Subdivision surface modeling system based on arbitrary topological curves network and combined s
蜂窝细分(英文)
Complicated surface modeling and rendering are huge challenges in computer graphics. Recently, the subdivision surfaces, due to their unique simple calculation and arbitrary topological modeling ability, become the one of the research hotspots in the computer graphics realm, and have been widely accepted in the computer animation applications. Generally, subdivision surfaces are obtained as the limit of a recursive split and refinement process applied to initial polygonal mesh. By selecting suitable refinement masks we can achieve special geometric continuity. There are several typical types algorithm in the literature: Catmull-Clark’s [1] and Doo-Sabin’s [2] uniform B-spline tensor product extended subdivision schemes; Loop's box spline extended subdivision schemes [3]; the famous butterfly algorithm[4] and Kobbelt’s interpolatory schemes [5], based on four point algorithm; and recently the 3 -suubdivision[6]. Doo and Sabin[2], Ball and Storry[7], Halstead and his cooperators [8], and Reif et al.[9], worked on strict mathematics analysis of the local limit properties of subdivision surfaces, and developed several optimal smooth subdivision rules. In the current researches, various new methods are created and many modern techniques are employed. But from our viewpoint and analysis there are three key problems in subdivision algorithms, which greatly arouse our interesting. Firstly, all subdivision schemes are based on quadrangular or triangular mesh till now. Though they are simple and natural, there are still a kind of mesh, hexagonal mesh, in the nature, e.g., honeycomb and snowflake. The hexagon, always act as a reasonable approximation of ellipse and circle, can be used in texture synthesize and texture mapping, wavelet and finite element analysis. Moreover, notice if the 2D plan is seamless covered without overlap by regular polygons, the only three choices are regular triangle, square and regular hexal of Software
点云数据转换成实体模型通过基于点的立体像素化立体像素
点云数据转换成实体模型通过基于点的立体像素化立体像素PointCloudDataConversionintoSolidModelsviaPoint-BasedVoxelization1 2 3 4Tommy Hinks ; Hamish Carr ; Linh Truong-Hong ; and Debra F. Laefer, M.ASCEAbstract:Automatedconversionofpointclouddatafromlaserscanninginto formatsappropriateforstructuralengineeringholdsgreatprom- iseforexploitingincreasinglyavailableaeriallyandterrestriallybase dpixelizeddataforawiderangeofsurveying-relatedapplicationsfrom environmental modeling to disaster management. This paper introduces a point-based voxelization method to automatically transform pointclouddataintosolidmodelsforcomputationalmodeling.Thefundamentalvi abilityofthetechniqueisvisuallydemonstratedforbothaerial andterrestrialdata.Foraerialandterrestrialdata,thiswasachievedinl essthan30sfordatasetsupto650,000points.Inallcases,thesolid models converged without any user intervention when processed in a commercial ?nite-element method program. DOI: 10.1061/ASCESU.1943-5428.0000097 2013 American Society of Civil Engineers.CE Database subject headings: Data processing; Surveys; Finite element method; Information management.Author keywords: Terrestrial; Aerial; Laser scanning; LiDAR; Voxelization; Computational modeling; Solid models; Finite element.Introductionexist.Thispaperlaysthegroundworkforkeyadvancementinsucha pipeline. The procedure proposed herein to reconstruct buildingLaser scanning has achieved great prominence within the civil en- facadesfrompointcloud,whichisafundamentalstepforgenerating gineering community in recent years for topics as divergent as city-scale computational models.coastline monitoring Olsen et al. 2009, 2011, airport layout op- timization Parrish and Nowak 2009, and ground-displacementidenti?cation for water-system risk assessment Stewart et al.FacadeReconstruction2009. Additionally, there has been strong motivation to obtainfurther functionality from laser scanning and other remote-sensing Inrecentyears,developmentsinlaser-scanningtechnologyand?ight-data, including three-dimensional 3D volume estimation forpath planning have allowed aerial laser scanning ALS to acquire mining Mukherji 2012, road documentation Dong et al. 2007,pointclouddataquicklyandaccuratelyatacityscale,therebyhaving structuralidenti?cationShanandLee2005;Zhangetal.2012,and thepotentialforreconstructing3Dbuildingsurfacesacrossanentire emergency planning Laefer and Pradhan 2006. Furthermore,city in nearly real time. A number of approaches based on semi- computational responses of city-scale building groups are increas- automaticLangandForstner1996andautomaticHenricssonetal. inglyindemandforheightenedurbanization,disastermanagement,1996techniqueshavebeenproposedtoreconstructbuildingmodelsand microclimate modeling, but input data are typically too ex- from such data sets, but automatically extracting highly detailed, pensive as a result of the need for manual surveying. Additionally, accurate,andcomplexbuildingsstillremainsachallengeHaalaandcurrent software tools for transforming remote-sensing data into Kada 2010. The semiautomatic procedures need human operator computationalmodelshaveoneormoreofthefollowingproblems: intelligence.TheautomaticvisualmodelingofurbanareasfromALS alowdegreeofreliability,aninabilitytocapturepotentiallycritical data tends to extract sample points for an individual building by details,and/oraneedforahighdegreeofhumaninteraction.Todate, applying segmentation techniques and then reconstructing eacha seamless, automated, and robust transformation pipeline frombuilding individually. In such cases, vertical facade surfaces are notremote-sensing data into city-scale computational models does not portrayed in detail, and outlines may be of relatively low accuracy unless ground planes are integrated, which requires either a priori1 informationormanualintervention.Unfortunately,theeffectivenessDoctoralRecipient,SchoolofComputerScienceandInformatics,Univ.of engineering modeling often depends largely on the geometricCollege Dublin, Bel?eld, Dublin 4, Ireland. E-mail: ******************2accuracy and details of the building models?thus the currentSeniorLecturer,SchoolofComputing,FacultyofEngineering,Univ.ofmismatch.Leeds, Leeds LS2 9JT, U.K. E-mail: h.carr@//0>.3Post-doctoral Researcher, Urban Modelling Group, School of Civil, Presently, commercial products are generally semiautomatic StructuralandEnvironmentalEngineering,Univ.CollegeDublin,Bel?eld, Laefer et al. 2011, whereas in the computer graphics and photo- Dublin 4, Ireland. E-mail: linh.truonghong@gmailgrammetry communities, researchers have focused on automated4AssociateProfessor,LeadPI,UrbanModellingGroup,SchoolofCivil,surfacereconstructionfromdenseandregularsamplepointsHoppeStructuralandEnvironmentalEngineering,Univ.CollegeDublin,Bel?eld, 1994; Kazhdan et al. 2006. Unfortunately, ALS data are oftenDublin 4, Ireland corresponding author. E-mail: ******************* sparse and irregular, and may contain major occlusions on vertical Note.ThismanuscriptwassubmittedonNovember16,2011; approvedsurfaces owing to street- and self-shadowing Hinks et al. 2009.on September 10, 2012; published online on September 13, 2012. Discus- Dedicated urban modeling surface-reconstruction approachession period open until October 1, 2013; separate discussions must be generallyusethemajorbuildingplanesChenandChen2007andsubmitted for individual papers. This paper is part of the Journal ofcan be described as either model-driven or data-driven. Model-Surveying Engineering, Vol. 139, No. 2, May 1, 2013ASCE, ISSN0733-9453/2013/2-72?83/$25.00. driven techniques use a ?xed set of geometric primitives that are72 / JOURNALOFSURVEYINGENGINEERING?ASCE / MAY2013J. Surv. Eng. 2013.139:72-83.Downloaded from by East China Inst of Tech on 04/13/13.Copyright ASCE. For personal use only; all rights reserved.Fig. 1. Work?ow of the proposed approach: *Collection and preparation of LiDAR data involve multiple steps outside the scope of this paper’s scienti?ccontribution;thesegenerallyincludeplanning,collection,re gistration,and?ltering;seeTruong-Hong2011andHinks2011forfurther detailsttedtothepointdata.Suchtechniquescanbeeffectivewhenadataset is sparse because the ?tting of geometric primitives does not require complete data. In contrast, data-driven techniques derive surfaces directly from the point data and are capable of modeling arbitrarilyshapedbuildings.Generally,data-drivenapproachesaremore?exiblethanmodel-drivenapproaches,butareoftensensitiveto noise in the input data.For strictly visual representation, model-driven approachescanbeeffective.Forexample,Haalaetal.1998 proposed four dif-ferent primitives and their combinations to automatically derive 3D building geometry of houses from ALS and existing ground planes.Similarly, Maas and Vosselman 1999 introduced an invariantmoment-basedalgorithmfortheparametersofastandardgabled-roofhouse type that allowed for modeling asymmetric elements such as dormers. However, these efforts assume homogeneous point dis-Fig. 2. Octree representationtributions, which is unrealistic. You et al. 2003 also adapted a set of geometric primitives and ?tting strategies to model complex buildings with irregular shapes, but the approach required user interventionandgeneratedonlylimitedwalldetails.Huetal.2004used a combination of linear and nonlinear ?tting primitives to SolidModelingreconstructacomplexbuilding,inwhichaerialimagerywasusedtore?ne the models. To generate building models directly from point cloud data forIncontrast,manydata-driventechniquesoperatingonALSdata engineering simulations [e.g., FEM], there are three dominant reconstruct roof shapes directly from sample points of roof planes. methods:1constructivesolidgeometryCSG,whereobjectsareSubsequently, the remainder of the building is simply extruded represented using Boolean combinations of simpler objects; 2 to the ground level from the roof-shape outlines. Vosselman and boundary representations B-reps, where object surfaces are rep- Dijkman2001usedaHoughtransformforextractionofplanefaces resentedeitherexplicitly orimplicitly;and3spatialsubdivision roofplanesfromtheALSdata,andthen3Dbuildingmodelswere representations,wherean objectdomain is decomposed intocells reconstructed by combining ground planes and the detected roof withsimple topologic and geometric structure, such as regular planes.Hofmannetal.2003introducedamethodtoextractplanar gridsandoctreesGoldman2009;HoffmannandRossignac1996;roof faces by analyzing triangle mesh slopes and orientations from there are many extensive treatises available for in-depth consid-a triangular irregular network structure generated from ALS data. eration of this topic B?hm et al. 1984; Rossignac and Requicha More recently, Dorninger and Pfeifer 2008 used an a-shape ap- 1984, 1999.proach to determine a roof outline from point clouds of the roof Generating solid models automatically from point cloud data projectedontoahorizontalplane.Also,ZhouandNeumann2010 is particularly important because the cost of manually creating created impressive buildings for a large urban area by using a vol- solid models of existing objects is far greater than the associated umetric modeling approach in which roof planes were determined hardware,software,andtrainingcosts.Assuch,spatialsubdivision based on a normal vector obtained from analysis of grid cells be- representations are used extensively for creating solid models of longingtorooflayers.However,thesemodelsarealsoextrudedand buildings in which regular grids or octrees are employed to de- lack vertical-wall details. compose an entire object intononoverlapping 3D regions, com-Therefore, this paper presents an automated approach to con- monly referred to as voxels. Voxels are usually connected andverting point clouds of individual buildings into solid models for described a simple topologic and geometric structure. In grids, structural analysis by means of computational analysis in which avolumeissubdividedintosmallerregionsbyappropriateplanes thepointcloudthatweresemiautomaticallysegmentedfromLight parallel to the coordinate system axes,typically using aCartesian Detection and Ranging LiDAR data become the input Fig. 1. coordinate system. An initial voxel bounding all point data re-Notably, this proposed approach focuses on reconstructing solid cursively divides a volume into eight subvoxels, organized in modelsbyusingvoxelgridswiththecriticalparameteraseitherthe a hierarchical structure Samet 1989. Voxels may be labeled voxel size or the number of voxel grids; for more details on col- white,black,orgraybasedontheirpositionsFig.2.Blackvoxels lecting ALS and terrestrial laser scanning TLS data and on are completely inside the solid, whereas white voxels are com- segmenting point clouds, see Truong-Hong 2011andHinks pletelyoutside.Voxelswithbothblackandwhitechildrenaregray 2011. Hoffmann and Rossignac 1996.JOURNALOFSURVEYINGENGINEERING?ASCE / MAY2013 / 73J. Surv. Eng. 2013.139:72-83.Downloaded from by East China Inst of Tech on 04/13/13. Copyright ASCE. For personal use only; all rights reserved.Fig.3.Voxelgridspanningavolumeina3Dspaceboundedbyx ,x ,y ,y ,andz ,z ,whe reDx,Dy,andDzarevoxelsizes andmin min minN , N , and N are the number of voxels in each directionx y zIn an application of spatial subdivision for surface recon-struction,CurlessandLevoy1996presentedavolumetricmethodforintegratingrangeimagestoreconstruc tanobject’ssurfacebasedon acumulative weighted signed-distancefunction. Unfortunately,the approach is not suited for arbitrary objects. In related work, GuarnieriandPontin2005builtatriangulatedmeshofanobject’ssurfacebycombiningaconsensussurface[asproposedbyWheeleret al. 1998], an octree representation, and the marching-cubesalgorithm Lorensen and Cline 1987. This multifaceted algorithmFig. 4. Point-based voxelization avoids surface reconstruction and canreducetheeffectofthenoiseowingtosurfacesampling,sensoroperates directly on point datameasurements,andregistrationerrors.However,foroptimalresults,themethodrequiresmodi?cationofparametersthatdependheavilyon input-data characteristics such as the voxel size, the threshold value for the angle, and the distance between two consecutive neighbor-range viewpoints. z 2zminN? 