模板_数学建模案例选讲课程论文

合集下载

优秀的数学建模论文范文(通用8篇)

优秀的数学建模论文范文(通用8篇)

优秀的数学建模论文范文第1篇摘要:将数学建模思想融入高等数学的教学中来,是目前大学数学教育的重要教学方式。

建模思想的有效应用,不仅显著提高了学生应用数学模式解决实际问题的能力,还在培养大学生发散思维能力和综合素质方面起到重要作用。

本文试从当前高等数学教学现状着手,分析在高等数学中融入建模思想的重要性,并从教学实践中给出相应的教学方法,以期能给同行教师们一些帮助。

关键词:数学建模;高等数学;教学研究一、引言建模思想使高等数学教育的基础与本质。

从目前情况来看,将数学建模思想融入高等教学中的趋势越来越明显。

但是在实际的教学过程中,大部分高校的数学教育仍处在传统的理论知识简单传授阶段。

其教学成果与社会实践还是有脱节的现象存在,难以让学生学以致用,感受到应用数学在现实生活中的魅力,这种教学方式需要亟待改善。

二、高等数学教学现状高等数学是现在大学数学教育中的基础课程,也是一门必修的课程。

他能为其他理工科专业的学生提供很多种解题方式与解题思路,是很多专业,如自动化工程、机械工程、计算机、电气化等必不可少的基础课程。

同时,现实生活中也有很多方面都涉及高数的运算,如,银行理财基金的使用问题、彩票的概率计算问题等,从这些方面都可以看出人们不能仅仅把高数看成是一门学科而已,它还与日常生活各个方面有重要的联系。

但现在很多学校仍以应试教育为主,采取填鸭式教学方式,加上高数的教材并没有与时俱进,将其与生活的关系融入教材内,使学生无法意识到高数的重要性以及高数在日常生活中的魅力,因此产生排斥甚至对抗的心理,只是在临考前突击而已。

因此,对高数进行教学改革是十分有必要的,而且怎么改,怎么让学生发现高数的魅力,并积极主动学习高数也是作为教师所面临的一个重大问题。

三、将数学建模思想融入高等数学的重要性第一,能够激发学生学习高数的兴趣。

建模思想实际上是使用数学语言来对生活中的实际现象进行描述的过程。

把建模思想应用到高等数学的学习中,能够让学生们在日常生活中理解数学的实际应用状况与解决日常生活问题的方便性,让学生们了解到高数并不只是一门课程,而是整个日常生活的基础。

数学建模优秀论文(精选范文10篇) 2021

数学建模优秀论文(精选范文10篇) 2021

根据实际问题来建立数学模型,对数学模型来进行求解,然后根据结果去解决实际问题,这就是数学建模,本篇文章主要是向大家介绍几篇数学建模优秀论文得范文,希望对有这方面参考得学者有所帮助。

数学建模优秀论文精选范文10篇之第一篇:培养低年段学生数学建模意识得微课教学---------------------------------------------------------------------------------------------------------------------感谢使用本套资料,希望本套资料能带给您一些思维上的灵感和帮助,个人建议您可根据实际情况对内容做适当修改和调整,以符合您自己的风格,不太建议完全照抄照搬哦。

---------------------------------------------------------------------------------------------------------------------摘要:本文阐述了录制微课对培养学生建模意识得必要性和可行性,认为在小学数学教学中,鼓励低年段学生录制微课有积极意义,主张提高小学生建模语言表达能力,通过任务驱动和学生自主录制微课,逐步深入学习建模内容,培养并增强学生得建模意识。

关键词:低年段数学; 微课; 建模意识;当今社会,信息技术高速发展使教学资源高度丰富。

广大教师纷纷探讨如何利用信息技术更好地为教学服务,有效地改进教与学得方式,提高学生学习兴趣。

一、录制微课对培养学生建模意识得必要性和可行性“三年级现象”备受关注,很多人认为小学三年级是道坎,有得学生一、二年级数学成绩很好,到了三年级就断崖式下降。

如果真得出现这种现象,那么学生一、二年级数学成绩好只是表象。

一、二年级是学生初步感知数学得重要时期。

低年段数学知识是基础,对于低年段数学教学包括建模教学必须引起广大教育工作者得重视,让学生从小接受正确得教学模式,真正掌握学习数学得思想方法,避免出现短暂成绩好得现象。

大学生数学建模论文(专业推荐范文10篇)

大学生数学建模论文(专业推荐范文10篇)

大学生数学建模是一项基础性得学科竞赛,可以交流更多得经验,学习更多得知识,所以大学生数学建模很受学者们得欢迎,本篇文章就向大家介绍一些大学生数学建模论文,供给大家作为一个参考。

大学生数学建模论文专业推荐范文10篇之第一篇:数学建模对大学生综合素质影响得调查研究---------------------------------------------------------------------------------------------------------------------感谢使用本套资料,希望本套资料能带给您一些思维上的灵感和帮助,个人建议您可根据实际情况对内容做适当修改和调整,以符合您自己的风格,不太建议完全照抄照搬哦。

---------------------------------------------------------------------------------------------------------------------摘要:文章通过问卷网以调查问卷得形式和线下访谈得方法 ,对笔者所在学校参加过数学建模竞赛得同学和未参加过数学建模竞赛得同学对数学建模对自身综合素质得影响进行了调查研究。

调查表明,大部分学生都能认识到数学建模学习和竞赛对其自身综合素质得提升是有帮助得,但是大多数学生对数学建模得意义认识还不到位。

文章对调查结果进行分析,结合笔者得切身体会对地方高校数学建模课程教学及学生参加竞赛提出某些建议。

关键词:数学建模; 大学生; 综合素质; 研究;一、前言随着社会得不断进步和发展,大学生想要在激烈得人才竞争中脱颖而出,就必须要不断提高自己得综合素质,而良好得综合素质不仅应具有坚实得理论基础,扎实得专业知识,还应该具有较强得创新能力、与他人合作得能力、较强得语言表达能力、以及稳定得心理状态。

许多科学家断言未来科学技术得竞争是数学技术得竞争,这无疑对数学能力提出了更高得要求,不可否认数学建模课程教学及建模竞赛是提升大学生数学能力得有效途径。

数学建模论文模板

数学建模论文模板

(数学建模论文书写基本框架,仅供参考)题目(黑体不加粗三号居中)摘要(黑体不加粗四号居中)(摘要正文小4号,写法如下)(第1段)首先简要叙述所给问题的意义和要求,并分别分析每个小问题的特点(以下以三个问题为例)。

根据这些特点我们对问题1用。

的方法解决;对问题2用。

的方法解决;对问题3用。

的方法解决。

(第2段)对于问题1我们用。

数学中的。

首先建立了。

模型I。

在对。

模型改进的基础上建立了。

模型II。

对模型进行了合理的理论证明和推导,所给出的理论证明结果大约为。

,然后借助于。

数学算法和。

软件,对附件中所提供的数据进行了筛选,去除异常数据,对残缺数据进行适当补充,并从中随机抽取了3组数据(每组8个采样)对理论结果进行了数据模拟,结果显示,理论结果与数据模拟结果吻合。

(方法、软件、结果都必须清晰描述,可以独立成段,不建议使用表格)(第3段)对于问题2我们用。

(第4段)对于问题3我们用。

如果题目单问题,则至少要给出2种模型,分别给出模型的名称、思想、软件、结果、亮点详细说明。

并且一定要在摘要对两个或两个以上模型进行比较,优势较大的放后面,这两个(模型)一定要有具体结果。

(第5段)如果在……条件下,模型可以进行适当修改,这种条件的改变可能来自你的一种猜想或建议。

要注意合理性。

此推广模型可以不深入研究,也可以没有具体结果。

关键词:本文使用到的模型名称、方法名称、特别是亮点一定要在关键字里出现,5~7个较合适。

摘要要求:1)摘要必须指明研究的主要内容,使用的主要方法,得到的主要结论和成果;2)摘要用语必须十分简练,内容亦须充分概括。

文字不能太长,字数700~1000之间;3)不要举例,不要讲过程,不用图表,不做自我评价。

摘要是重中之重,必须严格执行!。

页码:1(底居中)目录可选:目录(4号黑体)(以下小4号)第一部分问题重述……………………………………()第二部分问题分析……………………………………………() 第三部分模型的假设…………………………………………() 第四部分定义与符号说明…………………………………()第五部分模型的建立与求解………………………………() 1.问题1的模型……………………………………………() 模型I(…(随机规划)模型)………………………………()模型II(………(数学)的模型)………………………….() …………………………………………………………….2.问题2的模型…………………………………………………() 模型I(………数学的模型)………………………………()模型II(………数学的模型)………………………….()第六部分对模型的评价…………………………………()第七部分参考文献………………………………………()第八部分附录…………………………………………………()一、问题重述(第二页起黑四号)在保持原题主体思想不变下,可以自己组织词句对问题进行描述,主要数据可以直接复制,对所提出的问题部分基本原样复制。

数学建模课程论文模板

数学建模课程论文模板

承诺书
我们完全明白,参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守规则,以保证公正、公平性。

如有违反规则的行为,我们将受到严肃处理。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): A
参赛队员(打印并签名) :1.
2.
3.
(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。

以上内容请仔细核对,提交后将不再允许做任何修改。

如填写错误,论文可能被取消评奖资格。


日期: 2014 年 12 月 6 日
编号专用页
赛区评阅编号(由赛区组委会评阅前进行编号):
全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):。

数学建模论文(精选4篇)

数学建模论文(精选4篇)

数学建模论文(精选4篇)数学建模论文模板篇一1数学建模竞赛培训过程中存在的问题1.1学生数学、计算机基础薄弱,参赛学生人数少以我校理学院为例,数学专业是本校开设最早的专业,面向全国28个省、市、自治区招生,包括内地较发达地区的学生、贫困地区(包括民族地区)的学生,招收的学生数学基础水平参差不齐.内地较发达地区的学生由于所处地区的经济文化条件较好,教育水平较高,高考数学成绩普遍高于民族地区的学生.民族地区由于所处地区经济文化较落后,中小学师资力量严重不足,使得少数民族学生数学基础薄弱,对数学学习普遍抱有畏难情绪,从每年理学院新生入学申请转系的同学较多可以窥见一斑.虽然学校每年都组织学生参加全国大学生数学建模竞赛,但人数都不算多.从专业来看,参赛学生主要以数学系和计算机系的学生为主,间有化学、生科、医学等理工科学生,文科学生则相对更少.理工科类的学生基本功比较扎实,他们在参赛过程中起到了重要作用.文科学生数学和计算机功底大多薄弱,更多的只是一种参与.从年级来看,参赛学生以大二的学生居多;大一的学生已学的数学和计算机课程有限,基本功还有些欠缺;大三、大四的学生忙着考研和找工作,对数学建模竞赛兴趣不大.从参赛的目的来看,有20%左右的学生是非常希望通过数学建模提高自己的综合能力,他们一般能坚持到最后;还有50%的学生抱着试试看的态度参加培训,想锻炼但又怕学不懂,觉得可以坚持就坚持,不能则中途放弃;剩下的30%的学生则抱着好奇好玩的态度,他们大多早早就出局了.学生的参赛积极性不高,是制约数学建模教学及竞赛有效开展的不利因素.1.2无专职数学建模培训教师,培训教师水平有限,培训方法落后数学建模的培训教师主要由理学院选派数学老师临时组成,没有专职从事数学建模的教师.由于学校扩招,学生人数多,教师人数少,数学教师所承担的专业课和公共课课程多,授课任务重;备课、授课、批改作业占用了教师的大部分工作时间,并且还要完成相应的科研任务.而参加数学建模教学及竞赛培训等工作需要花费很多时间和精力,很多老师都没有时间和精力去认真从事数学建模的教学工作.培训教师队伍整体素质不够强、能力欠缺,指导起学生来也不是那么得心应手,且从事数学建模教学的老师每年都在调整,不利于经验的积累.另外,学校对参与数学建模教学及竞赛培训的教师的鼓励措施还不是十分到位和吸引人,培训教师对数学建模相关的工作热情不够,缺乏奉献精神.在2011年以前,数学建模培训主要采用教师授课的方式进行,但各位老师授课的内容互不联系.比如说上概率论的老师就讲概率论的内容,上常微分方程的老师就讲常微分的内容.学生学习了这些知识,不知道有什么用,怎么用,不能将这些知识联系起来转化为数学建模的能力.这中间缺少了很重要的一个环节,就是没有进行真题实训.结果就是学生既没有运用这些知识构建数学模型的能力,也谈不上数学建模论文写作的技巧.虽然学校年年都组织学生参加全国大学生数学建模竞赛,但结果却不尽如人意,获奖等次不高,获奖数量不多.1.3学校重视程度不够,相关配套措施还有待完善任何一项工作离开了学校的支持,都是不可能开展得好的,数学建模也不例外.在前些年,数学建模并没有引起足够的重视,学校盼望出成绩但是结果并不理想,对老师和学生的信心不足.由于经费紧张,并未专门对数学建模安排实验室,图书资料很少,学生用电脑和查资料不方便,没有学习氛围.每年数学建模竞赛主要由分管教学的副院长兼任组长,没有相应专职的负责人,培训教师去参加数学建模相关交流会议和学习的机会很少.学校和二级学院对参加数学建模教学、培训的老师奖励很少,学生则几乎没有.在课程的开设上也未引起重视,虽然理学院早在1997年就将数学实验和数学建模课列为专业必修课,但非数学专业只是近几年才开始列为公选课开设,且选修率低.2针对存在问题所采取的相应措施2.1扩大宣传,重视数学和计算机公选课开设,举办数学建模学习讨论班最近两年,学院组建了数学建模协会,负责数学建模的宣传和参赛队员的海选,通过各种方式扩大了对数学建模的宣传和影响,安排数学任课教师鼓励数学基础不错的学生参赛.同时邀请重点大学具有丰富培训经验的老师来做数学建模专题讲座,交流经验.学院重视数学专业的基础课程、核心课程的教学,选派经验丰富的老教师、青年骨干教师担任主讲,随时抽查教学质量,教学效果.严抓考风学风,对考试作弊学生绝不姑息;学生上课迟到、早退、旷课一律严肃处理.通过这些举措,学生学习态度明显好转,数学能力慢慢得到提高.学校有意识在大一新生中开设数学实验、数学建模和相关计算机公选课,让对数学有兴趣的学生能多接触这方面的知识,减少距离感.选用的教材内容浅显而有趣味,主要目的是让同学们感受到数学建模并非高不可攀,数学是有用的,增加学生学习数学的热情和参加数学建模竞赛的可能性.为了解决学生学习数学建模过程中的遇到的困难,学院组织老师、学生参加数学建模周末讨论班,老师就学生学习过程中遇到的普遍问题进行讲解,学生分小组相互讨论,尽量不让问题堆积,影响后续学习积极性.通过这些措施,参赛学生的人数比以往有了大的改观,参赛过程中退赛的学生越来越少,参赛过程中的主动性也越来越明显.2.2成立数学建模指导教师组,分批培养培训教师,改进培训方法近年来,学院开始重视对数学建模培训教师的梯队建设,成立了数学建模指导教师组.把培训教师分批送出去进修,参加交流会议,学习其它高校的经验,并安排老教师带新教师,培训教师队伍越来越稳定、壮大.从去年开始,理学院组织学生进行了为期一个月的暑期数学建模真题实训,从8月初到8月底,培训共分为7轮.学生首先进行三天封闭式真题训练———其次答辩———最后交流讨论.效果明显,学生的数学建模能力普遍得到了提高,学习积极性普遍高涨.9月份顺利参加了全国大学生数学建模竞赛.从竞赛结果来看,比以前有了比较大的进步,不管是获奖的等次还是获奖的人数上都取得了历史性突破.有了这些可喜的变化,教师和学生的积极性都得到了提高,对以后的数学建模教学和培训工作将起着极大的促进作用.除了这种集训,今后,数学建模还需要加强平时的教学和培训工作.2.3学校逐渐重视,加大了相关投入,完善了激励措施最近几年,学校加大了对数学建模教学和培训工作的相关投入和鼓励措施.安排了专门的数学建模实验室,配备了学院最先进的电脑、打印机等设备,购买了数学建模相关的书籍.划拨了数学建模教学和培训专项经费.虽然数学建模教学还没有计入教学工作量,但已经考虑计入职称评定的相关工作量中,对参加数学建模教学和培训的老师减少了基本的教学工作量,使他们有更多的时间和精力投入到数学建模的相关工作中去.对参加全国大学生数学建模竞赛获奖的老师和学生的奖励额度也比以前有了很大的提高,老师和学生的积极性得到了极大的提高.3结束语对我们这类院校而言,最重要的数学建模赛事就是一年一度的全国大学生数学建模竞赛了.竞赛结果大体可以衡量老师和学生的付出与收获,但不是绝对的,教育部组织这项赛事的初衷主要是为了促进各个院校数学建模教学的有效开展.如果过分的看重获奖等次和数量,对学校的数学建模教学和组织工作都是一种伤害.参赛的过程对学生而言,肯定是有益的,绝大多数参加过数学建模竞赛的学生都认为这个过程很重要.这个过程可能是四年的大学学习过程中体会最深的,它用枯燥的理论知识解决了活生生的现实中存在的问题,虽然这种解决还有部分的理想化.由于我校地处偏远山区,教育经费相对紧张,投入不可能跟重点院校的水平比,只能按照自身实际来.只要学校、老师、学生三方都重视并积极参与这一赛事,数学建模活动就能开展的更好.数学建模论文模板篇二培养应用型人才是我国高等教育从精英教育向大众教育发展的必然产物,也是知识经济飞速发展和市场对人才多元化需求的必然要求。

数学建模论文模板

数学建模论文模板

数学建模论文模板数学建模论文模板在学习和工作的日常里,大家都有写论文的经受,对论文很是熟识吧,借助论文可以有效训练我们运用理论和技能解决实际问题的的力量。

你知道论文怎样才能写的好吗?下面是我为大家整理的数学建模论文模板,欢迎阅读,盼望大家能够喜爱。

数学建模论文模板1数学建模随着人类的进步,科技的进展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。

强调数学应用及培育应用数学意识对推动素养教育的实施意义非常巨大。

数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高同学的综合素养。

本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,盼望得到同仁的关心和指正。

一、数学应用题的特点我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。

数学应用题具有如下特点:第一、数学应用题的本身具有实际意义或实际背景。

这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。

如与课本学问亲密联系的源于实际生活的应用题;与模向学科学问网络交汇点有联系的应用题;与现代科技进展、社会市场经济、环境爱护、实事政治等有关的应用题等。

其次、数学应用题的求解需要采纳数学建模的`方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。

第三、数学应用题涉及的学问点多。

是对综合运用数学学问和方法解决实际问题力量的检验,考查的是同学的综合力量,涉及的学问点一般在三个以上,假如某一学问点把握的不过关,很难将问题正确解答。

二、数学应用题如何建模第一层次:直接建模。

依据题设条件,套用现成的数学公式、定理等数学模型,注解图为:其次层次:直接建模。

可利用现成的数学模型,但必需概括这个数学模型,对应用题进行分析,然后确定解题所需要的详细数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。

大学生数学建模竞赛论文模板(选用)

大学生数学建模竞赛论文模板(选用)

(数学建模论文书写基本框架,仅供参考)题目(黑体不加粗三号居中)摘要(黑体不加粗四号居中)(摘要正文小4号,写法如下)(第1段)首先简要叙述所给问题的意义和要求,并分别分析每个小问题的特点(以下以三个问题为例)。

根据这些特点我们对问题1用。

的方法解决;对问题2用。

的方法解决;对问题3用。

的方法解决。

(第2段)对于问题1我们用。

数学中的。

首先建立了。

模型I。

在对。

模型改进的基础上建立了。

模型II。

对模型进行了合理的理论证明和推导,所给出的理论证明结果大约为。

,然后借助于。

数学算法和。

软件,对附件中所提供的数据进行了筛选,去除异常数据,对残缺数据进行适当补充,并从中随机抽取了3组数据(每组8个采样)对理论结果进行了数据模拟,结果显示,理论结果与数据模拟结果吻合。

(方法、软件、结果都必须清晰描述,可以独立成段,不建议使用表格)(第3段)对于问题2我们用。

(第4段)对于问题3我们用。

如果题目单问题,则至少要给出2种模型,分别给出模型的名称、思想、软件、结果、亮点详细说明。

并且一定要在摘要对两个或两个以上模型进行比较,优势较大的放后面,这两个(模型)一定要有具体结果。

(第5段)如果在……条件下,模型可以进行适当修改,这种条件的改变可能来自你的一种猜想或建议。

要注意合理性。

此推广模型可以不深入研究,也可以没有具体结果。

关键词:本文使用到的模型名称、方法名称、特别是亮点一定要在关键字里出现,5~7个较合适。

注:字数700~1000之间;摘要中必须将具体方法、结果写出来;摘要写满几乎一页,不要超过一页。

摘要是重中之重,必须严格执行!。

页码:1(底居中)目录可选:目录(4号黑体)(以下小4号)第一部分问题重述…………………………………………………………() 第二部分问题分析…………………………………………………………() 第三部分模型的假设…………………………………………………………() 第四部分定义与符号说明…………………………………………………() 第五部分模型的建立与求解………………………………………………() 1.问题1的模型………………………………………………………………() 模型I(…(随机规划)模型)……………………………………………() 模型II(………(数学)的模型)………………………………………….() ………………………………………………………………………………….2.问题2的模型…………………………………………………………………() 模型I(………数学的模型)………………………………………………()模型II(………数学的模型)…………………………………………….() ……………………………………………………………………………….第六部分对模型的评价………………………………………………………() 第七部分参考文献……………………………………………………………() 第八部分附录…………………………………………………………………………()一、问题重述(第二页起黑四号)在保持原题主体思想不变下,可以自己组织词句对问题进行描述,主要数据可以直接复制,对所提出的问题部分基本原样复制。

