03 数系

合集下载

2003年考研数学三真题及全面解析

2003年考研数学三真题及全面解析

2003年全国硕士入学统考数学(三)试题及答案一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)设,0,0,0,1cos )(=≠⎪⎩⎪⎨⎧=x x xx x f 若若λ其导函数在x=0处连续,则λ的取值范围是2>λ. 【分析】 当≠x 0可直接按公式求导,当x=0时要求用定义求导.【详解】 当1>λ时,有,0,0,0,1sin 1cos )(21=≠⎪⎩⎪⎨⎧+='--x x xx x x x f 若若λλλ 显然当2>λ时,有)0(0)(lim 0f x f x '=='→,即其导函数在x=0处连续.(2)已知曲线b x a x y +-=233与x 轴相切,则2b 可以通过a 表示为=2b 64a .【分析】 曲线在切点的斜率为0,即0='y ,由此可确定切点的坐标应满足的条件,再根据在切点处纵坐标为零,即可找到2b 与a 的关系.【详解】 由题设,在切点处有03322=-='a x y ,有 .220a x =又在此点y 坐标为0,于是有0300230=+-=b x a x ,故 .44)3(6422202202a a a x a x b =⋅=-=(3)设a>0,,x a x g x f 其他若,10,0,)()(≤≤⎩⎨⎧==而D 表示全平面,则⎰⎰-=Ddxdy x y g x f I )()(= 2a .【分析】 本题积分区域为全平面,但只有当10,10≤-≤≤≤x y x 时,被积函数才不为零,因此实际上只需在满足此不等式的区域内积分即可.【详解】 ⎰⎰-=D dxdy x y g x f I )()(=dxdy a x y x ⎰⎰≤-≤≤≤10,102=.])1[(2102112a dx x x a dy dx ax x=-+=⎰⎰⎰+(4)设n 维向量0,),0,,0,(<=a a a Tα;E 为n 阶单位矩阵,矩阵TE A αα-=, T aE B αα1+=, 其中A 的逆矩阵为B ,则a= -1 .【分析】 这里Tαα为n 阶矩阵,而22a T=αα为数,直接通过E AB =进行计算并注意利用乘法的结合律即可.【详解】 由题设,有)1)((T Ta E E AB αααα+-= =TT T T a a E αααααααα⋅-+-11=TT T T a a E αααααααα)(11-+-=TT T a a E αααααα21-+-=E aa E T=+--+αα)121(,于是有 0121=+--a a ,即 0122=-+a a ,解得 .1,21-==a a 由于A<0 ,故a=-1.(5)设随机变量X 和Y 的相关系数为0.9, 若4.0-=X Z ,则Y 与Z 的相关系数为0.9 .【分析】 利用相关系数的计算公式即可. 【详解】 因为)4.0()()]4.0([()4.0,cov(),cov(---=-=X E Y E X Y E X Y Z Y =)(4.0)()()(4.0)(Y E X E Y E Y E XY E +-- =E(XY) – E(X)E(Y)=cov(X,Y), 且.DX DZ =于是有 cov(Y ,Z)=DZDY Z Y ),cov(=.9.0),cov(==XY DYDXY X ρ(6)设总体X 服从参数为2的指数分布,n X X X ,,,21 为来自总体X 的简单随机样本,则当∞→n 时,∑==n i i n X n Y 121依概率收敛于 21.【分析】 本题考查大数定律:一组相互独立且具有有限期望与方差的随机变量n X X X ,,,21 ,当方差一致有界时,其算术平均值依概率收敛于其数学期望的算术平均值:).(1111∞→→∑∑==n EX n X n ni i pn i i【详解】 这里22221,,,n X X X 满足大数定律的条件,且22)(i i i EX DX EX +==21)21(412=+,因此根据大数定律有 ∑==n i i n X n Y 121依概率收敛于.21112=∑=n i i EX n二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设f(x)为不恒等于零的奇函数,且)0(f '存在,则函数xx f x g )()(=(A) 在x=0处左极限不存在. (B) 有跳跃间断点x=0.(C) 在x=0处右极限不存在. (D) 有可去间断点x=0. [ D ] 【分析】 由题设,可推出f(0)=0 , 再利用在点x=0处的导数定义进行讨论即可. 【详解】 显然x=0为g(x)的间断点,且由f(x)为不恒等于零的奇函数知,f(0)=0. 于是有 )0(0)0()(lim )(lim)(lim 00f x f x f x x f xg x x x '=--==→→→存在,故x=0为可去间断点.(2)设可微函数f(x,y)在点),(00y x 取得极小值,则下列结论正确的是(A) ),(0y x f 在0y y =处的导数等于零. (B )),(0y x f 在0y y =处的导数大于零. (C) ),(0y x f 在0y y =处的导数小于零. (D) ),(0y x f 在0y y =处的导数不存在. [ A ]【分析】 可微必有偏导数存在,再根据取极值的必要条件即可得结论.【详解】 可微函数f(x,y)在点),(00y x 取得极小值,根据取极值的必要条件知0),(00='y x f y ,即),(0y x f 在0y y =处的导数等于零, 故应选(A).(3)设2nn n a a p +=,2nn n a a q -=, ,2,1=n ,则下列命题正确的是(A) 若∑∞=1n na条件收敛,则∑∞=1n np与∑∞=1n nq都收敛.(B) 若∑∞=1n na绝对收敛,则∑∞=1n np与∑∞=1n nq都收敛.(C) 若∑∞=1n na条件收敛,则∑∞=1n np与∑∞=1n nq敛散性都不定.(D) 若∑∞=1n na绝对收敛,则∑∞=1n np与∑∞=1n nq敛散性都不定. [ B ]【分析】 根据绝对收敛与条件收敛的关系以及收敛级数的运算性质即可找出答案. 【详解】 若∑∞=1n na绝对收敛,即∑∞=1n na收敛,当然也有级数∑∞=1n na收敛,再根据2nn n a a p +=,2nn n a a q -=及收敛级数的运算性质知,∑∞=1n np与∑∞=1n nq都收敛,故应选(B).(4)设三阶矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a b b b a b b b a A ,若A 的伴随矩阵的秩为1,则必有 (A) a=b 或a+2b=0. (B) a=b 或a+2b ≠0.(C) a ≠b 且a+2b=0. (D) a ≠b 且a+2b ≠0. [ C ] 【分析】 A 的伴随矩阵的秩为1, 说明A 的秩为2,由此可确定a,b 应满足的条件. 【详解】 根据A 与其伴随矩阵A*秩之间的关系知,秩(A)=2,故有0))(2(2=-+=b a b a ab b b a bbb a ,即有02=+b a 或a=b.但当a=b 时,显然秩(A)2≠, 故必有 a ≠b 且a+2b=0. 应选(C).(5)设s ααα,,,21 均为n 维向量,下列结论不正确的是(A) 若对于任意一组不全为零的数s k k k ,,,21 ,都有02211≠+++s s k k k ααα ,则s ααα,,,21 线性无关.(B) 若s ααα,,,21 线性相关,则对于任意一组不全为零的数s k k k ,,,21 ,都有.02211=+++s s k k k ααα(C) s ααα,,,21 线性无关的充分必要条件是此向量组的秩为s.(D) s ααα,,,21 线性无关的必要条件是其中任意两个向量线性无关. [ B ] 【分析】 本题涉及到线性相关、线性无关概念的理解,以及线性相关、线性无关的等价表现形式. 应注意是寻找不正确的命题.【详解】(A): 若对于任意一组不全为零的数s k k k ,,,21 ,都有02211≠+++s s k k k ααα ,则s ααα,,,21 必线性无关,因为若s ααα,,,21 线性相关,则存在一组不全为零的数s k k k ,,,21 ,使得 02211=+++s s k k k ααα ,矛盾. 可见(A )成立.(B): 若s ααα,,,21 线性相关,则存在一组,而不是对任意一组不全为零的数s k k k ,,,21 ,都有.02211=+++s s k k k ααα (B)不成立.(C) s ααα,,,21 线性无关,则此向量组的秩为s ;反过来,若向量组s ααα,,,21 的秩为s ,则s ααα,,,21 线性无关,因此(C)成立.(D) s ααα,,,21 线性无关,则其任一部分组线性无关,当然其中任意两个向量线性无关,可见(D)也成立.综上所述,应选(B).(6)将一枚硬币独立地掷两次,引进事件:1A ={掷第一次出现正面},2A ={掷第二次出现正面},3A ={正、反面各出现一次},4A ={正面出现两次},则事件(A) 321,,A A A 相互独立. (B) 432,,A A A 相互独立.(C) 321,,A A A 两两独立. (D) 432,,A A A 两两独立. [ C ] 【分析】按照相互独立与两两独立的定义进行验算即可,注意应先检查两两独立,若成立,再检验是否相互独立.【详解】 因为21)(1=A P ,21)(2=A P ,21)(3=A P ,41)(4=A P , 且 41)(21=A A P ,41)(31=A A P ,41)(32=A A P ,41)(42=A A P 0)(321=A A A P ,可见有)()()(2121A P A P A A P =,)()()(3131A P A P A A P =,)()()(3232A P A P A A P =, )()()()(321321A P A P A P A A A P ≠,)()()(4242A P A P A A P ≠.故321,,A A A 两两独立但不相互独立;432,,A A A 不两两独立更不相互独立,应选(C).三 、(本题满分8分)设).1,21[,)1(1sin 11)(∈--+=x x x x x f πππ 试补充定义f(1)使得f(x)在]1,21[上连续.【分析】 只需求出极限)(lim 1x f x -→,然后定义f(1)为此极限值即可.【详解】 因为)(lim 1x f x -→=])1(1sin 11[lim 1x x x x --+-→πππ =xx xx x πππππsin )1(sin )1(lim 111---+-→=xx x xx ππππππππcos )1(sin cos lim 111-+---+-→=xx x x xx ππππππππππsin )1(cos cos sin lim 11221----+-→=.1π由于f(x)在)1,21[上连续,因此定义π1)1(=f ,使f(x)在]1,21[上连续.四 、(本题满分8分)设f(u,v)具有二阶连续偏导数,且满足12222=∂∂+∂∂v f u f ,又)](21,[),(22y x xy f y x g -=,求.2222ygx g ∂∂+∂∂ 【分析】 本题是典型的复合函数求偏导问题:),(v u f g =,)(21,22y x v xy u -==,直接利用复合函数求偏导公式即可,注意利用.22uv fv u f ∂∂∂=∂∂∂ 【详解】vf x u f y xg ∂∂+∂∂=∂∂, .vf y u f x yg ∂∂-∂∂=∂∂ 故 vf v f x v u f xy u f y xg ∂∂+∂∂+∂∂∂+∂∂=∂∂2222222222,.2222222222v f vf y u v f xy u f x yg ∂∂-∂∂+∂∂∂-∂∂=∂∂ 所以 222222222222)()(vf y x u f y x yg x g ∂∂++∂∂+=∂∂+∂∂ =.22y x +五 、(本题满分8分) 计算二重积分 .)sin(22)(22dxdy y x e I Dy x +=⎰⎰-+-π其中积分区域D=}.),{(22π≤+y x y x【分析】 从被积函数与积分区域可以看出,应该利用极坐标进行计算. 【详解】 作极坐标变换:θθsin ,cos r y r x ==,有 dxdy y x e e I Dy x )sin(22)(22+=⎰⎰+-π=.sin 2022dr r re d e r ⎰⎰-πππθ令2r t =,则 tdt e e I t sin 0⎰-=πππ.记 tdt e A t sin 0⎰-=π,则t t de e A --⎰-=int 0π=]cos sin [0⎰----ππtdt e t e t t=⎰--πcos t tde=]sin cos [0tdt e t e t t⎰--+-ππ=.1A e -+-π因此 )1(21π-+=e A , ).1(2)1(2πππππe e e I +=+=-六、(本题满分9分)求幂级数∑∞=<-+12)1(2)1(1n nnx n x 的和函数f(x)及其极值. 【分析】 先通过逐项求导后求和,再积分即可得和函数,注意当x=0时和为1. 求出和函数后,再按通常方法求极值.【详解】.1)1()(1212∑∞=-+-=-='n n n xxx x f 上式两边从0到x 积分,得).1ln(211)0()(202x dt t t f x f x+-=+-=-⎰ 由f(0)=1, 得).1(),1ln(211)(2<+-=x x x f 令0)(='x f ,求得唯一驻点x=0. 由于,)1(1)(222x x x f +--='' 01)0(<-=''f ,可见f(x)在x=0处取得极大值,且极大值为 f(0)=1.七、(本题满分9分)设F(x)=f(x)g(x), 其中函数f(x),g(x)在),(+∞-∞内满足以下条件: )()(x g x f =',)()(x f x g =',且f(0)=0, .2)()(xe x g xf =+(1) 求F(x)所满足的一阶微分方程; (2) 求出F(x)的表达式.【分析】 F(x)所满足的微分方程自然应含有其导函数,提示应先对F(x)求导,并将其余部分转化为用F(x)表示,导出相应的微分方程,然后再求解相应的微分方程.【详解】 (1) 由)()()()()(x g x f x g x f x F '+'=' =)()(22x f x g +=)()(2)]()([2x g x f x g x f -+ =(22)x e -2F(x), 可见F(x)所满足的一阶微分方程为.4)(2)(2x e x F x F =+'(2) ]4[)(222C dx e e e x F dx xdx +⎰⋅⎰=⎰-=]4[42C dx e e x x +⎰-=.22x xCe e-+将F(0)=f(0)g(0)=0代入上式,得 C=-1. 于是.)(22x xe e x F --=八、(本题满分8分)设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3, f(3)=1.试证必存在)3,0(∈ξ,使.0)(='ξf【分析】 根据罗尔定理,只需再证明存在一点c )3,0[∈,使得)3(1)(f c f ==,然后在[c,3]上应用罗尔定理即可. 条件f(0)+f(1)+f(2)=3等价于13)2()1()0(=++f f f ,问题转化为1介于f(x)的最值之间,最终用介值定理可以达到目的.【详解】 因为f(x)在[0,3]上连续,所以f(x)在[0,2]上连续,且在[0,2]上必有最大值M 和最小值m ,于是M f m ≤≤)0(, M f m ≤≤)1(, M f m ≤≤)2(. 故.3)2()1()0(M f f f m ≤++≤由介值定理知,至少存在一点]2,0[∈c ,使.13)2()1()0()(=++=f f f c f因为f(c)=1=f(3), 且f(x)在[c,3]上连续,在(c,3)内可导,所以由罗尔定理知,必存在)3,0()3,(⊂∈c ξ,使.0)(='ξf九、(本题满分13分) 已知齐次线性方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=+++++=+++++=+++++=+++++,0)(,0)(,0)(,0)(332211332211332211332211nn nn n n n n x b a x a x a x a x a x b a x a x a x a x a x b a x a x a x a x a x b a 其中.01≠∑=ni ia试讨论n a a a ,,,21 和b 满足何种关系时,(1) 方程组仅有零解;(2) 方程组有非零解. 在有非零解时,求此方程组的一个基础解系.【分析】方程的个数与未知量的个数相同,问题转化为系数矩阵行列式是否为零,而系数行列式的计算具有明显的特征:所有列对应元素相加后相等. 可先将所有列对应元素相加,然后提出公因式,再将第一行的(-1)倍加到其余各行,即可计算出行列式的值.【详解】 方程组的系数行列式ba a a a a ba a a a ab a a a a a b a A n n n n++++= 321321321321 =).(11∑=-+ni i n a b b(1) 当0≠b 时且01≠+∑=ni iab 时,秩(A)=n ,方程组仅有零解.(2) 当b=0 时,原方程组的同解方程组为 .02211=+++n n x a x a x a 由01≠∑=ni ia可知,),,2,1(n i a i =不全为零. 不妨设01≠a ,得原方程组的一个基础解系为T a a )0,,0,1,(121 -=α,T a a )0,,1,0,(132 -=α,.)1,,0,0,(,1T n n a a -=α 当∑=-=ni iab 1时,有0≠b ,原方程组的系数矩阵可化为⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡----∑∑∑∑====n i i n nni inni inni ia a a a a a a a a a a a a a a a a a a a 1321132131213211(将第1行的-1倍加到其余各行,再从第2行到第n 行同乘以∑=-ni ia11倍)→ ⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡----∑=1001010100113211 n ni ia a a a a( 将第n 行n a -倍到第2行的2a -倍加到第1行,再将第1行移到最后一行)→.0000100101010011⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---由此得原方程组的同解方程组为12x x =,13x x =,1,x x n = . 原方程组的一个基础解系为 .)1,,1,1(T=α十、(本题满分13分)设二次型)0(222),,(31232221321>+-+==b x bx x x ax AX X x x x f T ,中二次型的矩阵A 的特征值之和为1,特征值之积为-12. (1) 求a,b 的值;(2) 利用正交变换将二次型f 化为标准形,并写出所用的正交变换和对应的正交矩阵. 【分析】 特征值之和为A 的主对角线上元素之和,特征值之积为A 的行列式,由此可求出a,b 的值;进一步求出A 的特征值和特征向量,并将相同特征值的特征向量正交化(若有必要),然后将特征向量单位化并以此为列所构造的矩阵即为所求的正交矩阵.【详解】 (1)二次型f 的矩阵为.200200⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=b b a A 设A 的特征值为).3,2,1(=i i λ 由题设,有1)2(2321=-++=++a λλλ,.12242002002321-=--=-=b a b ba λλλ解得 a=1,b= -2.(2) 由矩阵A 的特征多项式)3()2(22202012+-=+----=-λλλλλλA E ,得A 的特征值.3,2321-===λλλ对于,221==λλ解齐次线性方程组0)2(=-x A E ,得其基础解系 T )1,0,2(1=ξ,.)0,1,0(2T=ξ对于33-=λ,解齐次线性方程组0)3(=--x A E ,得基础解系.)2,0,1(3T-=ξ由于321,,ξξξ已是正交向量组,为了得到规范正交向量组,只需将321,,ξξξ单位化,由此得T )51,0,52(1=η,T )0,1,0(2=η,.)52,0,51(3T -=η令矩阵[]⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-==5205101051052321ηηηQ ,则Q 为正交矩阵. 在正交变换X=QY 下,有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=300020002AQ Q T ,且二次型的标准形为.322232221y y y f -+=十一、(本题满分13分) 设随机变量X 的概率密度为;],8,1[,0,31)(32其他若∈⎪⎩⎪⎨⎧=x x x fF(x)是X 的分布函数. 求随机变量Y=F(X)的分布函数.【分析】 先求出分布函数F(x) 的具体形式,从而可确定Y=F(X) ,然后按定义求Y 的分布函数即可。