1 ?3?zDzThevoxelhaseightlatticeverticesassociatedwithsixrectangular VoxelizationfacesFig.3.Eachinteriorvoxelhas26neighboringvoxels,witheight sharing a vertex,12 sharing an edge,and six sharing a face. Critical to octree/quadree representations for further processing is Conversely,anexteriororinteriorvoxelonahole’sboundaryoften voxelization. This term describes the conversion of any type of has only 17 neighboring voxels four sharing a vertex, eight geometric or volumetric object such as a curve, surface, solid, or sharinganedge,and?vesharingaface.Moreover,mostexisting computedtomographicdataintovolumetricdatastoredina3Darray voxelization techniques operate on surface representations ofof voxels Karabassi et al. 1999. Initially, a voxel grid divides objects, where a signi?cant part of the problem is to identifya bounded 3D region into a set of cells, which are referred to as throughwhichvoxelsthesurfacespass.Suchmethodsarereferredvoxels. The division is typically conducted in the axial directions to as surface-based voxelization Cohen-Or and Kaufman 1995of a Cartesian coordinate system. Before voxelization, three pairs [Fig.4a?c].Incontrast,thepoint-basedvoxelizationinthispaper ofcoordinatevalues??x , x , ?y , y , and ?z , z ? aremin min minoperates directly on the point data and does not require a derived createdalongthethreeaxesX, Y, and Zde?ningaglobalsystemsurface [Fig. 4a?c]. Point-based voxelization is conceptually Fig. 3. The basic idea of a voxelization algorithm is to examine much simpler than surface-based voxelization algorithms, and whethervoxelsbelongtotheobjectofinterestandtoassignavalue whereas the mechanisms are well known, they have not beenof 1 or 0,respectively Karabassi et al. 1999; a further description applied to generating solid modeling of buildings from LiDARof voxel grids is available in Cohen and Kaufman 1990.data.An initial voxel bounding all point cloud data in 3D Euclidean3Asmentionedearlier,eachvoxelisclassi?edasactiveorinactivespaceR is subdivided into subset voxels by grids along the x-, y-, corresponding to binary values based on the sample points within andz-coordinatesinaCartesiancoordinatesystem.Eachvoxelinthethat voxel [Eq. 4]subset is represented by an index v?i, j, k?, where i2?0; N 21 , xj2?0; N 21 , and k2?0; N 21 Fig. 3. With the dimensionsy zactive ifn$TnofindividualvoxelsDx, Dy, Dz,anumberofvoxelsN , N , Nx y zf n?4?valong each direction are given in Eqs. 1?3 inactive ifn,Tnwheretheargumentn5numberofpointsmapping to avoxel,andx 2xmin T 5user-speci?edthresholdvalue.Typically,T 51,whichmeansn nN? 1 ?1?xDxthat voxels containing at least one mapping point are classi?edasactiveandallothersasinactive.Moresophisticateddensity-basedy 2yminclassi?cation functions can be designed. An example is shown inN? 1 ?2?yDyFig. 5.74 / JOURNALOFSURVEYINGENGINEERING?ASCE / MAY2013J. Surv. Eng. 2013.139:72-83.Downloaded from by East China Inst of Tech on 04/13/13. Copyright ASCE. For personal use only; all rights reserved.Fig. 5. Voxelization model of front building of Trinity College, Dublin, Ireland, created by a voxel grid: a input data set of 245,000 ALS points;bvoxelizationmodelwithvoxelsizeDx5Dy5Dz50:25m;cvoxelclassi?cationwiththethresholdT51andvoxelizationmodelwithaboutn5,000 active voxels n is the largest number of points mapping to asingle voxelFig. 6. Solid model componentsProposedConversionofVoxelizedModelsintoSolidModelsTo reconstruct vertical surfaces of building models, a voxel grid is used to divide data points in a bounded 3D region into smallervoxels. Important facade features such as windows and doors are subsequently detected basedon a voxel’s characteristics, where an inactive voxel represents the inside of an opening. Consequently, building models are converted into an appropriate format for com- putational processing.Anobjectisde?nedbyitssurfaceboundary,whichthenmustbeFig. 7. Face orientation as dictated by the right-hand ruleconvertedintoanappropriatesolidrepresentationcompatiblewithcommercialcomputationalpackages.Althoughmanyschemesareavailable,B-repsarehereinadoptedbecauseoftheircompatibilitywith commercial structural-analysis software e.g., ANSYS soft- Keypointsarerepresentedbya3Dcoordinateofasingularpoint.ware Laefer et al. 2011. The proposed method de?nes both the An edge is de?ned as the connection between exactly two keygeometry and topology of an object by a set of nonoverlappingpoints;forexample,theedgee 5fP, Pgistheedgewithstartingij i jandendingpointP.Notably,edgeshaveanorientation;asfaces approximate the boundary of the solid model. This section pointPi jsuch, e 52eThus, the edges e and e would be ?ipped. EdgepresentsabriefdescriptionoftheB-repschemeimplementedintheij ji ij jiproposed approach; for more details, see Goldman 2009. Ge- ?ipping is important when de?ning an orientable face for dis-ometry is de?ned by key singular points, with each point rep- tinguishing the inside from the outside.resenting a speci?c location in space. Topology is de?ned by Similarly, faces represent surfaces of a solid model that areconnections between key points. When used together, they can connections between edges. The faces are further connected de?neasolidmodelFig.6.DatastructuresfordescribingB-reps to form volumes. A face is de?ned as a list of edgesoften capture the incidence relations between a face and its f5fe ,e ,.,e g that involve closed paths. A face01 12 ?n22??n21?bounding edges and an edge and its bounding vertices, whichconsistingofthreekeypointsisatriangle,whereasqu。
3dmax英文翻译(全面地)
编辑器菜单翻译:SELECTION MODIFIERS 选择修改器MESH SELECT 网格选择POLY SELECT 多边形选择PATCH SELECT 面片选择SPLINE SELECT 样条线选择FFD SELECT FFD选择SELECT BY CHANNEL 按通道选择SURFACE SELECT(NSURF SEL) NURBS 曲面选择PATCH/SPLINE EDITING 面片/样条线编辑EDIT PATCH 编辑面片EDIT SPLINE 编辑样条线CROSS SECTION 横截面SURFACE 曲面DELETE PATCH 删除面片DELETE SPLINE 删除样条线LATHE 车削旋转NORMALIZE SPLINE 规格化样条线FILLET/CHAMFER 圆角/切角TRIM/EXTEND 修剪/延伸RENDERABLE SPLINE 可渲染样条线SWEEP 扫描MESH EDITING 网格编辑DELETE MESH 删除网格EDIT MESH 编辑网格EDIT POLY 编辑多边形EXTRUDE 挤出FACE EXTRUDE 面挤出NORMAL 法线SMOOTH 平滑BEVEL 倒角、斜切BEVEL PROFILE 倒角剖面TESSELLATE 细化STL CHECK STL检查CAP HOLES 补洞VERTEXPAINT 顶点绘制OPTIMIZE 优化MULTIRES 多分辨率VERTEX WELD 顶点焊接SYMMETRY 对称EDIT NORMALS 编辑法线EDITABLE POLY 可编辑多边形EDIT GEOMETRY 编辑几何体SUBDIVISION SURFACE 细分曲面SUBDIVISION DISPLACEMENT 细分置换PAINT DEFORMATION 绘制变形CONVERSION 转化TURN TO POLY 转换为多边形TURN TO PATCH 转换为面片TURN TO MESH 转换为网格ANIMATION MODIFIERS 动画EDIT ENVELOPE 编辑封套WEIGHT PROPERTIES 权重属性MIRROR PARAMETERS 镜像参数DISPLAY 显示ADVANCED PARAMETERS 高级参数GIZMO 变形器MORPHER 变形器CHANNEL COLOR LEGEND 通道颜色图例GLOBAL PARAMETERS 全局参数CHANNEL LIST 通道列表CHANNEL PARAMETERS 通道参数ADVANCED PARAMETERS 高级参数FLEX 柔体PARAMETERS 参数SIMPLE SOFT BODIES 简章软体WEIGHTS AND PAINTING 权重和绘制FORCES AND DEFLECTORS 力和导向器ADVANCED PARAMETERS 高级参数ADVANCED SPRINGS 高级弹力线MELT 融化LINKED XFORM 链接变换PATCH DEFORM 面片变形PATH DEFORM 路径变形SURF DEFORM 曲面变形PATCH DEFORM(WSM)面片变形(WSM)PATH DEFORM(WSM)路径变形(WSM)SURF DEFORM(WSM)曲面变形(WSM)SKIN MORPH 蒙皮变形SKIN WRAP 蒙皮包裹SKIN WRAP PATCH 蒙皮包裹面片SPLINE IK CONTROL 样条线IK控制ATTRIBUTE HOLDER 属性承载器UV COORDINATES MODIFIERS UV坐标修改器UVW MAP UVW贴图UNWRAP UVW 展开UVWUVW XFORM UVW变换MAPSCALER(WSM)贴图缩放器(WSM)MAPSCALER 贴图缩放器(OSM)CAMERA MAP 摄影机贴图CAMERA MAP(WSM)摄影机贴图(WSM)SURFACE MAPPER(WSM)曲面贴图(WSM)PROJECTION 投影UVW MAPPING ADD UVW贴图添加UVW MAPPING CLEAR UVW贴图清除CACHE TOOLS 缓存工具POINT CACHE 点缓存POINT CACHE(WSM)点缓存(WSM)SUBDIVISION SURFACES 细分曲面TURBOSMOOTH 涡轮平滑MESHSMOOTH 网格平滑HSDS MODIFIER HSDS修改器FREE FORM DEFORMATIONS 自由形式变形FFD MODIFIERS FFD修改FFD BOX/CYLINDER FFD长方形/圆柱体PARAMETRIC MODIFIERS 参数化修改器BEND 弯曲TAPER 锥化TWIST 扭曲NOISE 噪波STRETCH 拉伸、伸展SQUEEZE 挤压PUSH 推力RELAX 松弛RIPPLE 涟漪WAVE 波浪SKEW 倾斜ALICE 切片SPHERIFY 球形化AFFECT REGION 影响区域LATTICE 晶格MIRROR 镜像DISPLACE 置换XFORM 变换SUBSTITUTE 替换PRESERVE 保留SHELL 壳SURFACE 曲面MATERIAL 材质MATERIAL BY ELEMENT 按元素分配材质DISP APPROX 置换近似DISPLACE MESH(WSM)置换网格(WSM)DISPLACE NURBS(WSM)置换网格(WSM)RADIOSITY MODIFIERS 沟通传递修改器SUBDIVIDE(WSM)细分(WSM)SUBDIVIDE 细分材质编辑器:Reglection(反射)Basic Parameters(基本参数) Refraction(折射).Ambient(环境反射) 3D Procedural Maps(三维贴图).Diffuse(漫反射) Face-mapped(面贴图)Specular(镜面反射)Extended Parameters(扩展参数)Maps(贴图).Bitmap(位图).Checker(棋盘格) 复合材质.Gradient(渐变) Double Sided(双面).Adobe Photoshop Plug-In Filter(PS滤镜)Blend(混合) .Adove Premiere Video Filter(PM滤镜) Matte/Shoadow() .Cellular(细胞) Multi/Sub-object(多重子物体).Dent(凹痕) Raytrace(光线追踪).Noise(干扰) Top/Bottom(项底).Splat(油彩).Matrble(大理石).Wood(木纹).Water(水) Time Configuration(时间帧速率).Falloff(衰减) Frame Rate(帧速率).Flat Mirror(镜面反射) NTSC(NTSC制式).Mask(罩框) Film(胶片速度).Mix(混合) PAL(PAL制式).Output(输出) Custom(自定义).Planet(行星).Raytrace(光线跟踪).Reglect/Refrace(反射/折射).Smoke(烟雾) Create(创建).Speckle(斑纹) Helpers(帮助物体).Stucco(泥灰) Dummy(虚拟体).Vertex Color(项点颜色) Forward Kinematics(正向运动) .Composite(合成贴图) Inverse Kinematics(反向运动).Particle age(粒子寿命).Patticle Mblur(粒子模糊)参数区卷展栏:Shader Basic Parameters(着色基本参数区).Blinn(宾氏).Anisotropic(各向异性).Metal(金属).Multi-layer(多层式).Phong(方氏) 塑性.Oren-Nayar-Blinn(表面粗糙的对象).Strauss(具有简单的光影分界线).Wire(线架结构显示模式).2-Sided(双面材质显示).Face Map(将材质赋予对象所有的面).Faceted(将材质以面的形式赋予对象)Blinn Basic Patameters(宾氏基本参数区).Diffuse(固有色).Ambient(阴影色).Specular(高光色).Self-Illumination(自发光).Opacity(不透明度).Specular Highlights(高光曲线区)..Specular Level(高光级别)..Glossiness(光泽度)..Soften(柔和度)Extended Parameters(扩展参数区).Falloff(衰减).Filer(过滤法).Subtractive(删减法).Additive(递增法).Index of Refraction(折射率).Wire(线架材质).Reflection Dimming(反射暗淡)SuperSampling(超级样本)Maps(贴图区).Ambient Color(阴影色贴图).Diffuse Color(固有色贴图).Specular Color(高光色贴图).Glossiness(光泽度贴图).Self-Illmination(自发光贴图).Opacity(不透明贴图).Filter Color(过滤色贴图).Bump(凹凸贴图).Reflction(反射贴图).Refraction(折射贴图)..Refract Map/Ray Trace IOR(折射贴图/光线跟踪折射率) .Displacement(置换贴图)Dvnamics Properties(动力学属性区)材质类型Blend(混合材质).Material#1(材质#1).Material#2(材质#2).Mask(遮罩).Interactive(交互).Mix Amount(混合数值).Mixing Curve(混合曲线).Use Curve(使用曲线).Transition Zone(交换区域)Composite(合成材质).Composite Bisic Parameters(合成材质基础参数区)..Base Material(基本材质)..Mat.1~Mat.9(材质1~材质9)Double Sided(双面材质).Translucency(半透明) 贴图类型.Facing material(表面材质) Bitmap(位图).Back Material(背面材质) Cellular(细胞)Matte/Shadow(投影材质) Checker(棋盘格).Matte(不可见) Composite(合成贴图).Atmosphere(大气) Dent(凹痕贴图)..Apply Atmosphere(加入大气环境) Falloff(衰减)..At Background Depth(在背景深度) Flat Mirror(镜面反射) ..At Object Depth(在物体深度) Gradient(渐变).Shadow(阴影) Marble(大理石)..Receive Shadow(接受阴影) Madk(罩框)..Shadow Brightness(阴影的亮度) Mix(混合).Reflection(反射) Noise(干扰)Morpher(形态结构贴图) Output(输出)Muti/Sub-Object(多重子物体材质) Partcle Age(粒子寿命) .Set Number(设置数目) Perlin Marble(珍珠岩).Number Of Materials(材质数目) Planet(行星)Raytrace(光线追踪材质) Raytrance(光线跟踪).Shading(明暗) Reflect/Refract(反射/折射).2-Sided(双面) RGB Multiply(RGB倍增).Face Map(面贴图) RGB Tint(RGB染色).Wire(线框) Smoke(烟雾).Super Sample(超级样本) Speckle(斑纹).Ambient(阴影色) Splat(油彩).Diffuse(固有色) Stucco(泥灰).Reflect(反射) Thin Wall Refraction(薄壁折射).Luminosity(发光度) Vertex Color(项点颜色).Transparency(透明) Water(水).Index Of Refr(折射率) Wood(木纹).Specular Highlight(反射高光)..Specular Color(高光反射颜色)..Shininess(反射)..Shiness Strength(反光强度).Environment(环境贴图).Bump(凹凸贴图)Shellac(虫漆材质).Base Material(基础材质).Shellac Material(虫漆材质).Shellac Color Blend(虫漆颜色混合)Standard(标准材质)Top/Bottom(项/底材质).Top Material(项材质).Bottom Material(底材质).Swap(置换).Coordinates(坐标轴).Blend(融合).Possition(状态)FILE(文件) EDIT(编辑)Rest(重置) Undo(撤消)Save Selected(保存所选择的对象) Redo(恢复) XRef Objects(外部参考物体) Clone(复制)XRef Scenes(外部参考场景) Delete(删除)Merge(合并) Select All(对象选择)Replace(替换) Select None(取消对象)Import(输入) Select Invert(对象反转)Export(输出) Hold(保存)Archive(压缩存盘) Fetch(取出)View File(观看文件) Select BY(根据..选择) Select By Color(根据颜色..选择)Select By Name(根据名字..选择)Region(区域)Edit Named Selections(编辑已命名被选物) Properties(属性)TOOLS(工具菜单) GROUP(分组菜单)Mirror(镜像) Group(分组)Array(阵列) Open(打开)Align(对齐) Close(关闭)Place Highlight(放置高亮区) Ungroup(解除群组) Align Camera(对齐摄像机) Explode(分解) Scaping Tool(间距修改工具) Detach(分离) Transform Type-In(输入变换坐标) Attach(合并) Display Floater(显示浮动物体)Hide(隐藏)Freeze(冻结)Selection Floater(选择浮动物体)Snapshot(快照复制)Normal Align(法向对齐)Material Editor(材质编辑器)Material/Map Browser(材质/贴图浏览器)Object(物体工具栏) Create(创建命令面板) Compounds(复合工具栏) Modify(修改命令面板)Lighes&Cameras(光线和照相机工具栏) Hierarchy(层级命令面板) Particles(粒子系统工具栏) Motion(运动命令面板)Helpers(帮助物体工具栏) Display(显示命令面板)Space Warps(空间扭曲工具栏) Utilities(实用程序)Modifiers(修改工具栏)Rendering(渲染工具栏)Shapes(二维图形工具栏)Modeling(造型修改工具栏)MODIFIER STACK(编辑修改器堆栈) 布尔运算与克隆对象Pin Stack(钉住堆栈状态) Union(并集)Active/Inactive(激活/不激活切换) Subtraction(差集)Show End Result(显示最后结果) Intersection(交集)Make Unipue(使独立) Copy(复制)Remove Modifier(删除编辑修改器) Instance(关联复制)Edit Stack(编辑堆栈对话框) Reference(参考复制)控制器械的种类二维项点Track View(轨迹视图) Smooth(光滑项点)Assign Controller(指定控制器) Corner(边角项点)Replace Controller(替换控制器) Bezier(Bezier项点).Linear Controller(直线控制器) Bezier Corner(Bezier角点) .TCB Contriller(TCB控制器)).Contriller(连续).Path Controller(路径控制器).List Controller(列表控制器).Expression Controller(噪声控制器).Look At(看着)三维造型 Deformations(变形控制)Box(盒子) Scale(缩放)Cone(圆锥体) Twist(扭曲)Sphere(球体) Teeter(轴向变形)Geosphere(经纬球) Bevel(倒角)Cylinder(柱体) Fit(适配变形)Tube(管子)Torus(圆环)Pyramid(金字塔)Teapot(茶壶)Plane(平面)灯光类型摄像机类型Omni(泛光灯) Target(目标).General Parameters(普通参数) .Lens(镜头尺寸).Projector Parameters(投射贴图) .FOV(视域范围).Attenuation Parameters(衰减参数) .Stock Lenses(镜头类型) .Shadow Parameters(阴影参数) .Show Core(显示视域范围).Shadow Map Params(阴影贴图参数) .Show Horizor(显示地平线) Target Spot(目标聚光灯) .Near Range(最近范围)Free SPot(自由聚光灯) .Far Range(最远范围)Target Direct(目标平行光灯)Render Scene(渲染).Rime Output(输出时间)..Single(渲染单帖)..Range(所有帖).Output Size(输出尺寸)Rendering(渲染)/Environment(环境) 粒子系统Background(背景) Spray(喷射)Global Lighting(球形照明) Snow(雪)Atmosphere(大气) Blizzard(暴风雪)Combustion(燃烧) PArray(粒子列阵)Volume Light(体光) Pcloud(粒子云)Fog(雾) Super Spray(超级喷射).Standard(标准).Layered(分层)Volume Fog(体雾)快捷菜单:A-角度捕捉开关B-切换到底视图C-切换到摄象机视图D-封闭视窗E-切换到轨迹视图F-切换到前视图G-切换到网格视图H-显示通过名称选择对话框I-交互式平移J-选择框显示切换K-切换到背视图L-切换到左视图M-材质编辑器N-动画模式开关O-自适应退化开关P-切换到透视用户视图Q-显示选定物体三角形数目R-切换到右视图S-捕捉开关T-切换到顶视图U-切换到等角用户视图V-旋转场景W-最大化视窗开关X-中心点循环Y-工具样界面转换Z-缩放模式[-交互式移近]-交互式移远/-播放动画F1-帮助文件F3-线框与光滑高亮显示切换F4-Edged Faces显示切换F5-约束到X轴方向F6-约束到Y轴方向F7-约束到Z轴方向F8-约束轴面循环F9-快速渲染F10-渲染场景F11-MAX脚本程序编辑F12-键盘输入变换Delete-删除选定物体SPACE-选择集锁定开关END-进到最后一帧HOME-进到起始帧INSERT-循环子对象层级PAGEUP-选择父系PAGEDOWN-选择子系CTRL+A-重做场景操作CTRL+B-子对象选择开关CTRL+F-循环选择模式CTRL+L-默认灯光开关CTRL+N-新建场景CTRL+O-打开文件CTRL+P-平移视图CTRL+R-旋转视图模式CTRL+S-保存文件CTRL+T-纹理校正CTRL+T-打开工具箱(Nurbs曲面建模)CTRL+W-区域缩放模式CTRL+Z-取消场景操作CTRL+SPACE-创建定位锁定键 SHIFT+A-重做视图操作SHIFT+B-视窗立方体模式开关SHIFT+C-显示摄象机开关SHIFT+E-以前次参数设置进行渲染SHIFT+F-显示安全框开关SHIFT+G-显示网络开关SHIFT+H-显示辅助物体开关SHIFT+I-显示最近渲染生成的图象SHIFT+L-显示灯光开关SHIFT+O-显示几何体开关SHIFT+P-显示粒子系统开关SHIFT+Q-快速渲染SHIFT+R-渲染场景SHIFT+S-显示形状开关SHIFT+W-显示空间扭曲开关SHIFT+Z-取消视窗操作SHIFT+4-切换到聚光灯/平行灯光视图SHIFT+\-交换布局SHIFT+SPACE-创建旋转锁定键ALT+S-网格与捕捉设置ALT+SPACE-循环通过捕捉ALT+CTRL+Z-场景范围充满视窗ALT+CTRL+SPACE-偏移捕捉SHIFT+CTRL+A-自适应透视网线开关SHIFT+CTRL+P-百分比捕捉开关SHIFT+CTRL+Z全部场景范围充满视窗标题栏翻译:一、File<文件>New-----------------------〈新建〉Reset---------------------〈重置〉Open----------------------〈打开〉Save-----------------------〈保存〉Save As-------------------〈保存为〉Save selected----------〈保存选择〉XRef Objects -----------〈外部引用物体〉XRef Scenes -----------〈外部引用场景〉Merge --------------------〈合并〉Merge Animation--------〈合并动画动作〉Replace------------------〈替换〉Import---------------------〈输入〉Export---------------------〈输出〉Export Selected----------〈选择输出〉Archive--------------------〈存档〉Summary Info-----------〈摘要信息〉File Properties----------〈文件属性〉View Image File--------〈显示图像文件〉History--------------------〈历史〉Exit----------------------〈退出〉二、Edit〈菜单〉Undo or Redo----------〈取消/重做〉Hold and fetch---------〈保留/引用〉Delete----------------〈删除〉Clone--------------------〈克隆〉Select All-----------------〈全部选择〉Select None-------------〈空出选择〉Select Invert-------------〈反向选择〉Select By-----------------〈参考选择〉Color--------------------〈颜色选择〉Name---------------------〈名字选择〉Rectangular Region-----〈矩形选择〉Circular Region--------〈圆形选择〉Fabce Region----------〈连点选择〉Lasso Region----------〈套索选择〉Region:-------------------〈区域选择〉Window-----------------〈包含〉Crossing-----------------〈相交〉Named Selection Sets〈命名选择集〉Object Properties--------〈物体属性〉三、Tools〈工具〉Transfrom Type-In------〈键盘输入变换〉Display Floater-----------〈视窗显示浮动对话框〉Selection Floater--------〈选择器浮动对话框〉Light Lister----------------〈灯光列表〉Mirror-----------------------〈镜像物体〉Array------------------------〈阵列〉Align-----------------------〈对齐〉Snapshot------------------〈快照〉Spacing Tool-------------〈间距分布工具〉Normal Align-------------〈法线对齐〉Align Camera------------〈相机对齐〉Align to View--------------〈视窗对齐〉Place Highlight-----------〈放置高光〉Isolate Selection---------〈隔离选择〉Rename Objects----------〈物体更名〉四、Group〈群组〉Group-----------------------〈群组〉Ungroup-------------------〈撤消群组〉Open-----------------------〈开放组〉Close-----------------------〈关闭组〉Attach-----------------------〈配属〉Detach---------------------〈分离〉Explode--------------------〈分散组〉五、Views〈查看〉Undo View Change/Redo View change〈取消/重做视窗变化〉Save Active View/Restore Active View〈保存/还原当前视窗〉Viewport Configuration--------------〈视窗配置〉Grids----------------------------------〈栅格〉Show Home Grid------------------〈显示栅格命令〉Activate Home Grid---------------〈活跃原始栅格命令〉Activate Grid Object---------------〈活跃栅格物体命令〉Activate Grid to View--------------〈栅格及视窗对齐命令〉Viewport Background------------〈视窗背景〉Update Background Image-----〈更新背景〉Reset Background Transfrom〈重置背景变换〉Show Transfrom Gizmo---------〈显示变换坐标系〉Show Ghosting--------------------〈显示重橡〉Show Key Times------------------〈显示时间键〉Shade Selected-------------------〈选择亮显〉Show Dependencies------------〈显示关联物体〉Match Camera to View----------〈相机与视窗匹配〉Add Default Lights To Scene-〈增加场景缺省灯光〉Redraw All Views----------------〈重画所有视窗〉Activate All Maps------------------〈显示所有贴图〉Deactivate All Maps--------------〈关闭显示所有贴图〉Update During Spinner Drag --〈微调时实时显示〉Adaptive Degradation Toggle---〈绑定适应消隐〉Expert Mode----------------------〈专家模式〉六、Create〈创建〉Standard Primitives--------------〈标准图元〉Box------------------------------------〈立方体〉Cone---------------------------------〈圆锥体〉Sphere-------------------------------〈球体〉GeoSphere-------------------------〈三角面片球体〉Cylinder-----------------------------〈圆柱体〉Tube---------------------------------〈管状体〉Torus--------------------------------〈圆环体〉Pyramid-----------------------------〈角锥体〉Plane--------------------------------〈平面〉Teapot-------------------------------〈茶壶〉Extended Primitives-------------〈扩展图元〉Hedra--------------------------------〈多面体〉Torus Knot-------------------------〈环面纽结体〉Chamfer Box----------------------〈斜切立方体〉Chamfer Cylinder----------------〈斜切圆柱体〉Oil Tank----------------------------〈桶状体〉Capsule----------------------------〈角囊体〉Spindle-----------------------------〈纺锤体〉L-Extrusion------------------------〈L形体按钮〉Gengon-----------------------------〈导角棱柱〉C-Extrusion-----------------------〈C形体按钮〉RingWave-------------------------〈环状波〉Hose--------------------------------〈软管体〉Prism-------------------------------〈三棱柱〉Shapes----------------------------〈形状〉Line---------------------------------〈线条〉Text----------------------------------〈文字〉Arc-----------------------------------〈弧〉Circle-------------------------------〈圆〉Donut-------------------------------〈圆环〉Ellipse------------------------------〈椭圆〉Helix--------------------------------〈螺旋线〉NGon-------------------------------〈多边形〉Rectangle-------------------------〈矩形〉Section-----------------------------〈截面〉Star---------------------------------〈星型〉Lights------------------------------〈灯光〉Target Spotlight-----------------〈目标聚光灯〉Free Spotlight--------------------〈自由聚光灯〉Target Directional Light-------〈目标平行光〉Directional Light----------------〈平行光〉Omni Light-----------------------〈泛光灯〉Skylight----------------------------〈天光〉Target Point Light--------------〈目标指向点光源〉Free Point Light----------------〈自由点光源〉Target Area Light--------------〈指向面光源〉IES Sky---------------------------〈IES天光〉IES Sun--------------------------〈IES阳光〉SuNLIGHT System and Daylight〈太阳光及日光系统〉Camera--------------------------〈相机〉Free Camera-------------------〈自由相机〉Target Camera----------------〈目标相机〉Particles-------------------------〈粒子系统〉Blizzard--------------------------〈暴风雪系统〉PArray----------------------------〈粒子阵列系统〉PCloud---------------------------〈粒子云系统〉Snow------------------------------〈雪花系统〉Spray-----------------------------〈喷溅系统〉Super Spray--------------------〈超级喷射系统〉七、Modifiers〈修改器〉Selection Modifiers〈选择修改器〉Mesh Select〈网格选择修改器〉Poly Select〈多边形选择修改器〉Patch Select〈面片选择修改器〉Spline Select〈样条选择修改器〉Volume Select〈体积选择修改器〉FFD Select〈自由变形选择修改器〉NURBS Surface Select〈NURBS表面选择修改器〉Patch/Spline Editing〈面片/样条线修改器〉:Edit Patch〈面片修改器〉Edit Spline〈样条线修改器〉Cross Section〈截面相交修改器〉Surface〈表面生成修改器〉Delete Patch〈删除面片修改器〉Delete Spline〈删除样条线修改器〉Lathe〈车床修改器〉Normalize Spline〈规格化样条线修改器〉Fillet/Chamfer〈圆切及斜切修改器〉Trim/Extend〈修剪及延伸修改器〉Mesh Editing〈表面编辑〉Cap Holes〈顶端洞口编辑器〉Delete Mesh〈编辑网格物体编辑器〉Edit Normals〈编辑法线编辑器〉Extrude〈挤压编辑器〉Face Extrude〈面拉伸编辑器〉Normal〈法线编辑器〉Optimize〈优化编辑器〉Smooth〈平滑编辑器〉STL Check〈STL检查编辑器〉Symmetry〈对称编辑器〉Tessellate〈镶嵌编辑器〉Vertex Paint〈顶点着色编辑器〉Vertex Weld〈顶点焊接编辑器〉Animation Modifiers〈动画编辑器〉Skin〈皮肤编辑器〉Morpher〈变体编辑器〉Flex〈伸缩编辑器〉Melt〈熔化编辑器〉Linked XForm〈连结参考变换编辑器〉Patch Deform〈面片变形编辑器〉Path Deform〈路径变形编辑器〉Surf Deform〈表面变形编辑器〉* Surf Deform〈空间变形编辑器〉UV Coordinates〈贴图轴坐标系〉UVW Map〈UVW贴图编辑器〉UVW Xform〈UVW贴图参考变换编辑器〉Unwrap UVW〈展开贴图编辑器〉Camera Map〈相机贴图编辑器〉* Camera Map〈环境相机贴图编辑器〉Cache Tools〈捕捉工具〉Point Cache〈点捕捉编辑器〉Subdivision Surfaces〈表面细分〉MeshSmooth〈表面平滑编辑器〉HSDS Modifier〈分级细分编辑器〉Free Form Deformers〈自由变形工具〉FFD 2×2×2/FFD 3×3×3/FFD 4×4×4〈自由变形工具2×2×2/3×3×3/4×4×4〉FFD Box/FFD Cylinder〈盒体和圆柱体自由变形工具〉Parametric Deformers〈参数变形工具〉Bend〈弯曲〉Taper〈锥形化〉Twist〈扭曲〉Noise〈噪声〉Stretch〈缩放〉Squeeze〈压榨〉Push〈推挤〉Relax〈松弛〉Ripple〈波纹〉Wave〈波浪〉Skew〈倾斜〉Slice〈切片〉Spherify〈球形扭曲〉Affect Region〈面域影响〉Lattice〈栅格〉Mirror〈镜像〉Displace〈置换〉XForm〈参考变换〉Preserve〈保持〉Surface〈表面编辑〉Material〈材质变换〉Material By Element〈元素材质变换〉Disp Approx〈近似表面替换〉NURBS Editing〈NURBS面编辑〉NURBS Surface Select〈NURBS表面选择〉Surf Deform〈表面变形编辑器〉Disp Approx〈近似表面替换〉Radiosity Modifiers〈光能传递修改器〉Subdivide〈细分〉* Subdivide〈超级细分〉八、Character〈角色人物〉Create Character〈创建角色〉Destroy Character〈删除角色〉Lock/Unlock〈锁住与解锁〉Insert Character〈插入角色〉Save Character〈保存角色〉Bone Tools〈骨骼工具〉Set Skin Pose〈调整皮肤姿势〉Assume Skin Pose〈还原姿势〉Skin Pose Mode〈表面姿势模式〉九、Animation〈动画〉IK Solvers〈反向动力学〉HI Solver〈非历史性控制器〉HD Solver〈历史性控制器〉IK Limb Solver〈反向动力学肢体控制器〉SplineIK Solver〈样条反向动力控制器〉Constraints〈约束〉Attachment Constraint〈附件约束〉Surface Constraint〈表面约束〉Path Constraint〈路径约束〉Position Constraint〈位置约束〉Link Constraint〈连结约束〉LookAt Constraint〈视觉跟随约束〉Orientation Constraint〈方位约束〉Transform Constraint〈变换控制〉Link Constraint〈连接约束〉Position/Rotation/Scale〈PRS控制器〉Transform Script〈变换控制脚本〉Position Controllers〈位置控制器〉Audio〈音频控制器〉Bezier〈贝塞尔曲线控制器〉Expression〈表达式控制器〉Linear〈线性控制器〉Motion Capture〈动作捕捉〉Noise〈燥波控制器〉Quatermion(TCB)〈TCB控制器〉Reactor〈反应器〉Spring〈弹力控制器〉Script〈脚本控制器〉XYZ〈XYZ位置控制器〉Attachment Constraint〈附件约束〉Path Constraint〈路径约束〉Position Constraint〈位置约束〉Surface Constraint〈表面约束〉Rotation Controllers〈旋转控制器〉注:该命令工十一个子菜单。
dma英文翻译的
编辑器菜单翻译:SELECTION MODIFIERS 选择修改器MESH SELECT 网格选择POLY SELECT 多边形选择PATCH SELECT 面片选择SPLINE SELECT 样条线选择FFD SELECT FFD选择SELECT BY CHANNEL 按通道选择SURFACE SELECT(NSURF SEL)NURBS 曲面选择PATCH/SPLINE EDITING 面片/样条线编辑EDIT PATCH 编辑面片EDIT SPLINE 编辑样条线CROSS SECTION 横截面SURFACE 曲面DELETE PATCH 删除面片DELETE SPLINE 删除样条线LATHE 车削旋转NORMALIZE SPLINE 规格化样条线FILLET/CHAMFER 圆角/切角TRIM/EXTEND 修剪/延伸RENDERABLE SPLINE 可渲染样条线SWEEP 扫描MESH EDITING 网格编辑DELETE MESH 删除网格EDIT MESH 编辑网格EDIT POLY 编辑多边形EXTRUDE 挤出FACE EXTRUDE 面挤出NORMAL 法线SMOOTH 平滑BEVEL 倒角、斜切BEVEL PROFILE 倒角剖面TESSELLATE 细化STL CHECK STL检查CAP HOLES 补洞VERTEXPAINT 顶点绘制OPTIMIZE 优化MULTIRES 多分辨率VERTEX WELD 顶点焊接SYMMETRY 对称EDIT NORMALS 编辑法线EDITABLE POLY 可编辑多边形EDIT GEOMETRY 编辑几何体SUBDIVISION SURFACE 细分曲面SUBDIVISION DISPLACEMENT 细分置换PAINT DEFORMATION 绘制变形CONVERSION 转化TURN TO POLY 转换为多边形TURN TO PATCH 转换为面片TURN TO MESH 转换为网格ANIMATION MODIFIERS 动画EDIT ENVELOPE 编辑封套WEIGHT PROPERTIES 权重属性MIRROR PARAMETERS 镜像参数DISPLAY 显示ADVANCED PARAMETERS 高级参数GIZMO 变形器MORPHER 变形器CHANNEL COLOR LEGEND 通道颜色图例GLOBAL PARAMETERS 全局参数CHANNEL LIST 通道列表CHANNEL PARAMETERS 通道参数ADVANCED PARAMETERS 高级参数FLEX 柔体PARAMETERS 参数SIMPLE SOFT BODIES 简章软体WEIGHTS AND PAINTING 权重和绘制FORCES AND DEFLECTORS 力和导向器ADVANCED PARAMETERS 高级参数ADVANCED SPRINGS 高级弹力线MELT 融化LINKED XFORM 链接变换PATCH DEFORM 面片变形PATH DEFORM 路径变形SURF DEFORM 曲面变形PATCH DEFORM(WSM)面片变形(WSM)PATH DEFORM(WSM)路径变形(WSM)SURF DEFORM(WSM)曲面变形(WSM)SKIN MORPH 蒙皮变形SKIN WRAP 蒙皮包裹SKIN WRAP PATCH 蒙皮包裹面片SPLINE IK CONTROL 样条线IK控制ATTRIBUTE HOLDER 属性承载器UV COORDINATES MODIFIERS UV坐标修改器UVW MAP UVW贴图UNWRAP UVW 展开UVWUVW XFORM UVW变换MAPSCALER(WSM)贴图缩放器(WSM)MAPSCALER 贴图缩放器(OSM)CAMERA MAP 摄影机贴图CAMERA MAP(WSM)摄影机贴图(WSM)SURFACE MAPPER(WSM)曲面贴图(WSM)PROJECTION 投影UVW MAPPING ADD UVW贴图添加UVW MAPPING CLEAR UVW贴图清除CACHE TOOLS 缓存工具POINT CACHE 点缓存POINT CACHE(WSM)点缓存(WSM)SUBDIVISION SURFACES 细分曲面TURBOSMOOTH 涡轮平滑MESHSMOOTH 网格平滑HSDS MODIFIER HSDS修改器FREE FORM DEFORMATIONS 自由形式变形FFD MODIFIERS FFD修改FFD BOX/CYLINDER FFD长方形/圆柱体PARAMETRIC MODIFIERS 参数化修改器BEND 弯曲TAPER 锥化TWIST 扭曲NOISE 噪波STRETCH 拉伸、伸展SQUEEZE 挤压PUSH 推力RELAX 松弛RIPPLE 涟漪WAVE 波浪SKEW 倾斜ALICE 切片SPHERIFY 球形化AFFECT REGION 影响区域LATTICE 晶格MIRROR 镜像DISPLACE 置换XFORM 变换SUBSTITUTE 替换PRESERVE 保留SHELL 壳SURFACE 曲面MATERIAL 材质MATERIAL BY ELEMENT 按元素分配材质DISP APPROX 置换近似DISPLACE MESH(WSM)置换网格(WSM)DISPLACE NURBS(WSM)置换网格(WSM)RADIOSITY MODIFIERS 沟通传递修改器SUBDIVIDE(WSM)细分(WSM)SUBDIVIDE 细分材质编辑器:Reglection(反射)Basic Parameters(基本参数) Refraction(折射).Ambient(环境反射) 3D Procedural Maps(三维贴图).Diffuse(漫反射) Face-mapped(面贴图)Specular(镜面反射)Extended Parameters(扩展参数)Maps(贴图).Bitmap(位图).Checker(棋盘格) 复合材质.Gradient(渐变) Double Sided(双面).Adobe Photoshop Plug-In Filter(PS滤镜)Blend(混合) .Adove Premiere Video Filter(PM滤镜) Matte/Shoadow() .Cellular(细胞) Multi/Sub-object(多重子物体).Dent(凹痕) Raytrace(光线追踪).Noise(干扰) Top/Bottom(项底).Splat(油彩).Matrble(大理石).Wood(木纹).Water(水) Time Configuration(时间帧速率) .Falloff(衰减) Frame Rate(帧速率).Flat Mirror(镜面反射) NTSC(NTSC制式) .Mask(罩框) Film(胶片速度).Mix(混合) PAL(PAL制式).Output(输出) Custom(自定义).Planet(行星).Raytrace(光线跟踪).Reglect/Refrace(反射/折射).Smoke(烟雾) Create(创建).Speckle(斑纹) Helpers(帮助物体).Stucco(泥灰) Dummy(虚拟体).Vertex Color(项点颜色) Forward Kinematics(正向运动) .Composite(合成贴图) Inverse Kinematics(反向运动) .Particle age(粒子寿命).Patticle Mblur(粒子模糊)参数区卷展栏:Shader Basic Parameters(着色基本参数区).Blinn(宾氏).Anisotropic(各向异性).Metal(金属).Multi-layer(多层式).Phong(方氏) 塑性.Oren-Nayar-Blinn(表面粗糙的对象).Strauss(具有简单的光影分界线).Wire(线架结构显示模式).2-Sided(双面材质显示).Face Map(将材质赋予对象所有的面) .Faceted(将材质以面的形式赋予对象) Blinn Basic Patameters(宾氏基本参数区) .Diffuse(固有色).Ambient(阴影色).Specular(高光色).Self-Illumination(自发光).Opacity(不透明度).Specular Highlights(高光曲线区)..Specular Level(高光级别)..Glossiness(光泽度)..Soften(柔和度)Extended Parameters(扩展参数区).Falloff(衰减).Filer(过滤法).Subtractive(删减法).Additive(递增法).Index of Refraction(折射率) .Wire(线架材质).Reflection Dimming(反射暗淡) SuperSampling(超级样本) Maps(贴图区).Ambient Color(阴影色贴图) .Diffuse Color(固有色贴图).Specular Color(高光色贴图) .Glossiness(光泽度贴图).Self-Illmination(自发光贴图) .Opacity(不透明贴图).Filter Color(过滤色贴图).Bump(凹凸贴图).Reflction(反射贴图).Refraction(折射贴图)..Refract Map/Ray Trace IOR(折射贴图/光线跟踪折射率) .Displacement(置换贴图)Dvnamics Properties(动力学属性区)材质类型Blend(混合材质).Material#1(材质#1).Material#2(材质#2).Mask(遮罩).Interactive(交互).Mix Amount(混合数值).Mixing Curve(混合曲线).Use Curve(使用曲线).Transition Zone(交换区域)Composite(合成材质).Composite Bisic Parameters(合成材质基础参数区)..Base Material(基本材质)..Mat.1~Mat.9(材质1~材质9)Double Sided(双面材质).Translucency(半透明) 贴图类型.Facing material(表面材质) Bitmap(位图).Back Material(背面材质) Cellular(细胞)Matte/Shadow(投影材质) Checker(棋盘格).Matte(不可见) Composite(合成贴图).Atmosphere(大气) Dent(凹痕贴图)..Apply Atmosphere(加入大气环境) Falloff(衰减)..At Background Depth(在背景深度) Flat Mirror(镜面反射)..At Object Depth(在物体深度) Gradient(渐变).Shadow(阴影) Marble(大理石)..Receive Shadow(接受阴影) Madk(罩框)..Shadow Brightness(阴影的亮度) Mix(混合).Reflection(反射) Noise(干扰)Morpher(形态结构贴图) Output(输出)Muti/Sub-Object(多重子物体材质) Partcle Age(粒子寿命) .Set Number(设置数目) Perlin Marble(珍珠岩).Number Of Materials(材质数目) Planet(行星) Raytrace(光线追踪材质) Raytrance(光线跟踪).Shading(明暗) Reflect/Refract(反射/折射).2-Sided(双面) RGB Multiply(RGB倍增).Face Map(面贴图) RGB Tint(RGB染色).Wire(线框) Smoke(烟雾).Super Sample(超级样本) Speckle(斑纹).Ambient(阴影色) Splat(油彩).Diffuse(固有色) Stucco(泥灰).Reflect(反射) Thin Wall Refraction(薄壁折射) .Luminosity(发光度) Vertex Color(项点颜色) .Transparency(透明) Water(水).Index Of Refr(折射率) Wood(木纹).Specular Highlight(反射高光)..Specular Color(高光反射颜色)..Shininess(反射)..Shiness Strength(反光强度).Environment(环境贴图).Bump(凹凸贴图)Shellac(虫漆材质).Base Material(基础材质).Shellac Material(虫漆材质).Shellac Color Blend(虫漆颜色混合) Standard(标准材质)Top/Bottom(项/底材质).Top Material(项材质).Bottom Material(底材质).Swap(置换).Coordinates(坐标轴).Blend(融合).Possition(状态)FILE(文件) EDIT(编辑)Rest(重置) Undo(撤消)Save Selected(保存所选择的对象) Redo(恢复) XRef Objects(外部参考物体) Clone(复制) XRef Scenes(外部参考场景) Delete(删除) Merge(合并) Select All(对象选择)Replace(替换) Select None(取消对象)Import(输入) Select Invert(对象反转)Export(输出) Hold(保存)Archive(压缩存盘) Fetch(取出)View File(观看文件) Select BY(根据..选择) Select By Color(根据颜色..选择)Select By Name(根据名字..选择)Region(区域)Edit Named Selections(编辑已命名被选物) Properties(属性)TOOLS(工具菜单) GROUP(分组菜单)Mirror(镜像) Group(分组)Array(阵列) Open(打开)Align(对齐) Close(关闭)Place Highlight(放置高亮区) Ungroup(解除群组)Align Camera(对齐摄像机) Explode(分解)Scaping Tool(间距修改工具) Detach(分离)Transform Type-In(输入变换坐标) Attach(合并)Display Floater(显示浮动物体)Hide(隐藏)Freeze(冻结)Selection Floater(选择浮动物体)Snapshot(快照复制)Normal Align(法向对齐)Material Editor(材质编辑器)Material/Map Browser(材质/贴图浏览器)Object(物体工具栏) Create(创建命令面板)Compounds(复合工具栏) Modify(修改命令面板)Lighes&Cameras(光线和照相机工具栏) Hierarchy(层级命令面板) Particles(粒子系统工具栏) Motion(运动命令面板)Helpers(帮助物体工具栏) Display(显示命令面板)Space Warps(空间扭曲工具栏) Utilities(实用程序) Modifiers(修改工具栏)Rendering(渲染工具栏)Shapes(二维图形工具栏)Modeling(造型修改工具栏)MODIFIER STACK(编辑修改器堆栈) 布尔运算与克隆对象Pin Stack(钉住堆栈状态) Union(并集)Active/Inactive(激活/不激活切换) Subtraction(差集)Show End Result(显示最后结果) Intersection(交集)Make Unipue(使独立) Copy(复制)Remove Modifier(删除编辑修改器) Instance(关联复制)Edit Stack(编辑堆栈对话框) Reference(参考复制)控制器械的种类二维项点Track View(轨迹视图) Smooth(光滑项点)Assign Controller(指定控制器) Corner(边角项点) Replace Controller(替换控制器) Bezier(Bezier项点).Linear Controller(直线控制器) Bezier Corner(Bezier角点) .TCB Contriller(TCB控制器)).Contriller(连续).Path Controller(路径控制器).List Controller(列表控制器).Expression Controller(噪声控制器).Look At(看着)三维造型Deformations(变形控制)Box(盒子) Scale(缩放)Cone(圆锥体) Twist(扭曲)Sphere(球体) Teeter(轴向变形)Geosphere(经纬球) Bevel(倒角)Cylinder(柱体) Fit(适配变形)Tube(管子)Torus(圆环)Pyramid(金字塔)Teapot(茶壶)Plane(平面)灯光类型摄像机类型Omni(泛光灯) Target(目标).General Parameters(普通参数) .Lens(镜头尺寸).Projector Parameters(投射贴图) .FOV(视域范围).Attenuation Parameters(衰减参数) .Stock Lenses(镜头类型).Shadow Parameters(阴影参数) .Show Core(显示视域范围).Shadow Map Params(阴影贴图参数) .Show Horizor(显示地平线) Target Spot(目标聚光灯) .Near Range(最近范围)Free SPot(自由聚光灯) .Far Range(最远范围)Target Direct(目标平行光灯)Render Scene(渲染).Rime Output(输出时间)..Single(渲染单帖)..Range(所有帖).Output Size(输出尺寸)Rendering(渲染)/Environment(环境) 粒子系统Background(背景) Spray(喷射)Global Lighting(球形照明) Snow(雪) Atmosphere(大气) Blizzard(暴风雪) Combustion(燃烧) PArray(粒子列阵) Volume Light(体光) Pcloud(粒子云)Fog(雾) Super Spray(超级喷射).Standard(标准).Layered(分层)Volume Fog(体雾)快捷菜单:A-角度捕捉开关B-切换到底视图C-切换到摄象机视图D-封闭视窗E-切换到轨迹视图F-切换到前视图G-切换到网格视图H-显示通过名称选择对话框I-交互式平移J-选择框显示切换K-切换到背视图L-切换到左视图M-材质编辑器N-动画模式开关O-自适应退化开关P-切换到透视用户视图Q-显示选定物体三角形数目R-切换到右视图S-捕捉开关T-切换到顶视图U-切换到等角用户视图V-旋转场景W-最大化视窗开关X-中心点循环Y-工具样界面转换Z-缩放模式[-交互式移近]-交互式移远/-播放动画F1-帮助文件F3-线框与光滑高亮显示切换F4-Edged Faces显示切换F5-约束到X轴方向F6-约束到Y轴方向F7-约束到Z轴方向F8-约束轴面循环F9-快速渲染F10-渲染场景F11-MAX脚本程序编辑F12-键盘输入变换Delete-删除选定物体SPACE-选择集锁定开关END-进到最后一帧HOME-进到起始帧INSERT-循环子对象层级PAGEUP-选择父系PAGEDOWN-选择子系CTRL+A-重做场景操作CTRL+B-子对象选择开关CTRL+F-循环选择模式CTRL+L-默认灯光开关CTRL+N-新建场景CTRL+O-打开文件CTRL+P-平移视图CTRL+R-旋转视图模式CTRL+S-保存文件CTRL+T-纹理校正CTRL+T-打开工具箱(Nurbs曲面建模)CTRL+W-区域缩放模式CTRL+Z-取消场景操作CTRL+SPACE-创建定位锁定键SHIFT+A-重做视图操作SHIFT+B-视窗立方体模式开关SHIFT+C-显示摄象机开关SHIFT+E-以前次参数设置进行渲染SHIFT+F-显示安全框开关SHIFT+G-显示网络开关SHIFT+H-显示辅助物体开关SHIFT+I-显示最近渲染生成的图象SHIFT+L-显示灯光开关SHIFT+O-显示几何体开关SHIFT+P-显示粒子系统开关SHIFT+Q-快速渲染SHIFT+R-渲染场景SHIFT+S-显示形状开关SHIFT+W-显示空间扭曲开关SHIFT+Z-取消视窗操作SHIFT+4-切换到聚光灯/平行灯光视图SHIFT+\-交换布局SHIFT+SPACE-创建旋转锁定键ALT+S-网格与捕捉设置ALT+SPACE-循环通过捕捉ALT+CTRL+Z-场景范围充满视窗ALT+CTRL+SPACE-偏移捕捉SHIFT+CTRL+A-自适应透视网线开关SHIFT+CTRL+P-百分比捕捉开关SHIFT+CTRL+Z全部场景范围充满视窗标题栏翻译:一、File<文件>New-----------------------〈新建〉Reset---------------------〈重置〉Open----------------------〈打开〉Save-----------------------〈保存〉Save As-------------------〈保存为〉Save selected----------〈保存选择〉XRef Objects -----------〈外部引用物体〉XRef Scenes -----------〈外部引用场景〉Merge --------------------〈合并〉Merge Animation--------〈合并动画动作〉Replace------------------〈替换〉Import---------------------〈输入〉Export---------------------〈输出〉Export Selected----------〈选择输出〉Archive--------------------〈存档〉Summary Info-----------〈摘要信息〉File Properties----------〈文件属性〉View Image File--------〈显示图像文件〉History--------------------〈历史〉Exit----------------------〈退出〉二、Edit〈菜单〉Undo or Redo----------〈取消/重做〉Hold and fetch---------〈保留/引用〉Delete----------------〈删除〉Clone--------------------〈克隆〉Select All-----------------〈全部选择〉Select None-------------〈空出选择〉Select Invert-------------〈反向选择〉Select By-----------------〈参考选择〉Color--------------------〈颜色选择〉Name---------------------〈名字选择〉Rectangular Region-----〈矩形选择〉Circular Region--------〈圆形选择〉Fabce Region----------〈连点选择〉Lasso Region----------〈套索选择〉Region:-------------------〈区域选择〉Window-----------------〈包含〉Crossing-----------------〈相交〉Named Selection Sets〈命名选择集〉Object Properties--------〈物体属性〉三、Tools〈工具〉TransfromType-In------〈键盘输入变换〉Display Floater-----------〈视窗显示浮动对话框〉Selection Floater--------〈选择器浮动对话框〉Light Lister----------------〈灯光列表〉Mirror-----------------------〈镜像物体〉Align-----------------------〈对齐〉Snapshot------------------〈快照〉Spacing Tool-------------〈间距分布工具〉Normal Align-------------〈法线对齐〉Align Camera------------〈相机对齐〉Align to View--------------〈视窗对齐〉Place Highlight-----------〈放置高光〉Isolate Selection---------〈隔离选择〉Rename Objects----------〈物体更名〉四、Group〈群组〉Group-----------------------〈群组〉Ungroup-------------------〈撤消群组〉Open-----------------------〈开放组〉Close-----------------------〈关闭组〉Detach---------------------〈分离〉Explode--------------------〈分散组〉五、Views〈查看〉Undo View Change/Redo View change〈取消/重做视窗变化〉Save Active View/Restore Active View〈保存/还原当前视窗〉Viewport Configuration--------------〈视窗配置〉Grids----------------------------------〈栅格〉Show Home Grid------------------〈显示栅格命令〉Activate Home Grid---------------〈活跃原始栅格命令〉Activate Grid Object---------------〈活跃栅格物体命令〉Activate Grid to View--------------〈栅格及视窗对齐命令〉Viewport Background------------〈视窗背景〉Update Background Image-----〈更新背景〉Reset Background Transfrom〈重置背景变换〉Show TransfromGizmo---------〈显示变换坐标系〉Show Ghosting--------------------〈显示重橡〉Show Key Times------------------〈显示时间键〉Shade Selected-------------------〈选择亮显〉Show Dependencies------------〈显示关联物体〉Match Camera to View----------〈相机与视窗匹配〉Add Default Lights To Scene-〈增加场景缺省灯光〉Redraw All Views----------------〈重画所有视窗〉Activate All Maps------------------〈显示所有贴图〉Deactivate All Maps--------------〈关闭显示所有贴图〉Update During Spinner Drag --〈微调时实时显示〉Adaptive Degradation Toggle---〈绑定适应消隐〉Expert Mode----------------------〈专家模式〉六、Create〈创建〉Standard Primitives--------------〈标准图元〉Cone---------------------------------〈圆锥体〉Sphere-------------------------------〈球体〉GeoSphere-------------------------〈三角面片球体〉Cylinder-----------------------------〈圆柱体〉Tube---------------------------------〈管状体〉Torus--------------------------------〈圆环体〉Pyramid-----------------------------〈角锥体〉Plane--------------------------------〈平面〉Teapot-------------------------------〈茶壶〉Extended Primitives-------------〈扩展图元〉Hedra--------------------------------〈多面体〉Torus Knot-------------------------〈环面纽结体〉Chamfer Box----------------------〈斜切立方体〉Chamfer Cylinder----------------〈斜切圆柱体〉Capsule----------------------------〈角囊体〉Spindle-----------------------------〈纺锤体〉L-Extrusion------------------------〈L形体按钮〉Gengon-----------------------------〈导角棱柱〉C-Extrusion-----------------------〈C形体按钮〉RingWave-------------------------〈环状波〉Hose--------------------------------〈软管体〉Prism-------------------------------〈三棱柱〉Shapes----------------------------〈形状〉Line---------------------------------〈线条〉Text----------------------------------〈文字〉Arc-----------------------------------〈弧〉Circle-------------------------------〈圆〉Donut-------------------------------〈圆环〉Helix--------------------------------〈螺旋线〉NGon-------------------------------〈多边形〉Rectangle-------------------------〈矩形〉Section-----------------------------〈截面〉Star---------------------------------〈星型〉Lights------------------------------〈灯光〉Target Spotlight-----------------〈目标聚光灯〉Free Spotlight--------------------〈自由聚光灯〉Target Directional Light-------〈目标平行光〉Directional Light----------------〈平行光〉Omni Light-----------------------〈泛光灯〉Skylight----------------------------〈天光〉Target Point Light--------------〈目标指向点光源〉Free Point Light----------------〈自由点光源〉Target Area Light--------------〈指向面光源〉IES Sky---------------------------〈IES天光〉IES Sun--------------------------〈IES阳光〉SuNLIGHT System and Daylight〈太阳光及日光系统〉Camera--------------------------〈相机〉Free Camera-------------------〈自由相机〉Target Camera----------------〈目标相机〉Particles-------------------------〈粒子系统〉Blizzard--------------------------〈暴风雪系统〉PArray----------------------------〈粒子阵列系统〉PCloud---------------------------〈粒子云系统〉Snow------------------------------〈雪花系统〉Spray-----------------------------〈喷溅系统〉Super Spray--------------------〈超级喷射系统〉七、Modifiers〈修改器〉Selection Modifiers〈选择修改器〉Mesh Select〈网格选择修改器〉Poly Select〈多边形选择修改器〉Patch Select〈面片选择修改器〉Spline Select〈样条选择修改器〉Volume Select〈体积选择修改器〉FFD Select〈自由变形选择修改器〉NURBS Surface Select〈NURBS表面选择修改器〉Patch/Spline Editing〈面片/样条线修改器〉:Edit Patch〈面片修改器〉Edit Spline〈样条线修改器〉Cross Section〈截面相交修改器〉Surface〈表面生成修改器〉Delete Patch〈删除面片修改器〉Delete Spline〈删除样条线修改器〉Lathe〈车床修改器〉Normalize Spline〈规格化样条线修改器〉Fillet/Chamfer〈圆切及斜切修改器〉Trim/Extend〈修剪及延伸修改器〉Mesh Editing〈表面编辑〉Cap Holes〈顶端洞口编辑器〉Delete Mesh〈编辑网格物体编辑器〉Edit Normals〈编辑法线编辑器〉Extrude〈挤压编辑器〉Face Extrude〈面拉伸编辑器〉Normal〈法线编辑器〉Optimize〈优化编辑器〉Smooth〈平滑编辑器〉STL Check〈STL检查编辑器〉Symmetry〈对称编辑器〉Tessellate〈镶嵌编辑器〉Vertex Paint〈顶点着色编辑器〉Vertex Weld〈顶点焊接编辑器〉Animation Modifiers〈动画编辑器〉Skin〈皮肤编辑器〉Morpher〈变体编辑器〉Flex〈伸缩编辑器〉Melt〈熔化编辑器〉Linked XForm〈连结参考变换编辑器〉Patch Deform〈面片变形编辑器〉Path Deform〈路径变形编辑器〉Surf Deform〈表面变形编辑器〉* Surf Deform〈空间变形编辑器〉UV Coordinates〈贴图轴坐标系〉UVW Map〈UVW贴图编辑器〉UVW Xform〈UVW贴图参考变换编辑器〉Unwrap UVW〈展开贴图编辑器〉Camera Map〈相机贴图编辑器〉* Camera Map〈环境相机贴图编辑器〉Cache Tools〈捕捉工具〉Point Cache〈点捕捉编辑器〉Subdivision Surfaces〈表面细分〉MeshSmooth〈表面平滑编辑器〉HSDS Modifier〈分级细分编辑器〉Free Form Deformers〈自由变形工具〉FFD 2×2×2/FFD 3×3×3/FFD 4×4×4〈自由变形工具2×2×2/3×3×3/4×4×4〉FFD Box/FFD Cylinder〈盒体和圆柱体自由变形工具〉Parametric Deformers〈参数变形工具〉Bend〈弯曲〉Taper〈锥形化〉Twist〈扭曲〉Noise〈噪声〉Stretch〈缩放〉Squeeze〈压榨〉Push〈推挤〉Relax〈松弛〉Ripple〈波纹〉Wave〈波浪〉Skew〈倾斜〉Slice〈切片〉Spherify〈球形扭曲〉Affect Region〈面域影响〉Lattice〈栅格〉Mirror〈镜像〉Displace〈置换〉XForm〈参考变换〉Preserve〈保持〉Surface〈表面编辑〉Material〈材质变换〉Material By Element〈元素材质变换〉Disp Approx〈近似表面替换〉NURBS Editing〈NURBS面编辑〉NURBS Surface Select〈NURBS表面选择〉Surf Deform〈表面变形编辑器〉Disp Approx〈近似表面替换〉Radiosity Modifiers〈光能传递修改器〉Subdivide〈细分〉* Subdivide〈超级细分〉八、Character〈角色人物〉Create Character〈创建角色〉Destroy Character〈删除角色〉Lock/Unlock〈锁住与解锁〉Insert Character〈插入角色〉Save Character〈保存角色〉Bone Tools〈骨骼工具〉Set Skin Pose〈调整皮肤姿势〉Assume Skin Pose〈还原姿势〉Skin Pose Mode〈表面姿势模式〉九、Animation〈动画〉IK Solvers〈反向动力学〉HI Solver〈非历史性控制器〉HD Solver〈历史性控制器〉IK Limb Solver〈反向动力学肢体控制器〉SplineIK Solver〈样条反向动力控制器〉Constraints〈约束〉Attachment Constraint〈附件约束〉Surface Constraint〈表面约束〉Path Constraint〈路径约束〉Position Constraint〈位置约束〉Link Constraint〈连结约束〉LookAt Constraint〈视觉跟随约束〉Orientation Constraint〈方位约束〉Transform Constraint〈变换控制〉Link Constraint〈连接约束〉Position/Rotation/Scale〈PRS控制器〉Transform Script〈变换控制脚本〉Position Controllers〈位置控制器〉Audio〈音频控制器〉Bezier〈贝塞尔曲线控制器〉Expression〈表达式控制器〉Linear〈线性控制器〉Motion Capture〈动作捕捉〉Noise〈燥波控制器〉Quatermion(TCB)〈TCB控制器〉Reactor〈反应器〉Spring〈弹力控制器〉Script〈脚本控制器〉XYZ〈XYZ位置控制器〉Attachment Constraint〈附件约束〉Path Constraint〈路径约束〉Position Constraint〈位置约束〉Surface Constraint〈表面约束〉Rotation Controllers〈旋转控制器〉注:该命令工十一个子菜单。
3D打印基础理论
(1)实体建模(Solid Modeling) 是指通过数学上定义的几何信息和位相数据展现出
三维形状的建模方式,最常用的是边界描述法和构造实 体几何法。实体建模一般用于设计规则的几何形状,它 包含了实心的数据,具有体积等数据,能够满足物理性 能计算,还可以通过定义实际使用的材料来计算出质量、 重力等属性及进行工程需求的分析。如图2.l所示为采用 UG创建的实体模型。
第2章 3D打印基础理论
2.1 数字建模
三维模型的获取是3D 打印实现的第一步,是后续 操作的基础。三维模型的精度决定了3D 打印成形的精 度和表面质量。获取三维模型数据的方法主要有两种: 一是使用建模工具生成的正向设计技术; 二是通过曲 面重构生成的逆向设计技术。
2.1.1 正向建模
正向建模技术是指将人们想象中的物体,根据其
息参数化,建立图形约束和几何关系与尺寸参数的对应关 系,通过调整参数值来控制几何形状变化的建模方法。图 2.3展示的玫瑰花是利用Rhino实现的参数化建模
图 2.3 参数化建模创建的玫瑰花模型
建模的时候应当根据需要的3D模型表现方式来选择适宜的建模工具,常见的建模工具 及主要应用领域如表2.1所示。
图 2.1 实体模型
(2)曲面建模(Surface Modeling) 是指通过定义曲面(多为NURBS曲面、Polygon多边
形曲面或是Subdivision细分曲面)来展现出形状的建模方 式,如图2.2所示,这是一个利用Maya的Polygon多边形曲 面功能制作的人体头像的模型。
《计算机辅助几何造型技术》1
计算机辅助几何造型技术主讲教师:秦开怀教授、博导qkh-dcs@所在单位:清华大学计算机科学与技术系 时间:2007年9月~2008年1月Textbooks/ReferencesJ. Hoschek& D. Lasser, Fundamentals of Computer Aided Geometric Design A K Peters Computer Aided Geometric Design, A K Peters, Ltd, Massachusetts, 1993.David F Rogers Introduction to NURBS Morgan David F Rogers,Introduction to NURBS, Morgan Kaufmann,2001.L Piegl&W Tiller The NURBS Book(2L. Piegl & W. Tiller, The NURBS Book (2nd Edition), Springer-Verlag Berlin Heidelberg, NewYork, 1997.York1997Carl deBoor, A Practical Guide to Splines, New York, Springer Verlag, 1978.York Springer-Verlag1978(Continued)M. E. Mortenson, Geometric Modeling , J h W l &S I 1985John Waley & Sons, Inc., 1985. G. Farin, Curves and Surfaces for ,Computer Aided Geometric Design (5th Edition), Elsevier Inc., 2002.(李双喜译,),,(CAGD 曲线曲面,科学出版社,2006)E J Stollnitz T DeRose &D H Salesin E. J. Stollnitz, T. DeRose & D. H. Salesin, Wavelets for Computer Graphics, Theory & Morgan Kaufmann PublishersApplications , Morgan Kaufmann Publishers, Inc., San Francisco, 1996.(Continued)Denis Zorin & Peter Schroder, Subdivision for M d li d A i ti SIGGRAPH 2000Modeling and Animation , SIGGRAPH 2000 Course Notes #23, 2000. R. Barzel, Physically-Based Modeling for Computer Graphics, A Structured Approach,Academic Press, Inc., San Diego, 1992.D. N. Metaxas, Physic-Based Deformable ,yModels, Applications to Computer Vision, Graphics & Medical Imaging , Kluwer Academicp g g ,Publishers, Massachusetts, 1997.(Continued)Donald Hearn & M.Pauline Baker, C t G hi ith O GL (Thi d Computer Graphics with OpenGL (Third Edition), Pearson Education, 2004 (中译本赫恩等著本:赫恩等著, 蔡士杰等译,《计算机图形学(第三版)》, 电子工业出版社, 200506)2005-06.) J. D. Foley, et al, Computer Graphics: y,,p pPrinciples & Practice (2nd Edition in C),Addison-Wesley, Reading, MA, 1996.y,g,,G di P li Grading PolicyThree assignments 30%Discussions/learning in classroom 5% One project substituting for the final p j g examination 65%R kRemarksThe three assignment is to be completed individually on yourself, but discussions among fellow students areyourself but discussions among fellow students areallowed.The project substitutes for the final examination Two The project substitutes for the final examination. Twostudents can work together as a group.Absolutely no sharing or copying of any code for both Absolutely no sharing or copying of any code for boththe assignments and the project! Offenders will be givena failure grade and the case will be reported to theg pdepartment.You are welcome to turn off your mobile phone before You are welcome to turn off your mobile phone beforeattending lectures.This course concentrates on seven main issues:i iNURBS curves and surfaces (including Bezier, B-spline curves and surfaces)gTriangular surfacesGordon-Coons surfacesSubdivision surfaces of arbitrary topologySubdivision surfaces of arbitrary topologyThe 2nd generation wavelets for multi-resolution modelingmodelingSolid modelingNew technology for geometric modelingContents of This Course1.Introduction2.∆Mathematic BasicsAffine mapsAffine mapsDivided differenceFunction spaceGeometric basics from curves and surfaces 3.∆Interpolatory Polynomial SplinesHermite interpolationHermite interpolationContents of This Course Contents of This Course (Continued)Quadric polynomial spline curvesCubic polynomial spline curvesSolving a linear system of equations with a g y q tridiagonal coefficient matrix Cubic parametric spline curves Cubic parametric spline curves4.*Bezier Curves and Surfaces Bezier curves defined by edge vectorsBernstein-Bezier curvesProperties of Bernstein-Bezier curves(Continued)De Casteljau algorithmDi t ti f B iDiscrete generation of Bezier curvesDegree elevation of Bezier curvesD d i f B iDegree reduction of Bezier curvesBezier spline curvesBezier interpolation curvesMatrix formula of Bezier curvesRational Bezier curvesProduct & inner product of Bezier curves Bezier surfaces(Continued)5.*B-spline Curves and SurfacesB-spline basis functions and their p ppropertiesB-spline curvesOpen curves and knot vectorsOpen curves and knot vectorsUniform B-spline curvesEndpoint interpolating B spline curves Endpoint interpolating B-spline curvesClosed B-spline curves(Continued)Chaikin algorithmDe Boor algorithmInserting knots in B-spline curves Inserting knots in B spline curvesBoehm algorithmOlso algorithmGeneral knot insertion for B-spline curvesDegree elevation of B-spline curves Degree elevation of B-spline curvesMarsden identity and recursive degree elevationPrautzsch algorithm(Continued)Arbitrarily high degree elevation for B-spline curvesDegree reduction of B-spline curvesB-spline surfacesInterpolating B-spline curves and p g p surfaces Matrix formulas of B-spline curves and Matrix formulas of B spline curves and surfaces(Continued)Matrix formula of uniform B_spline curvesMatrix formula of non-uniform B_splines Inner product of B-spline curvesGeneralized Marsden identityB-spline curve productInner product of B-spline basis functionsInner product of B-spline curves6.*NURBS Curves and SurfacesNURBS curvesNURBS curvesRepresenting conics using NURBS(Continued)Parameterization of curvesfNURBS surfacesRepresenting quadrics using NURBS surfacesfInterpolating NURBS curves and surfaces 7.Blossoming PrincipleLooking at de Casteljau algorithm from a Looking at de Casteljau algorithm from a blossoming point of viewKnot insertion from a blossoming point of Knot insertion from a blossoming point of view(Continued)Generating de Boor points based on the blossoming principleblossoming principleDegree raising of B-spline curves by blossoming8.* Triangular SurfacesBarycentric coordinatesgTriangular Bezier surfacesContinuity conditions for triangular Bezier ppatchesRational Triangular surfaces(Continued)9.*Gordon-Coons SurfacesCoons surfacesGordon-Coons surfaces on rectanglesGordon-Coons surfaces on triangles0Subd s o Su a s o b a y 10.*Subdivision Surfaces of ArbitraryTopologyCatmull-Clark surfacesCatmull-Clark surfacesDoo-Sabin surfacesContinuity of uniform subdivision surfaces Continuity of uniform subdivision surfacesNon-uniform subdivision surfaces(Continued)Convergence and continuity of non-uniform subdivision surfaces11.*The 2nd Generation Wavelets forMulti-resolution modelingMulti-resolution modelingB-spline wavelets for Multi-resolution modeling Endpoint interpolating B-spline wavelets Endpoint interpolating B-spline waveletsArbitrary Non-uniform B-spline waveletsB-spline wavelets with constraintsB spline wavelets with constraintsSubdivision-based Surface waveletsLoop Subdivision WaveletsCatmull-Clark Subdivision Wavelets√3-subdivision-based Bi-orthogonal Wavelets(Continued)12.∆Scattered Data Interpolation13.*Intersections of Curves and Surfaces14.Solid Modeling14*Solid Modeling15.Parameterization Modeling for ShapeDesign and Feature-based Modeling 16.New Technology for Geometric 16.*New Technology for GeometricModelingHierarchical B splinesHierarchical B-splinesPhysics-based modelingContents of This Course Contents of This Course (Continued)Modeling fractalized scenes (mountains,f lowers etc.)Particle system for modeling fires, clouds, water, forests etc.1.Introduction1. IntroductionSome Applications of CAGDRepresentation of large data setsVisualizing productsAutomatically producing sectionalAutomatically producing sectional drawingsModeling surfaces arising inModeling surfaces arising in construction of cars, ships & airplanesDesigning pipe systems, e.g. in chemical plants(continued)Drawing marine charts and city and relief i h maps in cartographyProduction and quality control, e.g. in q y ,g the sewing machine, textile and shoe industriesPlanning and controlling surgery Creating images in advertising television Creating images in advertising, television and film industries(continued)Constructing virtual environmentsDescribing robot paths and controlling their movementstheir movementsControlling milling machines used in manufacturingCurve modeling with constrained B-spline wavelets 保特征点的多分辨率曲线造型29曲线的多分辨率分段无缝表示30细分曲面带约束的样条曲面小波左图是采用经典B 样条曲面小波分片多分辨率表示的结果,右图是采用带约束B 的样条曲面小波分片多分辨率表示的结果,其中约束施加在接合线处。
隐式曲面高质量三角化
High Quality Triangulation of Implicit SurfacesShengjun Liu Xuehui Yin Xiaogang Jin Jieqing FengState Key Lab of CAD&CG,Zhejiang University,Hangzhou, PRC 310027liushengjun@ yinxuehui@ jin@ jqfeng@AbstractWe present a new high quality tessellation method for implicit surfaces in this paper.The approach can handle arbitrary implicit functions and dynamic implicit surfacesbased on skeletal primitives. We first samples the implicit surface uniformly usingparticle fission and floating, then reconstructs a triangular mesh from the samplepoints using ball pivoting algorithm (BPA). Finally, we subdivide the reconstructedsurface using a 1 to 4 subdivision scheme to obtain the high quality implicit surfacetessellation.Keywords: implicit surface, polygonization, particle system, ball pivoting algorithm,subdivision .1 IntroductionIn computer graphics, more and more attentions are paid on implicit surfaces since implicit models provide compact and intuitive mathematical representation for complex objects, supporting the operations such as blending, morphing, collision detection, set theory and so on. Implicit surfaces can be widely applied in medical imaging, biological models, computer aided design and computer animation. An implicit surface is represented as a 3D point set {}, where is an implicit function which defines a mapping from 3D points to scalar values for temperature and density, etc [1].0)(|3=∈x x F R R R →3:F In general, there are two ways to render an implicit surface: ray tracing and polygonization. Ray tracing can generate photorealistic images for implicit surfaces, but it is quite slow because of high-intensity intersection computation. It is much more recognized by interactive applications to render implicit surfaces through polygonization.Numerous techniques exist for producing a set of triangles approximating an implicit surface and rendering it using graphics hardware. They may be classified into two main categories, spatial partitioning and continuation methods [2, 3, 4]. Spatial partitioning methods consider the space surrounding the surface as a collection of small cells (either cubes or tetrahedral). They divide space into uniform cells and search for only those cells that intersect the implicit surface, and generate polygons approximating the surface [5, 6, 7]. This approach is called the marching cubes algorithm. Disambiguation strategies have to be used to preserve topological consistency, especially in the case of cubic cells ([3, 8]). These exhaustive enumeration methods are computationally expensive and possibly miss parts or generate a poor approximation. Adaptive subdivision techniques based on curvature converge to the surface by recursively subdividing space into smaller sub-cells [9, 10]. The main difficulty here is that a conventional octree decomposition of space may generate cracks in the resulting triangulation. This problem is addressed properly in [11, 7, 12, 13] where a tetrahedral decomposition is used, but a more complex data structure is required. However, in these methods, bad shape triangles, for example, triangles with extreme sharp or obtuse angles, are always contained in the final triangulation because the intersection of the implicit surface and the cells are irregular. In addition, adaptive triangulation needs to devote considerable effort to join meshes lying in adjacent cells of different sizes. To deal with the mesh quality problem, a new class of algorithms was created called “Dual Methods” [14, 15, 16, 17]. There are also other methods that are specifically designed for algebraic surfaces [18] and variational implicit surfaces [4, 19, 20].Continuation methods do not rely on space decomposition. Those methods start from a seed element on the surface and rely on a mesh growing scheme to iteratively create a polygonal approximation of the surface or create a seed mesh that roughly approximates the implicit surface, and progressively adapt and deform it to the implicit surface. Hilton [21] is the first to develop a new approach to produce evenly distributed triangles by mesh growing technique: the marching triangles method, which is adapted and optimized by others ([22, 3, 23, 24]). This method also allows adapting the incremental mesh to the curvature, thus avoiding bad aspect ratio triangles. However, these polygonization algorithms were designed for static surfaces. Polygonizing a dynamic surface with them would require re-polygonization each time. Element driven techniques [25, 26, 27] are specifically designed for implicit surfaces created from skeletal elements. The shrink-wrap method (see the surveys in [3, 4]) is a global approach. Starting from a rough mesh, it progressively converges towards the surface according to curvature or a desired, fixed precision. The edge spinning technique and its adaptive extension are used in [28, 29]. However, as noted in [4], these methods also may generate cracks and bad triangles, and sometimes fail to handle implicit surfaces in the general case. An alternative technique consists of constraining a particle system to the implicit surface [30, 31, 32]. This method distributes particles uniformly or adaptively on the surface using attraction and repulsion forces, and can handle dynamic surfaces by adding or removing primitives in real time. However, it does not provide a triangular mesh. A Delaunay triangulation has been invoked as a post-processing step to create the corresponding polygonization ([33]). This step involves extra computations that slow down the overall process.In this paper, we propose a new method for high quality implicit surface triangulation. It can handle dynamic implicit surfaces and algebraic surfaces. Firstly, we sample the implicit surface so that the samples are evenly distributed on the surface using particle fission and floating. Secondly, we reconstruct a triangular mesh from the samples using ball pivoting algorithm [34]. Finally, we subdivide the reconstructed surface using 1 to 4 subdivision scheme [35] to obtain the high quality implicit surface tessellation. The triangulation method presented in this paper has the following advantages:1. It is suitable for algebraic surfaces and dynamic implicit surfaces.2. The triangles of the mesh are close to equilateral ones.3. The generated mesh can approximate the implicit surface by a user-specified sample resolution.4. It can get the LOD representation of an implicit surface automatically.The remainder of the paper is organized as follows: in the following section, our algorithm about triangulation of implicit surfaces is presented in detail. After that, the technique on dealing with arbitrary implicit surface is described followed by the technique about triangulation of dynamic implicit surface. We conclude the paper after giving out the experimental results.2 Triangulation of Implicit SurfacesIn this section, we describe the triangulating algorithm with three subsections. The first step is sampling on an implicit surface with Witkin's method [31]. After we obtain the sample points that are distributed uniformly on the implicit surface, we then triangulate them using ball pivoting algorithm [34] and get the initial triangulation of the implicit surface. In order to achieve high quality polygonal mesh, subdivision scheme is employed [35]. Figure 1 illustrates the triangulation process of an implicit surface.2.1 Sampling on implicit surfacesWitkin and Heckbert \cite{Witkin94} revolutionized implicit surface modeling by using a particle system to both display and control an implicit surface. Here, we adopt their method to sample points on implicit surfaces. An implicit surface is represented by a real function 0)(=x F , where is a point in space. For moving particles lying on the implicit surface, following equations hold:x n n i t F i ≤≤=1,0))((p (1)where denotes the trajectory of the i -th particle.)(t i p A particle constrained to the implicit surface of such that is called a floater. This constraint is enforced by setting its original velocity to a legal velocity by subtractingany illegal components normal to the implicit surfacei p F 0)(=i F p i P ~it p i i i i i i i i tF F F F F x x x x P P p ⋅+⋅−=φ~~ . (2)where is the derivative of scalar with respect to vector ,x F F x i F and denote and evaluated at .i F x F x F i p The constrained particle system displays the implicit surface with a collection of disks centered at the particles oriented according to the surface normal. These oriented disks provide a usable and highly responsive display of the underlying implicit surface.Figure 1: The triangulation process of an implicit surface. The topmost image showsparticles distributed on surface uniformly. The second image shows the reconstructedmesh using BPA. The remaining images, from the third to bottom, show the meshesafter one, two, three times subdivision respectively.Our goal is to obtain a good sampling so that particles are distributed as evenly as possible under a user-defined density.We start the sampling process from a few seed particles. These seed particles can be made to spread out to uniform density by local repulsion , relying on the finiteness of the surface to limit growth. The particles that with a very large radius of interaction will coming close to equilibrium in just a few iterations. Then we can fission each particle, global fission , imposing random displacements that are smaller than the interaction radius. At the same time, we scale the interaction radius to a smaller value. After that, we have anew starting point, locally irregular but with nearly uniform large-scale structure. A few iterations suffice to smooth out the small irregularities and reach a new equilibrium. The scaling and fissioning process is repeated until the target sampling density is reached. Simple repulsion with global fission can maintain a good distribution on a very slowly changing surface, but the particles do not redistribute quickly in response to rapid surface changes. Then we utilize a more adaptive repulsion scheme. To achieve uniform densities quickly, and maintain them as the surface moves or deforms, each particle has its own repulsion radius, and decides independently when it should fission or die. A particle's radius should grow when all of the forces on it are small and it should shrink when the forces on it are big. For a particle near equilibrium, birth and death occur when the density is too low or too high, respectively. In other words, we use an adaptive fission/death scheme. The details can be found in [31]. Figure 2 illustrates the adaptive repulsion and fission mechanism. The images, from first to last, show the sampling process.Figure 2: The adaptive repulsion and fission mechanism.2.2 Triangulation of Implicit SurfacesBy now we have obtained sample points together with their corresponding normals on the implicit surface. The following issue is to reconstruct a triangular mesh using these sampling points and normals. As already indicated, the acquired samples are uniform and alpha-shaped. Therefore, we employ the ball-pivoting algorithm (BPA) for surface reconstruction [34] in our implementation due to its high efficiency.2.2.1 Surface reconstruction algorithmUsing BPA, a triangular mesh can be reconstructed from a set of scattered points. Let M be the surface of a 3D geometry model, and S denote the set of sample points on M. Assume that S is dense enough so thata ball with radiusρcannot pass through surface M without touching any sample points. The BPA surface reconstruction procedure can be described as follows. First, three sample points are chosen to form a seed triangle and the ball is made to touch these three initial points. Then the ball is pivoted around an edge of the seed triangle to trap another point in S. The trapped point and the pivoting axis form a new triangle. The surface reconstruction procedure stops till all points in S are processed. Figure 3 illustrates in 2D the whole process.Figure 3: 2D illustration of the ball-pivoting algorithm2.2.2 Choice of ball radiusOne problem which may arise is that the rolling ball will not trap any sample point. As illustrated in Figure 4, this may happen if:z The ball radius is so small that the ball can pass through the surface without touching any sample points; orz The ball has reached boundary edges of an open surface.Figure 4: Two special cases when pivoting the ballThe later case can be easily handled by considering surface boundaries when pivoting the ball. It is the former case that should be handled deliberately since a casual ball radius would result in surface reconstruction failure. The ball radius should be chosen considering the distribution of sample points. If the ball were too small, it would “leak” through the surface. Otherwise, a too large ball would bring heavy computational load. Our solution is to set the ball radius as 1.8D, where D is the average distance betweenany two sample points.2.3 Reconstructed surface subdivisionTo acquire high quality triangulation of implicit surfaces quickly, we employ surface subdivision to enrich the BPA reconstructed surface. Indeed, using denser samples on the implicit surface would also result in more reliable triangulation. However, it would cost more time for the particle system to reach a balance state and to perform the subsequent BPA surface reconstruction, compared with subdividing the BPA reconstructed surface.As indicated in Figure 5, there are in general two ways to perform triangular subdivision: point-based subdivision and edge-based subdivision [35].Figure 5: Two triangular subdivision schemesWe choose the edge-based subdivision scheme since the resultant triangles share approximately the same shape as the original triangle, though it is more time expensive to perform edge-based subdivision than point-based subdivision.During the subdivision, the newly generated points would, most probably, not lie on the implicit surface. As a result, these points should be projected back onto the implicit surface. Let be such a new point ,its corresponding projection on the surface can be calculated through Newton-Raphson iteration [35]:0r 21)()()(k k k k k F F F r r r r r ∇∇−=+ (3)The iteration stops when ε<−+k k r r 1, where ε is user-defined threshold. Figure 6 show the iteration process in 2 dimensions. In this condition, the subdivision scheme is that a new vertex is added at the middle point of each edge that split the edge. In figure 5, and is two vertices on the curve, is the middle point of edge . In the projection, is projected on point that on the curve. After one time of subdivision and iteration,,can represent the curve more efficiently than .1c 2c 0r 21c c 0r c c c 12cc 21c ccFigure 6: The iteration process in 2 dimensions.3 Arbitrary implicit surfacesWitkin and Heckbert [31] used a prototype implementation of a particle-based implicit surface modeler. Their implementation was only supported small collections of a few primitives, including blobby spheres and cylinders. Hart [32] extend the primitives to any quadric surfaces. Here, we can deal with arbitrary smooth implicit surfaces.For a function . we need to calculate the following items to obtain the sample points using particle system:3,0)(R x x ∈=F zThe potential value of a particle at this time. E zThe gradient G of a particle. z The initial sample point .0S For an arbitrary implicit function, it is not possible that calculate its differential function, so we use numerical techniques to evaluate the derivatives. Then during the sampling process, we can compute every particle position if the function is given. Given a particle coordinate, we can get value through the function . In order to force the particles on the implicit surface exactly, the particles are not permitted to move in the gradient direction, and only moved in the surface tangential vector according to the repulsion force.The derivative of function is approximated by forward difference:E F F )()()(x e x x x F F F −+=δ, (4)where δis a small constant, and is the vector (1, 1, 1). Using numerical differentiation to compute a function's derivative is slower than using its differential function directly. However, the advantage of numerical differentiation is that it can be applied for any implicit function. So we can get the gradient of a particle using Eq.(4).e G The first sample of the implicit surface is computed independently and then is split to generate other particles. We compute as following. Firstly, we can find two points, one is in internal of the surface, another is out of the surface. Then the intersect point between the line of two points and the implicit surface is computed by dichotomy as the initial point.. It is shown in figure 7.0S 0SSurfaceFigure 7: Computation of the initial point.4Dynamic implicit surfacesDynamic implicit surfaces can be performed in the particle system using a local adaptive repulsion algorithm [31], in which the repulsion radius, particle birth and death are regulated based on local density. This method is fast enough to maintain good sampling even there are rapid and extreme surface deformations. The dynamic mesh that connected the particles into a triangular mesh is also performed quickly using BPA [34].In our implementation, the dynamic implicit surface can be incrementally designed by adding or removing primitives, or by changing some of their parameters.Figure 8 illustrates the construction of a shape composed of blobby spheres and cylinders. It is a dynamic process by adding primitives interactively.5Experimental Results and AnalysisThe proposed method has been implemented under Windows XP using Microsoft Visual C++ on a PC with standard configuration (Inter PIV 1.7GHz CPU + 256MB RAM). To facilitate implicit surface generation, real-time editing, surface evolution and lighting, we have developed a prototype system. Experimental results show that our method can perform high quality implicit surface triangulation.l we use the ratio of the inner circle radius r to the longest edge length of a triangle to measure a triangle's regularity [36]. Since the regularity of an equilateral triangle should be 1, we normalize the ratio so that the maximum ratio equals to 1. Therefore, the regularity of a triangle can be described by the following formula:2Re∗3=(5)rTriangle/lgularityOur experimental results show the mean regularity of the meshes polygonized by Bloothmenthal's approach is about 0.51. The statistics of our approach are shown in table 1. From the table, we find that themean regularity of our approach is about 0.76, which is better than Bloomenthal's polygonization algorithm.Figure 8: The construction of a shape composed of blobby spheres. Particle system(left) and its corresponding triangular mesh (right). Table 1: The statistics of our approach.Time (s)Model Figure RegularityBPA SubdivisionTooth 9 0.756 1.972 0.080Genus-3 10 0.758 5.518 0.190Surface-A 11 0.762 6.199 0.250Figure 9 ― Figure 12 are some example implicit surfaces produced by our method. If an implicit surface is infinite, we use six planes to limit its growth. The six planes are ( are const values). In each figure, the top-left image shows 321,,M z M y M x ±=±=±=3,2,1M M Msamples on the implicit surface, the top-right shows the triangulated mesh using BPA, the bottom-left shows the mesh after subdivision, the bottom-right shows the shading image of the implicit surface.zFigure 9 is a tooth surface that is defined by the function . 2)(222444−++−++z y x z y x 0=zFigure 10 shows the genus-3 surface whose function is +−−−−212224))(()()(1(x x r y r x z r y x z . ,0)))(()(212212122212=−++−+−r y x x r y x r y 39.0,2.1,4,5.3,611=====x r r r r z y x zFigure 11 is a surface that is defined by equation and is cut by six planes . 04)1(423=−+−−z x y x 3,3,3±=±=±=z y x z Figure 12 is a tanglecube surface that is defined by equation.242424555z z y y x x −+−+−08.11=+6 ConclusionsIn order to obtain the high quality triangulation of implicit surfaces, a new method for tessellating dynamic implicit surfaces based on skeletons and other implicit surfaces defined by analytical functions is presented in this paper. The method combines particle system and ball-pivoting algorithm. Firstly, we use particle system to distribute sample points on implicit surfaces uniformly. Secondly, a triangular mesh is reconstructed using ball-pivoting algorithm. Finally, we use a 1 to 4 subdivision scheme to get a higher quality mesh. The triangles of the final mesh are close to equilateral ones. Experimental results show that implicit surfaces can be interactively displayed with high quality using our method. Multi-resolution representation of an implicit surface is automatically established through subdivision scheme.Figure 9: The tooth surface. Figure 10: The genus-3 surface.Figure 11: An algebraic surface. Figure 12: The tanglecube surfaceReferences[1] J. C. Hart. Ray tracing implicit surfaces. In Modeling, Visualizing and Animating Implicit Surfaces, pages13.1–13.15, 1993. SIGGRAPH'93 Course Notes No 25.[2] J. Bloomenthal, C. Bajaj, J. Blinn, B. Wyvill, and G. Wyvill, editors. Introduction to Implicit Surfaces. MorganKaufman, 1997.[3] S. Akkouche and E. Galin. Adaptive implicit surface polygonization using marching triangles. ComputerGraphic Forum, 20(2): 67–80, 2001.[4] B. Crespin. Dynamic triangulation of variational implicit surfaces using incremental delaunay tetrahedralization.In Proceedings of IEEE Volume Visualization 2002, pages 73–80, October 2002.[5] G. Wyvill, C. McPheeters, and B. Wyvill. Data structure for soft objects. The Visual Computer, 2(4):227–234,1986.[6] W. Lorensen and H. Cline. Marching cubes: A high resolution 3-d surface construction algorithm. ComputerGraphics, 21(4):153–169, 1987.[7] J. Bloomenthal. An implicit surface polygonizer. In P. Heckbert, editor, Graphics Gems IV, pages 324–349.Academic Press, New Youk, 1994.[8] T. Lewiner, H. Lopes, A. W. Vieira, and G. Tavares. Efficient implementation of marching cubes cases withtopological guarantees. Journal of Graphics Tools, 8(2):1–15, 2003.[9] J. Bloomenthal. Polygonization of implicit surfaces. Computer Aided Geometric Design, 5(4):341–355, 1988.[10] E. Galin and S. Akkouche. Incremental polygonization of implicit surfaces. Graphic Models and ImageProcessing, 62(1):19–39, 2000.[11] M. Hall and J. Warren. Adaptive polygonization of implicitly defined surfaces. IEEE Computer Graphics andApplications, 10(6):33–42, 1990.[12] G. M. Treece, R. W. Prager, and A. H. Gee. Regularised marching tetrahedra: improved iso-surface extraction.Computers and Graphics, 23(4):583–598, 1999.[13] N. Molino, R. Bridson, J. Teran, and R. Fedkiw. A crystalline, red green strategy for meshing highly deformableobjects with tetrahedra. In 12th Int. Meshing Roundtable, pages 103–114, Santa Fe, New Mexico, 2003.[14] S. F. F. Gibson. Using distance maps for accurate surface representation in sampled volumes. In IEEESymposium on Volume Visualization Proceeding, pages 23–30. ACM Press, 1998.[15] L. A. Francis. Dualing cubes. In Proceedings of the 37th annual Southeast regional conference (CD-ROM), page7. ACM Press, 1999.[16] T. Ju, F. Losasso, S. Schaefer, and J. Warren. Dual contouring of hermite data. In Proceedings of the 29thannual conference on Computer graphics and interactive techniques, pages 339–346. ACM Press, 2002.[17] G. M. Nielson. Dual marching cubes. In Proceedings of the IEEE Visualization 2004, pages 489–496. IEEEComputer Society, 2004.[18] L. Alberti, G. Comte, and B. Mourrain. Meshing implicit algebraic surfaces: the smooth case. Technical Reportno5405, INRIA Sophia-Antipolis, 2004.[19] H. Laga, R. Piperakis, H. Takahashi, and M. Nakajima. A radial basis function based approach for 3d objectmodeling and reconstruction. In Proceedings of IWAIT2003, pages 139–144, 2003.[20] A. Cuno, C. Esperanca, A. Oliveira, and P. R. Cavalcanti. Fast polygonization of variational implicit surfaces. InProceedings of the XVII Brazilian Symposium on Computer Graphics and Image Processing, pages 258–265, October 2004.[21] A. Hilton, A. J. Stoddart, J. Illingworth, and T. Windeatt. Marching triangles: range image fusion for complexobject modelling. In Internatioal Conference on Image Processing 1996, volume 2, pages 381–384, 1996.[22] E. Hartmann. A marching method for the triangulation of surfaces. The Visual Computer, 14(3):95–108, 1998.[23] T. Karkanis and J. Stewart. Curvature dependent triangulation of implicit surfaces. IEEE Computer Graphicsand Applications, 21(2):60–69, 2001.[24] B. R. de Araujo and J. A. P. Jorge. Curvature dependent polygonization of implicit surfaces. In Proceedings ofthe XVII Brazilian Symposium on Computer Graphics and Image Processing, pages 266–273, 2004.[25] B. Crespin, P. Guitton, and C. Schlick. Efficient and accurate tessellation of implicit sweeps. Technical report,1998.[26] M. Desbrun, N. Tsingos, and M.-P. Gascuel. Adaptive sampling of implicit surfaces for interactive modeling andanimation. Computer Graphics Forum, 15(5):319–325, 1996.[27] H.-C. Rodrian and H. Moock. Dynamic triangulation of animated skeleton-based implicit surfaces. InProceedings of Implicit Surfaces'96, pages 37–52, October 1996.[28] M. Cermak and V. Skala. Polygonization by the edge spinning. In Proceedings of ALGORITMY 2002Conference on Scientific Computing, pages 245–252, 2002.[29] M. Cermak and V. Skala. Adaptive edge spinning algorithm for polygonization of implicit surfaces. InProceedings of the Computer Graphics International 2004, pages 36–43, 2004.[30] R. Szeliski and D. Tonnesen. Surface modeling with oriented particle systems. Computer Graphics, 26(2): 185–194, 1992.[31] Andrew P. Witkin and Paul S. Heckbert. Using particles to sample and control implicit surfaces. ComputerGraphics, 28(2):269–277, 1994.[32] J. C. Hart, E. Bachta, W. Jarosz, and T. F. Proc. Using particles to sample and control more complex implicitsurfaces. In Shape Modeling International 2002, pages 129–136, May 2002.[33] L. H. de Figueiredo, J. de M. Gomes, D. Terzopoulos, and L. Velho. Physically-based methods forpolygonization of implicit surfaces. In Proceedings of Graphics Interface'92, pages 250–257, May 1992.[34] F. Bernardini, J. Mittleman, and H. Rushmeier. The ball pivoting algorithm for surface reconstruction. IEEETransactions on Visualization and Computer Graphics, 5(4):349–359, 1999.[35] X.G. Jin, H.Q. Sun, and Q.S. Peng. Subdivision interpolating implicit surfaces. Computers Graphics, 27(5):763–772, 2003.[36] A. Khodakovsky, N. Litke, and P. Schr¨oder. Globally smooth parameterizations with low distortion. ACMTransactions on Graphics, 22(3):350–357, 2003.。
(完整)人力资源管理专业词汇中英文对照
人力资源管理专业词汇(中英文对照)人力资源管理:(Human Resource Management ,HRM)人力资源经理:( human resource manager)高级管理人员:(executive)职业:(profession)道德标准:(ethics)操作工:(operative employees)专家:(specialist)人力资源认证协会:(the Human Resource Certification Institute,HRCI)外部环境:(external environment)内部环境:(internal environment)政策:(policy)企业文化:(corporate culture)目标/使命:(mission)股东:(shareholders/stakeholder)非正式组织:(informal organization)跨国公司:(multinational corporation,MNC)管理多样性:(managing diversity)二、工作:(job)职位:(posting)工作分析:(job analysis)工作说明:(job description)工作规范:(job specification)工作分析计划表:(job analysis schedule,JAS)职位分析问卷调查法:(Management Position Description Questionnaire,MPDQ) 行政秘书:(executive secretary)地区服务经理助理:(assistant district service manager)三、人力资源计划:(Human Resource Planning,HRP)战略规划:(strategic planning)长期趋势:(long term trend)要求预测:(requirement forecast)供给预测:(availability forecast)管理人力储备:(management inventory)裁减:(downsizing)人力资源信息系统:(Human Resource Information System,HRIS)四、招聘:(recruitment)员工申请表:(employee requisition)招聘方法:(recruitment methods)内部提升:(Promotion From Within ,PFW)工作公告:(job posting)广告:(advertising)职业介绍所:(employment agency)特殊事件:(special events)实习:(internship)五、选择:(selection)选择率:(selection rate)简历:(resume)标准化:(standardization)有效性:(validity)客观性:(objectivity)规范:(norm)录用分数线:(cutoff SCORe)准确度:(aiming)业务知识测试:(job knowledge tests)求职面试:(employment interview)非结构化面试:(unstructured interview)结构化面试:(structured interview)小组面试:(group interview)职业兴趣测试:(vocational interest tests)会议型面试:(board interview)六、组织变化与人力资源开发人力资源开发:(Human Resource Development,HRD) 培训:(training)开发:(development)定位:(orientation)训练:(coaching)辅导:(mentoring)经营管理策略:(business games)案例研究:(case study)会议方法:(conference method)角色扮演:(role playing)工作轮换:(job rotating)在职培训:(on-the-job training ,OJT)媒介:(media)七、企业文化与组织发展企业文化:(corporate culture)组织发展:(organization development,OD)调查反馈:(survey feedback)质量圈:(quality circles)目标管理:(management by objective,MBO)全面质量管理:(Total Quality Management,TQM)团队建设:(team building)八、职业计划与发展职业:(career)职业计划:(career planning)职业道路:(career path)职业发展:(career development)自我评价:(self-assessment)职业动机:(career anchors)九、绩效评价绩效评价:(Performance Appraisal,PA)小组评价:(group appraisal)业绩评定表:(rating scales method)关键事件法:(critical incident method)排列法:(ranking method)平行比较法:(paired comparison)硬性分布法:(forced distribution method)晕轮效应:(halo effect)宽松:(leniency)严格:(strictness)360反馈:(360-degree feedback)叙述法:(essay method)集中趋势:(central tendency)十、报酬与福利报酬:(compensation)直接经济报酬:(direct financial compensation)间接经济报酬:(indirect financial compensation)非经济报酬:(no financial compensation)公平:(equity)外部公平:(external equity)内部公平:(internal equity)员工公平:(employee equity)小组公平:(team equity)工资水平领先者:(pay leaders)现行工资率:(going rate)工资水平居后者:(pay followers)劳动力市场:(labor market)工作评价:(job evaluation)排列法:(ranking method)分类法:(classification method)因素比较法:(factor comparison method)评分法:(point method)海氏指示图表个人能力分析法:(Hay Guide Chart-profile Method) 工作定价:(job pricing)工资等级:(pay grade)工资曲线:(wage curve)工资幅度:(pay range)十一、福利和其它报酬问题福利(间接经济补偿)(welfare)额外福利(fringe benefit)员工股权计划:(employee stock ownership plan,ESOP)值班津贴:(shift differential)奖金:(incentive compensation)分红制:(profit sharing)十二、安全与健康的工作环境安全:(safety)健康:(health)频率:(frequency rate)紧张:(stress)角色冲突:(role conflict)催眠法:(hypnosis)酗酒:(alcoholism)十三、员工和劳动关系工会:(union)地方工会:(local union)行业工会:(craft union)产业工会:(industrial union)全国工会:(national union)谈判组:(bargaining union)劳资谈判:(collective bargaining)仲裁:(arbitration)罢工:(strike)内部员工关系:(internal employee relations)纪律:(discipline)纪律处分:(disciplinary action)申诉:(grievance)降职:(demotion)调动:(transfer)晋升:(promotion)十四、人力资源管理常用短语英汉对照表Action learning:行动学习Alternation ranking method:交替排序法Annual bonus:年终分红Application forms:工作申请表Appraisal interview:评价面试Aptitudes:资质Arbitration:仲裁Attendance incentive plan 参与式激励计划Authority 职权Behavior modeling:行为模拟Behaviorally anchored rating scale (bars):行为锚定等级评价法Benchmark job:基准职位Benefits:福利Bias:个人偏见Boycott:联合抵制Bumping/layoff procedures:工作替换/临时解雇程序Burnout:耗竭Candidate-order error:候选人次序错误Capital accumulation program:资本积累方案Career anchors:职业锚Career cycle:职业周期Career planning and development 职业规划与职业发展Case study method:案例研究方法Central tendency:居中趋势Citations:传讯Civil Rights Act:民权法Classes:类Classification (or grading) method 归类(或分级)法Collective bargaining:集体谈判Comparable worth:可比价值Compensable factor:报酬因素Computerized forecast:计算机化预测Content validity:内容效度Criterion validity:效标效度Critical incident method:关键事件法Davis-Bacon Act (DBA):戴维斯―佩根法案Day-to-day-collective bargaining:日常集体谈判Decline stage:下降阶段Deferred profit-sharing plan:延期利润分享计划Defined benefit:固定福利Defined contribution:固定缴款Department of Labor job analysis 劳工部工作分析法Discipline:纪律Dismissal:解雇;开除Downsizing:精简十五、其他考评 assessment试用期 probationary period考核 appraisal绩效改进考核 performance improvement appraisal期终评议 annual appraisal反馈 feedback沟通 communication干部部(处) HR subdivision综合评定 overall appraisal转正 probation passed定级 grading辞退 dismissal价值导向 value-orientation劳动合同 labour contract任职状况 competency劳动态度 working attitude工作绩效 performance考察期 probation月度考核 monthly appraisal思想导师 mentor关键事件 critical events关键行为 critical behavior责任结果 responsibility and result orientation业务变革 business reform双向沟通 two-way communication目标承诺 objectives commitment绩效承诺 performance commitment绩效评价者 first-level appraiser考核责任者 second-level appraiser考核复核者 final appraiser功能部门 functional dept.个人绩效承诺 personal business commitment绩效辅导 coaching绩效考核 performance appraisal多主管、多角色、矩阵式 "multi-managers, multi-roles, matrix" 季度绩效考核 quarterly performance appraisal年度综合评定 annual overall appraisal跨部门团队 cross-functional team结果目标承诺 objective and result commitment执行措施承诺 executive commitment团队合作承诺 team commitment在职 on job自评 self-appraisal职业等 professional grade普通等 normal grade基础等 basic grade预备等 preliminary grade述职 performance report业务部门 line department支持部门 support department核心竞争力 core competency年度财务报告 annual financial report业务规划 business planning中期财务报告 mid-term financial report预算 budget愿景与战略 vision & strategy客户满意度 customer satisfaction挑战目标 challenging objectives宏观管理 macro-management预测 forecast/predict社会医疗保险 social medical insurance商业医疗保险 commercial medical insurance缴费与门诊补助 medical expenses and outpatient subsidies住院治疗与预防保健基金 fund for hospitalization and preventive health 华为最高补助线 Huawei maximum subsidies line社保最高支付线 maximum line of social security payment社保起付线 minimum line of social security payment高额医药费补助 large amount of subsidies on medical fees基本和非基本医药费 basic and other medical fees(非)定点医疗机构 (non-) designated medical organization报销时限 reimbursement time limit钟点制员工 temporary employee合同制员工 contract employee社会保险 social insurance商业保险 commercial insurance附加补助 additional subsidy保额标准 compensation standard工龄补助 subsidy on service length招聘调配部 recruitment and allocation department考核薪酬处 appraisal and salary section任职资格管理部 competency and qualification management department 人事处 personnel department任职资格 competency and qualification任职资格管理 competency and qualification management认证 competency and qualification assessment任职资格标准 competency and qualification standard级别 level等级 grade资格类别 types of qualification技能 skill素质 competency必备知识 knowledge招聘 recruitment考核 assessment择优录用 enroll the excellent people有限授权 limited empower保密、回避 "Confidential, alienation"人才库 human resources bank资格审查 HR interview专业面试 technical/professional interview综合面试 overall interview审批 approve面试资格人 qualified interviewer招聘质量控制小组 recruitment quality control team 形象 image谈吐 speech求职动机 motivation素质特征 competencies工作适应性 job adaptation录用人员与拟聘岗位要求的吻合度 suitability招聘成本 recruitment cost招聘周期 recruitment cycle用人需求 requisition职位说明书 job description人力规划/用人计划 manpower planning效果评估 recruitment evaluation竞争对手 competitor平面广告 advertisement网络广告 network advertisement猎头、猎头公司 headhunter人才交流会 job fair技术交流会 technical conferences展览会 exhibition(专场)招聘会 career day推荐 recommend内部推荐 internal referral投入产出比 Input and output ratio发布渠道 publication channel急缺人才 talent in urgent need稀缺人才 scarce talent特殊人才 talent with special skills现场招聘 on-site recruiting考核流程 assessment procedure组长负责制 team leader responsible system出差报告 business trip report应聘材料 documentation筛选 scanning电话面试 telephone interview复试 second time interview权签人 final approval实习人员 intern聘书 offer letter劳动关系 labor relation劳动合同 labor contract预支工资 prepaid salary甄选 selection素质测评 competency test试题库 interview questions案例 case内部劳动力市场 internal human resources pool人力资源配置 human resources deployment职类 position type职位 position组织效益 organizational effectiveness人均效率 average personal efficiency测评指标 assessment indicator监控体系 monitoring system组织结构 organizational structure组织结构调整 organizational structure adjustment工作移交 hand over离任审计 resign audit上岗 report to duty岗位适应性培训 post adjustability training任命 nomination辞职 resignation辞退 dismissal劝退 special condition dismissal自动离职 auto-resignation除名 dismissal业务量(工作量) business volume转岗 internal transfer岗位轮换 job rotation周边锻炼 lateral practice轮训 rotation training借调 temporarily transfer富余人员 redundant staff单纯的课本内容,并不能满足学生的需要,通过补充,达到内容的完善教育之通病是教用脑的人不用手,不教用手的人用脑,所以一无所能。
C-B样条曲线的分割和拼接
C-B样条曲线的分割和拼接宋丽平【摘要】曲线曲面造型中设计复杂的自由曲线时,单段曲线已不能满足外形设计的要求,因而在实际造型中,经常采用曲线的分割和拼接.C-B样条理论是曲线曲面造型的一项重要内容.在对C-B样条基函数及曲线端点特性分析的基础上,提出了C-B样条曲线的任意分割算法,并对C-B样条曲线间进行了G1拼接.给出了 B样条曲线和C-B样条曲线G1和G2光滑拼接的几何条件.采用分割和拼接技术会增加C-B样条曲线的灵活性,所得结论具有明确的几何意义,并可以进一步推广到C-B样条曲面造型中.%The single curve already can' t satisfy the requirements of shape design when designing complex free curve in curve/surface modeling. Thus in the actual modeling, C-B-spline theory is an important content of curve/surface modeling. Propose the algorithm of arbitrarily divided when analysing C-B-spline basis functions,then splicing between two C-B-spline. In addition,give geometry conditions about B-spline curves and C-B-spline curves. The results are benefit for the shape modification, and they can also be extended to surface modeling with C-B-spline.【期刊名称】《计算机技术与发展》【年(卷),期】2011(021)009【总页数】4页(P114-117)【关键词】C-B样条;均匀B样条;分割;拼接;曲率连续【作者】宋丽平【作者单位】西安工业大学北方信息工程学院,陕西西安710025【正文语种】中文【中图分类】TP391.410 引言Bezier方法[1],是一种由控制多边形定义曲线的方法,其将函数逼近同几何表示结合起来,使得设计师在计算机上运用起来得心应手。
3d美术英语词汇
3d美术英语词汇The realm of 3D art encompasses a vast and intricate vocabulary, each term serving as a building block in the creation of captivating digital worlds. As the field of 3D art continues to evolve, mastering this lexicon becomes paramount for both aspiring and seasoned artists alike. In this essay, we will delve into the key terminologies that shape the language of 3D art, exploring their significance and applications within the creative process.At the foundation of 3D art lies the concept of modeling, the process of creating three-dimensional digital representations of objects, characters, or environments. The primary building blocks of modeling are vertices, points in 3D space that define the shape of a mesh. These vertices are connected by edges, forming the wireframe structure that outlines the form. Faces, the polygonal surfaces between these edges, give the model its solid appearance and texture.The manipulation of these vertices, edges, and faces is the domain of mesh editing, where artists sculpt and refine the digital form.Techniques such as extrusion, which extends faces to create new volume, and subdivision, which increases the resolution of a mesh, allow for the intricate shaping of complex shapes. Smoothing operations, like subdivision surface modeling, create organic, flowing forms, while Boolean operations, such as union and difference, enable the combination and subtraction of shapes.Closely tied to the modeling process is the concept of UV mapping, the process of unwrapping a 3D model's surface onto a flat, two-dimensional texture. This mapping allows artists to apply detailed textures and patterns to the model, bringing it to life with color, depth, and visual interest. The UV coordinates, which correspond to specific points on the 3D mesh, serve as a roadmap for the texture artists to follow.Once the model is created and textured, the next step is to imbue it with movement and animation. This is where the principles of rigging and skinning come into play. Rigging involves the creation of a skeletal system within the 3D model, consisting of joints and bones that mimic the underlying structure of the subject. Skinning, on the other hand, is the process of binding the mesh to the rig, allowing the model to deform and move naturally as the rig is animated.The art of animation itself encompasses a wide range of techniques and terminologies. Key frames, the specific points in time where theanimator defines the position and movement of the model, form the foundation of animation. In-betweening, the process of generating the intermediate frames between key frames, creates the illusion of smooth, continuous motion. Pose-to-pose animation, where the artist focuses on defining key poses and allowing the software to generate the in-betweens, contrasts with straight-ahead animation, where the movement is created frame by frame.Lighting, a crucial aspect of 3D art, also has its own specialized vocabulary. Ambient light, the overall illumination of a scene, sets the mood and atmosphere, while directional lights, such as the sun, cast shadows and create depth. Spot lights and point lights, with their focused beams and radial falloff, allow artists to highlight specific areas and create dramatic lighting effects. The concept of light mapping, the baking of lighting information into a texture, enables efficient and realistic lighting in real-time 3D applications.Closely related to lighting is the realm of materials and shaders, which define the surface properties of 3D objects. Diffuse, the base color of a material, interacts with light to create the object's primary appearance. Specular highlights, the bright reflections on shiny surfaces, add depth and realism. Roughness and glossiness determine the smoothness or grittiness of a material, while normal maps and displacement maps add intricate surface details.The final stage of the 3D art process is rendering, the act of generating the final image or animation from the 3D scene. Rendering engines, such as Unreal Engine and Unity, utilize various algorithms and techniques to translate the digital scene into a visually stunning output. Terms like ray tracing, which simulates the behavior of light, and global illumination, which accounts for the indirect lighting in a scene, are essential to understanding the rendering process.Beyond the technical aspects of 3D art, the industry also has its own set of specialized roles and workflows. Concept artists, who create the initial visual ideas and designs, work in tandem with 3D modelers, who bring those concepts to life. Texture artists, responsible for creating the detailed surface patterns, collaborate with lighting artists, who fine-tune the illumination of the scene. Riggers and animators work together to bring characters and objects to life, while technical artists bridge the gap between the creative and the technical, ensuring the seamless integration of all the elements.In conclusion, the vocabulary of 3D art is a rich and multifaceted language, encompassing a wide range of terms and concepts that are essential to the creation of captivating digital worlds. From the fundamental building blocks of modeling to the advanced techniques of lighting and rendering, each term serves as a tool in the artist's arsenal, enabling them to bring their visions to life withprecision and artistry. As the field of 3D art continues to evolve, mastering this lexicon becomes increasingly important, allowing artists to communicate effectively, collaborate seamlessly, and push the boundaries of what is possible in the digital realm.。
opencascade 标尺
opencascade 标尺English Answer:Introduction.OpenCascade Technology (OCCT) is an open-source software development platform for 3D modeling, geometric analysis, and visualization. It provides a comprehensive set of tools and libraries for creating and manipulating geometric models, including curves, surfaces, and solids. OCCT is widely used in various industries, such as automotive, aerospace, and manufacturing, for applications such as computer-aided design (CAD), computer-aided manufacturing (CAM), and finite element analysis (FEA).Key Features.Comprehensive Geometric Modeling Kernel: OCCT provides a highly robust and efficient geometric modeling kernelthat supports a wide range of geometric operations,including Boolean operations, intersection, and offsetting.Advanced Surface Modeling: OCCT offers advanced surface modeling capabilities, including B-spline surfaces, NURBS surfaces, and subdivision surfaces. Thesecapabilities enable the creation of complex and free-form shapes.Powerful Visualization Tools: OCCT includes powerful visualization tools for displaying and manipulating 3D models. These tools support various rendering modes, including wireframe, shaded, and textured rendering.Extensibility and Customization: OCCT is highly extensible and customizable, allowing developers to add new features and functionalities to meet specific application requirements.Cross-Platform Support: OCCT is available for multiple platforms, including Windows, Linux, and macOS, ensuring wide compatibility across different operating systems.Applications.OCCT is used in various applications, including:CAD/CAM Systems: OCCT provides the geometric modeling foundation for many CAD/CAM systems, allowing users to create, modify, and analyze 3D models.CAE/FEA Software: OCCT is used in CAE/FEA software to create and mesh geometric models for finite element analysis.3D Printing: OCCT is used in 3D printing applications to generate and prepare 3D models for printing.Scientific Visualization: OCCT is used in scientific visualization applications to create 3D visualizations of scientific data.Benefits.Open Source and Free: OCCT is an open-source software,which means it is freely available for download and use. This eliminates licensing costs and allows for wider adoption.High Quality and Reliability: OCCT has been developed and maintained by a team of experienced software engineers, ensuring high quality and reliability.Extensive Documentation and Support: OCCT provides extensive documentation and support resources, including user manuals, tutorials, and online forums.Active Community: OCCT has a large and active community of users and developers, providing support and resources for users.Conclusion.OpenCascade Technology (OCCT) is a powerful and versatile open-source software platform for 3D modeling, geometric analysis, and visualization. It offers a comprehensive set of tools and libraries, enabling thecreation and manipulation of complex geometric models. OCCT is widely used in various industries and applications, providing benefits such as open source, high quality, and extensive support.Chinese Answer:OpenCascade 技术(OCCT)。
曲面造型.
曲面造型(Surface Modeling)曲面造型(Surface Modeling)是计算机辅助几何设计(Computer Aided Geometric Design,CAGD)和计算机图形学(Computer Graphics)的一项重要内容,主要研究在计算机图象系统的环境下对曲面的表示、设计、显示和分析。
它起源于汽车、飞机、船舶、叶轮等的外形放样工艺,由Coons、Bezier等大师于二十世纪六十年代奠定其理论基础。
如今经过三十多年的发展,曲面造型现在已形成了以有理B样条曲面(Rational B-spline S urface)参数化特征设计和隐式代数曲面(Implicit Algebraic Surface)表示这两类方法为主体,以插值(I nterpolation)、拟合(Fitting)、逼近(Approximation)这三种手段为骨架的几何理论体系。
1. 对曲面造型的简要回顾形状信息的核心问题是计算机表示,即要解决既适合计算机处理,且有效地满足形状表示与几何设计要求,又便于形状信息传递和产品数据交换的形状描述的数学方法。
1963年美国波音飞机公司的Ferguson首先提出将曲线曲面表示为参数的矢函数方法,并引入参数三次曲线。
从此曲线曲面的参数化形式成为形状数学描述的标准形式。
1964年美国麻省理工学院的Coons发表一种具有一般性的曲面描述方法,给定围成封闭曲线的四条边界就可定义一块曲面。
但这种方法存在形状控制与连接问题。
1971年法国雷诺汽车公司的Bezier提出一种由控制多边形设计曲线的新方法。
这种方法不仅简单易用,而且漂亮地解决了整体形状控制问题,把曲线曲面的设计向前推进了一大步,为曲面造型的进一步发展奠定了坚实的基础。
但Bezier方法仍存在连接问题和局部修改问题。
到1972年,de-Boor总结、给出了关于B样条的一套标准算法,1974年Gordon和Riesenfeld又把B样条理论应用于形状描述,最终提出了B样条方法。
Geometric Modeling
Geometric ModelingGeometric modeling is a crucial aspect of computer graphics and design,playing a fundamental role in creating virtual representations of physical objects and environments. It involves the mathematical representation of shapes, surfaces, and volumes, allowing for the visualization, analysis, and manipulation of complex structures. From architectural design and industrial engineering to animation and video game development, geometric modeling is widely used across variousindustries and applications. One of the primary challenges in geometric modelingis achieving a balance between accuracy and efficiency. On one hand, the models need to be precise and faithful to the real-world objects they represent. On the other hand, the computational cost of processing and rendering these models should be manageable, especially in real-time applications such as interactivesimulations and virtual reality environments. This trade-off often requirescareful consideration of the level of detail, the choice of representation (e.g., polygonal, parametric, or procedural), and the optimization of algorithms for geometric operations. Another key issue in geometric modeling is the handling of geometric complexity. Many real-world objects have intricate shapes and intricate structures that can be challenging to capture and manipulate in a digital environment. This complexity can arise from organic forms in nature, irregular patterns in architecture, or detailed surface textures in industrial design. Addressing this challenge involves the development of advanced modeling techniques, such as subdivision surfaces, non-uniform rational B-splines (NURBS), and level-of-detail (LOD) representations, as well as the use of specialized tools for sculpting, texturing, and displacement mapping. Furthermore, geometric modeling often intersects with other disciplines, such as computer-aided design (CAD), computational geometry, and physical simulation. This interdisciplinary nature introduces additional considerations, such as the compatibility of geometric data across different software platforms, the integration of geometric constraints and parametric modeling, and the incorporation of physical properties and behaviorsinto the models. These interactions highlight the importance of interoperability, standardization, and collaboration among professionals working in related fields. From a practical standpoint, the evolution of geometric modeling has been drivenby advancements in hardware and software technologies. The increasingcomputational power of modern computers has enabled the handling of larger andmore detailed geometric datasets, while the development of specialized graphics processing units (GPUs) has accelerated the rendering and visualization of complex3D models. Similarly, the availability of sophisticated modeling software, such as Autodesk Maya, Blender, and Rhinoceros, has empowered designers and artists to explore new creative possibilities and push the boundaries of geometric expression. In conclusion, geometric modeling encompasses a broad range of challenges and opportunities in the realm of computer graphics and design. It requires a delicate balance between accuracy and efficiency, the ability to handle geometric complexity, and a deep understanding of interdisciplinary connections. Astechnology continues to advance, the future of geometric modeling holds promisefor further innovation and creativity, shaping the way we perceive and interactwith virtual representations of the world around us.。
3dmax英文翻译(最全的)
编辑器菜单翻译:SELECTION MODIFIERS 选择修改器MESH SELECT 网格选择POL Y SELECT 多边形选择PATCH SELECT 面片选择SPLINE SELECT 样条线选择FFD SELECT FFD选择SELECT BY CHANNEL 按通道选择SURFACE SELECT(NSURF SEL)NURBS 曲面选择PATCH/SPLINE EDITING 面片/样条线编辑EDIT PA TCH 编辑面片EDIT SPLINE 编辑样条线CROSS SECTION 横截面SURFACE 曲面DELETE PATCH 删除面片DELETE SPLINE 删除样条线LATHE 车削旋转NORMALIZE SPLINE 规格化样条线FILLET/CHAMFER 圆角/切角TRIM/EXTEND 修剪/延伸RENDERABLE SPLINE 可渲染样条线SWEEP 扫描MESH EDITING 网格编辑DELETE MESH 删除网格EDIT MESH 编辑网格EDIT POL Y 编辑多边形EXTRUDE 挤出FACE EXTRUDE 面挤出NORMAL 法线SMOOTH 平滑BEVEL 倒角、斜切BEVEL PROFILE 倒角剖面TESSELLATE 细化STL CHECK STL检查CAP HOLES 补洞VERTEXPAINT 顶点绘制OPTIMIZE 优化MULTIRES 多分辨率VERTEX WELD 顶点焊接SYMMETRY 对称EDIT NORMALS 编辑法线EDITABLE POL Y 可编辑多边形EDIT GEOMETRY 编辑几何体SUBDIVISION SURFACE 细分曲面SUBDIVISION DISPLACEMENT 细分置换PAINT DEFORMATION 绘制变形CONVERSION 转化TURN TO PATCH 转换为面片TURN TO MESH 转换为网格ANIMATION MODIFIERS 动画EDIT ENVELOPE 编辑封套WEIGHT PROPERTIES 权重属性MIRROR PARAMETERS 镜像参数DISPLAY 显示ADV ANCED PARAMETERS 高级参数GIZMO 变形器MORPHER 变形器CHANNEL COLOR LEGEND 通道颜色图例GLOBAL PARAMETERS 全局参数CHANNEL LIST 通道列表CHANNEL PARAMETERS 通道参数ADV ANCED PARAMETERS 高级参数FLEX 柔体PARAMETERS 参数SIMPLE SOFT BODIES 简章软体WEIGHTS AND PAINTING 权重和绘制FORCES AND DEFLECTORS 力和导向器ADV ANCED PARAMETERS 高级参数ADV ANCED SPRINGS 高级弹力线MELT 融化LINKED XFORM 链接变换PATCH DEFORM 面片变形PATH DEFORM 路径变形SURF DEFORM 曲面变形PATCH DEFORM(WSM)面片变形(WSM)PATH DEFORM(WSM)路径变形(WSM)SURF DEFORM(WSM)曲面变形(WSM)SKIN MORPH 蒙皮变形SKIN WRAP 蒙皮包裹SKIN WRAP PATCH 蒙皮包裹面片SPLINE IK CONTROL 样条线IK控制ATTRIBUTE HOLDER 属性承载器UV COORDINA TES MODIFIERS UV坐标修改器UVW MAP UVW贴图UNWRAP UVW 展开UVWUVW XFORM UVW变换MAPSCALER(WSM)贴图缩放器(WSM)MAPSCALER 贴图缩放器(OSM)CAMERA MAP 摄影机贴图CAMERA MAP(WSM)摄影机贴图(WSM)SURFACE MAPPER(WSM)曲面贴图(WSM)PROJECTION 投影UVW MAPPING ADD UVW贴图添加UVW MAPPING CLEAR UVW贴图清除POINT CACHE 点缓存POINT CACHE(WSM)点缓存(WSM)SUBDIVISION SURFACES 细分曲面TURBOSMOOTH 涡轮平滑MESHSMOOTH 网格平滑HSDS MODIFIER HSDS修改器FREE FORM DEFORMA TIONS 自由形式变形FFD MODIFIERS FFD修改FFD BOX/CYLINDER FFD长方形/圆柱体PARAMETRIC MODIFIERS 参数化修改器BEND 弯曲TAPER 锥化TWIST 扭曲NOISE 噪波STRETCH 拉伸、伸展SQUEEZE 挤压PUSH 推力RELAX 松弛RIPPLE 涟漪WA VE 波浪SKEW 倾斜ALICE 切片SPHERIFY 球形化AFFECT REGION 影响区域LATTICE 晶格MIRROR 镜像DISPLACE 置换XFORM 变换SUBSTITUTE 替换PRESERVE 保留SHELL 壳SURFACE 曲面MATERIAL 材质MATERIAL BY ELEMENT 按元素分配材质DISP APPROX 置换近似DISPLACE MESH(WSM)置换网格(WSM)DISPLACE NURBS(WSM)置换网格(WSM)RADIOSITY MODIFIERS 沟通传递修改器SUBDIVIDE(WSM)细分(WSM)SUBDIVIDE 细分材质编辑器:Reglection(反射)Basic Parameters(基本参数) Refraction(折射).Ambient(环境反射) 3D Procedural Maps(三维贴图) .Diffuse(漫反射) Face-mapped(面贴图)Extended Parameters(扩展参数)Maps(贴图).Bitmap(位图).Checker(棋盘格) 复合材质.Gradient(渐变) Double Sided(双面).Adobe Photoshop Plug-In Filter(PS滤镜)Blend(混合).Adove Premiere Video Filter(PM滤镜) Matte/Shoadow() .Cellular(细胞) Multi/Sub-object(多重子物体).Dent(凹痕) Raytrace(光线追踪).Noise(干扰) Top/Bottom(项底).Splat(油彩).Matrble(大理石).Wood(木纹).Water(水) Time Configuration(时间帧速率).Falloff(衰减) Frame Rate(帧速率).Flat Mirror(镜面反射) NTSC(NTSC制式).Mask(罩框) Film(胶片速度).Mix(混合) PAL(PAL制式).Output(输出) Custom(自定义).Planet(行星).Raytrace(光线跟踪).Reglect/Refrace(反射/折射).Smoke(烟雾) Create(创建).Speckle(斑纹) Helpers(帮助物体).Stucco(泥灰) Dummy(虚拟体).Vertex Color(项点颜色) Forward Kinematics(正向运动) .Composite(合成贴图) Inverse Kinematics(反向运动).Particle age(粒子寿命).Patticle Mblur(粒子模糊)参数区卷展栏:Shader Basic Parameters(着色基本参数区).Blinn(宾氏).Anisotropic(各向异性).Metal(金属).Multi-layer(多层式).Phong(方氏) 塑性.Oren-Nayar-Blinn(表面粗糙的对象).Strauss(具有简单的光影分界线).Wire(线架结构显示模式).2-Sided(双面材质显示).Face Map(将材质赋予对象所有的面).Faceted(将材质以面的形式赋予对象)Blinn Basic Patameters(宾氏基本参数区).Diffuse(固有色).Ambient(阴影色).Self-Illumination(自发光).Opacity(不透明度).Specular Highlights(高光曲线区)..Specular Level(高光级别)..Glossiness(光泽度)..Soften(柔和度)Extended Parameters(扩展参数区).Falloff(衰减).Filer(过滤法).Subtractive(删减法).Additive(递增法).Index of Refraction(折射率).Wire(线架材质).Reflection Dimming(反射暗淡)SuperSampling(超级样本)Maps(贴图区).Ambient Color(阴影色贴图).Diffuse Color(固有色贴图).Specular Color(高光色贴图).Glossiness(光泽度贴图).Self-Illmination(自发光贴图).Opacity(不透明贴图).Filter Color(过滤色贴图).Bump(凹凸贴图).Reflction(反射贴图).Refraction(折射贴图)..Refract Map/Ray Trace IOR(折射贴图/光线跟踪折射率) .Displacement(置换贴图)Dvnamics Properties(动力学属性区)材质类型Blend(混合材质).Material#1(材质#1).Material#2(材质#2).Mask(遮罩).Interactive(交互).Mix Amount(混合数值).Mixing Curve(混合曲线).Use Curve(使用曲线).Transition Zone(交换区域)Composite(合成材质).Composite Bisic Parameters(合成材质基础参数区)..Base Material(基本材质)..Mat.1~Mat.9(材质1~材质9)Double Sided(双面材质).Translucency(半透明) 贴图类型.Facing material(表面材质) Bitmap(位图)Matte/Shadow(投影材质) Checker(棋盘格).Matte(不可见) Composite(合成贴图).Atmosphere(大气) Dent(凹痕贴图)..Apply Atmosphere(加入大气环境) Falloff(衰减)..At Background Depth(在背景深度) Flat Mirror(镜面反射) ..At Object Depth(在物体深度) Gradient(渐变).Shadow(阴影) Marble(大理石)..Receive Shadow(接受阴影) Madk(罩框)..Shadow Brightness(阴影的亮度) Mix(混合).Reflection(反射) Noise(干扰)Morpher(形态结构贴图) Output(输出)Muti/Sub-Object(多重子物体材质) Partcle Age(粒子寿命) .Set Number(设置数目) Perlin Marble(珍珠岩).Number Of Materials(材质数目) Planet(行星)Raytrace(光线追踪材质) Raytrance(光线跟踪).Shading(明暗) Reflect/Refract(反射/折射).2-Sided(双面) RGB Multiply(RGB倍增).Face Map(面贴图) RGB Tint(RGB染色).Wire(线框) Smoke(烟雾).Super Sample(超级样本) Speckle(斑纹).Ambient(阴影色) Splat(油彩).Diffuse(固有色) Stucco(泥灰).Reflect(反射) