2y ax bx =+, 解得1a b ==, 所以2y x x =+; --- 3分 (2) 纯收益g = 33x – 150 – (x 2 + x ) = – x 2 + 32x – 150; --- 3分 (3) g = – ( x – 16)2 + 106, 即设施开放16个月后, 游乐场的纯收益达到最大; --- 2分第24题OAPA又在016x <≤时, g 随着x 的增大而增大, 当5x ≤时, g< 0; 而当6x =时, g > 0, 所以6个月后能收回投资. --- 2分26. (本小题满分12分)(1) 令1y x =+中0x =, 得点B 坐标为(0,1); 令0y =, 得点A 坐标为,0). 由勾股定理可得||2AB =, 所以ABC S ∆=2; --- 4分 (2) 不论a 取任何实数, △BOP 都可以以1BO =为底, 点P 到y 轴的距离1为高, 所以12BOP S ∆=为常数; --- 4分 (3) 当点P 在第四象限时,因为ABO APO S S ∆∆=,所以2ABP ABO APO BOP ABC S S S S S ∆∆∆∆∆=+-==,122-=, 解得1a =(). --- 2分当点P 在第一象限时,类似上面方法可得a = 1 + 3, --- 2分。

2005-2006年度最新中考数学创新题集锦(含答案).doc

2005-2006年度最新中考数学创新题集锦(含答案).doc

2006年芜湖市(课改实验区)初中毕业学业考试一、选择题:(每小题4分,共40分)1、高速发展的芜湖奇瑞汽车公司,2005年汽车销量达到18.9万辆,该公司2006年汽车总销售目标为28.1万辆,则奇瑞公司2006年的汽车销辆将比2005年增加(精确到0.1℅)()A、48.7℅B、32.7℅C、9.2℅D、15.1℅2、三峡工程是世界防洪效益最为显著的水利工程,它能有效控制长江上游洪水,增强长江中下游抗洪能力,据相关报道三峡水库的防洪库容22150000000m3,用科学计数法可记作()A、221.5×108m3 B、22.15×109m3 C、2.215×1010m3 D、2215×107 m33、万众瞩目的2006年世界杯足球赛在德国举行,足球场平面示意图如图所示,它是轴对称图形,其对称轴条数为()A、1B、2C、3D、44、下列计算中,正确的是()A、2x+3y=5xyB、x·x4=x4C、x8÷x2=x4D、(x2y)3=x6y35、如图,在平面直角坐标系中,A点坐标为(3,4),将OA绕原点O逆时针旋转900得到OA´,则点A´的坐标是()A、(-4,3)B、(-3,4)C、(3,-4)D、(4,-3)6、16的平方根是()A、4B、±4C、-4D、±87、对角线互相垂直平分的四边形一定是()A、矩形B、菱形C、等腰梯形D、直角梯形8、已知反比例函数y=5mx的图象在第二、四象限,则m的取值范围是()A、m≥5B、m>5C、m≤5D、m<59、如果⊙O1和⊙O2相外切,⊙O1的半径为3,O1O2=5,则⊙O2的半径为()A、8B、2C、6D、710、已知a>b>0,则下列不等式不一定成立的是()A 、ab>b 2B 、a+c>b+cC 、 1a < 1bD 、ac>bc 二、填空题:(每小题5分,共30分) 11、在函数中,自变量x 的取值范围是 。

2005-2006年度最新中考数学创新题集锦(含答案)(20211003081814)

2005-2006年度最新中考数学创新题集锦(含答案)(20211003081814)

新世纪教育网精选资料 版权所有 @新世纪教育网深圳市 2011 年初中毕业生学业考试数学试卷1、说明,答题前,请将姓名、考生号、考场、试室号和座位号用规定的笔写在答题卡指定地点上,将条形码粘贴好。