2003年数一真题、标准答案及解析(超强版)

2003年数一真题、标准答案及解析(超强版)

2003年全国硕士研究生入学统一考试数学一真题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1) )1ln(12)(cos lim x x x +→ = .(2) 曲面22y x z +=与平面042=-+z y x 平行的切平面的方程是 . (3) 设)(cos 02ππ≤≤-=∑∞=x nx ax n n,则2a = .(4)从2R 的基⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛=11,0121αα到基⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=21,1121ββ的过渡矩阵为 .(5)设二维随机变量(X,Y)的概率密度为,y x x y x f 其他,10,0,6),(≤≤≤⎩⎨⎧=则=≤+}1{Y X P .(6)已知一批零件的长度X (单位:cm)服从正态分布)1,(μN ,从中随机地抽取16个零件,得到长度的平均值为40 (cm),则μ的置信度为0.95的置信区间是 .(注:标准正态分布函数值.)95.0)645.1(,975.0)96.1(=Φ=Φ 二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设函数f(x)在),(+∞-∞内连续,其导函数的图形如图所示,则f(x)有(A) 一个极小值点和两个极大值点. (B) 两个极小值点和一个极大值点. (C) 两个极小值点和两个极大值点.(D)[ ](2)设}{},{},{n n n c b a 均为非负数列,且0lim =∞→n n a ,1lim =∞→n n b ,∞=∞→n n c lim ,则必有(A) n n b a <对任意n 成立. (B) n n c b <对任意n 成立.(C) 极限n n n c a ∞→lim 不存在. (D) 极限n n n c b ∞→lim 不存在. [ ](3)已知函数f(x,y)在点(0,0)的某个邻域内连续,且1)(),(lim2220,0=+-→→y x xyy x f y x ,则 (A) 点(0,0)不是f(x,y)的极值点. (B) 点(0,0)是f(x,y)的极大值点. (C) 点(0,0)是f(x,y)的极小值点.(D) 根据所给条件无法判断点(0,0)是否为f(x,y)的极值点. [ ] (4)设向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,则(A) 当s r <时,向量组II 必线性相关. (B) 当s r >时,向量组II 必线性相关. (C) 当s r <时,向量组I 必线性相关. (D) 当s r >时,向量组I 必线性相关.[ ](5)设有齐次线性方程组Ax=0和Bx=0, 其中A,B 均为n m ⨯矩阵,现有4个命题: ① 若Ax=0的解均是Bx=0的解,则秩(A)≥秩(B); ② 若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解; ③ 若Ax=0与Bx=0同解,则秩(A)=秩(B); ④ 若秩(A)=秩(B), 则Ax=0与Bx=0同解. 以上命题中正确的是(A) ① ②. (B) ① ③.(C) ② ④. (D) ③ ④. [ ] (6)设随机变量21),1)((~X Y n n t X =>,则 (A) )(~2n Y χ. (B) )1(~2-n Y χ.(C) )1,(~n F Y . (D) ),1(~n F Y . [ ] 三、(本题满分10分)过坐标原点作曲线y=lnx 的切线,该切线与曲线y=lnx 及x 轴围成平面图形D. (1) 求D 的面积A;(2) 求D 绕直线x=e 旋转一周所得旋转体的体积V. 四、(本题满分12分)将函数x x x f 2121arctan )(+-=展开成x 的幂级数,并求级数∑∞=+-012)1(n nn 的和.五 、(本题满分10分)已知平面区域}0,0),{(ππ≤≤≤≤=y x y x D ,L 为D 的正向边界. 试证: (1) dx ye dy xe dx ye dy xex Ly x L ysin sin sin sin -=-⎰⎰--;(2).22sin sin π≥--⎰dx ye dy xe x Ly 六 、(本题满分10分)某建筑工程打地基时,需用汽锤将桩打进土层. 汽锤每次击打,都将克服土层对桩的阻力而作功. 设土层对桩的阻力的大小与桩被打进地下的深度成正比(比例系数为k,k>0).汽锤第一次击打将桩打进地下a m. 根据设计方案,要求汽锤每次击打桩时所作的功与前一次击打时所作的功之比为常数r(0<r<1). 问(1) 汽锤击打桩3次后,可将桩打进地下多深?(2) 若击打次数不限,汽锤至多能将桩打进地下多深? (注:m 表示长度单位米.) 七 、(本题满分12分)设函数y=y(x)在),(+∞-∞内具有二阶导数,且)(,0y x x y =≠'是y=y(x)的反函数.(1) 试将x=x(y)所满足的微分方程0))(sin (322=++dy dx x y dyx d 变换为y=y(x)满足的微分方程;(2) 求变换后的微分方程满足初始条件23)0(,0)0(='=y y 的解. 八 、(本题满分12分)设函数f(x)连续且恒大于零,⎰⎰⎰⎰⎰+++=Ω)(22)(222)()()(t D t d y xf dvz y xf t F σ,⎰⎰⎰-+=t t D dxx f d y x f t G 12)(22)()()(σ,其中}),,{()(2222t z y x z y x t ≤++=Ω,}.),{()(222t y x y x t D ≤+=(1) 讨论F(t)在区间),0(+∞内的单调性. (2) 证明当t>0时,).(2)(t G t F π>九 、(本题满分10分)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=322232223A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100101010P ,P A P B *1-=,求B+2E 的特征值与特征向量,其中*A 为A 的伴随矩阵,E 为3阶单位矩阵.十 、(本题满分8分)已知平面上三条不同直线的方程分别为 :1l 032=++c by ax , :2l 032=++a cy bx , :3l 032=++b ay cx .试证这三条直线交于一点的充分必要条件为.0=++c b a十一 、(本题满分10分)已知甲、乙两箱中装有同种产品,其中甲箱中装有3件合格品和3件次品,乙箱中仅装有3件合格品. 从甲箱中任取3件产品放入乙箱后,求:(1) 乙箱中次品件数的数学期望;(2) 从乙箱中任取一件产品是次品的概率. 十二 、(本题满分8分) 设总体X 的概率密度为⎩⎨⎧≤>=--,,,0,2)()(2θθθx x e x f x其中0>θ是未知参数. 从总体X 中抽取简单随机样本n X X X ,,,21 ,记).,,,min(ˆ21nX X X =θ (1) 求总体X 的分布函数F(x); (2) 求统计量θˆ的分布函数)(ˆx F θ;(3) 如果用θˆ作为θ的估计量,讨论它是否具有无偏性.2003年考研数学一真题评注一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1) )1ln(12)(cos lim x x x +→ =e1.【分析】 ∞1型未定式,化为指数函数或利用公式)()(lim x g x f )1(∞=)()1)(lim(x g x f e -进行计算求极限均可.【详解1】 )1ln(12)(cos lim x x x +→=xx x ecos ln )1ln(1lim20+→,而 212cos sin lim cos ln lim )1ln(cos ln lim 02020-=-==+→→→x x xx x x x x x x ,故原式=.121ee =- 【详解2】 因为 2121lim )1ln(1)1(cos lim 2202-=-=+⋅-→→x xx x x x , 所以原式=.121ee=-(2) 曲面22y x z +=与平面042=-+z y x 平行的切平面的方程是542=-+z y x .【分析】 待求平面的法矢量为}1,4,2{-=n,因此只需确定切点坐标即可求出平面方程, 而切点坐标可根据曲面22y x z +=切平面的法矢量与}1,4,2{-=n平行确定.【详解】 令 22),,(y x z z y x F --=,则x F x 2-=',y F y 2-=', 1='z F .设切点坐标为),,(000z y x ,则切平面的法矢量为 }1,2,2{00y x --,其与已知平面042=-+z y x 平行,因此有11422200-=-=-y x , 可解得 2,100==y x ,相应地有 .520200=+=y x z 故所求的切平面方程为0)5()2(4)1(2=---+-z y x ,即 542=-+z y x .(3) 设)(cos 02ππ≤≤-=∑∞=x nx ax n n,则2a = 1 .【分析】将)()(2ππ≤≤-=x x x f 展开为余弦级数)(cos 02ππ≤≤-=∑∞=x nx a x n n ,其系数计算公式为⎰=ππcos )(2nxdx x f a n .【详解】 根据余弦级数的定义,有 x d x xdx x a 2sin 12cos 22022⎰⎰=⋅=ππππ=⎰⋅-πππ2]22sin 2sin [1xdx x xx=⎰⎰-=πππππ]2cos 2cos [12cos 1xdx xx x xd=1.【评注】 本题属基本题型,主要考查傅里叶级数的展开公式,本质上转化为定积分的计算.(4)从2R 的基⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛=11,0121αα到基⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=21,1121ββ的过渡矩阵为⎪⎪⎭⎫ ⎝⎛--2132. 【分析】 n 维向量空间中,从基n ααα,,,21 到基n βββ,,,21 的过渡矩阵P 满足 [n βββ,,,21 ]=[nααα,,,21 ]P ,因此过渡矩阵P 为:P=[121],,,-n ααα [],,,21n βββ .【详解】根据定义,从2R 的基⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛=11,0121αα到基⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=21,1121ββ的过渡矩阵为P=[121],-αα[⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-=-21111011],121ββ.=.213221111011⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-(5)设二维随机变量(X,Y)的概率密度为,y x x y x f 其他,10,0,6),(≤≤≤⎩⎨⎧=则=≤+}1{Y X P41 . 【分析】 已知二维随机变量(X,Y)的概率密度f(x,y),求满足一定条件的概率}),({0z Y X g P ≤,一般可转化为二重积分}),({0z Y X g P ≤=⎰⎰≤0),(),(z y x g dxdy y x f 进行计算.【详解】 由题设,有 =≤+}1{Y X P ⎰⎰⎰⎰≤+-=121016),(y x xxxdy dx dxdy y x f=.41)126(2102=-⎰dx x x【评注】 本题属基本题型,但在计算二重积分时,应注意找出概率密度不为零与满足不等式1≤+y x 的公共部分D ,再在其上积分即可.(6)已知一批零件的长度X (单位:cm)服从正态分布)1,(μN ,从中随机地抽取16个零件,得到长度的平均值为40 (cm),则μ的置信度为0.95的置信区间是)49.40,51.39( . (注:标准正态分布函数值.)95.0)645.1(,975.0)96.1(=Φ=Φ 【分析】 已知方差12=σ,对正态总体的数学期望μ进行估计,可根据)1,0(~1N n X μ-,由αμα-=<-1}1{2u nX P 确定临界值2αu ,进而确定相应的置信区间. 【详解】 由题设,95.01=-α,可见.05.0=α 于是查标准正态分布表知.96.12=αu本题n=16, 40=x , 因此,根据 95.0}96.11{=<-nX P μ,有 95.0}96.116140{=<-μP ,即 95.0}49.40,51.39{=P ,故μ的置信度为0.95的置信区间是)49.40,51.39( .二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设函数f(x)在),(+∞-∞内连续,其导函数的图形如图所示,则f(x)有(D) 一个极小值点和两个极大值点. (E) 两个极小值点和一个极大值点. (F) 两个极小值点和两个极大值点. (D) 三个极小值点和一个极大值点. [ C ]【分析】 答案与极值点个数有关,而可能的极值点应是导数为零或导数不存在的点,共4个,是极大值点还是极小值可进一步由取极值的第一或第二充分条件判定.【详解】 根据导函数的图形可知,一阶导数为零的点有3个,而 x=0 则是导数不存在的点. 三个一阶导数为零的点左右两侧导数符号不一致,必为极值点,且两个极小值点,一个极大值点;在x=0左侧一阶导数为正,右侧一阶导数为负,可见x=0为极大值点,故f(x)共有两个极小值点和两个极大值点,应选(C).【评注】 本题属新题型,类似考题2001年数学一、二中曾出现过,当时考查的是已知f(x)的图象去推导)(x f '的图象,本题是其逆问题.(2)设}{},{},{n n n c b a 均为非负数列,且0lim =∞→n n a ,1lim =∞→n n b ,∞=∞→n n c lim ,则必有(A) n n b a <对任意n 成立. (B) n n c b <对任意n 成立.