《数学建模》论文word模板

《数学建模》论文word模板

《数学建模》论文(宋体、小三、居中)题目:数学与信息科学学院学院:专业:班级:姓名:学号:2015 年月日1车道被占用对城市道路通行能力的影响摘 要本文针对交通事故占用车道对城市道路通行能力的影响进行分析,通过采集附件1、附件2中的数据,对横断面实际通行能力、上游车流量与时间的函数关系运用拟合,通过判断车辆排队长度与实际通行能力、事故持续时间、上游车流量的关系,并建立了它们之间的微分方程模型.运用Matlab 软件,对模型进行分析和求解.对于问题一,为得出事故发生到撤离期间,横断面实际通行能力和时间的函数关系.对事故发生即刻起每10秒统计通过横断面汽车的标准当量数,再转化 为单位为/pcu h 来表示实际通行能力,通过对附件1所给视频中车辆数据的统计与筛选,用Matlab 软件将统计筛选数据进行多项式拟合,得到该函数关系为21()0.305622.22941392.0532f t t t =-+.对于问题二,运用问题一的方法对处理附件2,同理得出函数关系为20()0.0106 2.34661365.7067f t t t =-+,根据两图曲线走势得出两图趋势大体相当,但图4.2较图4.1曲线平缓,说明图4.2的横断面实际通行能力受事故影响较小.产生差异的原因是根据附件3上左转流量比例35%、直行流量比例44% 和右转流量比例21%,即三车道比一车道车流量大,导致二三车道占用后需要换道的较多于一二车道占用,从而二三车道被占用时对横断面实际通行能力影响大,符合曲线走势.对于问题三,根据路段上游车流量与事故横断面实际通行能力对路段车辆排队长度变化率的关系为基础,利用问题一求横断面实际通行能力的时间变化函数的方法得出路段上游车流量与时间的函数,建立车辆排队长度与横断面实际通行能力、事故持续时间、上游车流量间的微分方程模型,假设车辆排队单位长度与横断面实际同行能力、路段上游车流量均称正比例关系,与事故持续时间之间的关系可以忽略不计,即得该微分方程模型为'2211()()()f t k f t k f t =+,再利用Maple 及初始值解出所设参量1k ,2k .对于问题四,由于题设条件符合上述模型,故将所给数据带入问题三所建模型当中求出时间即可.事故所处位置距离上游路口变为140米,根据视频中的实地情况,该路段中的支路位置将处在事故发生的下游,会相对减弱道路拥堵程度即提高实际通行能力,则运用原始模型求出时间相对应该偏小,但误差不会太大.关键词:实际通行能力;微分方程模型;拟合;Maple 软件目录(由域生成的目录,交稿前此页可以保留或删掉)摘要 (1)1、问题重述与问题分析 (3)1.1 问题重述(大家一定要注意样式的使用) (3)1.2 问题分析 (3)2、模型假设 (4)3、符号说明 (4)4、模型的建立与求解 (5)4.1 问题一的模型建立与求解 (5)4.2 问题二的模型建立与求解 (5)4.3 问题三的模型建立与求解 (6)4.4 问题四的求解 (7)5、模型的评价与改进 (8)5.1 对现有模型进行评价 (8)5.2 对现有模型的改进 (8)参考文献 (8)附录A (9)附录B (10)21、问题重述与问题分析1.1 问题重述(大家一定要注意样式的使用)随着城市化进程的加快,城市车辆数量剧增,交通事故日显突出,交通事故车道被占用导致车道或道路横断面通行能力在单位时间内降低.由于城市道路具有交通流密度大、连续性强等特点,一条车道被占用,也可能降低路段所有车道的通行能力,即使时间短,也可能引起车辆排队,出现交通阻塞.如处理不当,甚至出现区域性拥堵.就针对交通事故降低车道通行能力方面解决如下问题:(1) 描述视频中交通事故发生至撤离期间,事故所处横断面实际通行能力的变化过程.(2) 分析说明同一横断面交通事故所占车道不同对该横断面实际通行能力影响的差异.(3) 构建数学模型,分析交通事故所影响的路段车辆排队长度与事故横断面实际通行能力、事故持续时间、路段上游车流量间的关系.(4) 假如视频1(附件1)中的交通事故所处横断面距离上游路口变为140米,路段下游方向需求不变,路段上游车流量为1500/pcu h,事故发生时车辆初始排队长度为零,且事故持续不撤离.则求从事故发生开始到车辆排队长度将到达上游路口的时间.1.2 问题分析本题给出了两个交通事故发生时道路通行情况的视频及其示意图,通过视频采集数据来建立数学模型.针对问题一:根据实际通行能力的概念,在交通事故出现之前,道路保持基本通行能力,不必考虑实际通行能力,在事故出现即刻到撤离时间段内,通过视频1每10秒逐一统计标准车当量数(统计表见附件6),再转化为/pcu h为单位表示实际通行能力,利用Matlab软件将所统计筛选的数据拟合出一条曲线,筛选的目的是将视频中出现跳跃产生模糊的剪去,该曲线的走势及拟合出的函数反应实际通行能力的变化过程.针对问题二:就视频2采用问题一相同的方法统计,拟合出一条曲线及函数,将曲线一二进行比较,从而得出所占车道不同对横断面实际通行能力影响的差异.产生差异的原因是根据附件3上左转流量比例35%、直行流量比例44% 和右转流量比例21%,说明三车道比一车道车流量大,则所占二三车道比一二车道对降低实际通行能力影响大.3针对问题三:构建路段车辆排队长度与事故横断面实际通行能力、事故持续时间、路段上游车流量间的模型,利用问题一所求出的实际通行能力的函数,用同样的方法求出上游车流量的函数关系及车辆排队长度与时间的函数关系(统计表见附录).根据车流量排队长度的变化率与横断面实际通行能力、路段上游车流量间的关系为基础,建立一个微分方程模型,再利用Maple软件及初始值解微分方程中的参量.针对问题四:问题四条件基本吻合问题三所建的模型,则直接将数据带进模型求出即可.事故所处位置距离上游路口变为140米,该路段中的支路位置将处在事故发生的下游,会相对减弱道路拥堵程度即提高实际通行能力,则运用原始模型求出时间相对应该偏小,但误差不会太大,则直接代入模型求解.2、模型假设(1)假设道路上行驶的车辆均以匀速的车速跟踪行驶;(2)都是从静止状态匀加速启动;(3)假设车辆排队单位长度与横断面实际同行能力、路段上游车流量均称正比例关系,与事故持续时间之间的关系可以忽略不计;3、符号说明t: 表示事故持续时间m: 事故横断面实际通行的标准车当量q: 事故横断面实际通行能力(/pcu h)n: 路段上游进入该横断面的标准车当量p: 路段上游进入该横断面的车流量(/pcu h)r: 交通事故所影响的路段车辆排队长度2()f t: 二三车道横断面实际通行能力的变化函数1()f t: 路段上游车流量的变化函数()f t: 路段车辆排队长度与时间关系的函数0()f t:一二车道横断面实际通行能力的变化函数1k: 横断面实际通行能力拟合时的参量2k: 路段上游车流量拟合时的参量454、模型的建立与求解4.1 问题一的模型建立与求解经分析,问题一是通过拟合曲线和函数来定量描述事故发生到撤离期间,横断面实际通行能力的变化,其实际通行能力是用每10秒统计通过横断面汽车的标准当量数,再转化为单位为/pcu h 来表示实际通行能力.图4.1实际通行能力的时间变化图(占用二三车道)是通过Matlab 拟合得到,从而得到实际通行能力与时间的关系21()0.305622.22941392.0532f t t t =-+ 根据曲线及函数说明,当事故发生即刻实际通行能力达到最大,之后随时间持续实际通行能力降低一段时间后又恢复上升,待事故撤离瞬间实际通行能力变大,之后恢复道路基本通行能力.可得出实际通行能力与事故持续时间之间并非单调关系,近似拟合方程有个最低点.图4.1 实际通行能力的时间变化图(占用二三车道)4.2 问题二的模型建立与求解经分析问题二是将问题一的事故发生车道变为一二,其本质做法相同,根据问题一所得结论,即实际通行能力并不是随事故持续时间单调降低的,又根据问题二拟合曲线走势,易看出两条曲线的走势相似,只是问题二对应曲线较一平缓,说明事故占用二三车道对道路横截面实际通行能力影响较大,更容易使道路堵塞,而在一二车道相对三车道上的疏通能力较强,与附件3所提供的右转、直行、左转流量比例存在联系,如图4.2实际通行能力的时间变化图(占用一二车道)图4.2 实际通行能力的时间变化图(占用一二车道)4.3 问题三的模型建立与求解根据交通事故所影响的路段车辆排队长度与横断面实际通行能力、事故持续时间和路段上游车流量间的关系得出,把持续时间当作自变量,运用微分方程,如方程显示不全就用单位行距即可(Mathtype的插入Right-numbered).67(8.1)由问题一及(1.1)式可知,已知横断面实际通行能力关于时间的函数关系0()f t ,因视频中可提取的数据很多,所以路段上游车流量与持续时间可通过拟合得出同上的函数和曲线如图4.3上游车流量的时间变化图()!!!n r n r - .再用相同的方式得出路段车辆排队长度随时间变化的函数关系及曲线.由假设条件知假设车辆排队单位长度与横断面实际同行能力、路段上游车流量均称正比例关系,与事故持续时间之间的关系可以忽略不计.根据'2211()()()f t k f t k f t =+利用Maple 软件及初始值计算得出1k 2k (如表1.1所示)则模型求得函数为1k = —1.6903, 2k =1.8 ,即12() 1.6903() 1.8()f t f t f t '=-+.表1.1 示例表格五号黑体(尽可能用三线表)五号 五号 五号 宋体 宋体4.4 问题四的求解由题意可知,此时最大车辆排队长度为140,而()f t 是排队长度与持续时间的函数关系,因此,欲求达到最大车辆排队长度所需的时间,只需用maple 软件直接把140代入即可,解得t =98s ,其中位于事故下游的支路不加考虑.5、模型的评价与改进5.1 对现有模型进行评价优点:(1)通过数据的拟合,弱化了数据的随机性,强化了其规律性;(2)模型的参数是通过回归参数的最小二乘估计法得到的,精确度较高;(3)采用微分方程模型建立起问题三中的各个关系,同时得到函数与问题四条件吻合.(4)在采用微分方程的同时考虑周期性相结合更切合实际.缺点:(1)对数据的拟合会产生较大的误差,并且丧失一些特征点,使得函数与实际相差大(2) 采用微分方程需针对连续函数,而此模型中以10秒为间隔相当于连续.会存在一定偏差.5.2 对现有模型的改进未考虑红绿灯对路段上游车流量的影响,即对模型所建立的函数没有周期性的影响.参考文献[1]姜启源,数学模型(第二版),北京:高等教育出版社,1993年.[2]王松桂,陈兰红,陈立萍,论线性统计模型的应用,中国科学,28(2):1228-1239,1999年.[3]王高雄,论文的模板,/,2014年5月21日.8附录A表:16:49:02 3 1 35 1080 360 16:49:12 3 7 30 1080 2520 16:49:22 4 8 60 1440 2880 16:49:32 2 4 50 720 1440 16:49:38 3516:50:043016:50:14 3 7 60 1080 2520 16:51:54 3 1 120 1080 360 16:52:04 3 1 120 1080 360 16:52:14 4 9 90 1440 3240 16:52:24 2 9 70 720 3240 16:52:34 4 0 60 1440 0 16:52:44 3 0 120 1080 0 16:52:54 3 1 90 1080 360 16:53:04 4 0 90 1440 09附录BMatlab程序:1.第一个视频数据代码t=0:84;q=[1440 1080 1800 1440 1080 1080 2160 1080 1440 1440 720 720 1440 1080 720 720 1080 720 1080 1080 360 1080 1440 1080 1440 1080 1080 720 1080 360 1080 1080 1440 1440 1080 1080 1440 1080 1080 1080 1440 720 1080 1080 720 1080 1080 1440 1440 1080 720 1080 1080 1080 1440 720 1440 1080 1080 1440 1080 720 1080 1080 1800 720 1080 1800 1440 720 720 720 1440 1440 1080 1080 1440 1800 720 1080 1080 1800 1440 1080 4680];A=polyfit(t,q,2)z=polyval(A,t);plot(t,q,'+',t,z,'.')2.第二个视频数据代码t=0:174;q=[720 360 1800 1440 1800 1800 720 1800 2160 1440 1080 1080 1080 720 720 1800 1800 1080 1440 1440 2160 1800 720 1080 1440 1440 1080 2160 1440 720 1080 1080 1800 1800 1080 360 720 1800 2160 1440 1080 720 1080 1440 1440 1080 1440 1440 1440 1440 1800 1800 2160 1440 1080 1440 1080 1440 720 720 360 1080 1440 1800 1080 720 720 1800 1080 1440 1080 1080 1440 1080 1800 720 720 360 360 1440 1440 1800 1080 1800 1440 1080 1080 1800 1080 1080 720 1440 1440 1800 1440 1440 1440 1440 1080 1080 1080 1440 1440 1080 1080 1440 1080 1080 1080 1440 1440 1080 1080 720 1080 1440 1080 1440 1440 1080 1800 1080 1440 1440 1440 1080 1080 1440 1440 1080 1080 1440 1440 1800 1080 1440 1440 1080 1440 1080 1440 1080 1440 1080 1080 1440 1080 1080 360 720 1080 1080 1440 1440 1080 1440 1440 1080 1440 1080 1440 1080 720 1080 1080 1080 1440 1800 1440 1440 1080 1440 1440 1440 1440];12 10 11 10 14 13 24 13];A=polyfit(t,q,2)z=polyval(A,t);plot(t,q,'+',t,z,'.')103.路段上游车流量与时间的函数源程序:t=0:92;y=[360 360 360 2880 1440 0 360 360 0 1800 2520 0 0 360 360 2520 2880 0 0 0 360 1800 1800 0 0 360 360 2520 3240 2160 0 0 0 2520 1800 1080 360 0 360 2520 2880 1440 0 0 2520 3240 1440 0 0 0 3600 2880 1440 360 360 360 3240 3240 0 0 360 0 3960 2520 1440 0 2520 2880 3600 1440 0 0 0 0 2160 1800 720 0 0 0 0 0 0 2880 0 0 3600 2520 0 0 720 0 1800];A=polyfit(t,,p,3)z=polyval(A,t);plot(t,p,'+',t,z,'.')4.路段车辆排队长度与时间的函数源程序:t=0:87;r=[90 90 60 40 60 80 50 30 10 0 0 0 0 0 0 0 0 0 30 50 40 30 0 30 30 30 10 0 0 0 60 40 40 30 30 45 30 60 50 35 30 60 50 35 30 60 30 30 40 120 60 60 45 35 45 120 120 90 70 60 120 90 90 60 60 60 100 120 120 80 90 120 120 120 90 90 90 90 100 90 60 90 90 90 120 120 120 0];A=polyfit(t,r,3)z=polyval(A,t);plot(t,r,'+',t,z,'.')11。

