exploiting learner models using data mining for e-learning a rule based approach

合集下载

人工智能与深度学习考试 选择题 58题

人工智能与深度学习考试 选择题 58题

1. 人工智能的定义是什么?A. 模拟人类智能的机器B. 计算机科学的一个分支C. 数据分析技术D. 机器学习算法2. 深度学习是哪种学习方法的一个分支?A. 监督学习B. 无监督学习C. 强化学习D. 机器学习3. 以下哪项不是深度学习的主要应用领域?A. 图像识别B. 自然语言处理C. 数据挖掘D. 网络安全4. 卷积神经网络(CNN)主要用于哪些类型的数据?A. 文本数据B. 图像数据C. 音频数据D. 时间序列数据5. 循环神经网络(RNN)适用于处理哪种类型的数据?A. 静态图像B. 连续序列数据C. 离散数据点D. 表格数据6. 以下哪项技术不是用于提高深度学习模型性能的?A. 数据增强B. 正则化C. 特征选择D. 模型集成7. 激活函数在神经网络中的作用是什么?A. 计算损失B. 传递信号C. 调整权重D. 优化网络结构8. 以下哪种激活函数在深度学习中最常用?A. SigmoidB. TanhC. ReLUD. Softmax9. 损失函数在训练深度学习模型时的作用是什么?A. 评估模型性能B. 更新权重C. 初始化参数D. 选择优化算法10. 以下哪种优化算法在深度学习中不常用?A. SGDB. AdamC. RMSpropD. BFGS11. 过拟合在深度学习中是指什么?A. 模型在训练数据上表现不佳B. 模型在测试数据上表现不佳C. 模型在训练数据上表现良好,但在新数据上表现不佳D. 模型在所有数据上表现一致12. 以下哪种方法可以减少过拟合?A. 增加数据量B. 减少模型复杂度C. 使用正则化D. 所有上述方法13. 迁移学习在深度学习中的应用是什么?A. 在新的任务上使用预训练的模型B. 在同一任务上多次训练模型C. 在不同任务上独立训练模型D. 在不同数据集上混合训练模型14. 以下哪种数据预处理步骤在深度学习中不常用?A. 标准化B. 归一化C. 独热编码D. 数据加密15. 以下哪种技术用于处理深度学习中的类别不平衡问题?A. 重采样B. 类别权重调整C. 合成少数类过采样技术(SMOTE)D. 所有上述技术16. 以下哪种技术不是用于提高深度学习模型的泛化能力?A. 数据增强B. 正则化C. 模型集成D. 数据清洗17. 以下哪种技术用于提高深度学习模型的计算效率?A. 量化B. 剪枝C. 蒸馏D. 所有上述技术18. 以下哪种技术不是用于深度学习模型的部署?A. 模型压缩B. 模型转换C. 模型加密D. 模型优化19. 以下哪种技术用于提高深度学习模型的可解释性?A. 可视化工具B. 特征重要性分析C. 模型解释方法(如LIME)D. 所有上述技术20. 以下哪种技术不是用于处理深度学习中的梯度消失问题?A. 使用ReLU激活函数B. 使用残差连接C. 使用LSTM或GRUD. 使用Sigmoid激活函数21. 以下哪种技术用于处理深度学习中的梯度爆炸问题?A. 梯度裁剪B. 使用ReLU激活函数C. 使用残差连接D. 使用LSTM或GRU22. 以下哪种技术不是用于提高深度学习模型的鲁棒性?A. 对抗训练B. 数据增强C. 模型集成D. 数据清洗23. 以下哪种技术用于提高深度学习模型的安全性?A. 对抗训练B. 模型加密C. 模型验证D. 所有上述技术24. 以下哪种技术不是用于深度学习模型的隐私保护?A. 差分隐私B. 同态加密C. 模型剪枝D. 联邦学习25. 以下哪种技术用于提高深度学习模型的可扩展性?A. 分布式训练B. 模型压缩C. 模型转换D. 所有上述技术26. 以下哪种技术不是用于深度学习模型的调试?A. 可视化工具B. 模型解释方法C. 模型验证D. 模型加密27. 以下哪种技术用于提高深度学习模型的可维护性?A. 代码重构B. 文档编写C. 版本控制D. 所有上述技术28. 以下哪种技术不是用于深度学习模型的测试?A. 单元测试B. 集成测试C. 性能测试D. 模型加密29. 以下哪种技术用于提高深度学习模型的可复现性?A. 固定随机种子B. 使用标准化数据集C. 记录实验配置D. 所有上述技术30. 以下哪种技术不是用于深度学习模型的版本控制?A. GitB. SVNC. DockerD. 模型加密31. 以下哪种技术用于提高深度学习模型的可协作性?A. 代码共享B. 文档编写C. 版本控制D. 所有上述技术32. 以下哪种技术不是用于深度学习模型的文档编写?A. MarkdownB. LaTeXC. HTMLD. 模型加密33. 以下哪种技术用于提高深度学习模型的可扩展性?A. 分布式训练B. 模型压缩C. 模型转换D. 所有上述技术34. 以下哪种技术不是用于深度学习模型的调试?A. 可视化工具B. 模型解释方法C. 模型验证D. 模型加密35. 以下哪种技术用于提高深度学习模型的可维护性?A. 代码重构B. 文档编写C. 版本控制D. 所有上述技术36. 以下哪种技术不是用于深度学习模型的测试?A. 单元测试B. 集成测试C. 性能测试D. 模型加密37. 以下哪种技术用于提高深度学习模型的可复现性?A. 固定随机种子B. 使用标准化数据集C. 记录实验配置D. 所有上述技术38. 以下哪种技术不是用于深度学习模型的版本控制?A. GitB. SVNC. DockerD. 模型加密39. 以下哪种技术用于提高深度学习模型的可协作性?A. 代码共享B. 文档编写C. 版本控制D. 所有上述技术40. 以下哪种技术不是用于深度学习模型的文档编写?A. MarkdownB. LaTeXC. HTMLD. 模型加密41. 以下哪种技术用于提高深度学习模型的可扩展性?A. 分布式训练B. 模型压缩C. 模型转换D. 所有上述技术42. 以下哪种技术不是用于深度学习模型的调试?A. 可视化工具B. 模型解释方法C. 模型验证D. 模型加密43. 以下哪种技术用于提高深度学习模型的可维护性?A. 代码重构B. 文档编写C. 版本控制D. 所有上述技术44. 以下哪种技术不是用于深度学习模型的测试?A. 单元测试B. 集成测试C. 性能测试D. 模型加密45. 以下哪种技术用于提高深度学习模型的可复现性?A. 固定随机种子B. 使用标准化数据集C. 记录实验配置D. 所有上述技术46. 以下哪种技术不是用于深度学习模型的版本控制?A. GitB. SVNC. DockerD. 模型加密47. 以下哪种技术用于提高深度学习模型的可协作性?A. 代码共享B. 文档编写C. 版本控制D. 所有上述技术48. 以下哪种技术不是用于深度学习模型的文档编写?A. MarkdownB. LaTeXC. HTMLD. 模型加密49. 以下哪种技术用于提高深度学习模型的可扩展性?A. 分布式训练B. 模型压缩C. 模型转换D. 所有上述技术50. 以下哪种技术不是用于深度学习模型的调试?A. 可视化工具B. 模型解释方法C. 模型验证D. 模型加密51. 以下哪种技术用于提高深度学习模型的可维护性?A. 代码重构B. 文档编写C. 版本控制D. 所有上述技术52. 以下哪种技术不是用于深度学习模型的测试?A. 单元测试B. 集成测试C. 性能测试D. 模型加密53. 以下哪种技术用于提高深度学习模型的可复现性?A. 固定随机种子B. 使用标准化数据集C. 记录实验配置D. 所有上述技术54. 以下哪种技术不是用于深度学习模型的版本控制?A. GitB. SVNC. DockerD. 模型加密55. 以下哪种技术用于提高深度学习模型的可协作性?A. 代码共享B. 文档编写C. 版本控制D. 所有上述技术56. 以下哪种技术不是用于深度学习模型的文档编写?A. MarkdownB. LaTeXC. HTMLD. 模型加密57. 以下哪种技术用于提高深度学习模型的可扩展性?A. 分布式训练B. 模型压缩C. 模型转换D. 所有上述技术58. 以下哪种技术不是用于深度学习模型的调试?A. 可视化工具B. 模型解释方法C. 模型验证D. 模型加密答案:1. A2. D3. D4. B5. B6. C7. B8. C9. A10. D11. C12. D13. A14. D15. D16. D17. D18. D19. D20. D21. A22. D23. D24. C25. D26. D27. D28. D29. D30. D31. D32. D33. D34. D35. D36. D37. D38. D39. D40. D41. D42. D43. D44. D45. D46. D47. D48. D49. D50. D51. D52. D53. D54. D55. D56. D57. D58. D。