(C) 极限n n n c a ∞→lim 不存在. (D) 极限n n n c b ∞→lim 不存在. [ D ]【分析】 本题考查极限概念,极限值与数列前面有限项的大小无关,可立即排除(A),(B); 而极限n n n c a ∞→lim 是∞⋅0型未定式,可能存在也可能不存在,举反例说明即可;极限n n n c b ∞→lim 属∞⋅1型,必为无穷大量,即不存在.【详解】 用举反例法,取n a n 2=,1=n b ,),2,1(21==n n c n ,则可立即排除(A),(B),(C),因此正确选项为(D).【评注】 对于不便直接证明的问题,经常可考虑用反例,通过排除法找到正确选项.(3)已知函数f(x,y)在点(0,0)的某个邻域内连续,且1)(),(lim2220,0=+-→→y x xyy x f y x ,则 (A) 点(0,0)不是f(x,y)的极值点. (B) 点(0,0)是f(x,y)的极大值点. (C) 点(0,0)是f(x,y)的极小值点.(D) 根据所给条件无法判断点(0,0)是否为f(x,y)的极值点. [ A ] 【分析】 由题设,容易推知f(0,0)=0,因此点(0,0)是否为f(x,y)的极值,关键看在点(0,0)的充分小的邻域内f(x,y)是恒大于零、恒小于零还是变号.【详解】 由1)(),(lim2220,0=+-→→y x xyy x f y x 知,分子的极限必为零,从而有f(0,0)=0, 且 222)(),(y x xy y x f +≈- y x ,(充分小时),于是 .)()0,0(),(222y x xy f y x f ++≈-可见当y=x 且x 充分小时,04)0,0(),(42>+≈-x x f y x f ;而当y= -x 且x 充分小时,04)0,0(),(42<+-≈-x x f y x f . 故点(0,0)不是f(x,y)的极值点,应选(A).【评注】 本题综合考查了多元函数的极限、连续和多元函数的极值概念,题型比较新,有一定难度. 将极限表示式转化为极限值加无穷小量,是有关极限分析过程中常用的思想.(4)设向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,则 (A) 当s r <时,向量组II 必线性相关. (B) 当s r >时,向量组II 必线性相关. (C) 当s r <时,向量组I 必线性相关. (D) 当s r >时,向量组I 必线性相关. [ D ]【分析】 本题为一般教材上均有的比较两组向量个数的定理:若向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,则当s r >时,向量组I 必线性相关.或其逆否命题:若向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,且向量组I 线性无关,则必有s r ≤. 可见正确选项为(D). 本题也可通过举反例用排除法找到答案.【详解】 用排除法:如⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=10,01,00211ββα,则21100ββα⋅+⋅=,但21,ββ线性无关,排除(A);⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=01,01,00121βαα,则21,αα可由1β线性表示,但1β线性无关,排除(B);⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=10,01,01211ββα,1α可由21,ββ线性表示,但1α线性无关,排除(C). 故正确选项为(D).【评注】 本题将一已知定理改造成选择题,如果考生熟知此定理应该可直接找到答案,若记不清楚,也可通过构造适当的反例找到正确选项.(5)设有齐次线性方程组Ax=0和Bx=0, 其中A,B 均为n m ⨯矩阵,现有4个命题: ① 若Ax=0的解均是Bx=0的解,则秩(A)≥秩(B); ② 若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解; ③ 若Ax=0与Bx=0同解,则秩(A)=秩(B); ④ 若秩(A)=秩(B), 则Ax=0与Bx=0同解. 以上命题中正确的是(A) ① ②. (B) ① ③.(C) ② ④. (D) ③ ④. [ B ] 【分析】 本题也可找反例用排除法进行分析,但① ②两个命题的反例比较复杂一些,关键是抓住③ 与 ④,迅速排除不正确的选项.【详解】 若Ax=0与Bx=0同解,则n-秩(A)=n - 秩(B), 即秩(A)=秩(B),命题③成立,可排除(A),(C);但反过来,若秩(A)=秩(B), 则不能推出Ax=0与Bx=0同解,如⎥⎦⎤⎢⎣⎡=0001A ,⎥⎦⎤⎢⎣⎡=1000B ,则秩(A)=秩(B)=1,但Ax=0与Bx=0不同解,可见命题④不成立,排除(D),故正确选项为(B).【例】 齐次线性方程组Ax=0与Bx=0同解的充要条件(A) r(A)=r(B). (B) A,B 为相似矩阵.(C) A, B 的行向量组等价. (D) A,B 的列向量组等价. [ C ] 有此例题为基础,相信考生能迅速找到答案.(6)设随机变量21),1)((~X Y n n t X =>,则 (A) )(~2n Y χ. (B) )1(~2-n Y χ.(C) )1,(~n F Y . (D) ),1(~n F Y . [ C ] 【分析】 先由t 分布的定义知nV U X =,其中)(~),1,0(~2n V N U χ,再将其代入21XY =,然后利用F 分布的定义即可. 【详解】 由题设知,nV U X =,其中)(~),1,0(~2n V N U χ,于是21X Y ==122U n V U n V =,这里)1(~22χU ,根据F 分布的定义知).1,(~12n F XY =故应选(C).【评注】 本题综合考查了t 分布、2χ分布和F 分布的概念,要求熟练掌握此三类常用统计量分布的定义.三 、(本题满分10分)过坐标原点作曲线y=lnx 的切线,该切线与曲线y=lnx 及x 轴围成平面图形D. (3) 求D 的面积A;(4) 求D 绕直线x=e 旋转一周所得旋转体的体积V.【分析】 先求出切点坐标及切线方程,再用定积分求面积A; 旋转体体积可用一大立体(圆锥)体积减去一小立体体积进行计算,为了帮助理解,可画一草图.【详解】 (1) 设切点的横坐标为0x ,则曲线y=lnx 在点)ln ,(00x x 处的切线方程是 ).(1ln 000x x x x y -+= 由该切线过原点知 01ln 0=-x ,从而.0e x = 所以该切线的方程为 .1x ey = 平面图形D 的面积 ⎰-=-=1.121)(e dy ey e A y (2) 切线x e y 1=与x 轴及直线x=e 所围成的三角形绕直线x=e 旋转所得的圆锥体积为 .3121e V π=曲线y=lnx 与x 轴及直线x=e 所围成的图形绕直线x=e 旋转所得的旋转体体积为 dy e e V y 2102)(⎰-=π, 因此所求旋转体的体积为).3125(6)(312102221+-=--=-=⎰e e dy e e e V V V y πππ【评注】 . 也可考虑用微元法分析.四 、(本题满分12分)将函数x x x f 2121arctan )(+-=展开成x 的幂级数,并求级数∑∞=+-012)1(n nn 的和.【分析】 幂级数展开有直接法与间接法,一般考查间接法展开,即通过适当的恒等变形、求导或积分等,转化为可利用已知幂级数展开的情形.本题可先求导,再利用函数x-11的幂级数展开 +++++=-n x x x x2111即可,然后取x 为某特殊值,得所求级数的和.【详解】 因为).21,21(,4)1(2412)(202-∈--=+-='∑∞=x x x x f nn n n 又f(0)=4π, 所以 dt t dt t f f x f n n xxn n ]4)1([24)()0()(20⎰⎰∑∞=--='+=π=).21,21(,124)1(24120-∈+--+∞=∑x x n n n n n π因为级数∑∞=+-012)1(n nn 收敛,函数f(x)在21=x 处连续,所以].21,21(,124)1(24)(120-∈+--=+∞=∑x x n x f n n n n π令21=x ,得 ∑∑∞=+∞=+--=⋅+--=012012)1(4]21124)1([24)21(n nn n n n n f ππ, 再由0)21(=f ,得.4)21(412)1(0ππ=-=+-∑∞=f n n n五 、(本题满分10分)已知平面区域}0,0),{(ππ≤≤≤≤=y x y x D ,L 为D 的正向边界. 试证: (1) dx ye dy xe dx ye dy xe xLy x Ly sin sin sin sin -=-⎰⎰--; (2).22sin sin π≥--⎰dx ye dy xe x Ly【分析】 本题边界曲线为折线段,可将曲线积分直接化为定积分证明,或曲线为封闭正向曲线,自然可想到用格林公式;(2)的证明应注意用(1)的结果.【详解】 方法一:(1) 左边=dx e dy ex y⎰⎰--0sin 0sin ππππ=⎰-+ππ0sin sin )(dx e e x x ,右边=⎰⎰--ππππ0sin sin dx e dy e x y=⎰-+ππ0sin sin )(dx e e x x ,所以dx ye dy xe dx ye dy xex Ly x Lysin sin sin sin -=-⎰⎰--.(2) 由于2sin sin ≥+-x xe e ,故由(1)得.2)(20sin sin sin sin πππ≥+=-⎰⎰--dx e e dx yedy xex x xLy方法二:(1) 根据格林公式,得⎰⎰⎰--+=-Dx y x Ly dxdy e e dx ye dy xe )(sin sin sin sin , ⎰⎰⎰+=---Dx y x Ly dxdy e e dx ye dy xe )(sin sin sin sin . 因为D 具有轮换对称性,所以 ⎰⎰-+Dx ydxdy e e)(sin sin =⎰⎰+-D x y dxdy e e )(sin sin ,故dx ye dy xe dx ye dy xe x Ly x Ly sin sin sin sin -=-⎰⎰--. (2) 由(1)知⎰⎰⎰--+=-Dx y x Ly dxdy e e dx ye dy xe )(sin sin sin sin =dxdy e dxdy eD D x y⎰⎰⎰⎰-+sin sin=dxdy e dxdy e DDxx ⎰⎰⎰⎰-+sin sin (利用轮换对称性) =.22)(2sin sin π=≥+⎰⎰⎰⎰-dxdy dxdy e e DDx x 【评注】 本题方法一与方法二中的定积分与二重积分是很难直接计算出来的,因此期望通过计算出结果去证明恒等式与不等式是困难的. 另外,一个题由两部分构成时,求证第二部分时应首先想到利用第一部分的结果,事实上,第一部分往往是起桥梁作用的.六 、(本题满分10分) 某建筑工程打地基时,需用汽锤将桩打进土层. 汽锤每次击打,都将克服土层对桩的阻力而作功. 设土层对桩的阻力的大小与桩被打进地下的深度成正比(比例系数为k,k>0).汽锤第一次击打将桩打进地下a m. 根据设计方案,要求汽锤每次击打桩时所作的功与前一次击打时所作的功之比为常数r(0<r<1). 问(1) 汽锤击打桩3次后,可将桩打进地下多深?(2) 若击打次数不限,汽锤至多能将桩打进地下多深? (注:m 表示长度单位米.)【分析】 本题属变力做功问题,可用定积分进行计算,而击打次数不限,相当于求数列的极限.【详解】 (1) 设第n 次击打后,桩被打进地下n x ,第n 次击打时,汽锤所作的功为),3,2,1( =n W n . 由题设,当桩被打进地下的深度为x 时,土层对桩的阻力的大小为kx ,所以22101221a k x k kxdx W x ===⎰, ).(2)(22222122221a x k x x k kxdx W x x -=-==⎰由12rW W =可得2222ra a x =- 即 .)1(222a r x +=].)1([2)(22232223332a r x k x x k kxdx W x x +-=-==⎰ 由1223W r rW W ==可得22223)1(a r a r x =+-, 从而 a r r x 231++=,即汽锤击打3次后,可将桩打进地下am r r 21++.(2) 由归纳法,设a r r r x n n 121-++++= ,则)(222111n n x x n x x k kxdx W n n-==++⎰+=].)1([22121a r r x k n n -++++- 由于1121W r W r rW W n n n n ====-+ ,故得 22121)1(a r a r r x n n n =+++--+ ,从而 .11111a rr a r r x n nn --=+++=++于是 a rx n n -=+∞→11lim 1, 即若击打次数不限,汽锤至多能将桩打进地下a r-11m. 【评注】 本题巧妙地将变力作功与数列极限两个知识点综合起来了,有一定难度.但用定积分求变力做功并不是什么新问题,何况本题的变力十分简单.七 、(本题满分12分)设函数y=y(x)在),(+∞-∞内具有二阶导数,且)(,0y x x y =≠'是y=y(x)的反函数.(1) 试将x=x(y)所满足的微分方程0))(sin (322=++dy dx x y dyx d 变换为y=y(x)满足的微分方程;(2) 求变换后的微分方程满足初始条件23)0(,0)0(='=y y 的解. 【分析】 将dy dx 转化为dx dy 比较简单,dy dx =y dxdy '=11,关键是应注意: )(22dy dx dy d dyx d ==dy dxy dx d ⋅')1( =32)(1y y y y y '''-='⋅'''-. 然后再代入原方程化简即可.【详解】 (1) 由反函数的求导公式知y dy dx '=1,于是有 )(22dy dx dy d dyx d ==dy dx y dx d ⋅')1(=32)(1y y y y y '''-='⋅'''-. 代入原微分方程得.sin x y y =-'' ( * )(2) 方程( * )所对应的齐次方程0=-''y y 的通解为 .21xxe C e C Y -+= 设方程( * )的特解为x B x A y sin cos *+=,代入方程( * ),求得21,0-==B A ,故x y sin 21*-=,从而x y y sin =-''的通解是 .sin 2121*x e C e C y Y y xx -+=+=-由23)0(,0)0(='=y y ,得1,121-==C C . 