数学建模优秀论文模板

数学建模优秀论文模板

数学建模优秀论文模板标题:基于数学建模方法的XXX问题研究摘要:本文基于数学建模方法,对XXX问题进行了深入研究。

首先,我们对问题进行了全面的分析和理解,并提出了相关假设。

然后,我们通过建立数学模型,利用数学工具和算法对问题进行求解。

最后,我们对模型进行了验证和优化,并得出了一系列重要结论。

本研究获得了全国数学建模大赛一等奖。

研究结果具有一定的理论和实践价值,对于解决类似问题具有一定的指导意义。

关键词:数学建模;XXX问题;模型构建;求解方法;实践价值1.引言1.1问题背景1.2研究目的1.3研究意义2.问题分析和理解2.1对问题进行全面分析2.2提出相关假设2.3确定问题的关键要素及其相互关系3.模型建立3.1建立问题的数学模型3.2假设与符号定义3.3模型的假设和参数4.模型求解4.1求解方法的选择4.2模型求解过程4.3算法的设计与实现5.模型验证和优化5.1模型的验证方法5.2模型的优化策略5.3鲁棒性分析6.结果与讨论6.1模型求解结果6.2结果分析与讨论6.3结果的实际应用价值7.模型的评价与展望7.1模型的优点和不足7.2模型的推广和改进方向附录注意事项:1.这只是一个模板的大致结构,具体的内容要根据实际情况进行补充和修改。

2.摘要部分简洁明了地介绍了研究的目的、方法和结果。

3.引言部分对问题进行了背景说明,明确研究目的和意义。

4.问题分析和理解部分对问题进行了深入分析和理解,确定了问题的关键要素和假设。

5.模型建立部分对问题进行了数学建模,并定义了相关的符号和假设。

6.模型求解部分介绍了所选用的求解方法和实际算法的设计。

7.模型验证和优化部分对模型进行了验证和优化,包括鲁棒性分析。

8.结果与讨论部分对模型求解结果进行了分析和讨论,并探讨了结果的实际应用价值。

9.模型的评价与展望部分对模型的优点和不足进行了评价,并提出了模型的推广和改进方向。

数学建模论文模板3篇

数学建模论文模板3篇

数学建模论文模板本文将以“动力学模型研究草地生态系统中植物物种多样性变化的机制”为例,介绍数学建模论文的写作模板。

第一篇:绪论在本篇论文中,我们将研究草地生态系统中植物物种多样性变化的机制。

植物物种多样性是生态系统中的重要指标之一,其变化与环境因素、人类干扰等因素密切相关。

我们希望通过建立动力学模型,揭示不同因素对植物物种多样性变化的影响机制,为草地生态系统保护与管理提供科学依据。

本文的具体框架如下:在第二部分中,我们将简要介绍植物物种多样性与草地生态系统的相关知识。

在第三部分中,我们将从环境因素、人类干扰、种间关系等因素入手,进行动力学模型的建立,并分析模型参数。

在第四部分中,我们将通过模型仿真和实验验证,探究不同因素对植物物种多样性的影响。

第二篇:文献综述植物物种多样性是生态系统中的重要指标之一,其变化涉及到复杂的生态因素和人类活动。

在草地生态系统中,植物群落的物种多样性变化受到许多因素的影响,例如环境因素、人类干扰、生物多样性等。

下面我们将分别对这些因素的影响机制进行综述。

环境因素:环境因素是影响生态系统中植物物种多样性变化的重要因素。

其中,土壤水分、光照等生态因素对植物的分布、生长和繁殖都有直接和间接的影响。

土壤养分、温度、氧气含量、酸碱度等也会对物种多样性产生影响。

人类干扰:人类干扰是导致生态系统中植物物种多样性下降的主要因素之一。

人类从事的采矿、建设等活动都会破坏生态系统的平衡,从而影响系统中不同物种的生存繁殖。

另外,过度放牧、过度利用等也会对植物群落的物种多样性造成一定的影响。

种间关系:物种之间的关系也是影响生态系统中植物物种多样性的重要因素之一。

其中,竞争、共生、捕食等种间关系都会直接或间接的影响植物群落的物种多样性。

第三篇:方法与结果基于在综述中分析的因素,我们建立了相应的生态动力学模型。

该模型以草地生态系统中植物群落的物种多样性为研究对象,考虑了土壤水分、光照、土壤养分等环境因素、过度放牧、过度利用等人类活动以及种间关系等多种因素对物种多样性的影响。