基于深度学习的教育数据挖掘中学生学习成绩的...(IJEME-V10-N6-4)

基于深度学习的教育数据挖掘中学生学习成绩的...(IJEME-V10-N6-4)

I.J. Education and Management Engineering, 2020, 6, 27-33Published Online December 2020 in MECS (/)DOI: 10.5815/ijeme.2020.06.04Predicting Students' Academic Performance in Educational Data Mining Based on Deep Learning Using TensorFlowMussa S. Abubakari *, Fatchul ArifinDepartment of Electronics & Informatics Engineering Education, Postgraduate Program, Universitas Negeri Yogyakarta, Yogyakarta 55281, IndonesiaE-mail: abu.mussaside@*, fatchul@uny.ac.idGilbert G. HungiloDepartment of Informatics Engineering, Graduate Program, University Atma Jaya Yogyakarta, Yogyakarta 55281, IndonesiaE-mail: gutabagaonline@Received:07 May 2020; Accepted: 26 July 2020; Published: 08 December 2020Abstract: The study was aimed to create a predictive model for predicting students’ academic performance based on a neural network algorithm. This is because recently, educational data mining has become very helpful in decision making inan educational context and hence improving students’ academic outcomes. This study implemented a Neural Network algorithm as a data mining technique to extract knowledge patterns from student’s dataset consisting of 480 instances (students) with 16 attributes for each student. The classification metric used is accuracy as the model quality measurement. The accuracy result was below 60% when the Adam model optimizer was used. Although, after applying the Stochastic Gradient Descent optimizer and dropout technique, the accuracy increased to more than 75%. The final stable accuracy obtained was 76.8% which is a satisfactory result. This indicates that the suggested NN model can be reliable for prediction, especially in social science studies.Index Terms: Classification, Data Mining Techniques, Educational Data Mining, Neural Network Algorithm, Predictive Model.1.IntroductionCurrently, data mining has become an interesting topic for many researchers in various fields such as medicine, engineering, and even educational field. Especially in educational context, through mining of students’ information, it has become easier to make decisions concerning students in their academic performance [1, 2]. The prediction of students’ performance is a vital matter in educational context as predicting future performance of students after being admitted into a college, can determine who would attain poor marks and who would perform well. These results can help make efficient decisions during admission and hence improve the academic services quality [3–5].Analysis of educational data using data-mining techniques helps extract unique information of students from educational database and use that hidden information to solve various academic problems of students by understanding learners, improve teaching-learning methods and process [6, 7]. Moreover, these data mining techniques help educational stakeholders to make quality decisions to enhance students’ outcomes.Various methods like Decision tree and Naïve Bayesian were used by many researchers for predicting learners’ academic performance and make decisions to help those who need help immediately [7]. Other researchers used ensemble methods such as Random Forest (RF), AdaBoosting, and Bagging as classification methods [7, 8]. Different data mining methods can solve different educational problems such as classification and clustering. The famous known data mining method in prediction models is classification. Various deep learning algorithms like Neural Networks, are used under28 Predicting Students' Academic Performance in Educational Data Mining Based on Deep Learning Using TensorFlow classification matter [9].In the current study, neural network (NN) classification algorithm is implemented to create a predictive model in predicting academic performance of students in a particular academic institution by using students’ characteristics and their distinctive demographic data. A predictive model based on NN approach can be useful in decision making on academic success of students and therefore enhancing academic management and improving quality education.2. Related WorksVarious studies have been conducted concerning data mining in educational context for uncovering knowledge patterns from students’ information for improving academic performance of students. This current study will base its theoretical background on the previous research done on the educational data mining contexts as explained below.The study was conducted on engineering students based on different mining techniques for making academic decisions. Techniques involving classification rules and association rules for discovering knowledge patterns, were used to predict the engineering student’s performance. The study experiment also clustered the students based on k-means clustering algorithm [10]. In another study, students’ performance was evaluated based on association rule algorithm. The research was done by assessing the performance of students based on different features. The experiment was implemented based on real time dataset found in the school premises using Weka [11].Baradwaj and Pal explained in their study on student’s assessment by using a number of data mining methods. Their study facilitated teachers to identify students who need special attention to reduce the fail percentage and help to take valid measure for next semesters [3]. Also, another study was done to develop a classification model to predict student performance using Deep Learning which learns multiple levels of representation automatically. They used unsupervised learning algorithm to pre-train hidden layers of features layer-wisely based on a sparse auto-encoder from unlabeled data, and then supervised training was used for the parameters fine-tuning. The resulted model was trained on a relatively huge real-world students’ dataset, and the experimental findings indicate the effectiveness of the proposed method to be implemented into academic pre-warning mechanism [12].Other researchers developed models to predict students' university performance based on students' personal attributes, university performance and pre-university characteristics. The studies included the data of 10,330 students Bulgaria with every student having 20 attributes. Algorithms such as the K-nearest neighbour (KNN), decision tree, Naive Bayes, and rule learner's algorithms were applied to classify the students into 5 classes: Excellent, Very Good, Good, Bad or Average. Overall accuracy was below 69%. However, decision tree classifier showed best performance having the highest overall accuracy, followed by the rule learner [13, 14].Recently, the study was conducted to predict user’s intention to utilize peer-to-peer (P2P) mobile application for transactions. Logistic regression (LR) analysis technique together with neural network were used to predict the technology adoption. The results indicated that NN model has higher accuracy than LR model [15]. Another study proposed a student performance model with behavioral characteristics. These characteristics are associated with the student interactivity with an e-learning platform. Data mining techniques such as Naïve Bayesian and Decision Tree classifiers were used to evaluate the impact of such features on student’s academic performance. The results of that study revealed that there is a strong relationship between learner behaviors and its academic achievement [16].In this study, a predictive model is created based on neural network (NN) classification algorithm in predicting academic performance of students by using students’ behavioral characteristics and their distinctive demographic data as variables. A predictive model using NN data mining approach can help in making decisions and conclusions on academic success of students hence enhancing academic management and improve education quality.3. Methodology3.1 Data CollectionThe student data implemented in this project were obtained from educational dataset collected by [16] from learning management system (LMS) in The University of Jordan, Amman, Jordan during the study conducted in 2015. The dataset is available in the kaggle website (https:///aljarah/xAPI-Edu-Data). The dataset comprised of 480 (instances) of student records and their 16 respective attributes. These attributes were grouped into three classes, namely (i) Behavioral attributes include parents answering survey, school satisfaction, opening resources, and raised hand on class, (ii) Academic background attributes including grade Level, educational stage, and section, and (iii) Demographic features including nationality and gender. The dataset also includes 175 females and 305 males. The students have different nationalities including from Kuwait (179), USA (6), Jordan (172), Iraq (22), Lebanon (17), Tunis (12), Saudi Arabia (11), Egypt (9), from Iran, Syria, and Libya were 7 each, Morocco (4), 28 students from Palestine, and one from Venezuela.Another attribute is school attendance having two groups based on days of class absence: 191 students exceeded 7 days and 289 students were absent under 7 days. Moreover, the dataset includes also a new kind of attribute namely parent participation having two sub attributes: Parent School Satisfaction and Parent Answering Survey. 270 parents participated in a survey answering and 210 did not, 292 parents were satisfied from the school and 188 were not. The students arePredicting Students' Academic Performance in Educational Data Mining Based on Deep Learning Using TensorFlow 29 grouped into three classes based on their total grades, namely High-Level, Middle-Level, and Low-Level [8]. Appendix A summarizes the students’ attributes and their description.3.2 Methods and Data PreparationFor this study, authors used Anaconda software environment for python machine learning language together with keras machine learning library and specifically TensorFlow utility which is powerful to create and evaluate the proposed NN classification model [17–19]. Keras is a python library widely used in deep-learning that run on top of TensorFlow and Theano, providing an intuitive best API for Python in NNs [20, 21]. Since the dataset used in this study contains variables (attributes) with different categories, there was a need to transform them into a form the computer and NN model can understand. The dataset explained above consists of three main categories of variables. First are nominal variables with two categories such as gender (male or female), semester (first or second), and others. Second, are variables with numerical values such as visited resources, raised hand, and others. And third, are nominal variables with more than three categories such as grade levels (G-01 to G-12), topic (English, Math, Chemistry, and so on), and other variables as it can be seen in Appendix A.Nominal variables with two categories were transformed using label encoder mechanism. While, those with three or more categories were transformed using one-hot encoding (dummies method). Furthermore, continuous numerical variables were transformed by normalizing them using min-max scaler mechanism for normal distribution.4. Experiment Process and ResultsAfter data transformation as explained above, the inputs increased from 16 inputs to 39 inputs and the output (classification outputs) of 3 outputs making a total of 42 columns in the NN model. After that, the dataset was split into train data and test data with data for testing consisting of less than 26% of all dataset and the remaining percentage for training.The following step was to create a predictive model based on Artificial Neural Network (ANN) classification technique to evaluate the attributes which influence directly or indirectly student's academic success. ANN technique is an implementation of artificial neural network that involves training data inputs for the best accuracy achievement. A cross validation with 10-fold was used to divide the dataset for training and testing process. Then the process was followed by fitting the model by 200 iteration (epochs) with 10 batch-size of inputs and then followed by the results evaluation for generating knowledge representation. The evaluation measure used is accuracy for classification quality. Accuracy is the proportion or ratio of the total number of correct predictions to incorrectly predicted.Fig. 1. The NN Model Structure.Figure 1 above shows the NN model structure created by a python code as can be seen in the last code line in Appendix B. The NN predictive model used in this study consists of three layers: (1) input layer with 39 neurons, (2) hidden layer30 Predicting Students' Academic Performance in Educational Data Mining Based on Deep Learning Using TensorFlowwith 19 neurons and (3) an output layer with 3 outputs. The input layer receives input data from 16 attributes and the output layer send output of three grade categories, namely Low (L). Middle (M), and High (H). There is a hidden layer between the input layer and output layer. Appendix B illustrate the python code used to create, fit, and validate the NN model.In this study, we used accuracy as the metric for prediction quality of the developed NN model. Also, only NN algorithm was used for classification of the student dataset.The result of the experiment has two versions due to the implementation of two different model (function) optimizers namely, Adam and Stochastic gradient descent (SGD) as well as due to the introduction of dropout technique to the NN model development to drop (20% of neurons were dropped in this study) loosely connected neuron. The result indicates that when we applied Adam optimization technique the accuracy was below 60%. While, when we applied the SGD optimizer the accuracy improved to more than 76%.Moreover, the dropout technique helped to improve the accuracy value to more than 76.5%. The dropout technique is used to remove the loosely connected neurons as the NN technique performs better with fully connected neurons. The final stable result was 76.8% accuracy.5. Conclusion and Future WorkEducation is a vital element in any community for their social-economic development. Data mining techniques or business intelligence allows extracting knowledge patterns from students’ raw data offering interesting chances for the educational context. Particularly, various studies have implemented machine learning techniques like Decision Tree and Random Forest to enhance the management of college resources and hence improving education quality.In this study, the authors have presented a predictive model using NN technique to learn the patterns from students’ data and predict their academic performance. By applying data mining techniques on students’ database, academic stakeholders can find the important factors which have direct or indirect impacts on the student’s academic success. The knowledge patterns and results discovered in this study after applying NN classification method indicate that different attributes of students have impacts on their learning process as it can be seen in the classification accuracy results. The final classification accuracy obtained in this study is 76.9% which is more than satisfactory percentage for our predictive model developed using NN algorithm.Like other studies, this study is with some limitations too. One of which is the dataset can only be applied to the similar context as this study. Also, the results presented here involves the accuracy as the only predictive measure of model quality. Moreover, only one algorithm, NN algorithm was used for classification purpose.For future studies, authors intend to use the localized student data from a particular university in Yogyakarta, especially from Yogyakarta State University. Also, in the future we expect to apply other data mining methods such as RF, DT, and others in the localized dataset. Moreover, future experiments will add more measurement classification qualities such as Precision, sensitivity, and Recall.AcknowledgementsMuch appreciation to my close friends who inspired me to do this work.References[1]S. K. Mohamad and Z. Tasir, “Educational Data Mining: A Review,” Procedia - Soc. Behav. Sci., vol. 97, pp. 320–324, 2013.[2]M. Chalaris, S. Gritzalis, M. Maragoudakis, C. Sgouropoulou, and A. Tsolakidis, “Improving Quality of Educational ProcessesProviding New Knowledge Using Data Mining Techniques,” Procedia - Soc. Behav. Sci., vol. 147, pp. 390–397, 2014.[3] B. Brijesh Kumar and P. Saurabh, “Mining Educational Data to Analyze Students‟ Performance,” Int. J. Adv. Comput. Sci.Appl., vol. 2, no. No. 6, pp. 59–63, 2011.[4]W. F. W. Yaacob, S. A. M. Nasir, W. F. W. Yaacob, and N. M. Sobri, “Supervised data mining approach for predicting studentperformance,” Indones. J. Electr. Eng. Comput. Sci., vol. 16, no. 3, pp. 1584–1592, 2019.[5]H. Aldowah, H. Al-Samarraie, and W. M. Fauzy, “Educational data mining and learning analytics for 21st century highereducation: A review and synthesis,” Telemat. Informatics, vol. 37, pp. 13–49, 2019.[6]S. Hussain, N. A. Dahan, F. M. Ba-Alwib, and N. Ribata, “Educational data mining and analysis of students’ academicperformance using WEKA,” Indones. J. Electr. Eng. Comput. Sci., vol. 9, no. 2, pp. 447–459, 2018.[7]S. S. M. Ajibade, N. B. Ahmad, and S. M. Shamsuddin, “A data mining approach to predict academic performance of studentsusing ensemble techniques,” in Advances in Intelligent Systems and Computing, 2020, vol. 940, no. March, pp. 749–760.[8] E. A. Amrieh, T. Hamtini, and I. Aljarah, “Mining Educational Data to Predict Student’s academic Performance using EnsembleMethods,” Int. J. Database Theory Appl., vol. 9, no. 8, pp. 119–136, 2016.[9] A. M. Shahiri, W. Husain, and N. A. Rashid, “A Review on Predicting Student’s Performance Using Data Mining Techniques,”in Procedia Computer Science, 2015, vol. 72, pp. 414–422.[10]R. Singh, “An Empirical Study of Applications of Data Mining Techniques for Predicting Student Performance in HigherEducation,” Int. J. Comput. Sci. Mob. Comput., vol. 2, no. February, pp. 53–57, 2013.Predicting Students' Academic Performance in Educational Data Mining Based on Deep Learning Using TensorFlow 31 [11]S. Borkar and K. Rajeswari, “Predicting students academic performance using education data mining,” Int. J. Comput. Sci. Mob.Comput., vol. 2, no. 7, pp. 273–279, 2013.[12]B. Guo, R. Zhang, G. Xu, C. Shi, and L. Yang, “Predicting Students Performance in Educational Data Mining,” in Proceedings -2015 International Symposium on Educational Technology, ISET 2015, 2016, pp. 125–128.[13]D. Kabakchieva, “Predicting student performance by using data mining methods for classification,” Cybern. Inf. Technol., vol.13, no. 1, pp. 61–72, 2013.[14]D. Kabakchieva, K. Stefanova, and V. Kisimov, “Analyzing university data for determining student profiles and predictingperformance,” in EDM 2011 - Proceedings of the 4th International Conference on Educational Data Mining, 2011, pp. 347–348.[15]J. Lara-Rubio, A. F. Villarejo-Ramos, and F. Liébana-Cabanillas, “Explanatory and predictive model of the adoption of P2Ppayment systems,” Behav. Inf. Technol., vol. 0, no. 0, pp. 1–14, 2020.[16]E. A. Amrieh, T. Hamtini, and I. Aljarah, “Preprocessing and analyzing educational data set using X-API for improvingstudent’s performance,” in 2015 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies, AEECT 2015, 2015.[17]P. S. Janardhanan, “Project repositories for machine learning with TensorFlow,” Procedia Comput. Sci., vol. 171, pp. 188–196,2020.[18]L. Hao, S. Liang, J. Ye, and Z. Xu, “TensorD: A tensor decomposition library in TensorFlow,” Neurocomputing, vol. 318, pp.196–200, 2018.[19]R. Orus Perez, “Using TensorFlow-based Neural Network to estimate GNSS single frequency ionospheric delay (IONONet),”Adv. Sp. Res., vol. 63, no. 5, pp. 1607–1618, 2019.[20]V.-H. Nhu et al., “Effectiveness assessment of Keras based deep learning with different robust optimization algorithms forshallow landslide susceptibility mapping at tropical area,” CATENA, vol. 188, p. 104458, 2020.[21]K. Akyol, “Comparing of deep neural networks and extreme learning machines based on growing and pruning approach,”Expert Syst. Appl., vol. 140, p. 112875, 2020.Authors’ ProfilesMussa S. Abubakari was born in Kondoa, Tanzania in 1990. He received the B.Sc. degree inTelecommunications Engineering from the University of Dodoma, Tanzania in 2016. Currently he is thepostgraduate candidate taking master degree in Electronics & Informatics Engineering Education atUniversitas Negeri Yogyakarta, Indonesia. His research interests include technology enhanced learning,human computer interaction, technology acceptance, Internet of Things, mobile technologies, intelligentsystems, and signal processing.Dr. Fatchul Arifin was born on 08 Mei 1972. He received a B.Sc. in Electric Engineering at UniversitasDiponegoro and PH.D. degree in Electric Engineering from Institut Teknologi Surabaya, in 1996 and 2014,respectively. Currently he is the lecturer at both undergraduate faculty of engineering and postgraduateprogram at Universitas Negeri Yogyakarta. His research interests include but not limited to intelligentcontrol systems, machine learning, expert systems, and neural-fuzzy system.Gilbert G. Hungilo is a master degree graduate from department of Informatics Engineering at theUniversity Atma Jaya Yogyakarta, Indonesia. He received Bachelor of Science in Computer Science fromthe University of Dar es salaam, Tanzania. His research interests include technology adoption, big dataanalytics, and machine learning.How to cite this paper: Mussa S. Abubakaria, Fatchul Arifin, Gilbert G. Hungilo. "Predicting Students' Academic Performance in Educational Data Mining Based on Deep Learning Using TensorFlow ", International Journal of Education and Management Engineering (IJEME), Vol.10, No.6, pp.27-33, 2020. DOI: 10.5815/ijeme.2020.06.0432 Predicting Students' Academic Performance in Educational Data Mining Based on Deep Learning Using TensorFlowAppendix A. Students’ Attributes [16]SN Attribute Description Variable Type1 Gender Gender of Student: Female or Male. Nominal(binary)2 Nationality Student's Origin: Kuwait, Iraq, Libya Lebanon, Egypt, USA,Morocco, Jordan, Iran, Tunis, Syria, Palestine, Saudi Arabia,Venezuela.Nominal(dummy)3 Birth Place Student's Birth Place: Kuwait, Iraq, Libya Lebanon, Egypt,USA, Morocco, Jordan, Iran, Tunis, Syria, Palestine, SaudiArabia, Venezuela.Nominal(dummy)4 Stage ID Student Educational Level: High School, Middle School,Lower level.Nominal(dummy)5 Grade ID Student Grade: G-01 up to G-12. Nominal(dummy)6 Section ID Classroom student belongs: A, B, C. Nominal(dummy)7 Topic Course Studied: Arabic, Biology, Chemistry, English,Geology, French, Spanish, IT, Math, Science, History, Quran.Nominal(dummy)8 Semester School year semester: First, Second. Nominal(binary)9 Relation Responsible Parent: Mom, Father. Nominal(binary)10 Raised hand Frequency of raising hand in classroom: 0-100. Numeric11 VisitedresourcesFrequency of visiting course online content: 0-100. Numeric12 AnnouncementsViewFrequency of checking the new online announcement: 0-100. Numeric13 Discussion Frequency of participating in online discussion forums: 0-100. Numeric14 Parent SurveyAnsweringWhether Parents answered or not the survey: Yes, No. Nominal(binary)15 Parent SchoolSatisfactionWhether a parent is satisfied or not: Yes, No. Nominal(binary)16 Student AbsenceDays The number of absence days a student was absent: Above orUnder 7 days.Nominal(binary)17 Class The grade class: High-Level (H): from 90-100; Middle-Level(M): from 70 to 89; Low-Level (L): from 0 to 69.Nominal(dummy)Predicting Students' Academic Performance in Educational Data Mining Based on Deep Learning Using TensorFlow 33 Appendix B. A Piece of Python Code Used to Create and Validate an NN Model。