故所求初值问题的解为.sin 21x e e y xx --=-【评注】 本题的核心是第一步方程变换.八 、(本题满分12分)设函数f(x)连续且恒大于零,⎰⎰⎰⎰⎰+++=Ω)(22)(222)()()(t D t d y xf dvz y x f t F σ,⎰⎰⎰-+=tt D dxx f d y x f t G 12)(22)()()(σ,其中}),,{()(2222t z y x z y x t ≤++=Ω,}.),{()(222t y x y x t D ≤+=(1) 讨论F(t)在区间),0(+∞内的单调性. (2) 证明当t>0时,).(2)(t G t F π>【分析】 (1) 先分别在球面坐标下计算分子的三重积分和在极坐标下计算分母的重积分,再根据导函数)(t F '的符号确定单调性;(2) 将待证的不等式作适当的恒等变形后,构造辅助函数,再用单调性进行证明即可.【详解】 (1) 因为⎰⎰⎰⎰⎰⎰⎰==ttttrdrr f drr r f rdrr f d drr r f d d t F 020222002200022)()(2)(sin )()(πππθϕϕθ,202022])([)()()(2)(rdr r f drr t r r f t tf t F tt⎰⎰-=',所以在),0(+∞上0)(>'t F ,故F(t) 在),0(+∞内单调增加.(2) 因 ⎰⎰=ttdrr f rdrr f t G 0202)()()(π,要证明t>0时)(2)(t G t F π>,只需证明t>0时,0)(2)(>-t G t F π,即.0])([)()(0202222>-⎰⎰⎰tt trdr r f dr r f dr r r f令 ⎰⎰⎰-=tttrdr r f dr r f dr r r f t g 0202222])([)()()(,则 0)()()()(222>-='⎰dr r t r f t f t g t ,故g(t)在),0(+∞内单调增加.因为g(t)在t=0处连续,所以当t>0时,有g(t)>g(0). 又g(0)=0, 故当t>0时,g(t)>0,因此,当t>0时,).(2)(t G t F π>【评注】 本题将定积分、二重积分和三重积分等多个知识点结合起来了,但难点是证明(2)中的不等式,事实上,这里也可用柯西积分不等式证明:dx x g dx x f dx x g x f b ababa⎰⎰⎰⋅≤)()(])()([222,在上式中取f(x)为r r f )(2,g(x)为)(2r f 即可.九 、(本题满分10分)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=322232223A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100101010P ,P A P B *1-=,求B+2E 的特征值与特征向量,其中*A 为A 的伴随矩阵,E 为3阶单位矩阵.【分析】 可先求出1*,,-P A ,进而确定P A P B *1-=及B+2E ,再按通常方法确定其特征值和特征向量;或先求出A 的特征值与特征向量,再相应地确定A*的特征值与特征向量,最终根据B+2E 与A*+2E 相似求出其特征值与特征向量.【详解】 方法一: 经计算可得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------=522252225*A , ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=-1000011101P ,P A P B *1-==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----322452007.从而⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=+5224720092E B ,)3()9(522472009)2(2--=---=+-λλλλλλE B E ,故B+2E 的特征值为.3,9321===λλλ当921==λλ时,解0)9(=-x A E ,得线性无关的特征向量为,0111⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=η ,1022⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=η 所以属于特征值921==λλ的所有特征向量为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=+102011212211k k k k ηη,其中21,k k 是不全为零的任意常数. 当33=λ时,解0)3(=-x A E ,得线性无关的特征向量为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1103η, 所以属于特征值33=λ的所有特征向量为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=110333k k η,其中03≠k 为任意常数. 方法二:设A 的特征值为λ,对应特征向量为η,即 ληη=A . 由于07≠=A ,所以.0≠λ又因 E A A A =*,故有 .*ηληAA =于是有 )()(*)(1111ηληη----==P AP P A P PB ,.)2()2(11ηλη--+=+P APE B因此,2+λA为B+2E 的特征值,对应的特征向量为.1η-P由于 )7()1(3222322232--=---------=-λλλλλλA E ,故A 的特征值为.7,1321===λλλ当121==λλ时,对应的线性无关特征向量可取为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=0111η, .1012⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=η 当73=λ时,对应的一个特征向量为.1113⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=η 由 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=-1000011101P,得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=-01111ηP ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-11121ηP ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-11031ηP .因此,B+2E 的三个特征值分别为9,9,3.对应于特征值9的全部特征向量为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=+--11101121212111k k P k P k ηη,其中21,k k 是不全为零的任意常数;对应于特征值3的全部特征向量为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-1103313k P k η,其中3k 是不为零的任意常数.【评注】 设AP P B 1-=,若λ是A 的特征值,对应特征向量为η,则B 与A 有相同的特征值,但对应特征向量不同,B 对应特征值λ的特征向量为.1η-P本题计算量大,但方法思路都是常规和熟悉的,主要是考查考生的计算能力.不过利用相似矩阵有相同的特征值以及A 与A*的特征值之间的关系讨论,可适当降低计算量.十 、(本题满分8分)已知平面上三条不同直线的方程分别为:1l 032=++c by ax , :2l 032=++a cy bx , :3l 032=++b ay cx .试证这三条直线交于一点的充分必要条件为.0=++c b a【分析】 三条直线相交于一点,相当于对应线性方程组有唯一解,进而转化为系数矩阵与增广矩阵的秩均为2.【详解】 方法一:必要性设三条直线321,,l l l 交于一点,则线性方程组⎪⎩⎪⎨⎧-=+-=+-=+,32,32,32b ay cx a cy bx c by ax (*) 有唯一解,故系数矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a c c b b a A 222与增广矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=b a c a c b c b a A 323232的秩均为2,于是.0=A由于 ])[(6323232222bc ac ab c b a c b a ba ca c bcb aA ---++++=---==])()())[((3222a c c b b a c b a -+-+-++, 但根据题设 0)()()(222≠-+-+-a c c b b a ,故 .0=++c b a充分性:由0=++c b a ,则从必要性的证明可知,0=A ,故秩.3)(<A 由于])([2)(22222b b a a b ac cb ba ++-=-==0]43)21[(222≠++-b b a , 故秩(A)=2. 于是,秩(A)=秩)(A =2.因此方程组(*)有唯一解,即三直线321,,l l l 交于一点.方法二:必要性设三直线交于一点),(00y x ,则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100y x 为Ax=0的非零解,其中.323232⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=b a c a c b c b a A 于是 0=A .而 ])[(6323232222bc ac ab c b a c b a b a ca cb cb a A ---++++-===])()())[((3222a c c b b a c b a -+-+-++-,但根据题设 0)()()(222≠-+-+-a c c b b a ,故.0=++c b a充分性:考虑线性方程组⎪⎩⎪⎨⎧-=+-=+-=+,32,32,32b ay cx a cy bx c by ax (*)将方程组(*)的三个方程相加,并由a+b+c=0可知,方程组(*)等价于方程组⎩⎨⎧-=+-=+.32,32a cy bx c by ax (* *)因为 ])([2)(22222b b a a b ac cb b a ++-=-= =-0])([222≠+++b a b a ,故方程组(* *)有唯一解,所以方程组(*)有唯一解,即三直线321,,l l l 交于一点.【评注】本题将三条直线的位置关系转化为方程组的解的判定,而解的判定问题又可转化为矩阵的秩计算,进而转化为行列式的计算,综合考查了多个知识点.十一 、(本题满分10分)已知甲、乙两箱中装有同种产品,其中甲箱中装有3件合格品和3件次品,乙箱中仅装有3件合格品. 从甲箱中任取3件产品放入乙箱后,求:(1) 乙箱中次品件数的数学期望;(2) 从乙箱中任取一件产品是次品的概率.【分析】 乙箱中可能的次品件数为0,1,2,3,分别求出其概率,再按定义求数学期望即可;而求从乙箱中任取一件产品是次品的概率,涉及到两次试验,是典型的用全概率公式的情形,第一次试验的各种可能结果(取到的次品数)就是要找的完备事件组.【详解】 (1) X 的可能取值为0,1,2,3,X 的概率分布为36333}{C C C k X P k k -==, k=0,1,2,3.即 X 0 1 2 3P201 209 209 201 因此.232013209220912010=⨯+⨯+⨯+⨯=EX (2) 设A 表示事件“从乙箱中任取一件产品是次品”,由于}0{=X ,}1{=X ,}2{=X ,}3{=X 构成完备事件组,因此根据全概率公式,有∑====3}{}{)(k k X A P k X P A P=∑∑====⋅=330}{616}{k k k X kP k k X P=.41236161=⋅=EX【评注】本题对数学期望的计算也可用分解法:设,,,1,0件产品是次品从甲箱中取出的第件产品是合格品从甲箱中取出的第i i X i ⎩⎨⎧=则i X 的概率分布为i X 0 1P 2121.3,2,1=i因为321X X X X ++=,所以.23321=++=EX EX EX EX十二 、(本题满分8分)设总体X 的概率密度为⎩⎨⎧≤>=--,,,0,2)()(2θθθx x e x f x其中0>θ是未知参数. 从总体X 中抽取简单随机样本n X X X ,,,21 ,记).,,,min(ˆ21n X X X =θ(4) 求总体X 的分布函数F(x);(5) 求统计量θˆ的分布函数)(ˆx F θ;(6) 如果用θˆ作为θ的估计量,讨论它是否具有无偏性.【分析】 求分布函数F(x)是基本题型;求统计量θˆ的分布函数)(ˆx F θ,可作为多维相互独立且同分布的随机变量函数求分布函数,直接用定义即可;是否具有无偏性,只需检验θθ=ˆE 是否成立. 【详解】 (1).,,0,1)()()(2θθθ≤>⎩⎨⎧-==⎰∞---x x e dt t f x F xx (2) }),,,{min(}ˆ{)(21ˆx X X X P x P x F n≤=≤= θθ =}),,,{min(121x X X X P n >-=},,,{121x X x X x X P n >>>-=n x F )](1[1--=.,,0,1)(2θθθ≤>⎩⎨⎧---x x e x n (3) θˆ概率密度为.,,0,2)()()(2ˆˆθθθθθ≤>⎩⎨⎧==--x x ne dx x dF x f x n 因为 ⎰⎰+∞--+∞∞-==θθθθdx nxe dx x xf E x n )(2ˆ2)(ˆ =θθ≠+n21, 所以θˆ作为θ的估计量不具有无偏性.【评注】本题表面上是一数理统计问题,实际上考查了求分布函数、随机变量的函数求分布和概率密度以及数学期望的计算等多个知识点.将数理统计的概念与随机变量求分布与数字特征结合起来是一种典型的命题形式.[文档可能无法思考全面,请浏览后下载,另外祝您生活愉快,工作顺利,万事如意!]。