数学建模论文范文免费(必备14篇)

数学建模论文范文免费(必备14篇)

数学建模论文范文免费(必备14篇)试论数学建模【摘要】本文以“减肥问题的研究”为例,介绍了数学建模基本方法和步骤,希望它能对初次参加数学建模的同学有所帮助。

【关键词】数学建模;基本方法;步骤数学建模就是应用建立数学模型来解决各种实际问题的方法,也就是通过对实际问题作抽象、简化、确定变量和参数并应用一些“规律”建立含变量和参数的数学问题,求解该数学问题并验证所得到的解,从而确定能否用于解决实际问题的这种多次循环,不断深化的过程。

数学建模可以培养学生下列能力:(1)洞察能力,许多提出的问题往往不是数学化的,这就是需要建模者善于从实际工作提供的原形中;抓住其数学本质,同时有些数学模型又可以有许多现实意义,这使得建模者不得不具有很强的洞察以及多种思维方式进行横向、纵向的研究;(2)数学语言翻译能力即把经过一定抽象和简化的实际用数学的语言表达出来,形成数学模型,并对数学的方法和理论推导或计算得到的结果,能用大众的语言表达出来,在此基础上提出解决其中一问题的方案或建议;(3)综合应用分析能力,用已学到的数学思想和方法进行综合应用分析,并能学习一些新的知识;(4)联想能力,对于不少的实际问题,看起来完全不同,但在一定的简化层次下它们的数学建模是相同的或相似的,这正是数学应用广泛性的体现,这就要培养学生有广泛的兴趣,多思考,勤奋踏实地学习,通过熟能生巧达到触类旁通地境界。

因此,目前有越来越多的高等院校自己组织或参加全国乃至国际大学生数学建模竟赛。

然而,有部分学生特别是初次参加数学建模的学生对数学建模感到很茫然,本人多次承担数学建模指导老师,撰写该论文,希望对初次参加数学建模的同学有所帮助。

1.建立数学模型的一般步骤使问题理想化在众多因素中孤立出所研究的问题是科学研究的经典方法。

按照辩证唯物主义观点,世界上一切事物都是相互依赖、相互依存的,要精细地研究一个问题常常无从下手,就是因为思考相关问题太多所致。

因此,对初学者最好的方法就是使问题简单化、理想化,在特殊或极端情况下进入课题,然后加入相关因素,修正结果,使问题深化。

数学建模论文模板(10篇)

数学建模论文模板(10篇)

数学建模论文模板(10篇)创新是知识经济的灵魂,创新能力培养是本科教育的根本目的之一、大学数学作为本科基础教学课程,在培养学生创新思维和创新能力方面具有举足轻重的作用,而数学建模能力的培养正是实现这一目的的最好途径。

2.数学教学中渗透数学建模思想是大学数学教学的必然要求。

目前,高校中高等数学教学普遍存在内容多、课时少的问题,教师在教学中往往只注重理论知识的教学,忽视了知识的应用;只注重数学学科本身知识的讲解,不注重学科之间的结合,这样使学生体会不到数学的真正用处。

为了克服这一教学中的不足,应将数学建模思想融入大学数学教学中去,使学生具备扎实的数学理论基本功和数学技能的同时,更具备运用数学思想解决实际问题的创新能力和应用能力。

3.数学建模有助于提高学生的多方面能力数学建模是将数学知识应用到实际问题中的一种创造性实践活动,它能增强学生将数学理论应用到实际问题中的社会实践意识。

数学建模具有思维的灵活性和结论的不确定性,在解决实际问题时可以从不同的角度,采用不同的数学方法建立数学模型,因此,可以激发学生的想象力、观察力和创造力。

另外,在建模时往往需要查阅相关文献资料,从中吸取有用的信息用于建模,这无形之中拓宽了学生的知识面,培养了学生的科研能力。

二、大学数学教学中渗透数学建模思想的主要措施在教学中渗入数学建模思想,必须改进原有的大学数学教学体制,从教学内容、教学方法、教学手段、教育观点、考核方式等各个方面做调整,以适应新体制下大学数学教学要求和人才培养目标。

1.从教学内容上改进以促进数学建模思想的普及和深入。

科学合理地修订教学大纲和调整教学内容,适当增加数学建模以及数学实验的教学环节势在必行。

为了让学生了解数学和数学建模的思想和理念,我校主要从课堂上和课外两方面采取了一些措施,并取得了一定的成效。

(1)在不改变现行课程主体结构下,教师从概念引入、定理证明、例题编排、课后练习各个教学环节都融入数学建模的思想和方法,这需要教师挖掘数学课程中能通过构建数学模型来解决的数学问题,合理地将数学建模的思想方法穿去,从而展示数学思想的形成过程。

数学建模论文六篇

数学建模论文六篇

数学建模论文六篇数学建模论文范文1那么当前我国高中同学的数学建模意识和建模力量如何呢?下面是节自有关人士对某次竞赛中的一道建模题目同学的作答状况所作的抽样调查。

题目内容如下:某市教育局组织了一项竞赛,聘请了来自不同学校的数名老师做评委组成评判组。

本次竞赛制定四条评分规章,内容如下:(1)评委对本校选手不打分。

(2)每位评委对每位参赛选手(除本校选手外)都必需打分,且所打分数不相同。

(3)评委打分方法为:倒数第一名记1分,倒数其次名记2分,依次类推。

(4)竞赛结束后,求出各选手的平均分,按平均分从高到低排序,依此确定本次竞赛的名次,以平均分最高者为第一名,依次类推。

本次竞赛中,选手甲所在学校有一名评委,这位评委将不参与对选手甲的评分,其他选手所在学校无人担当评委。

(Ⅰ)公布评分规章后,其他选手觉得这种评分规章对甲更有利,请问这种看法是否有道理?(请说明理由)(Ⅱ)能否给这次竞赛制定更公正的评分规章?若能,请你给出一个更公正的评分规章,并说明理由。

本题是一道开放性很强的好题,给同学留有很大的发挥空间,不少同学都有精彩的表现,例如关于评分规章的修正,就有下列几种方案:方案1:将选手甲所在学校评委的评分方法改为倒数第一名记1+分,倒数其次名记2+,…依次类推;(评分标准)方案2:将选手甲所在学校评委的评分方法改为在原来的基础上乘以;方案3:对甲评分时,用其他评委的平均分计做甲所在学校评委的打分;然而也有不少同学为空白,究其缘由可能除了时间因素,同学对于较长的文字表述产生畏惧心理、不能正确阅读是重要因素。

同时,一些同学由于不能正确理解规章(3),得出选手甲的平均得分为,其他选手的平均得分为,从而得出错误结论.不少同学消失“甲所在学校的评委会有意压低其他选手的分数,因而对甲有利”的解释,而没有意识到作出必要的假设是数学建模方法中的重要且必要的一环。

有些同学在正确理解题意的基础上,提出了“规章对甲有利”的理由,例如:排名在甲前的同学少得了1分;甲所在学校的评委不给其他选手最高分(n分),所以甲得最高分的概率比其他选手高;相当于甲所在学校的评委把最高分给了甲;甲少拿一个分数,若少拿最低分,则有利;若少拿最高分,则不利;等等。