llm大语言模型 参数的作用

llm大语言模型 参数的作用

一、介绍LLM大语言模型LLM大语言模型(Large Language Model)是一种利用深度学习技术训练的语言模型,它可以自动学习和处理人类语言的规律和特点,从而实现自然语言理解、生成和处理的功能。

LLM大语言模型在自然语言处理领域具有重要的应用价值,广泛应用于机器翻译、问答系统、智能对话等方面,成为推动人工智能技术发展的重要手段之一。

二、LLM大语言模型参数的作用1. 参数对模型性能的影响LLM大语言模型的参数数量是对模型容量的一种度量,参数的数量越多,模型的容量越大,能够表示和学习的语言知识和规律也就越多。

在训练LLM大语言模型时,合理设置参数能够显著提升模型的性能,包括语言生成的准确性、语言理解的效果等。

2. 参数调节和优化在训练LLM大语言模型时,参数的调节和优化是一个重要的过程。

不同的参数设置会导致模型性能的巨大差异,因此需要通过对参数的调节和优化来获取最优的模型表现。

这涉及到参数的初始化、学习率的选择、正则化项的设置等方面,需要结合具体的任务和数据特点进行调节。

3. 参数对模型复杂度的影响LLM大语言模型的参数数量直接影响了模型的复杂度。

复杂度越高的模型能够更准确地捕捉和表达语言中的复杂规律和特点,但同时也容易导致过拟合的问题。

参数的作用还涉及到了在模型复杂度和泛化能力之间进行合理的权衡。

4. 参数的调节和调整方法针对LLM大语言模型的参数,研究人员提出了多种参数的调节和调整方法,包括网格搜索、随机搜索、贝叶斯优化等。

这些方法可以帮助研究人员在大规模的参数空间中找到最优的参数配置,从而提升LLM大语言模型的性能和效果。

5. 参数对模型性能的稳定性影响在训练LLM大语言模型时,参数的设置会影响模型的稳定性。

合理的参数设置能够提高模型的稳定性,避免模型出现梯度爆炸、梯度消失等问题,从而保证模型能够有效地学习和表达语言知识。

6. 参数对模型训练时间和资源的消耗影响LLM大语言模型的参数数量直接影响了模型的训练时间和资源的消耗。

permutation_importance()方法

permutation_importance()方法

permutation_importance()方法`permutation_importance()` 是一个在 scikit-learn 的 `imbalanced-learn` 库中用于评估模型性能的函数。

这个函数通过打乱特征的顺序来评估模型性能的变化,从而得到每个特征对模型预测的重要性。

具体来说,`permutation_importance()` 函数会对训练数据集中的每一个样本的每一个特征进行随机打乱,然后使用打乱后的数据重新训练模型并评估模型的性能。