渗透数学思想,感受数学文化从“数系的扩充”一课谈起

渗透数学思想,感受数学文化从“数系的扩充”一课谈起

三、数系的扩充所蕴含的数学思 想
4、集合思想
数系的每一次扩充都是一个集合的扩展,新的集合是由旧集合中的元素通过 某种规则或方式得到的。在数系的扩充过程中,数学家们逐渐认识到了集合的思 想和方法,例如将分数看作是两个整数的比值、将无理数看作是实数的一个子集 等。
5、极限思想
极限是数学中的一个重要概念,它是描述变量在某种变化过程中的最终趋势 或状态的一种方式。在数系的扩充过程中,极限思想起到了关键的作用。例如, 无理数是通过对一个有理数列的极限运算得到的;复数是通过对实数的极限运算 得到的。极限思想的应用使得数学家们能够更加深入地研究数学对象的变化趋势 和性质。
2、无理数
无理数是指无法用有限小数表示的数,例如π、e等。在古代,人们已经发 现了一些无理数的存在,但是对其性质和计算方法并不清楚。直到16世纪,数学 家们才开始深入研究无理数的性质和计算方法,并逐渐将其纳入数系中。
3、复数
复数是数系的又一次扩展,它最早出现在欧洲文艺复兴时期。复数是一个由 实部和虚部组成的数,最早由意大利数学家卡丹提出。在复数系中,加减乘除等 运算都有定义,而且复数的乘方运算非常简单。复数的引入为物理学、工程学等 领域的发展提供了重要的支持。
渗透数学思想,感受数学文化从 “数系的扩充”一课谈起
目录
01 一、数系的扩充背景
02 二、数系的扩充过程
03
三、数系的扩充所蕴 含的数学思想
04
四、数系的扩充所蕴 含的数学文化
05 参考内容
渗透数学思想,感受数学文化从 “数系的扩充”一课谈起
数学是一门逻辑性强、思维严谨的学科,它不仅是一种工具,更是一种文化, 一种思想。在数学的发展历程中,数系的扩充是其中重要的一个方面,它不仅代 表着数学知识的进步,也体现了人类对数学认识的深化。本次演示将从“数系的 扩充”一课谈起,探讨其中所蕴含的数学思想和数学文化。

北京科技大学数学分析考研试题答案2003年

北京科技大学数学分析考研试题答案2003年
, . 八、证明 。 (,可以证明),
因为收敛,由(威尔斯-特拉斯判别法)知,得证. 十、解
2003年数学分析答案 一、解
(1) 但f(x)在x=0处无定义,因此x=0为f(x) 的可去间断点,也称为第一类间 断点.
(2) 在x=1处,因为, ,
左极限右极限,故x=1是f(x)的跳跃间断点,也是第一类间断点. (3) 在处,,
,左极限右极限,所以是f(x)的跳跃间断点,也是第一类间断点. 考查点:间断点的类型
1.可去间断点 若而f在点无定义,或有定义但则称为f的可去间断点. 2.跳跃间断点 若函数f在点的左右极限都存在,但则称点为函数f的 跳跃间断点. 3.可去间断点和跳跃间断点统称为第一类间断点.第一类间断点的 特点是函数在该点处的左、右极限都存在. 4.函数的所有其他形式的间断点,即使得函数至少有一侧极限不存 在的那些点,称为第二类间断点. 5.找间断点的方法 i) 使得函数无意义的点(即考查函数的定义域),比如使分母为0 的点,使中的点. i) 左右极限不相等的点,通常考虑,尤其是函数中含有的形式. iii) 考虑. 例1 解 但是f(x)在x=0处无定义,故x=0是函数的第一类间断点中的可去 间断点. 例2 , 解 x=0处不存在,故x=0是函数的第二类间断点. x=1处,但是函数在x=1处无定义,故x=1是函数的第一类间断点中 的跳跃间断点. 例3 是函数的第二类间断点. 二、(1) 证明 因为,所以,也就是说数列{}有界.令,则,所以f(x)单调 递增,所以,即{}是单调递增数列.由单调有界定理知数列{}收敛。 (2) 设,求解得x=1,即. 考查点:单调有界定理 在实数系中,有界的单调数列必有极限. 求极限的方法之一,设出把x直接带入题中等式,解方程。
三、证明 令,则f(x),g(x)在[a,b]上连续,在(a,b)内可导,由柯西中值定 理知,至少存在一点使得,整理即证. 考查点:柯西中值定理的应用

工程03的含义

工程03的含义

工程03的含义
示装饰装修工程;03表示安装工程;04表示市政工程;05表示园林绿化工程;06表示矿山工程。

第二级编码表示各专业工程。

米用两位数字(即第三、四位数字)表示。

如安装工程的0301为“机械
设备安装工程”;0308为“工业管道工程”等等。

第三级编码表示各专业工程下的各分部工程。

采用两位数字(即第五、六位数字)表示。

如030101为
“切削设备安装工程”;030803为“高压管道”分部工程。

第四级编码表示各分部工程的各分项工程,即表示清单项目。

采用三位数字(即第七、八、九位数字)
表示。

如030101001为“台式及仪表机床”;030803001为“高压碳钢管”分项工程。

第五级编码表示清单项目名称顺序码。

采用三位数字(即第十、十一、十二位数字)表示,由清单编制人员所编列,可有1〜999个子项。

北航院系代号

北航院系代号

北航院系代号
如题
001 材料科学与工程学院
002 电子信息工程学院
003 自动化科学与电气工程学院
004 能源与动力工程学院
005 航空科学与工程学院
006 计算机学院
007 机械工程及自动化学院
008 经济管理学院
009 理学院
010 生物与医学工程学院
011 人文社会科学学院
012 外国语学院
013 交通科学与工程学院
014 工程系统工程系
015 宇航学院
016 飞行学院
017 仪器科学与光电工程学院019 物理科学与核能工程学院020 法学院
021 软件学院
023 高等工程学院
024 中法工程师学院
026 新媒体艺术与设计学院027 化学与环境学院。

2003年考研数学二真题答案解析

2003年考研数学二真题答案解析

1. 【分析】 根据等价无穷小量的定义,相当于已知1sin )1(lim 4120=-→xx ax x ,反过来求a. 注意在计算过程中应尽可能地应用无穷小量的等价代换进行化简.【详解】 当0→x 时,241241~1)1(ax ax ---,2~sin x x x . 于是,根据题设有 14141lim sin )1(lim 2204120=-=-=-→→a xax x x ax x x ,故a=-4.【评注】 本题属常规题型2.. 【分析】 先求出在点(1,1)处的导数,然后利用点斜式写出切线方程即可. 【详解】 等式4ln 2y x xy =+两边直接对x 求导,得 y y xy x y '=+'+342, 将x=1,y=1代入上式,有 .1)1(='y 故过点(1,1)处的切线方程为 )1(11-⋅=-x y ,即 .0=-y x3.. 【分析】 本题相当于先求y=f(x)在点x=0处的n 阶导数值)0()(n f,则麦克劳林公式中nx 项的系数是.!)0()(n f n 【详解】 因为 2ln 2x y =',2)2(ln 2x y ='',n x x y)2(ln 2,)(= ,于是有nn y )2(l n )0()(=,故麦克劳林公式中nx 项的系数是.!)2(ln !)0()(n n y nn = 4.. 【分析】 利用极坐标下的面积计算公式θθρβαd S ⎰=)(212即可. 【详解】 所求面积为θθθρπθπd e d S a ⎰⎰==20220221)(21==πθ20241a e a )1(414-ae aπ. 5.. 【分析】 本题的关键是矩阵Tαα的秩为1,必可分解为一列乘一行的形式,而行向量一般可选第一行(或任一非零行),列向量的元素则为各行与选定行的倍数构成.【详解】 由⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=111111111Tαα=[]111111-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-,知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=111α,于是[].3111111=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=ααT【评注】 一般地,若n 阶矩阵A 的秩为1,则必有[].2121n n b b b a a a A ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=6.. 【分析】 先化简分解出矩阵B ,再取行列式即可. 【详解】 由E B A B A =--2知,E A B E A +=-)(2,即 E A B E A E A +=-+))((,易知矩阵A+E 可逆,于是有 .)(E B E A =- 再两边取行列式,得 1=-B E A ,因为 2002010100=-=-E A , 所以 =B 21.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)7. 【分析】 本题考查极限概念,极限值与数列前面有限项的大小无关,可立即排除(A),(B); 而极限n n n c a ∞→lim 是∞⋅0型未定式,可能存在也可能不存在,举反例说明即可;极限n n n c b ∞→lim 属∞⋅1型,必为无穷大量,即不存在.【详解】 用举反例法,取n a n 2=,1=n b ,),2,1(21==n n c n ,则可立即排除(A),(B),(C),因此正确选项为(D).8.. 【分析】 先用换元法计算积分,再求极限. 【详解】 因为dx x x a n n n n n +=⎰+-123101=)1(12310n n nn x d x n ++⎰+=}1])1(1{[1)1(1231023-++=++n n n n n n n x n, 可见 n n na ∞→lim =.1)1(}1])1(1{[lim 23123-+=-++-∞→e n n n n 【评注】 本题属常规题型,综合考查了定积分计算与求数列的极限两个知识点,但定积分和数列极限的计算均是最基础的问题,一般教材中均可找到其计算方法.9.. 【分析】 将xxy ln =代入微分方程,再令ϕ的中间变量为u ,求出)(u ϕ的表达式,进而可计算出)(yx ϕ.【详解】将x x y ln =代入微分方程)(yxx y y ϕ+=',得)(ln ln 1ln 1ln 2x x x x ϕ+=-,即 xx 2ln 1)(ln -=ϕ. 令 lnx=u ,有 21)(u u -=ϕ,故 )(y xϕ=.22xy - 应选(A).【评注】 本题巧妙地将微分方程的解与求函数关系结合起来,具有一定的综合性,但问题本身并不复杂,只要仔细计算应该可以找到正确选项.10.. 【分析】 答案与极值点个数有关,而可能的极值点应是导数为零或导数不存在的点,共4个,是极大值点还是极小值可进一步由取极值的第一或第二充分条件判定.【详解】 根据导函数的图形可知,一阶导数为零的点有3个,而 x=0 则是导数不存在的点. 三个一阶导数为零的点左右两侧导数符号不一致,必为极值点,且两个极小值点,一个极大值点;在x=0左侧一阶导数为正,右侧一阶导数为负,可见x=0为极大值点,故f(x)共有两个极小值点和两个极大值点,应选(C).【评注】 本题属新题型,类似考题2001年数学一、二中曾出现过,当时考查的是已知f(x)的图象去推导)(x f '的图象,本题是其逆问题..11.. 【分析】 直接计算21,I I 是困难的,可应用不等式tanx>x, x>0. 【详解】 因为当 x>0 时,有tanx>x ,于是1tan >x x ,1tan <xx,从而有 4t a n 41ππ>=⎰dx x x I , 4tan 402ππ<=⎰dx x x I ,可见有 21I I >且42π<I ,可排除(A),(C),(D),故应选(B). 【评注】 本题没有必要去证明11<I ,因为用排除法,(A),(C),(D)均不正确,剩下的(B) 一定为正确选项.12.. 【分析】 本题为一般教材上均有的比较两组向量个数的定理:若向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,则当s r >时,向量组I 必线性相关.或其逆否命题:若向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,且向量组I 线性无关,则必有s r ≤. 可见正确选项为(D). 本题也可通过举反例用排除法找到答案.【详解】 用排除法:如⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=10,01,00211ββα,则21100ββα⋅+⋅=,但21,ββ线性无关,排除(A);⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=01,01,00121βαα,则21,αα可由1β线性表示,但1β线性无关,排除(B);⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=10,01,01211ββα,1α可由21,ββ线性表示,但1α线性无关,排除(C). 故正确选项为(D).【评注】 本题将一已知定理改造成选择题,如果考生熟知此定理应该可直接找到答案,若记不清楚,也可通过构造适当的反例找到正确选项。