数学建模优秀论文(精选范文10篇)2021

数学建模优秀论文(精选范文10篇)2021

数学建模优秀论文(精选范文10篇)2021一、基于数学建模的空气质量预测研究本文以某城市为研究对象,通过数学建模方法对空气质量进行预测。

通过收集历史空气质量数据,构建空气质量预测模型。

运用机器学习算法对模型进行训练和优化,提高预测精度。

通过对预测结果的分析,为城市环境管理部门提供决策支持,有助于改善城市空气质量。

二、数学建模在物流优化中的应用本文针对某物流公司配送路线优化问题,运用数学建模方法进行求解。

建立物流配送模型,考虑配送成本、时间、距离等因素。

运用线性规划、遗传算法等优化算法对模型进行求解。

通过对求解结果的分析,为物流公司提供优化配送路线的建议,降低物流成本,提高配送效率。

三、基于数学建模的金融风险管理研究本文以某银行为研究对象,通过数学建模方法对金融风险进行管理。

构建金融风险预测模型,考虑市场风险、信用风险、操作风险等因素。

运用风险度量方法对模型进行评估。

通过对预测结果的分析,为银行提供风险控制策略,降低金融风险,提高银行稳健性。

四、数学建模在能源消耗优化中的应用本文针对某工厂能源消耗优化问题,运用数学建模方法进行求解。

建立能源消耗模型,考虑设备运行、生产计划等因素。

运用优化算法对模型进行求解。

通过对求解结果的分析,为工厂提供能源消耗优化策略,降低能源消耗,提高生产效益。

五、基于数学建模的交通流量预测研究本文以某城市交通流量为研究对象,通过数学建模方法进行预测。

收集历史交通流量数据,构建交通流量预测模型。

运用时间序列分析方法对模型进行训练和优化。

通过对预测结果的分析,为城市交通管理部门提供决策支持,有助于缓解城市交通拥堵。

数学建模优秀论文(精选范文10篇)2021六、数学建模在医疗资源优化配置中的应用本文以某地区医疗资源优化配置问题为研究对象,通过数学建模方法进行求解。

建立医疗资源需求模型,考虑人口分布、疾病类型等因素。

运用线性规划、遗传算法等优化算法对模型进行求解。

通过对求解结果的分析,为政府部门提供医疗资源优化配置策略,提高医疗服务质量。

精选五篇数学建模优秀论文

精选五篇数学建模优秀论文

精选五篇数学建模优秀论文一、基于深度学习的股票价格预测模型研究随着金融市场的发展,股票价格预测成为投资者关注的焦点。

本文提出了一种基于深度学习的股票价格预测模型,通过分析历史数据,预测未来股票价格走势。

实验结果表明,该模型具有较高的预测精度和鲁棒性,为投资者提供了一种有效的决策支持工具。

二、基于优化算法的智能交通信号控制策略研究随着城市化进程的加快,交通拥堵问题日益严重。

本文提出了一种基于优化算法的智能交通信号控制策略,通过优化信号灯的配时方案,实现交通流量的均衡分配,提高道路通行能力。

实验结果表明,该策略能够有效缓解交通拥堵,提高交通效率。

三、基于数据挖掘的电商平台用户行为分析电商平台在电子商务领域发挥着重要作用,用户行为分析对于电商平台的发展至关重要。

本文提出了一种基于数据挖掘的电商平台用户行为分析模型,通过分析用户购买行为、浏览行为等数据,挖掘用户偏好和需求。

实验结果表明,该模型能够有效识别用户行为特征,为电商平台提供个性化的推荐服务。

四、基于机器学习的疾病预测模型研究疾病预测对于公共卫生管理具有重要意义。

本文提出了一种基于机器学习的疾病预测模型,通过分析历史疾病数据,预测未来疾病的发生趋势。

实验结果表明,该模型具有较高的预测精度和可靠性,为疾病预防控制提供了一种有效的手段。

五、基于模糊数学的农业生产决策支持系统研究农业生产决策对于提高农业效益和农民收入具有重要意义。

本文提出了一种基于模糊数学的农业生产决策支持系统,通过分析农业环境、市场需求等因素,为农民提供合理的生产决策建议。

实验结果表明,该系统能够有效提高农业生产效益,促进农业可持续发展。

精选五篇数学建模优秀论文一、基于深度学习的股票价格预测模型研究随着金融市场的发展,股票价格预测成为投资者关注的焦点。

本文提出了一种基于深度学习的股票价格预测模型,通过分析历史数据,预测未来股票价格走势。

实验结果表明,该模型具有较高的预测精度和鲁棒性,为投资者提供了一种有效的决策支持工具。

数学建模论文(7篇)

数学建模论文(7篇)

数学建模论文(7篇)在学习、工作中,大家总少不了接触论文吧,论文可以推广经验,交流认识。

如何写一篇有思想、有文采的论文呢?为了帮助大家更好的写作数学建模论文模板,山草香整理分享了7篇数学建模论文。

计算数学建模是用数学的思考方式,采用数学的方法和语言,通过简化,抽象的方式来解决实际问题的一种数学手段。

数学建模所解决的问题不止现实的,还包括对未来的一种预见。

数学建模可以说和我们的生活息息相关,尤其是如今科技发达的今天。

数学建模应用领域超乎我们的想象,甚至达到无所不及的程度,随着数学建模在大学教学中的广泛使用,使数学建模不止成为一种学科,更重要的是指导新生代更好的利用现代科学技术,成为高科技人才,把我国人才强国,科教兴国的战略推向一个新的高度。

1.数学建模对教学过程的作用1.1数学建模引进大学数学教学的必要。

教学过程,是教师根据社会发展要求和当代学生身心发展的特点,借助教学条件,指导学生通过认识教学内容从而认识客观世界,并在此基础之上发展自身的过程,即教学活动的展开过程。

以往高工专的数学教学存在着知识单一,内容陈旧,脱离实际等缺陷,已经不能满足时代的发展,如今的数学教学过程不是单纯的传授数学学科知识,而是通过数学教学过程引导学生认识科学,理解科学,从而指导实践,促进学生的德智体美劳全面的进步和发展。

因此数学建模成为一门学科,被各大高等院校广泛引用和推广,其实数学建模不止应用在大学数学教学中,其他一切教学过程多可引进数学建模。

1.2数学建模在大学数学教学中的运用。

大学数学教师通过这个数学建模过程来引导学生解决问题和指导实践的能力。

再次建模结果对现实生活的指导,这是大学数学教学中数学建模所需要达到的效果和要求。

不再停留在理论学习,而是通过理论指导实践,从而为科学的进步和人才综合水平的提高提供可能。

2.数学建模对当代大学生的作用2.2数学建模对学生综合能力的提高数学建模是大学数学教师运用数学科学去分析和解决实际问题,在数学建模学习的过程中,大学生的数学能力得到提高,其分析问题、解决问题的能力得到提高,这对大学生毕业走向社会具有着重大意义。

数学建模论文模板及套路

数学建模论文模板及套路

数学建模论文模板及套路
一、摘要
内容:
•用1、2句话说明原问题中要解决的问题;
•建立了什么模型(在数学上属于什么类型),建模的思想(思路),模型特点;
•算法思想(求解思路),特色;
•主要结果(数值结果,结论);(回答题目的全部“问题”)
•模型优点,结果检验;模型检验,灵敏度分析,有无改进,推广
要求
•特色和创新之处必须在这里强调;
•长度
•要确保准确、简明、条理、清晰、突出特色和创新点;
二、问题的提出
内容:用自己的语言阐述背景,条件,要求;重点列出‘问题’也即要求;
要求:
•不是题目的完整拷贝
•根据自己的理解,用自己的语言清楚简明的阐述背景、条件和要求;
三、条件假设
内容
•根据题目中的条件做出假设
•根据题目中的要求做出假设;
要求
•合理性最重要;
•假设合理且全面,但不欣赏罗列大量的无关假设,关键性假设不能缺;
•合理假设作用:
简化问题,明确问题,限定模型的适用范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学建模案例选讲课程论文零件的参数设计2010年10月24日摘要一件产品由若干零件组装而成,标志产品性能的某个参数取决于这些零件的参数。

零件参数包括标定值和容差两部分。

进行成批生产时,标定值表示一批零件该参数的平均值,容差则给出了参数偏离标定值的容许范围。

若将零件参数视为随机变量,则标定值代表期望值,在生产部门无特殊要求时,容差通常规定为均方差的3倍。

进行零件参数设计,就是要确定其标定值和容差。

这时要考虑两个方面因素:一是当各零件组装成产品时,如果产品参数偏离预先设定的目标值,就会造成质量损失,偏离越大,损失越大;二是零件容差的大小决定了其制造成本,容差设计得越小,成本越高。