通过比较打乱前后的模型性能,我们可以得到每个特征对模型预测的影响。

下面是一个简单的例子:```pythonfrom _sampling import SMOTEfrom import make_classificationfrom import RandomForestClassifierfrom _selection import train_test_splitfrom import accuracy_scorefrom import permutation_importance生成一个不平衡的二分类数据集X, y = make_classification(n_classes=2, class_sep=2,weights=[, ], n_informative=3, n_redundant=1, flip_y=0,n_features=20, n_clusters_per_class=1,n_samples=1000, random_state=10)划分训练集和测试集X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=, random_state=42)使用SMOTE进行过采样处理,解决类别不平衡问题sm = SMOTE(sampling_strategy='auto', random_state=42)X_train_smote, y_train_smote = _resample(X_train, y_train)使用随机森林分类器进行训练clf = RandomForestClassifier(random_state=42)(X_train_smote, y_train_smote)使用测试集进行预测y_pred = (X_test)计算准确率作为评估指标score = accuracy_score(y_test, y_pred)print(f"Accuracy: {score:.3f}")使用permutation_importance方法评估特征的重要性result = permutation_importance(clf, X_test, y_test, n_repeats=10, random_state=42, n_jobs=2)()```在这个例子中,我们首先生成了一个不平衡的二分类数据集,然后使用SMOTE进行过采样处理以解决类别不平衡问题。

高级职称试题

高级职称试题

高级职称试题一、选择题1. 下列哪个不是计算机视觉的应用领域?A. 人脸识别B. 车牌识别C. 图像分割D. 语音识别2. 在机器学习中,下面哪个算法广泛应用于目标检测任务?A. K均值算法B. 支持向量机C. 随机森林D. 卷积神经网络3. 下列哪个不是自然语言处理中常见的任务?A. 机器翻译B. 情感分析C. 语音合成D. 问答系统4. 下面哪个不是深度学习的基础结构?A. 卷积神经网络B. 循环神经网络C. 反向传播D. 支持向量机5. 下列哪个不是数据挖掘的常见算法?A. K最近邻算法B. 决策树C. 主成分分析D. Dijkstra算法二、填空题1. 图像识别中最常用的评价指标是________。

2. 在深度学习中,一般会通过________层来提取抽象特征。

3. 自然语言处理中,将句子划分成独立的词语被称为_________。

4. 数据挖掘中,将数据集分成训练集和测试集的过程被称为_________。

5. 在机器学习中,通常会将数据集划分成__________。

三、简答题1. 请简要介绍计算机视觉的基本任务。

2. 请解释过拟合的概念,并提供防止过拟合的方法。

3. 请解释循环神经网络(RNN)的原理,并说明其在自然语言处理中的应用。

4. 请解释主成分分析(PCA)的原理,并说明其在数据挖掘中的应用。

5. 请简要介绍目标检测的常见算法,并比较它们的优缺点。

四、论述题请以自己的语言,就计算机视觉、深度学习、自然语言处理和数据挖掘中的一个具体应用领域进行论述。

包括该应用的背景和意义、相关算法或方法的原理和流程、存在的挑战和解决方法等方面。

注意:以上试题仅为示例,请根据实际情况进行调整。

另外,四、论述题的字数限制可适当增加,以满足要求。

深度学习中的模型解决迁移学习问题的方法

深度学习中的模型解决迁移学习问题的方法

深度学习中的模型解决迁移学习问题的方法深度学习(Deep Learning)作为一种机器学习(Machine Learning)的方法,已经在诸多领域展示了强大的能力,但在实际应用中,由于数据集不足、计算资源有限等因素,常常遭遇训练数据不足或无法利用的情况。

而迁移学习(Transfer Learning)则致力于解决这一问题,通过利用已有数据和知识,设计出合理的模型,以加快模型收敛速度、提高模型性能。

本文将介绍几种深度学习中的模型解决迁移学习问题的方法。

1.预训练模型的迁移预训练模型(Pretrained Model)是指在一个大规模数据集上通过深度学习方法训练的模型,而这些模型通常具有较好的特征提取能力。

通过将这些预训练模型迁移到目标任务中,我们可以充分利用它们在大数据集上学到的特征表示,以提高目标任务的性能。

常用的预训练模型包括ImageNet上训练的VGG、ResNet、Inception等模型,可以通过去除最后一层全连接层,将其它层用作特征提取器,然后在自己的任务上进行微调。

2.领域适应方法在现实应用中,我们经常会遇到目标领域和源领域不同的情况,此时,直接将源领域的模型迁移到目标领域可能效果不佳。

为了减少领域差异带来的影响,我们可以借助领域适应(Domain Adaptation)的方法。

领域适应方法通过将源领域数据与目标领域数据进行适应,尽可能减小两个领域之间的差异。

其中,最常用的方法是最大均值差异(Maximum Mean Discrepancy,MMD),其思想是通过最小化两个领域之间的距离来实现适应。

3.多任务学习方法多任务学习(Multi-Task Learning)是指通过同时学习多个相关任务,来提高各个任务的性能。

在迁移学习中,我们可以将源领域和目标领域视为不同的任务,并在一个统一的模型中进行训练。

通过共享部分模型参数,我们可以使得模型更好地学习到源领域和目标领域之间的共享信息,从而提高目标任务的性能。

llm 模型指令微调 语料

llm 模型指令微调 语料

llm 模型指令微调语料【最新版】目录1.LLM 模型概述2.指令微调的意义和方法3.语料的作用和选择4.总结正文1.LLM 模型概述LLM(Language Model)模型是一种被广泛应用于自然语言处理领域的模型,它的主要作用是预测一段文本的下一个词语。

LLM 模型通过学习大量的文本数据,掌握了语言的统计特征和语法规则,能够在一定程度上理解自然语言的表达方式。

在深度学习领域,LLM 模型已经成为了自然语言处理的基本工具之一。

2.指令微调的意义和方法指令微调(Instruction Tuning)是自然语言处理中的一种重要技术,其主要目的是通过修改模型的指令,来提高模型的性能和效果。

指令微调的意义主要体现在以下几个方面:(1)提高模型的泛化能力:通过指令微调,可以让模型更好地适应不同的任务和领域,提高模型的泛化能力。

(2)提高模型的效率:通过指令微调,可以让模型更快地学习和适应新的任务,提高模型的效率。

(3)提高模型的效果:通过指令微调,可以让模型更好地理解自然语言,提高模型的效果。

指令微调的方法主要包括以下几种:(1)基于规则的方法:通过设计一系列的规则,来修改模型的指令。

(2)基于模板的方法:通过设计一系列的模板,来修改模型的指令。

(3)基于学习的方法:通过训练模型,来学习如何修改模型的指令。

3.语料的作用和选择语料(Corpus)是自然语言处理中的一种重要资源,它主要包括了大量的文本数据。

语料对于 LLM 模型的训练和指令微调具有重要的作用,主要体现在以下几个方面:(1)提供训练数据:语料可以为 LLM 模型的训练提供大量的数据,帮助模型更好地学习语言的统计特征和语法规则。

(2)提供验证数据:语料可以为 LLM 模型的验证提供数据,帮助模型更好地理解自然语言。

(3)提供微调数据:语料可以为指令微调提供数据,帮助模型更好地适应不同的任务和领域。

因此,选择合适的语料对于 LLM 模型的训练和指令微调至关重要。

llamaindex 用法

llamaindex 用法

Llamaindex 用法
LlamaIndex 是一个将大语言模型(Large Language Models, LLMs)和外部数据连接在一起的工具。

大模型依靠上下文学习(Context Learning)来推理知识,针对一个输入(或者是prompt),根据其输出结果。

因此Prompt的质量很大程度上决定了输出结果的质量,因此提示工程(Prompt engineering)现在也很受欢迎。

目前大模型的输入输出长度因模型结构、显卡算力等因素影响,都有一个长度限制(以Token为单位,ChatGPT限制长度为4k个,GPT-4是32k等,Claude最新版有个100k的)。

当我们外部知识的内容超过这个长度时,就无法同时将有效的信息传递给大模型。

因此就诞生了LlamaIndex 等项目。

假设有一个10w的外部数据,我们的原始输入Prompt长度为100,长度限制为4k,通过查询-检索的方式,我们能将最有效的信息提取集中在这4k的长度中,与Prompt一起送给大模型,从而让大模型得到更多的信息。

此外,还能通过多轮对话的方式不断提纯外部数据,达到在有限的输入长度限制下,传达更多的信息给大模型。

LlamaIndex 是一个方便的工具,它充当自定义数据和大型语言模型(llm)(如GPT-4)之间的桥梁。

大型语言模型功能强大,能够理解类似人类的文本。

LlamaIndex 可以轻松地将数据与这些智能机器进行对话。

这种桥梁建设使你的数据更易于访问,为更智能的应用程序和工作流铺平了道路。

datacollatorforlanguagemodeling 使用

datacollatorforlanguagemodeling 使用

datacollatorforlanguagemodeling 使用
一、简介
DataCollatorForLanguageModeling(DCLM)是用于语言建模的
开源工具,它可以帮助研究人员轻松地转换大规模文本数据,并构建用于构建和训练深度学习模型的标签数据集。

它是一个由Python开
发的工具,允许用户利用友好的可视化界面来支持标签转换和收集工作。

二、特点
1)DCLM提供了大量的支持,可以轻松和快速地进行文本数据转换,支持多种格式(如csv和JSON)。

2)DCLM提供强大的可视化界面,可以帮助用户更容易地设置和控制数据标签收集过程,从而快速构建有效的数据集。

3)DCLM提供了丰富的功能,可以支持多用户同时进行工作,并支持实时同步更新以及版本控制功能。

4)DCLM还可以帮助管理和维护数据集,支持预处理,以及提供可视化分析工具,以帮助用户快速理解训练数据集中的差异性和特性。

三、应用
DCLM可以用于帮助研究人员转换和收集现有的大规模文本数据,构建用于构建和训练深度学习模型的标签数据集。

它可以应用于自然语言处理任务中,如文本分类,情感分析,摘要生成,实体提取,语义分析,机器翻译等。

这些任务中,使用标签数据集构建和训练模型是必不可少的。

因此,DCLM可以帮助研究人员更容易地完成文本数
据的准备过程,为这些任务构建高质量的数据集。

人工智能训练 提升机器学习模型性能的关键步骤

人工智能训练 提升机器学习模型性能的关键步骤

人工智能训练提升机器学习模型性能的关键步骤人工智能训练- 提升机器学习模型性能的关键步骤人工智能(Artificial Intelligence)作为一种重要的技术手段,广泛应用于各个领域,尤其在机器学习(Machine Learning)中发挥着重要作用。

然而,机器学习模型的性能往往需要通过训练来提升。

本文将介绍提升机器学习模型性能的关键步骤,以实现更精确和可靠的预测。

1. 数据预处理数据预处理是机器学习训练的重要一步。

首先,需要对原始数据进行清洗,包括处理缺失值、异常值和重复值等。

其次,数据需要进行标准化或归一化处理,以消除不同特征之间的度量单位差异。

最后,特征选择和特征提取也是数据预处理过程中的关键环节,可以通过统计方法或模型选择算法来选择最具代表性和相关性的特征,或者通过降维技术(如主成分分析)提取最具信息量的特征。

2. 模型选择在机器学习训练中,选择合适的模型对于提升性能至关重要。

根据具体任务和数据特点,可以选择分类模型(如支持向量机、决策树、随机森林等)或回归模型(如线性回归、多项式回归等)。

同时,还可以根据需求选择深度学习模型(如卷积神经网络、循环神经网络等)。

模型的选择需要综合考虑模型的复杂度、泛化能力和计算性能等因素。

3. 参数调优机器学习模型中的参数是影响模型性能的重要因素。

参数调优旨在寻找最优的参数组合,以提升模型的泛化能力和预测准确性。

可以使用网格搜索、随机搜索等方法进行参数调优。

此外,还可以利用模型评估指标(如准确率、召回率、F1-score等)来评估不同参数组合的性能,并选择最佳参数组合。

4. 训练策略训练策略是指在训练过程中的一系列策略和技巧。

首先,需要对训练数据进行划分,一般分为训练集、验证集和测试集。

训练集用于模型训练,验证集用于模型超参数的选择和调优,测试集用于模型性能的最终评估。

其次,可以采用交叉验证来评估模型的泛化能力,选择最优模型。

此外,还可以采用集成学习的方法,如随机森林和梯度提升树等,以进一步提升模型性能。

llm 思维树应用实例 prompt

llm 思维树应用实例 prompt

LLM思维树应用实例——Prompt的实际应用情况引言LLM(Lanuage Model with Large Memory)是一种基于Transformer架构的大规模语言模型。

它在自然语言处理领域具有广泛的应用,其中之一就是通过构建思维树,为用户提供更加精准和高效的搜索服务。

本文将详细描述LLM思维树在Prompt的实际应用情况,包括应用背景、应用过程和应用效果等。

应用背景随着互联网信息的爆炸式增长,用户在搜索引擎中输入关键词进行搜索已经无法满足其需求。

很多时候,用户需要更加具体和深入的信息,而不只是简单地获取与关键词相关的页面。

因此,搜索引擎需要提供更加智能和个性化的搜索服务。

LLM思维树作为一种基于大规模语言模型的创新技术,在这个背景下得到了广泛的关注和应用。

通过构建思维树,并将用户输入作为Prompt输入给LLM模型进行训练和推理,可以使搜索引擎更好地理解用户需求,并提供更加精准和高效的搜索结果。

应用过程1. 数据收集和预处理在应用LLM思维树之前,首先需要进行数据的收集和预处理。

这些数据可以包括搜索引擎的用户查询日志、网页内容和结构化数据等。

通过对这些数据进行清洗、去重和标注等操作,可以得到适合训练LLM模型的数据集。

2. 模型训练和Fine-tuning在得到合适的数据集后,接下来需要使用LLM模型对其进行训练和Fine-tuning。

LLM模型是基于Transformer架构的大规模语言模型,可以通过海量的非监督学习来学习语言的统计规律和语义表示。

在Fine-tuning阶段,可以使用用户输入作为Prompt输入给LLM模型,并设置一定的超参数进行训练。

通过不断调整超参数和迭代训练,可以使得LLM模型更好地理解用户需求,并生成更加准确和有针对性的搜索结果。

3. 思维树构建在完成模型训练之后,接下来需要构建思维树。

思维树是一种层级结构,用于组织和管理搜索引擎中的知识库。

它由节点(Node)和边(Edge)组成,每个节点表示一个主题或者一个问题,每条边表示节点之间的关联关系。

nlp小模型蒸馏

nlp小模型蒸馏

nlp小模型蒸馏
模型蒸馏是一种将大型模型压缩为小型模型的技术,同时保持其性能。

在自然语言处理(NLP)中,模型蒸馏可以用于压缩语言模型,以便在资源受限的设备上运行。

模型蒸馏的基本思想是通过训练一个小型模型来模拟大型模型的输出。

这可以通过以下两种方法实现:
1. 知识蒸馏:在训练小型模型时,将大型模型的输出作为软目标,以指导小型模型的学习。

2. 模型压缩:通过减少模型参数的数量或使用更高效的架构来压缩模型。

模型蒸馏的过程通常包括以下步骤:
1. 训练大型模型:首先,需要训练一个大型的NLP 模型,例如Transformer 模型。

2. 收集大型模型的输出:在训练大型模型时,收集其在训练数据上的输出。

3. 训练小型模型:使用大型模型的输出作为软目标,训练一个小型模型。

4. 优化小型模型:通过调整小型模型的参数,使其尽可能地模拟大型模型的输出。

模型蒸馏可以有效地减少模型的大小和计算资源的使用,同时保持其性能。

这使得它成为在资源受限的设备上运行NLP 模型的一种有前途的方法。

llm 模型指令微调 语料

llm 模型指令微调 语料

llm 模型指令微调语料摘要:1.LLM 模型概述2.模型指令微调的概念和方法3.语料在指令微调中的重要性4.如何选择和使用合适的语料5.指令微调的效果和应用场景正文:一、LLM 模型概述LLM(Language Model)模型是一种人工智能模型,主要用于预测自然语言中的下一个词语。

LLM 模型通过学习大量文本数据,掌握语言的统计特征和规律,从而具备较好的语言生成能力。

近年来,随着深度学习技术的发展,LLM 模型在自然语言处理领域取得了显著的成果,被广泛应用于机器翻译、文本摘要、对话系统等任务。

二、模型指令微调的概念和方法指令微调(Instruction Tuning)是一种针对LLM 模型的优化方法,通过调整模型的参数,使其更好地执行特定任务。

指令微调的主要思想是根据任务需求,为模型提供一组针对性的指令,让模型在训练过程中遵循这些指令,从而提高模型在特定任务上的性能。

指令微调的方法主要包括以下几种:1.基于人类反馈的微调:通过收集人类提供的正负样本,告诉模型哪些行为是正确的,哪些是错误的,从而让模型更好地执行特定任务。

2.基于预训练模型的微调:利用预训练好的LLM 模型作为初始权重,然后在特定任务的语料上进行微调,以适应新任务的需求。

3.基于指令嵌入的微调:将指令信息嵌入到模型的输入中,让模型在处理自然语言的同时,也能够感知到指令信息,从而实现任务的特定需求。

三、语料在指令微调中的重要性在指令微调过程中,语料扮演着至关重要的角色。

高质量的语料可以帮助模型更好地学习特定任务的知识和规律,从而提高模型的性能。

相反,低质量的语料可能导致模型学到错误的信息,从而降低模型的性能。

四、如何选择和使用合适的语料为了实现指令微调的目标,我们需要选择和使用合适的语料。

以下是一些建议:1.语料应与特定任务高度相关,以确保模型能够学到与任务相关的知识和规律。

2.语料应具有足够的多样性,以充分覆盖任务的各个方面。

3.语料应具有代表性,以确保模型能够适应不同场景下的任务需求。

llms基本概念

llms基本概念

llms基本概念LLMs, or Large Language Models, refer to a class of artificial intelligence models that are trained on vast amounts of text data to enable them to generate natural language text, understand context, and engage in a range of language-based tasks. These models typically employ deep learning techniques and have a large number of parameters, enabling them to capture intricate patterns and relationships within language.LLMs的基本概念是指一类人工智能模型,它们通过训练大量的文本数据,能够生成自然语言文本,理解上下文,并执行一系列基于语言的任务。

这些模型通常采用深度学习技术,拥有大量的参数,从而能够捕获语言中复杂的模式和关系。

In recent years, the development of LLMs has seen remarkable progress, with models like GPT (Generative Pre-trained Transformer) and BERT (Bidirectional Encoder Representations from Transformers) leading the way. These models are able to generate coherent and sometimes highly creative text, engage in conversation, answer questions, and even perform tasks like translation and summarization.近年来,LLMs的发展取得了显著的进步,以GPT(生成式预训练转换器)和BERT(来自转换器的双向编码器表示)等模型为代表。

使用数据集蒸馏更有效地训练机器学习模型

使用数据集蒸馏更有效地训练机器学习模型

使用数据集蒸馏更有效地训练机器学习模型视频介绍:使用数据集蒸馏更有效地训练机器学习模型要使机器学习 (ML) 算法有效,必须从(通常)大量训练数据中提取有用的特征。

但是,由于在计算要求和挂钟时间方面与此类大型数据集的培训相关的成本,此过程可能具有挑战性。

通过减少模型有效所需的资源,蒸馏的想法在这些情况下发挥着重要作用。

最广为人知的蒸馏形式是模型蒸馏(又名知识蒸馏),其中大型复杂教师模型的预测被蒸馏成更小的模型。

这种模型空间方法的另一种选择是数据集蒸馏[ 1 , 2 ],其中将大数据集蒸馏为合成的较小数据集。

用这样一个精炼的数据集训练模型可以减少所需的内存和计算。

例如,不使用CIFAR-10数据集的所有50,000 张图像和标签,而是使用仅包含 10 个合成数据点(每类 1 张图像)的蒸馏数据集来训练ML 模型,该模型仍然可以在看不见的测试集。

在“数据集元学习从内核岭回归'’,出版在ICLR 2021,和'数据集精馏无限宽卷积网络’,在呈现NeurIPS 2021中,我们介绍了两种新的数据集蒸馏算法,核诱导点(KIP)和标签Solve (LS),使用内核回归产生的损失函数优化数据集(一种经典的机器学习算法,将线性模型拟合到通过内核定义的特征)。

应用 KIP 和 LS 算法,我们获得了非常有效的用于图像分类的蒸馏数据集,将数据集减少到每类1、10 或 50 个数据点,同时仍然在许多基准图像分类数据集上获得最先进的结果. 此外,我们也很高兴发布我们的蒸馏数据集,以使更广泛的研究社区受益。

方法论近年来,深度神经网络(DNN)的关键理论见解之一是,增加DNN的宽度会导致更规律的行为,使它们更容易理解。

当宽度被取到无穷大时,通过梯度下降训练的DNN 会收敛到熟悉且更简单的模型类别,这些模型是由相对于神经切线内核(NTK) 的内核回归产生的,NTK 是一种通过计算梯度的点积来测量输入相似性的内核神经网络。

llm 稀疏计算

llm 稀疏计算

LLM(Large Language Model)是一种大型的深度学习模型,用于处理自然语言处理任务。

它通常需要大量的数据和计算资源来训练和运行。

在稀疏计算中,指的是在计算过程中只使用相关的数据和参数,而忽略不相关的数据和参数,这样可以减少计算量和内存占用。

在LLM中应用稀疏计算可以提高计算效率和性能。

具体来说,稀疏计算可以应用于以下几个方面:
1. 模型压缩:通过稀疏计算技术,可以将LLM模型进行压缩,减少模型的大小和内存占用,从而加快模型的加载和运行速度。

2. 参数优化:在LLM的训练过程中,可以通过稀疏计算技术来优化模型的参数。

例如,只使用与任务相关的参数进行训练,而忽略不相关的参数,这样可以减少计算量和时间成本。

3. 推理加速:在LLM推理过程中,可以使用稀疏计算技术来加速模型的推理速度。

例如,只使用与输入相关的参数进行推理,而忽略不相关的参数,这样可以减少推理过程中的计算量和内存占用。

稀疏计算在LLM中的应用可以带来以下优势:
1. 提高计算效率:通过减少计算量和内存占用,稀疏计算可以提高LLM的计算效率,缩短训练和推理时间。

2. 降低硬件要求:通过减少模型的大小和内存占用,稀疏计算可以降低对硬件的要求,例如内存容量和存储空间。

3. 提高模型性能:通过优化模型参数和推理过程,稀疏计算可以提高LLM的性能和准确性。

总之,稀疏计算在LLM中的应用可以提高计算效率、降低硬件要求和提高模型性能。

随着技术的不断发展和应用场景的不断拓展,稀疏计算在LLM领域的应用前景将越来越广阔。

llm模型的运行逻辑

llm模型的运行逻辑

llm模型的运行逻辑LLM模型是一种用于自然语言处理任务的预训练语言模型,其运行逻辑可以简单概括为以下几个步骤:数据预处理、模型训练和推理预测。

LLM模型的运行需要进行数据预处理。

在这个步骤中,原始的文本数据会经过一系列的处理和清洗,包括分词、去除停用词、标注词性等。

这些处理步骤旨在将文本数据转化为机器能够理解和处理的形式,为后续的模型训练和推理做准备。

接下来,经过数据预处理后的文本数据会被用来训练LLM模型。

在模型训练中,LLM模型会通过学习大规模的语料库数据来捕捉词语之间的关联和语义信息。

具体来说,模型会使用Transformer结构将输入的文本数据转化为一系列的向量表示,并通过多层的注意力机制来建模词语之间的依赖关系。

通过多次迭代训练,模型可以逐渐提升对语义信息的理解和表示能力。

在模型训练完成后,LLM模型可以用于推理预测阶段。

在这个阶段,模型会根据输入的文本数据生成相应的预测结果。

具体来说,模型会根据之前学习到的语义信息和上下文关联,对输入文本中的每个词语进行编码,并预测出下一个词语或者判断文本的情感倾向等。

这种基于预训练模型的推理预测可以广泛应用于各种自然语言处理任务,如机器翻译、文本分类、命名实体识别等。

总的来说,LLM模型的运行逻辑包括数据预处理、模型训练和推理预测三个主要步骤。

通过对大规模语料库数据的学习,LLM模型可以建模词语之间的关联和语义信息,从而实现对文本的理解和预测。

这种基于预训练模型的方法已经在自然语言处理领域取得了重要的突破和应用,为各种文本相关任务提供了强大的工具和方法。

随着研究的不断深入,LLM模型的运行逻辑也在不断演化和完善,为我们带来更加精准和高效的自然语言处理能力。

llms训练原理

llms训练原理

llms训练原理
LLMS(迫近最小二乘法)是一种在线性逆滤波中常用的算法,它是将观测数据与滤波器的输出之间的误差最小化来得到一个最佳的滤波器。

它的训练原理可以简单概括为以下几个步骤:
1. 将训练数据集分为输入和目标输出两部分。

输入通常是一组特征值,目标输出则是对应的真实值或标签。

2. 初始化滤波器的权重参数,将输入数据通过滤波器进行计算,得到滤波器的输出值。

3. 计算滤波器输出值与目标输出之间的误差,根据误差调整滤波器的权重参数。

这里使用的是迭代更新的方式,即每次训练通过更新滤波器的权重参数来减小误差。

4. 重复步骤2和步骤3,直到滤波器输出的误差达到一个可接
受的范围,或者达到最大迭代次数停止训练。

LLMS算法在处理复杂的非线性问题时效果并不理想,因为它
只能处理线性关系。

因此,在实际应用中,通常需要使用一些更加复杂的算法,如神经网络等来处理非线性问题。

langchain llm自定义知识库原理

langchain llm自定义知识库原理

langchain llm自定义知识库原理
LLM(Language Model)是一个基于大规模数据训练的神经网络模型,它可以生成类似自然语言的文本。

LLM自定义知识
库原理指的是利用LLM模型来构建一个根据输入问题生成与
该问题相关的答案的知识库。

LLM模型的训练过程通常包括两个步骤:预训练和微调。


预训练阶段,模型会通过大规模的文本数据进行自监督学习,尝试预测下一个词语。

这样的预训练使模型能够学习到词语之间的关联性和上下文信息。

在微调阶段,模型会通过特定的任务来进一步训练和调整。

在LLM自定义知识库的构建中,微调的任务通常是生成答案。

通过将问题和相关答案作为输入,模型可以学习到问题与答案之间的关系,进而生成与问题相关的答案。

在具体应用中,LLM自定义知识库可以通过以下步骤来实现:
1. 收集相关的问题和答案数据,构建一个知识库;
2. 利用收集的数据对LLM模型进行微调,使其能够根据问题
生成相关的答案;
3. 用户提问时,将问题输入到模型,模型根据已学习到的信息生成一个答案;
4. 将生成的答案返回给用户。

通过不断收集和微调数据,可以逐步完善和优化LLM自定义
知识库,使其能够提供更准确和有用的答案。

需要注意的是,LLM模型虽然能够生成类似自然语言的文本,但并不一定能够理解问题的含义和语义。

因此,在构建LLM
自定义知识库时,需要确保模型在微调阶段能够学习到问题与答案之间的对应关系,以提供准确和有用的答案。

同时,还可以结合其他相关的技术和算法来提升LLM自定义知识库的性
能和效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A. Peña-Ayala (Ed.): Intelligent and Adaptive ELS, SIST 17, pp. 77–105. © Springer-Verlag Berlin Heidelberg 2013
78
M. Holzhüter, D. Frosch-Wilke, and U. Klein
Chapter 4
Exploiting Learner Models Using Data Mining for E-Learning: A Rule Based Approach
Marianne Holzhüter1, Dirk Frosch-Wilke1, and Ulrike Klein2
1
University of Applied Sciences, Sokratesplatz 2, 24149 Kiel, Germany {marianne.holzhueter,dirk.frosch-wilke}@fh-kiel.de 2 University of Kiel, Zentrum für Geoinformatione, Boschstraße 1, 24118 Kiel, Germany uklein@gis.uni-kiel.de
Abstract. The need for innovative didactical methods in combination with the efficient deployment of technical systems is an increasing challenge in the research field of e-learning. Research activities concerned with this observation have led to the understanding that the concept of learner models offers a range of possibilities to develop optimized, adaptive e-learning units (e.g. Graf et al. 2009, O’Connor 1998). Process information can enhance these approaches. Data mining is able to build process models from event logs. It means that formation about real process execution can be deduced by extracting information from event logs rather than by assuming a behavior model which has been built by conventional modeling methods. This applies to the e-learning context, because a certain behavior of an underlying process model tracked in a Learning Management System (LMS) may differ from the one assumed by instructors or learning object designers of elearning units. Instructors who need to attribute certain tasks to a huge group of online learners may not be capable of monitoring all factors influencing the appropriateness of all learner-task associations. Learning paths in LMS to which instructors have not paid attention to yet are of considerable interest. We apply a concept of rule based control of e-learning processes based on the framework we have presented in Holzhüter et al. 2010 to demonstrate these goals.
4.1 Introduction
Reflecting learner activities (especially to improve learning efficiency) in LMS gains importance as computer support of educational processes increases. The choice and deployment of LMS is associated with risks. Especially if personalization is necessary, high implementation and maintenance efforts (Dagger 2006) and costs (e.g. Kleimann 2008) can be opposed to lack of user acceptance. Lack of acceptance is often caused by the absence of plausible arguments which convey the advantages for learners, instructors and LMS
4.2 Related Work
As this research project partly is assigned to the geographical department of the University of Kiel, we especially focus on educational technology issues in the geographical field. Klein 2008 conducted a study which suggests that the discrepancy between employed media and the pupil’s interest (in combination with assumed learning effectivity through the media of interest) reduces the quality of geographical teaching. These two phenomena (discrepancy between media and interest and teaching quality issues) further were observed to reinforce each other. Especially schools (the target group of Klein’s study) often lack means to employ media which pupils consider interesting and helpful for learning. E-learning help by supplying simulations, interactive maps or playful test trainings in a structured and efficient way of material presentation is desirable. This is where process mining in combination
platform operators (see e.g. Tynjälä and Häkkinen 2005 for an illustration of the considerable range of challenges concerning e-learning projects). The improvement of e-learning process efficiency provides sound arguments to perceive the benefit potentials for learning and teaching scenarios. The knowledge discovery discipline of data mining has developed to the extent that the extraction of useful information can be applied to several kinds of systems – including e-learning systems (Frias-Martinez 2006, Tynjälä and Häkkinen 2005). Data mining can efficiently support the generation of learner models. They support the adaptation of LMS to individual learner needs (Nguyen and Phung 2008). A particular type of LMS is explicitly dedicated this approach: Adaptive Educational Hypermedia Systems (AEHS). The combination of these methodological and technological advances with findings from Business Process Management entails considerable potentials: It helps to focus on a learning process perspective exceeding the mainly isolated view on datasets which dominates in traditional data mining. Process mining, a specific sub-discipline of data mining, offers a useful set of concepts and tools to follow this learning process optimization and adaptation approach. The chapter is structured by seven sections, partly further structured into subsections. The two next sections provide the terminological and theoretical foundations need to be laid. Sect. 4.4 is divided into two subsections: The first deals with our approach to combine the process mining and the learning style approach – as a method of learner modeling. The second subsection introduces the overall integration approach of rule based control in e-learning. Sect. 4.5 is also split into two subsections: The firstly presents an architecture concept for our approach, ideally based on already existing technology in an institution (subSect. 4.5.1) and the second one deals with a possible implementation scenario based on open source software (subSect. 4.5.2). The second approach is useful for institutions that are in the process of building up a completely new architecture and do not dispose of experience regarding the available technologies.
相关文档
最新文档