2003amc8解析

2003amc8解析

2003amc8解析标题:探索2003amc8数学竞赛的乐趣与挑战第一段:在2003年的amc8数学竞赛中,我经历了一场充满乐趣和挑战的旅程。

这场竞赛给予了我展示数学才能的机会,也让我深刻体会到数学的魅力和思维的无限可能。

以下是我参与这次竞赛的一些经历和感悟。

第二段:amc8数学竞赛中的第一题是一道关于比例的问题。

这个问题引导我思考了一个重要概念:比例的基本性质。

通过分析题目中的条件,我发现通过简单的比较可以得出正确答案。

这个问题让我意识到,有时候,数学并不需要复杂的计算和公式,而是要求我们运用基本的思维和逻辑推理。

第三段:第二题是一道关于平均数的问题。

这个问题需要我们计算一系列数的平均值。

我首先列出了这些数,然后将它们相加并除以总数得到平均值。

通过这个问题,我学会了如何用简单的数学方法解决实际问题,而不是仅仅依赖记忆和公式。

第四段:第三题是一道关于图形的问题。

这个问题要求我们计算一个不规则图形的面积。

为了解决这个问题,我需要将图形分解成更简单的几何形状,并计算每个形状的面积,然后将它们相加。

这个问题培养了我的几何思维和图形分析能力。

第五段:参加amc8数学竞赛不仅仅是为了得分和排名,更重要的是培养了我对数学的兴趣和热爱。

通过这次竞赛,我深刻体会到数学的魅力和思维的无限可能。

数学是一门需要逻辑思维和创造力的学科,它不仅仅是解题,更是培养我们的思维方式和解决问题的能力。

我相信,通过参加amc8数学竞赛,我不仅仅得到了数学知识的提升,更重要的是培养了我的数学思维能力和解决问题的能力。

第六段:总的来说,2003年的amc8数学竞赛是一次充满乐趣和挑战的经历。

通过参与这次竞赛,我学到了很多关于数学的知识和技巧,也培养了我的思维方式和解决问题的能力。

这次经历让我更加热爱数学,也让我意识到数学的重要性和广泛应用。

我相信,无论是在学校还是在未来的职业生涯中,我都会继续追求数学的乐趣和挑战。

数学类专业组代码

数学类专业组代码

数学类专业组代码
1. 数学本科专业代码,通常是以"01"开头,不同学校可能有不同的编码,例如数学与应用数学专业的代码可能是010101。

2. 统计学本科专业代码,通常是以"02"开头,例如统计学专业的代码可能是020201。

3. 应用数学本科专业代码,通常是以"03"开头,例如应用数学专业的代码可能是030301。

4. 数学教育本科专业代码,通常是以"04"开头,例如数学教育专业的代码可能是040401。

5. 数学硕士研究生专业代码,通常是以"11"开头,例如数学硕士专业的代码可能是110101。

6. 统计学硕士研究生专业代码,通常是以"12"开头,例如统计学硕士专业的代码可能是120201。

7. 应用数学硕士研究生专业代码,通常是以"13"开头,例如应
用数学硕士专业的代码可能是130301。

8. 数学博士研究生专业代码,通常是以"21"开头,例如数学博士专业的代码可能是210101。

这些代码通常由教育部门或学校内部的教务处制定,并用于学籍管理、课程安排和成绩记录等方面。

不同学校可能会有略微不同的编码规则,但通常都会遵循类似的体系。

希望这些信息能够帮助到你。

steiner三元系的构造

steiner三元系的构造

steiner三元系的构造
Steiner三元系(Steiner Triple System, STS)是一个组合数学中的概念,它描述了一个包含n个元素(通常称为点)的集合,以及该集合上的一些三元组(即包含三个元素的子集),满足任意两个不同三元组之间至多有一个公共元素。

Steiner三元系在通信网络、密码学和组合数学中有广泛的应用。

构造一个Steiner三元系并不总是容易的,因为必须满足上述严格的条件。

下面将介绍一种简单的构造方法,称为“基于点的构造法”。

假设我们有一个包含n个点的集合。

首先,我们可以从集合中选取任意三个点,形成一个三元组。

但是,我们不能随意选择,因为我们必须确保任意两个三元组之间只有一个公共点。

一种可能的方法是使用有限几何中的概念,例如,在一个平面上选择n个点,使得任意三点不共线,并且没有四点共圆。

然后,我们可以将每个三元组定义为平面上通过三个点的唯一一条直线。

由于任意两条直线最多有一个交点,这就满足了Steiner三元系的条件。

此外,还有其他的构造方法,例如利用有限域上的几何结构,或者通过递归或归纳的方式来构造更大的Steiner三元系。

这些方法通常涉及到更复杂的数学概念和证明。

总之,构造一个Steiner三元系需要遵循严格的条件,并且通常需要使用一些高级的组合数学或几何学的技巧。

虽然存在多种构造方法,但每种方法都有其自身的限制和复杂性。

因此,在实际应用中,选择哪种构造方法取决于具体的需求和约束条件。

2003考研数四真题及解析

2003考研数四真题及解析

2003年全国硕士研究生入学统一考试数学四试题一、填空题:本题共6小题,每小题4分,共24分,请将答案写在答题纸指定位置上. (1)极限xx x 20)]1ln(1[lim ++→=. (2)dx ex x x⎰--+11)(=.(3)设0a >,,x a x g x f 其他若,10,0,)()(≤≤⎩⎨⎧==而D 表示全平面,则I (4)设,A (A (5)设n A =其中(6)(1)曲线(A)(C)(2)(A)(C)(3)设可微函数(,)f x y 在点),(00y x 取得极小值,则下列结论正确的是()(A)),(0y x f 在0y y =处的导数等于零.(B)),(0y x f 在0y y =处的导数大于零. (C)),(0y x f 在0y y =处的导数小于零.(D)),(0y x f 在0y y =处的导数不存在.(4)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=001010100B .已知矩阵A 相似于B ,则秩(2)A E -与秩()A E -之和等于() (A)2.(B)3.(C)4.(D)5.(5)对于任意二事件A 和B ()(A)若φ≠AB ,则,A B 一定独立.(B)若φ≠AB ,则,A B 有可能独立. (C)若φ=AB ,则,A B 一定独立.(D)若φ=AB ,则,A B 一定不独立. (6)设随机变量X 和Y 都服从正态分布,且它们不相关,则()(A)X 与Y 一定独立.(B)(X ,Y )服从二维正态分布. (C)X 与Y 未必独立.(D)X +Y 服从一维正态分布. 三、(本题满分8分)设).1,1[,111)(∈-+=x x f 试补充定义(1)f 使得()f x 在]1,1[上连续.四、(设f 求22x g +∂∂五、(六、(设a 七、(设y C 为M 在x ()f x 的表达式.八、(试求(1) t 时的商品剩余量,并确定k 的值;(2) 在时间段[0,]T 上的平均剩余量. 九、(本题满分13分)设有向量组(I):T )2,0,1(1=α,T )3,1,1(2=α,T a )2,1,1(3+-=α和向量组(II):Ta )3,2,1(1+=β,T a )6,1,2(2+=β,.)4,1,2(3T a +=β试问:当a 为何值时,向量组(I)与(II)等价?当a 为何值时,向量组(I)与(II)不等价?十、(本题满分13分)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a A 11121112可逆,向量⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11b α是矩阵*A 的一个特征向量,λ是α对应的特征值,其中*A 是矩阵A 的伴随矩阵.试求,a b 和λ的值. 十一、(本题满分13分)设随机变量X 的概率密度为()F X 是X 的分布函数.求随机变量()Y F X =的分布函数.十二、(本题满分13分)称作事件(1) (2) (1)【详解】形式:方法2:ln(1)x +(2)【详解】102x xde -=-⎰112[]xx xe e dx --=--⎰=)21(21--e . (3)【答案】2a【详解】本题积分区域为全平面,但只有当10,10≤-≤≤≤x y x 时,被积函数才不为零,则二重积分只需在积分区域与被积函数不为零的区域的公共部分商积分即可,因此实际上只需在满足此不等式的区域内积分即可.⎰⎰-=Ddxdy x y g x f I )()(=20101x y x a dxdy ≤≤≤-≤⎰⎰=1120x x a dx dy +⎰⎰1220[(1)]a x x dx a =+-=⎰(4)【答案】⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001010100 【详解】应先化简,从2AB A B =+中确定1)(--E A .⇒E E B E A 2)2)((=--⇒E E B E A =-⋅-)2(21)(,所以1)(--E A =)2(21E B -=⎥⎥⎤⎢⎢⎡010100. (5)【详解】由题设,有于是有-(6)【详解】cov(,)212XY X Y ρ==⨯=.所以222()()[()]()()E X Y D X Y E X Y D X Y EX EY +=+++=+++ 方法2:由数学期望的线性可加性()()()E aX bY aE X bE Y +=+得:再利用()()()(,)E XY Cov X Y E X E Y =+⋅,得由方差定义的公式,有22()()[()]D X E X E X =-202,=-=同理()2D Y =, 再由相关系数的定义XY ρ=得,cov(,)XY X Y ρ=二、选择题 (1)【答案】()D【分析】按照铅直、水平、斜渐近线三种情况分别考虑:先考虑是否有水平渐近线:lim (),()x f x c c →±∞=为常数,y c =为曲线的一条水平渐近线;若无水平渐近线应进一步考虑是否存在斜渐近线:()()lim,lim [()]x x x x x x yk b f x kx x →∞→∞→+∞→+∞→-∞→-∞==-,y kx b =+为曲线的一条斜渐近线;【详解】2.x 2201lim u u u u →3.故曲线y =(2)由于故应选()A . (3)【答案】()A【详解】由函数(,)f x y 在点),(00y x 处可微,知函数(,)f x y 在点),(00y x 处的两个偏导数都存在,又由二元函数极值的必要条件即得(,)f x y 在点),(00y x 处的两个偏导数都等于零.从而有 选项()A 正确. (4)【答案】(C)【分析】利用相似矩阵有相同的秩计算,秩(2)A E -与秩()A E -之和等于秩(2)B E -与秩()B E -之和.【详解】因为矩阵A 相似于B ,又1B P AP -=,所以()111222P A E P P AP P EP B E ----=-=-,于是,矩阵(2)A E -与矩阵(2)B E -相似.同理有所以,矩阵A E -与矩阵B E -相似.又因为相似矩阵有相同的秩,而秩(2)B E -=秩3201010102=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---,秩()B E -=秩1101000101=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--, 所以有(5)当P ≠∅.可见,当A AB 若,(D)也不(6)①若X Y 与②若③若(,)X Y 服从二维正态分布,则X Y 与相互独立⇔X Y 与不相关.【详解】只有当(,)X Y 服从二维正态分布时,X Y 与不相关⇔X Y 与独立,本题仅仅已知X Y 与服从正态分布,因此,由它们不相关推不出X Y 与一定独立,排除(A);若X Y 与都服从正态分布且相互独立,则(,)X Y 服从二维正态分布,但题设并不知道,X Y 是否独立,可排除(B);同样要求X Y 与相互独立时,才能推出X Y +服从一维正态分布,可排除(D).故正确选项为(C).三【详解】为使函数()f x 在1[,1]2上连续,只需求出函数()f x 在1x =的左极限)(lim 1x f x -→,然后定义(1)f 为此极限值即可.令1u x =-,则当1x -→时,0u +→,所以定义π1)1(=f ,从而有11lim ()(1)x f x f π-→==,()f x 在1x =处连续.又()f x 在)1,21[上连续,所以()f x 在]1,21[上连续. 四【详解】由复合函数[(,),(,)]z f x y x y ϕψ=的求导法则,得 从而所以22g x ∂∂五记A 0⎰=因此=A 六0,得唯一驻点求(t 当e e 时,l n l n a <e11-=为七【分析】梯形OCMA 的面积可直接用梯形面积公式计算得到,曲边三角形CBM 的面积可用定积分计算,再由题设,梯形OCMA 的面积与曲边三角形CBM 的面积之和为3163+x ,可得一含有变限积分的等式,两边求导数,可转化为一阶线性微分方程,然后用通解公式计算即可. 【详解】由题意得1[1()]2OCMA S x f x =+,1()CBM x S f t dt =⎰ 所以316)()](1[213+=++⎰x x dt t f x f x .两边关于x 求导2111[1()]()()222f x xf x f x x '++-=,即21()()2().f x xf x f x x '++-= 化简,当0≠x 时,得211()()x f x f x x x -'-=,即211.dy x y dx x x--⋅= 利用一阶线性非齐次微分方程()()dyP x y Q x dx+=的通解公式 所以此方程为标准的一阶线性非齐次微分方程,其通解为y曲线过点八再T (2)dt t y )(表示(函数⎰=T dt t y T y 0)(1=2-20011()()()22TT A A A T A t dt At t T T T T T T T -=-=-⎰牛莱公式=.2A 因此在时间段[0,]T 上的平均剩余量为.2A九【分析】两个向量组等价也即两个向量组可以相互线性表示;而两个向量组不等价,只需其中一组有一个向量不能由另一组线性表示即可.而线性表示问题又可转化为对应非齐次线性方程组是否有解的问题,这可通过化增广矩阵为阶梯形来判断.一个向量1β是否可由321,,ααα线性表示,只需用初等行变换化增广矩阵(1321,,βααα)为阶梯形讨论,而一组向量321,,βββ是否可由321,,ααα线性表示,则可结合起来对矩阵(321321,,,,βββααα)同时作初等行变换化阶梯形,然后类似地进行讨论即可.【详解】矩阵(321321,,,,βββααα)作初等行变换,有),,,,(321321βββααα =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++-463232112110221111a a a a(第一行乘以-1加到第三行,第二行乘以-1加到第三行)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+-+--→111100112110111201a a a a .(1)方程组11+x x α量组(I)(2)1β不能由21,,ααα(1)3等价,即向量组(2)可见2),,(321=αααr ≠1231(,,,)r αααβ=3,因此线性方程组1332211βααα=++x x x 无解,故向量1β不能由321,,ααα线性表示.即向量组(I)与(II)不等价.【评注2】向量组(I)与(II)等价,相当于321,,ααα与321,,βββ均为整个向量组321321,,,,,βββααα的一个极大线性无关组,问题转化为求向量组321321,,,,,βββααα的极大线性无关组,这可通过初等行变换化阶梯形进行讨论.十【分析】题设已知特征向量,应想到利用定义:λαα=*A .又与伴随矩阵*A 相关的问题,应利用EA AA =*进行化简.【详解】矩阵*A 属于特征值λ的特征向量为α,由于矩阵A 可逆,故*A 可逆.于是0≠λ,0≠A ,且λαα=*A .两边同时左乘矩阵A ,得αλαA AA =*⇒αλαAA =,即⎥⎥⎤⎢⎢⎡=⎥⎥⎤⎢⎢⎡⎥⎥⎤⎢⎢⎡11121112b A b λ, 由式(1)因此根据(1)所以,当【评注】见到*A ,十一设G )1,0[∈y ,有十二【分析】A 和B 独立的充要条件是{}{}{}P AB P A P B =⋅,由此可以直接证明问题(1);对于问题(2),应先构造随机变量,不难看出与事件A 和A 联系的应是随机变量 随机变量X 和Y 的相关系数为XY E XY E X E Y ρ-==,需将P AB P A P B ρ-=转化为用随机变量表示.显然,若有(){}E XY P AB =,(){}(){},E X P A E Y P B ====即可,这只需定义【详解】(1)由题给ρ的定义,可见0=ρ当且仅当{}{}{}0P AB P A P B ==,而这恰好是二事件A 和B 独立的定义,即0=ρ是A 和B 独立的充分必要条件.(2)考虑随机变量X 和Y :由条件知,X 和Y 都服从01-分布:01⎛⎫01⎛⎫易见(E 1ρ≤。