2、全卷分两部分,第一部分为选择题,第二部分为非选择题,共4 页,满分 100 分,考试时间 120 分钟。

3、本卷试题,考生一定在答题卡上按规定作答;在试卷上、底稿纸上作答的,其答案一律无效,答题卡一定保持洁净,不可以折叠。

第一部分选择题(本部分共 12 小题,每题 3 分,共36 分 .每题 4 个选项,只有一个是正确的)1、1的相反数是2A.1 1 C.2D.22B.22、如图 1 所示的物体是一个几何体,其主视图是3、今年我市参加中考的毕业生学业考试的总人数约为 56000 人,这个数据用科学计数法表示为A.5.6 ×103B.5.6 ×104C.5.6 ×105×1054、以下运算正确的选项是23 522236D.x23x 2x 6A.x x xB.(x y)yC.x x x5、某校展开为“希望小学”捐书活动,以下是八名学生的捐书册数 2 3 2 2 6 7 5 5,这组数据的中位数是 A.4C.3D.26、一件服饰标价 200 元,若以六折销售,仍可赢利20℅,则这件服饰进价是A.100 元B.105 元C.108 元D.118 元7、如图 2,小正方形边长均为1,则以下图形中三角形(暗影部分 )与△ ABC 相像的是8、如图 3 是两个能够自由转动的转盘,转盘各被均分红三个扇形,分别标上 1、 2、 3 和 6、 7、 8 这 6 个数字,假如同时转动这两个转盘各一次 (指针落在均分线上重转 ),转盘停止后,指针指向字数之和为偶数的是1 2 4 1 A.B.C.D.9、已知 a、b、 c 均为实数,且a>b, c≠ 0,以下结论不必定正确的选项是A. a c b cB. c a c bC.a bD.2ab2 22a b c c10、对抛物线 y=-x 2+2x- 3 而言,以下结论正确的选项是A. 与 x 轴有两个交点B.张口向上C.与 y 轴交点坐标是(0, 3)D. 极点坐标是 (1,2)11、以下命题是真命题的有①垂直于半径的直线是圆的切线②均分弦的直径垂直于弦x1③若是方程 x- ay=3 的解,则 a=- 1y2④若反比率函数 y3的图像上有两点 (1, y1)(1 , y2),则 y1 <y2x2A.1 个B.2 个C.3 个D.4 个12、如图4,△ ABC与△ DEF均为等边三角形,O为 BC、 EF 的中点,则 AD:BE的值为A. 3:1B. 2 :1C.5:3D. 不确立第二部分非选择题填空题(此题共 4 小题,每题 3 分,共 12 分)3.13、分解因式: a - a=14、如图 5,在⊙ O 中,圆心角∠ AOB=120 o,弦 AB= 2 3 cm,则 OA=cm.15、如图 6,这是边长为 1 的等边三角形摆出的一系列图形,按这类方式摆下去,第n 个图形的周长为.16、如图 7,△ ABC 的心里在 y 轴上,点 C 的坐标为( 2,0),点 B 的坐标为(0,2),直线AC 的分析式为y 1 x1,则tanA的值是.2解答题(此题共七小题,此中第17题 5分,第 18题6分,第 19题 7分,第 20题8分,第 21题8 分,第22 题 9分,第 23题 9分,共 52分)102011分)23cos30517、( 52x318、( 6 分)解分式方程:2x 1x 119、( 7 分)某校为认识本校八年级学生的课外阅读爱好,随即抽取部分该校八年级学生进行问卷检查(每人只选一种书本),图8是整理数据后画的两幅不完好的统计题,请你依据图中的信息,解答以下问题(1)此次活动一共检查了名学生.(2)在扇形统计图中,“其余”所在的扇形圆心角为度.(3)补全条形统计图(4)若该校八年级有600 人,请你预计喜爱“科普知识”的学生有人.20、( 8 分)如图9,在⊙ O 中,点 C 为劣弧 AB 的中点,连结AC 并延伸至 D ,使CA=CD ,连结DB并延伸交⊙ O 于点 E,连结 AE.(1)求证: AE 是⊙ O 的直径;(2)如图 10,连结 CE ,⊙ O 的半径为 5,AC 长为4,求暗影部分面积之和 .(保存∏与根号 )21、( 8 分)如图11,一张矩形纸片ABCD ,其中 AD=8cm , AB=6cm ,先沿对角线 BD 折叠,点C 落在点 C′的地点, BC′交 AD于点 G.(1)求证: AG= C′G;(2)如图 12,再折叠一次,使点 D 与点 A 重合,的折痕EN, EN 角 AD 于 M ,求 EM 的长.22、( 9 分)深圳某科技企业在甲地、乙地分别生产了17 台、 15 台同样型号的检测设施,所有运往大运赛场 A 、 B 两馆,此中运往 A 馆 18 台,运往 B 馆 14 台,运往 A 、B 两馆运费如表1:(1)设甲地运往 A 馆的设施有 x 台,请填写表 2,并求出总运费 y(元)与 x(台)的函数关系式;(2)要使总运费不高于 20200 元,请你帮助该企业设计分配方案,并写出有哪几种方案;(3)当 x 为多少时,总运费最少,最少为多少元?22、( 9 分)如图 13,抛物线y=ax 2+ bx+c(a ≠0)的极点为( 1,4 ),交 x 轴于 A、 B,交 y 轴于 D,此中 B 点的坐标为(3,0 )(1)求抛物线的分析式(2)如图 14,过点 A 的直线与抛物线交于点E,交 y 轴于点 F,此中 E 点的横坐标为 2,若直线 PQ 为抛物线的对称轴,点G 为 PQ 上一动点,则 x 轴上能否存在一点 H,使 D、G、F、H 四点围成的四边形周长最小.若存在,求出这个最小值及G、H 的坐标;若不存在,请说明原因 .(3)如图 15,抛物线上能否存在一点T ,过点 T 作 x 的垂线,垂足为M ,过点 M 作直线M N∥ BD,交线段 AD于点 N,连结 MD,使△ DNM∽△ BMD,若存在,求出点T 的坐标;若不存在,说明原因 .深圳市2011 年初中毕业生学业考试数 学 试 卷参考 答 案第一部分:选择题题 号 1 2 3 4 5 6 7 8 9 10 11 12 答 案BCBDAABCDDCA第二部分:填空题、 14、 415、 2 n、 113 a( a 1)(a 1)163解答题17、解:原式 =618、解:方程两边同时乘以:(x +1)(x -1),得:2x(x - 1)+ 3(x +1) =2(x + 1)(x - 1)整理化简,得 x =- 5经查验, x =- 5 是原方程的根 原方程的解为: x =- 5(备注:此题一定验根,没有验根的扣2 分)19、( 1) 200 ( 2) 36 (3)如图 1 ( 4) 180( 1)证明:如图 2,连结 AB 、 BC ,∵点 C 是劣弧 AB 上的中点∴ CA CB∴CA = CB 又∵ CD =CA∴CB = CD= CA1∴在△ ABD 中, CB= AD2∴∠ ABD = 90°∴∠ ABE =90°∴AE 是⊙ O 的直径(22)解:如图 3,由( 1)可知, AE 是⊙ O 的直径∴∠ ACE = 90°∵⊙ O 的半径为 5,AC=4∴ AE = 10,⊙ O 的面积为 25π在 Rt△ACE 中,∠ ACE =90°,由勾股定理,得:CE=AB2AC2 2 21∴S ACE 1CE1221 4 21 AC422∴ S暗影1S⊙O S ACE12542125 4 21 22221、( 1)证明:如图4,由对折和图形的对称性可知,CD =C′ D,∠ C=∠ C′= 90°在矩形 ABCD 中, AB = CD ,∠ A =∠ C=90°∴AB = C’D,∠ A =∠ C’在△ ABG 和△ C’DG 中,∵AB = C’D,∠ A =∠ C’,∠ AGB =∠ C’GD∴△ ABG ≌△ C’DG( AAS )∴AG = C’G( 2)解:如图5,设 EM= x, AG = y,则有:1C’G= y, DG= 8- y, DM=AD=4cm2在 Rt△ C’DG 中,∠ DC ’G= 90°, C’D= CD= 6,∴C'G2 C 'D2DG 2即: y262(8y) 2解得:y 7 4∴C ’G =725 cm cm , DG =44又∵△ DME ∽△ DC ’GDM ME4x∴, 即:7DCCG 6 ()4解得: x 7, 即:EM = 7(cm )67 6∴所求的 EM 长为cm 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、如果一个正整数能表示为两个连续偶数的平分差,那么 称这个正整数为“神秘数”.如:22440=-, 221242=-,222064=-, 因此4,12,20都是“神秘数”(1)28和2 012这两个数是“神秘数”吗?为什么? (2)设两个连续偶数为2k+2和2k (其中k 取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平方数(取正数)是神秘数吗?为什么?[解析] (1)28=4×7=2286-;2012=4×503=22504502-所以是神秘数;(2)22(22)(2)4(22)k k k +-=+因此由2k+2和2k 构造的神秘数是4的倍数.(3)由(2)知神秘数可表示为4的倍数但一定不是8的倍数因为两个连续奇数为2k+1和2k-1,则22(21)(21)8k k k +--=,即两个连续奇数的平方差不是神秘数.2、我国著名数学家华罗庚曾说过:“数缺形时少直观,形少数时难入微;数形结合百般好,隔离分家万事休”.数学中,数和形是两个最主要的研究对象,它们之间有着十分密切的联系,在一定条件下,数和形之间可以相互转化,相互渗透.数形结合的基本思想,就是在研究问题的过程中,注意把数和形结合起来考察,斟酌问题的具体情形,把图形性质的问题转化为数量关系的问题,或者把数量关系的问题转化为图形性质的问题,使复杂问题简单化,抽象问题具体化,化难为易,获得简便易行的成功方案.例如,求1+2+3+4+…+n 的值,其中n 是正整数. 对于这个求和问题,如果采用纯代数的方法(首尾两头加),问题虽然可以解决,但在求和过程中,需对n 的奇偶性进行讨论.如果采用数形结合的方法,即用图形的性质来说明数量关系的事实,那就非常的直观.现利用图形的性质来求1+2+3+4+…+n 的值,方案如下:如图,斜线左边的三角形图案是由上到下每层依次分别为1,2,3,…,n 个小圆圈排列组成的.而组成整个三角形小圆圈的个数恰为所求式子1+2+3+4+…+n 的值.为求式子的值,现把左边三角形倒放于斜线右边,与原三角形组成一个平行四边形.此时,组成平行四边形的小圆圈共有n 行,每行有(n +1)个小圆圈,所以组成平行四边形小圆圈的总个数为n (n +1)个,因此,组成一个三角形小圆圈的个数为21)(+n n ,即1+2+3+4+…+n =21)(+n n .(1)仿照上述数形结合的思想方法,设计相关图形,求1+3+5+7+…+(2n-1)的值,其中n 是正整数.(要求:画出图形,并利用图形做必要的推理说明)(2)试设计另外一种图形,求1+3+5+7+…+(2n-1)的值,其中n是正整数.(要求:画出图形,并利用图形做必要的推理说明)[解析](1)因为组成此平行四边形的小圆圈共有n 行,每行有[(2n -1)+1]个,即2n 个,所以组成此平行四边形的小圆圈共有(n×2n)个,即2n2个.∴1+3+5+7+…+(2n-1)=21 12〕)—〔(+⨯nn=n2.(2)因为组成此正方形的小圆圈共有n 行,每行有n个,所以共有(n×n)个,即n2个.∴1+3+5+7+…+(2n-1)=n×n=n2.3、图14-1至图14-7的正方形霓虹灯广告牌ABCD都是20×20的等距网格(每个小方格的边长均为1个单位长),其对称中心为点O.