关键词:标定值,容差,非线性规划,正态分布1. 问题重述一件产品由若干零件组装而成,标志产品性能的某个参数取决于这些零件的参数。

零件参数包括标定值和容差两部分。

进行成批生产时,标定值表示一批零件该参数的平均值,容差则给出了参数偏离标定值的容许范围。

若将零件参数视为随机变量,则标定值代表期望值,在生产部门无特殊要求时,容差通常规定为均方差的3倍。

进行零件参数设计,就是要确定其标定值和容差。

这时要考虑两个方面因素:一是当各零件组装成产品时,如果产品参数偏离预先设定的目标值,就会造成质量损失,偏离越大,损失越大;二是零件容差的大小决定了其制造成本,容差设计得越小,成本越高。

试通过如下的具体问题给出一般的零件参数设计方法。

粒子分离器某参数(记作y )由7个零件的参数(记作x 1, x 2, …, x 7)决定,经验公式为7616.1242/356.02485.01235136.0162.2142.174x x x x x x x x x x x y ⎪⎪⎭⎫ ⎝⎛⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛=-y 的目标值(记作y 0)为1.50。

当y 偏离y 0 ± 0.1时,产品为次品,质量损失为1000元;当y 偏离y 0 ± 0.3时,产品为废品,质量损失为9000元。

零件参数的标定值有一定的容许变化范围;容差分为A 、B 、C 三个等级,用与标定值的相对值表示,A 等为 ±1%,B 等为 ±5%,C 等为 ±10%。

7个零件参数标定值的容许范围及不同容差等级零件的成本(元)如表1(符号 / 表示无此等级零件)所示。

现成批生产,每批产量1000个。

在原设计中,7个零件参数的标定值为:x 1 = 0.1,x 2 = 0.3,x 3 = 0.1,x 4 = 0.1,x 5 = 1.5,x 6 = 16,x 7 = 0.75;容差均取最便宜的等级。

请你综合考虑y 偏离y 0造成的损失和零件成本,重新设计零件参数(包括标定值和容差),并与原设计比较,总费用降低了多少。

表1 各零件参数标定值的容许范围及不同容差等级零件的成本2. 基本假设与符号约定为了简化问题和方便讨论,除问题中给出的假设外,我们进一步做如下的假设和说明:(1)零件在加工制造过程中存在多种随机因素。

由于每个零件的参数x i(i = 1, …, 7)是由大量相互独立的随机因素综合影响而形成的,且每一个个别因素在总的影响中作用都很微小,因此,根据中心极限定理可假设x i是服从正态分布的随机变量,即设x i ~ N(x i0, σi2 ),x i0为x i的标定值。

(2)假设组成产品(粒子分离器)的7个零件在生产过程中互不影响,而且这些零件可以无困难地组装成一件产品。

因此,7个零件的参数可视作相互独立的正态随机变量。

(3)由于产品(粒子分离器)的参数是由7个零件的参数确定的,因此产品的参数也是随机变量,记为Y,它的取值记为y。

(4)假设问题中的经验公式无系统偏差,在给定的零件参数变化范围内均是有效的。

(5)假设生产过程中没有工艺失误造成的产品损坏,产品的等级(正品、次品、废品)仅与产品的参数偏离其目标值的程度有关。

在此,我们也约定文中所用符号如下:3. 问题的分析与模型的建立3.1 问题的分析显然,给定的问题是一个优化问题,目标函数为产品的总费用。

分析题意可知,产品的总费用由两部分组成,一部分是零件的成本,另一部分是产品的参数y 偏离其目标值y 0造成的质量损失。

这两部分相互制约:零件容差等级越低,成本越低,但产品参数偏离目标值的可能性就越大,造成的质量损失也越大;产品参数偏离目标值越小,造成的质量损失越小,但要求的零件容差等级就越高,成本也越高。

因此,原问题要求在零件的容差等级和产品参数偏离目标值之间找到一种平衡,使得总费用最小。

(1) 由于零件的成本只与容差有关,记第i 个零件的成本为C i (t i ),其中t i 为第i 个零件参数x i 的容差(i = 1, …, 7),则每件产品的总成本为C 1(t 1) + … + C 7(t 7)。

根据题设,容差不取连续值,而是分为三个等级A 、B 、C 。

如果我们分别用1、2、3表示这三个等级,并引入布尔变量d ij :⎩⎨⎧=否则个容差等级采用第参数,0 ,1 j i ij x d ,i = 1, …, 7,j = 1, 2, 3 (1)则d ij 表示第i 个零件参数x i 采用第j 个容差等级与否,并且满足如下条件131=∑=j ijd(i = 1, …, 7)及d 11 = d 13 = d 21 = d 51 = d 52 = d 73 = 0 (2)再令c ij 表示x i 取到第j 个容差等级时所需的成本(取值见表1,i = 1, …, 7,j = 1, 2, 3),于是每件产品的总成本是零件容差等级的函数,为∑∑===7131)(i j ij ij d c d C (3)其中d = (d ij 0)3⨯7是满足(2)式的一组取值。

事实上,容差等级共有1⨯2⨯3⨯3⨯1⨯3⨯2 = 108种组合,故d 的所有可能取值共有108个。

(2) 由假设(3),产品的参数也是随机变量,记为Y 。

令产品的质量损失函数为L (Y ),则⎪⎩⎪⎨⎧≥-<-≤<-=3.0 ||,90003.0 || 1.0,10001.0 ||,0)(000y Y y Y y Y Y L (4)其中y 0 = 1.5。

由于Y 是随机变量,因此大批量生产时平均每件产品的损失费用应是损失函数L (Y )的数学期望E [L (Y )]。

如果分别用p 1、p 2、p 3表示产品为正品、次品、废品的概率,即p 1 = P {|Y - y 0 | < 0.1},p 2 = P {0.1 < |Y - y 0 | < 0.3},p 3 = P {|Y - y 0 | > 0.3} (5)则E [L (Y )] = 1000p 2 + 9000p 3 (6)于是,生产一批1000件产品的总费用为Z = 1000[C (d ) + E [L (Y )]] = 1000[C (d ) + 1000p 2 + 9000p 3] (7)然而,E [L (Y )] = 1000p 2 + 9000p 3,其中涉及了产品的次品率和废品率(随机变量Y 的概率)。

为此,我们必须讨论Y 的分布,确定其分布形式和概率密度函数。

附录:1. 经验公式的偏导数题目中给出的经验公式y = f (x ),x = (x 1, x 2, …, x 7)T ,主要为乘积和幂的形式,根据微积分知识,先对f (x ) 取对数然后再求其偏导。

对f (x ) 取对数有⎭⎬⎫⎩⎨⎧--⎥⎦⎤⎢⎣⎡--+--+-+=-7616.12456.02412351ln ln )(])(36.01[62.21ln 21 )]ln([ln 85.0ln ln )42.174ln()(ln 23x x x x x x x x x x x x f 并令,56.02436.01-⎪⎪⎭⎫⎝⎛-=x x α,16.1242/362.21⎪⎪⎭⎫ ⎝⎛-=x x αβ,于是121185.01)(ln x x x x x f --=∂∂,βαα16.2216.142/36.126.042/112252.1396.085.0)(ln --++--=∂∂x x x x x x x x f 3385.0)(ln x x x f =∂∂, βαα16.1216.042/36.024.042/1452.1396.0)(ln ---+-=∂∂x x x x x x f 551)(ln x x x f -=∂∂, 6621)(ln x x x f -=∂∂, 7721)(ln x x x f -=∂∂(F1) 再由ii x x f x f x x f ∂∂=∂∂)(ln )()(即可求得 ∂f (x )/∂x i ,i = 1, …, 7。

2. 正态分布随机变量 参加参考文献[1]。

参考文献[1] 刘嘉焜等,应用概率统计,北京:科学出版社,2004。

[2] 沙定国,实用误差理论与数据处理,北京:北京理工大学出版社,1993。

[3] 朱道元等,数学建模案例精选,北京:科学出版社,2003。

[4] 汪国强,数学建模优秀案例选编,广州:华南理工大学出版社,1998。

[5] 姜启源,“零件的参数设计”模型和评价,数学的实践与认识,1998,28(1):54-57。

相关文档
最新文档