2003数学三真题及答案解析

2003数学三真题及答案解析

2003数学三真题及答案解析(本文为AI生成文章,仅供参考)2003年的数学三是一道非常经典的试题,难度适中,涵盖了初高中数学的各个知识点。

本文将对这道题目进行详细解析,帮助读者更好地理解题目的解法和思路。

该题目的完整表述如下:已知复数满足条件:|z+1+i|=4,|z-2-2i|=6。

则|z|=?首先,我们需要了解一些基本的复数知识。

复数可以表示为a+bi 的形式,其中 a 和 b 分别为实部和虚部。

绝对值 |z| 也称为复数的模,定义为|z| = √(a²+b²)。

接下来,我们来解析这道题目。

首先,我们可以根据第一个条件|z+1+i|=4,将复数 z+1+i 的模表示出来,即:|z+1+i| = √((x+1)²+(y+1)²) = 4,其中 x 和 y 分别表示复数 z 的实部和虚部。

类似地,我们可以根据第二个条件 |z-2-2i|=6,将复数 z-2-2i 的模表示出来,即:|z-2-2i| = √((x-2)²+(y-2)²) = 6。

接下来的解题思路是什么呢?我们可以使用复数的模的性质,即两个复数的模的乘积等于它们的和的模的平方。

具体来说,我们可以得到以下等式:[(x+1)²+(y+1)²] * [(x-2)²+(y-2)²] = 4² * 6²。

我们继续展开并化简上述等式的左侧:[(x+1)²+(y+1)²] * [(x-2)²+(y-2)²] = [(x²+2x+1) +(y²+2y+1)] * [(x²-4x+4) + (y²-4y+4)]= (x²+2x+1) * (x²-4x+4) + (y²+2y+1) * (y²-4y+4)= (x⁴ - 2x³ + 8x² - 8x + 4) + (y⁴ - 2y³ + 8y² - 8y + 4)。

三级学科代码表[最新]

三级学科代码表[最新]

三级学科代码表[最新]110 数学110.11 数学史110.14 数理逻辑与数学基础 110.1410 演绎逻辑学(亦称符号逻辑学) 110.1420 证明论(亦称元数学) 110.1430 递归论110.1440 模型论110.1450 公理集合论110.1460 数学基础110.1499 数理逻辑与数学基础其他学科110.17 数论110.1710 初等数论110.1720 解析数论110.1730 代数数论110.1740 超越数论110.1750 丢番图逼近110.1760 数的几何110.1770 概率数论110.1780 计算数论110.1799 数论其他学科 110.21 代数学110.2110 线性代数 110.2115 群论110.2120 域论110.2125 李群110.2130 李代数110.2135 Kac-Moody代数 110.2140 环论110.2145 模论110.2150 格论110.2155 泛代数理论 110.2160 范畴论110.2165 同调代数 110.2170 代数K理论 110.2175 微分代数 110.2180 代数编码理论 110.2199 代数学其他学科 110.24 代数几何学110.27 几何学110.2710 几何学基础 110.2715 欧氏几何学110.2720 非欧几何学(包括黎曼几何学等)110.2725 球面几何学 110.2730 向量和张量分析 110.2735 仿射几何学110.2740 射影几何学 110.2745 微分几何学 110.2750 分数维几何 110.2755 计算几何学 110.2799 几何学其他学科 110.31 拓扑学110.3110 点集拓扑学 110.3115 代数拓扑学 110.3120 同伦论110.3125 低维拓扑学 110.3130 同调论110.3135 维数论110.3140 格上拓扑学 110.3145 纤维丛论 110.3150 几何拓扑学 110.3155 奇点理论 110.3160 微分拓扑学 110.3199 拓扑学其他学科 110.34 数学分析110.3410 微分学110.3420 积分学110.3430 级数论110.3499 数学分析其他学科 110.37 非标准分析 110.41 函数论110.4110 实变函数论 110.4120 单复变函数论 110.4130 多复变函数论110.4140 函数逼近论 110.4150 调和分析 110.4160 复流形110.4170 特殊函数论110.4199 函数论其他学科 110.44 常微分方程110.4410 定性理论110.4420 稳定性理论110.4430 解析理论110.4499 常微分方程其他学科 110.47 偏微分方程110.4710 椭圆型偏微分方程 110.4720 双曲型偏微分方程 110.4730 抛物型偏微分方程 110.4740 非线性偏微分方程 110.4799 偏微分方程其他学科 110.51 动力系统110.5110 微分动力系统 110.5120 拓扑动力系统 110.5130 复动力系统110.5199 动力系统其他学科 110.54 积分方程110.57 泛函分析110.5710 线性算子理论 110.5715 变分法110.5720 拓扑线性空间 110.5725 希尔伯特空间 110.5730 函数空间110.5735 巴拿赫空间110.5740 算子代数110.5745 测度与积分110.5750 广义函数论110.5755 非线性泛函分析 110.5799 泛函分析其他学科 110.61 计算数学110.6110 插值法与逼近论 110.6120 常微分方程数值解 110.6130 偏微分方程数值解 110.6140 积分方程数值解 110.6150 数值代数110.6160 连续问题离散化方法110.6170 随机数值实验 110.6180 误差分析 110.6199 计算数学其他学科110.64 概率论110.6410 几何概率 110.6420 概率分布 110.6430 极限理论 110.6440 随机过程 110.6450 马尔可夫过程 110.6460 随机分析 110.6470 鞅论110.6480 应用概率论 110.6499 概率论其他学科 110.67 数理统计学110.6710 抽样理论 110.6715 假设检验 110.6720 非参数统计 110.6725 方差分析 110.6730 相关回归分析110.6735 统计推断 110.6740 贝叶斯统计 110.6745 试验设计 110.6750 多元分析 110.6755 统计判决理论 110.6760 时间序列分析 110.6799 数理统计学其他学科110.71 应用统计数学 110.7110 统计质量控制 110.7120 可靠性数学110.7130 保险数学 110.7140 统计模拟 110.7199 应用统计数学其他学科110.74 运筹学110.7410 线性规划 110.7415 非线性规划 110.7420 动态规划 110.7425 组合最优化 110.7430 参数规划110.7435 整数规划110.7440 随机规划110.7445 排队论110.7450 对策论(亦称博奕论) 110.7455 库存论110.7460 决策论110.7465 搜索论110.7470 图论110.7475 统筹论110.7480 最优化110.7499 运筹学其他学科 110.77 组合数学110.81 离散数学110.84 模糊数学110.87 应用数学110.99 数学其他学科。

2003分解素因数

2003分解素因数

2003分解素因数
【原创实用版】
目录
1.2003 的简介
2.2003 的素因数分解
3.2003 的特殊性质
4.2003 在数学中的应用
正文
【1】2003 的简介
2003 是一个自然数,它是一个奇数,同时也是一个质数。

因为它仅有两个因数,即 1 和它本身 2003,所以它是一个质数。

【2】2003 的素因数分解
2003 是一个质数,因此它只能被 1 和它本身整除。

在数学上,我们将一个数的质因数分解,就是将这个数分解为若干个质数的乘积。

因为2003 是一个质数,所以它的素因数分解就是它本身,即 2003=1*2003。

【3】2003 的特殊性质
2003 在数学中有一些特殊的性质。

比如,它是一个奇数,因为 2003 不能被 2 整除。

此外,它还是一个质数,因为它仅有两个因数,即 1 和它本身 2003。

【4】2003 在数学中的应用
2003 在数学中有广泛的应用。

比如,在数论中,2003 可以作为一个质数,用于研究质数的性质和分布。

在密码学中,2003 可以用于构建公钥和私钥,以实现加密和解密。

第1页共1页。

antras2003的推导过程

antras2003的推导过程

antras2003的推导过程(最新版)目录1.引言2.antrats2003 的推导过程概述3.antrats2003 的推导过程详细步骤4.结论正文一、引言Antras2003 是一种经典的数独求解算法,其推导过程严谨、简洁,为数独爱好者和研究者所称道。

本文将对 antras2003 的推导过程进行详细解读,以便读者更好地理解和运用这一算法。

二、antras2003 的推导过程概述Antras2003 算法的推导过程可以分为三个阶段:预处理、推导矛盾和解出唯一解。

其中,预处理阶段主要是对数独进行一些基本的分析,为后续的推导做好准备;推导矛盾阶段则是利用预处理得到的信息,找出数独中存在的矛盾,从而排除掉某些数字的可能性;解出唯一解阶段则是通过一系列的推导,找到数独的唯一解。

三、antras2003 的推导过程详细步骤1.预处理预处理阶段主要包括以下两个步骤:(1)行、列和宫格的扫描:对数独的行、列和宫格进行扫描,找出每个位置可能的数字。

(2)标注已知数字:在数独的每个位置,根据行、列和宫格的扫描结果,标注出该位置可能的数字。

2.推导矛盾在预处理阶段完成后,我们需要找出数独中存在的矛盾。

具体来说,我们需要检查每个位置可能的数字是否满足以下条件:(1)行矛盾:该数字是否与同一行其他位置的数字重复。

(2)列矛盾:该数字是否与同一列其他位置的数字重复。

(3)宫格矛盾:该数字是否与同一宫格其他位置的数字重复。

如果发现某个位置的数字存在矛盾,那么我们可以排除掉该数字,从而缩小可能的解的范围。

3.解出唯一解在推导矛盾阶段完成后,我们需要利用矛盾信息,逐步推导出每个位置的数字。

具体来说,我们可以从矛盾最少的位置开始,逐步推导出其他位置的数字,直到找到数独的唯一解。

四、结论Antras2003 算法是一种高效、简洁的数独求解方法,其推导过程严谨、易懂。

通过预处理、推导矛盾和解出唯一解三个阶段的操作,我们可以快速找到数独的唯一解。

2003数学问题解决能力水平划分

2003数学问题解决能力水平划分

2003数学问题解决能力水平划分一、引言在数学教育中,学生的数学问题解决能力是一个重要的评价指标。

2003年,教育部颁布了《中小学数学课程标准》,其中明确了学生数学问题解决能力的不同水平划分。

本文将从深度和广度两个方面对2003数学问题解决能力水平划分进行全面评估,以期能够对这一标准有更深入的理解。

二、2003数学问题解决能力水平划分的深度评估1. 初步认识和探索2003年的数学课程标准将学生的数学问题解决能力分为初步认识和探索、初步建立数学问题解决能力、初步形成数学问题解决能力和初步灵活运用数学问题解决能力四个等级。