图14-7 DP如图14-1,有一个边长为6个单位长的正方形EFGH 的对称中心也是点O ,它以每秒1个单位长的速度由起始位置向外扩大(即点O 不动,正方形EFGH 经过一秒由6×6扩大为8×8;再经过一秒,由8×8扩大为10×10;……),直到充满正方形ABCD ,再以同样的速度逐步缩小到起始时的大小,然后一直不断地以同样速度再扩大、再缩小.另有一个边长为6个单位长的正方形MNPQ 从如图14-1所示的位置开始,以每秒1个单位长的速度,沿正方形ABCD 的内侧边缘按A →B →C →D →A 移动(即正方形MNPQ 从点P 与点A 重合位置开始,先向左平移,当点Q 与点B 重合时,再向上平移,当点M 与点C 重合时,再向右平移,当点N 与点D 重合时,再向下平移,到达起始位置后仍继续按上述方式移动).正方形EFGH 和正方形MNPQ 从如图14-1的位置同时开始运动,设运动时间为x 秒,它们的重叠部分面积为y 个平方单位.(1)请你在图14-2和图14-3中分别画出x 为2秒、18秒时,正方形EFGH 和正方形MNPQ 的位置及重叠部分(重叠部分用阴影表示),并分别写出重叠部分的面积;(2)①如图14-4,当1≤x ≤3.5时,求y 与x 的函数关系式;②如图14-5,当3.5≤x ≤7时,求y 与x 的函数关系式; ③如图14-6,当7≤x ≤10.5时,求y 与x 的函数关系式; ④如图14-7,当10.5≤x ≤13时,求y 与x 的函数关系式.(3)对于正方形MNPQ 在正方形ABCD 各边上移动一周的过程,请你根据重叠部分面积y 的变化情况,指出y 取得最大值和最小值时,相对应的x 的取值情况,并指出最大值和最小值分别是多少.(说明:问题(3)是额外加分题,加分幅度为1~4分)[解析] (1)相应的图形如图2-1,2-2.当x =2时,y =3; 当x =18时,y =18.图14-6 D 图14-2 图14-3 D D 图14-4D图14-1 (P ) D N 图14-5D(2)①当1≤x ≤3.5时,如图2-3,延长MN 交AD 于K ,设MN 与HG 交于S ,MQ 与FG 交于T ,则MK =6+x ,SK =TQ =7-x ,从而MS =MK -SK =2x -1,MT =MQ -TQ =6-(7-x )= x -1. ∴y=MT ·MS =(x -1)(2x -1)=2x 2-3x +1.②当3.5≤x ≤7时,如图2-4,设FG 与MQ 交于T ,则 TQ =7-x ,∴MT =MQ -TQ =6-(7-x )=x -1. ∴y=MN ·MT =6(x -1)=6x -6.③当7≤x ≤10.5时,如图2-5,设FG 与MQ 交于T ,则 TQ=x -7,∴MT =MQ -TQ =6-(x -7)=13-x . ∴y = MN ·MT =6(13-x )=78-6x .④当10.5≤x ≤13时,如图2-6,设MN 与EF 交于S ,NP 交FG 于R ,延长NM 交BC 于K ,则MK =14-x ,SK =RP =x -7,∴SM =SK -MK=2x -21,从而SN =MN -SM =27-2x ,NR =NP -RP =13-x . ∴y=NR ·SN =(13-x )(27-2x )=2x 2-53x +351.(3)对于正方形MNPQ ,①在AB 边上移动时,当0≤x ≤1及13≤x ≤14时,y 取得最小值0; 当x =7时,y 取得最大值36.②在BC 边上移动时,当14≤x ≤15及27≤x ≤28时,y 取得最小值0; 当x =21时,y 取得最大值36.③在CD 边上移动时,当28≤x ≤29及41≤x ≤42时,y 取得最小值0; 当x =35时,y 取得最大值36.④在DA 边上移动时,当42≤x ≤43及55≤x ≤56时,y 取得最小值0; 当x =49时,y 取得最大值36.图2-4 D 图2-5D P图2-6 DP 图2-3DQP 图2-2D 图2-1D QP4、探索在图12—1至图12—3中,已知△ABC 的面积为a .(1)如图12—1,延长△ABC 的边BC 到点D ,使CD =BC ,连结DA .若△ACD 的面积为S 1,则S 1=______(用含a 的代数式 表示);(2)如图12—2,延长△ABC 的边BC 到点D ,延长边CA 到点E ,使CD =BC ,AE =CA ,连结DE .若△DEC 的面积为S 2,则 S 2=__________(用含a 的代数式表示);(3)在图12—2的基础上延长AB 到点F ,使BF =AB ,连结FD ,FE ,得到△DEF (如图12—3).若阴影部分的面积为S 3,则 S 3=__________(用含a 的代数式表示),并运用上述(2)的结论写出理由.发现像上面那样,将△ABC 各边均顺次延长一倍,连结所得端点,得到△DEF (如图12—3),此时,我们称△ABC 向外扩展了一次.可以发现,扩展一次后得到的△DEF 的面积是原来△ABC 面积的 倍.应用要在一块足够大的空地上栽种花卉,工程人员进行了如下的图案设计:首先在△ABC 的空地上种红花,然后将△ABC 向外扩展三次(图12—4已给出了前两次扩展的图案).在第一次扩展区域内种黄花,第二次扩展区域内种紫花,第三次扩展区域内种蓝花.如果种红花的区域(即△ABC )的面积是10平方米,请你运用上述结论求出:(1)种紫花的区域的面积; (2)种蓝花的区域的面积.[解析] 探索(1)a ; (2)2a ; (3)6a ;理由:∵CD =BC ,AE =CA ,BF=AB∴由(2)得 S △ECD =2a ,S △F AE =2a ,S △DBF =2a ,∴S 3=6a .发现 7倍. 应用 (1)(72-7)×10=420(平方米);(2)(73-72)×10=2940(平方米).图12—2 图12—1 F 图12—35、有两段长度相等的河渠挖掘任务,分别交给甲、乙两个工程队同时进行挖掘.图11是反映所挖河渠长度y (米)与挖掘时间x (时)之间关系的部分图象.请解答下列问题:(1)乙队开挖到30米时,用了_____小时.开挖6小时时,甲队比乙队多挖了______米; (2)请你求出: ①甲队在0≤x ≤6的时段内,y 与x 之间的函数关系式; ②乙队在2≤x ≤6的时段内,y 与x 之间的函数关系式; ③开挖几小时后,甲队所挖掘河渠的长度开始超过乙队?(3)如果甲队施工速度不变,乙队在开挖6小时后,施工速度增加到12米/时,结果两队同时完成了任务.问甲队从开挖到完工所挖河渠的长度为多少米?[解析] (1)2;10;(2)①设甲队在0≤x ≤6的时段内y 与x 之间的函数关系式为y =k 1x ,由图可知,函数图象过点(6,60), ∴6 k 1=60,解得k 1=10, ∴y =10x .②设乙队在2≤x ≤6的时段内y 与x 之间的函数关系式为y =k 2x +b ,由图可知,函数图象过点(2,30)、(6,50),∴22230,650.k b k b +=⎧⎨+=⎩ 解得25,20.k b =⎧⎨=⎩∴y =5x +20.③由题意,得10x >5x +20,解得x >4.所以,4小时后,甲队挖掘河渠的长度开始超过乙队.(说明:通过观察图象并用方程来解决问题,正确的也给分) (3)由图可知,甲队速度是:60÷6=10(米/时).设甲队从开挖到完工所挖河渠的长度为z 米,依题意,得6050.1012z z --=解得 z =110.答:甲队从开挖到完工所挖河渠的长度为110米.6、如图,已知直角坐标系中一条圆弧经过正方形网格的 格点A 、B 、C 。

相关文档
最新文档