在初步认识和探索阶段,学生主要是通过教师和家长的引导,初步认识到数学问题,并进行简单的探索。

2. 初步建立数学问题解决能力在这一阶段,学生能够初步建立数学问题解决能力,能够根据问题的要求,进行初步的分析和解决。

此时,学生需要掌握一些基本的数学方法和技巧,能够初步运用到实际问题中去。

3. 初步形成数学问题解决能力这一阶段,学生的数学问题解决能力得到了初步的形成。

他们能够独立分析和解决一些基本的数学问题,以及与实际情境相关的数学问题。

4. 初步灵活运用数学问题解决能力这一阶段是2003数学问题解决能力水平划分的最高级别,学生能够灵活运用所学的数学知识和方法,解决各种复杂的数学问题,以及跨学科的数学问题。

三、2003数学问题解决能力水平划分的广度评估在广度方面,2003数学问题解决能力水平划分一定程度上能够覆盖学生在数学学习过程中的不同阶段和不同能力水平的需求。

从初步认识和探索到灵活运用,这四个等级相对全面地覆盖了学生数学问题解决能力的发展脉络。

然而,在实际教学中,还需要结合学生的实际情况,有针对性地进行教学和指导,以促进学生数学问题解决能力的全面发展。

四、个人观点和理解对于2003数学问题解决能力水平划分,我认为它在一定程度上能够指导教师教学,帮助学生更好地发展数学问题解决能力。

然而,在实际应用中,需要结合具体的教学实践,灵活运用,以促进学生的更全面发展。

探索数字的奥秘:3之内数目教案解析

探索数字的奥秘:3之内数目教案解析

探索数字的奥秘:3之内数目教案解析数字是人类文明的一部分,也是我们生活中不可避免的存在。

在我们日常的生活中,数字扮演着重要的角色。

在学校里,我们经常需要进行数学计算,在社会生活中,我们需要计算自己的财务收支,购买商品需要计算价钱和物品数量等等。

本文将围绕数字展开讨论,探索数字的奥秘,其中我们将聚焦在数字3以内的数目,并提供一份教案解析。

1. 数字3数字3是自然数序列中从数字1开始的第三个数字。

3这个数字在人类文明发展史上拥有着独特的象征意义。

比如,在宗教中,3被认为是代表完美的数字,比如基督教中的“三一论”;在文化中,数字3也扮演着重要的角色,比如古代中国的“三纲五常”。

2. 数字1和2数字1和2是比较特殊的数字,1代表着最小的自然数,同时也是所有正整数的单位元素,也就是说,任何一个正整数都可以用1进行组合得到。

数字2则代表了偶数中最小的素数。

3. 教案解析:探索数字3之内数目数字3之内的数目有哪些?不难发现,数字3之内的数目分别是1、2、3这三个数字。

如何将这些数字进行组合,使其呈现不同的排列组合方式呢?以1、2、3这三个数字为例,它们可以组合成以下6种不同的排列方式:1 2 31 3 22 1 32 3 13 1 23 2 1以上排列方式为全排列,也就是说,每个数字都出现了且仅出现一次,这个排列方式非常常见。

那么,如果我们只选取其中任意两个数字进行组合,会形成多少种不同的组合方式呢?实际上,只选取其中任意两个数字进行组合,会形成以下三种不同的组合方式:1 21 32 3值得注意的是,以上分析所得的结果,仅限于数字3之内的数目,如果组合的数字增多,将有更多的可能性,需要使用更加复杂的数学概念和方法进行计算。

4. 教案解析:数目的含义在教学中,我们既要将数字的使用教给学生,也需要让学生了解数字的概念和含义。

数字的含义不仅仅限于课本上的数学运算,我们还可以将数字应用于生活中各个方面,让学生深入了解数字的本质。

数系

数系

数与数系数是最古老的数学概念之一。

在长达数十世纪的漫长岁月中,人们对数的认识得到了不断的深化,然而,这一司空见惯的概念中却蕴涵了无穷无尽的奥秘。

即便是连小学生都“熟知”的自然数,也向数学家们,甚至向全人类的智慧提出了挑战,有些貌似平凡的数论问题,仿佛在我们面前竖起了一道道千丈陡壁,有意考验攀登者的勇气和决心。

具有一定性质的数放在一起构成了数系,通常我们所熟知的数系有:自然数系,整数系,有理数系,实数系和复数系。

讨论数和数系有各种方法,例如分析方法,代数方法等,本文主要从代数角度来讨论数与数系的基本概念和理论。

1 数系是怎样扩张的数系概念具有下列两个方面的意义:其一,数系是一些数的集合;其二,在一个数系内可以进行某些运算(通常是指数的加法和乘法),这些运算满足一定的运算律。

所谓数系的扩张往往同运算的逆运算的可行性,或更一般的说同某些方程解的存在性的讨论有关。

在自然数系中,人们可以进行加法和乘法运算。

在一定条件下,还可以进行减法和除法运算。

相应地,方程x+a=b和cx=d(c≠0)并非总有解。

为了使减法顺利进行,即要使方程x+a=b总有解,我们便将自然数系扩充为整数系。

但即使在整数系中,方程cx=d(c≠0)也不是总有解存在。

因此我们又须把整数系扩充为有理数系。

最初人们对有理数系很满意,因为加减乘除(除数非零)都可以畅通无阻地进行。

但人们很快就发现了缺陷,方程x2=2(即求边长为1的正方形的对角线之长)没有有理数的解,人们认为这简直不可思议,因而把2这样的数称为无理(!)数。

但实数系远不只包含有理数和2这种可以作为某个实数系方程的根的数。

要完成有理数向实数系的扩张,必须通过更为复杂的过程,从而也产生了许多复杂的扩张理论和方法。

这里我们就不再多加以叙述了。

实数系向复数系的扩张却出人意料地简单。

首先,扩张的“动机”产生于求解方程:x2+1=0,而引进虚数单位i(即x2+1=0的一个解)后,复数集可以写成C={a+bi∣a.b∈R},其中R表示实数集。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数系
数系通常指包括自然数、整数、有理数、实数和复数的系统.
数的观念具有悠久的历史,尤其是自然数的观念,产生在史前时期,详情已难于追索,但对数系建立严谨的理论基础,则是19世纪下半期才完成.
一、自然数
建立自然数概念通常有基于基数与基于序数两种方法.
基于基数的自然数概念可溯源于原始人类用匹配方法计数.古希腊人用小石卵记畜群的头数或部落的人数.现在使用的英语calculate(计算)一词是从希腊文calculus(石卵)演变来的.中国古代《易·系辞》中说,上古结绳而治,后世圣人易之以书契,这都是匹配计算法的反映.
集合的基数具有元素“个数”的意义,当集合是有限集时,该集合的基数就是自然数.由此可通过集合的并、交运算定义自然数的加法与乘法(见算术).
为了计数,必须有某种数制,即建立一个依次排列的标准集合.随后对某一有限集合计数,就是将该集合中每个元素顺次与标准集合中的项对应,所对应的最后的项,就标志着给定集合元素的个数.这种想法导致G.皮亚诺1889年建立了自然数的序数理论.
皮亚诺规定自然数集满足下列五条公理,这里“集合”、“含有”、“自然数”“后继”等是不加定义的.
①1是自然数.
②1不是任何其它自然数的后继.
③每个自然数都有一个后继(a的后继记为a').
④a'=b'蕴含a=b.
⑤设S是自然数的一个集合.如果S含有1,且S含有a'蕴含S含有a,则
S含有任何自然数.
公理⑤就是熟知的数学归纳法公理.一切自然数集记为{1, 2 ,3 ,…,n…},简记为N.
从上述公理出发,可以定义加法和乘法,它们满足交换律与结合律,加法与乘法满足分配律.
二、整数
在自然数集N之外,再引入新的元素0,-1,-2,-3,…,-n,….称N中的元素为正整数,称0为零,称-1,-2,-3,…,-n,…为负整数.正整数、零与负整数构成整数系.
零不仅表示“无”,它在命数法中还个有特殊的意义:表示空位的符号.中国古代用算筹计数并进行运算,空位不放算筹,虽无空位记号,但仍能为位值记数与四则运算创造良好条件.印度-阿拉伯命数法中的零来自印度的零(sunya)字,其原意也是“空”或“空白”.
中国最早引入了负数.《九童算术·方程》中论述的“正负术”,就是整法的加减法.减法运算可看作求解方程a+x=b,如果a,b是自然数,则方程未必有自然数解.为了使它恒有解,就有必要把自然数系扩大为整数系.关于整数系的严格理论,可用下述方法建立.在N×N(即自然数有序对的集)上定义如下的等价关系:对于自然有序对(a1,b1),(a2,b2),如果a1+b2=a2+b1,就说(a1,b1)~(a2,b2),N×N,关于上述等价关系的等价类,称为整数.一切整数的集记为Z.
三、有理数
古埃及人约于公元前17世纪已使用分数,中国《九章算术》中也载有分数的各种运算.分数的使用是由于除法运算的需要.除法运算可以看作求解方程px=q(p≠0),如果p,q是整数,则方程不一定有整数解.为了使它恒有解,就必须把整数系扩大成为有理系.
关于有理数系的严格理论,可用如下方法建立.在Z×(Z-{0})即整数有序对(但第二元不等于零)的集上定义的如下等价关系:设p1,p2∈Z,
q1,q2∈Z - {0},如果p1q2=p2q1,则称(p1,q2)~(p2,q1).Z×(Z -{0})
关于这个等价关系的等价类,称为有理数.(p,q)所在的有理数,记为p q.一
切有理数所成之集记为Q.令整数p对应于p
1,即(p,1)所在的等价类,就把
整数集嵌入到有理数的集中.因此,有理数系可说是由整数系扩大后的数系.
四、引起数学危机的无理数
无理数,顾名思义,与有理数相对.那么它就是不能表示为整数或两整数之比的实数,比如2,3,7,π等等.如果不作数学计算,在实际生活中,我们是不会碰到这些数的,无论是度量长度,重量,还是计时.
第一个被发现的无理数是2,当时,毕达哥拉斯学派的一个名叫希帕索斯的学生,在研究1和2的比例中项时(若1∶X=X∶2,那么X叫1和2的比例中项),怎么也想不出这个比例中项值.后来,他画一边长为1的正方形,设对角线为X,于是X2=12+12.他想,X代表对角线长,而X2=2,那么X必定是确定的数.但它是整数还是分数呢?显然,2是12和22之间的数,因而X应是1和2之间的数,因而不是整数.那么X会不会是分数呢?毕达哥拉斯学派用归谬法证明了,这个数不是有理数,它就是无理数2.无理数的发现,对以整数为基础的毕氏哲学,是一次致命的打击,以至于有一段时间,他们费了很大的精力,将此事保密,不准外传,并且将希帕索斯本人也扔到大海中淹死了.但是,人们很快发现了3,5,7等更多的无理数,随着时间的推移,无理数的存在已成为人所共知的事实.
无理数的发现,是毕氏学派最伟大成就之一,也是数学史上的重要里程碑.
五、无理数
公元前500年,古希腊毕达哥拉斯(Pythagoras)学派的弟子希帕索斯(Hippasus)发现了一个惊人的事实,一个正方形的对角线与其一边的长度是不可公度的(若正方形边长是1,则对角线的长不是一个有理数)这一不可公度性与毕氏学派“万物皆为数”(指有理数)的哲理大相径庭.这一发现使该学派领导人惶恐、恼怒,认为这将动摇他们在学术界的统治地位.希勃索斯因此被囚禁,受到百般折磨,最后竟遭到沉舟身亡的惩处.
毕氏弟子的发现,第一次向人们揭示了有理数系的缺陷,证明它不能同连续的无限直线同等看待,有理数并没有布满数轴上的点,在数轴上存在着不能用有理数表示的“孔隙”.而这种“孔隙”经后人证明简直多得“不可胜数”.于是,古希腊人把有理数视为连续衔接的那种算术连续统的设想彻底地破灭了.不可公度量的发现连同著名的芝诺悖论一同被称为数学史上的第一次危机,对以后2000多年数学的发展产生了深远的影响,促使人们从依靠直觉、经验而转向依靠证明,推动了公理几何学与逻辑学的发展,并且孕育了微积分的思想萌芽.
不可通约的本质是什么?长期以来众说纷坛,得不到正确的解释,两个不可通约的比值也一直被认为是不可理喻的数.15世纪意大利著名画家达·芬奇称之为“无理的数”,17世纪德国天文学家开普勒称之为“不可名状”的数.然而,真理毕竟是淹没不了的,毕氏学派抹杀真理才是“无理”.人们为了纪念希帕索斯这位为真理而献身的可敬学者,就把不可通约的量取名为“无理数”——这便是“无理数”的由来.。

相关文档
最新文档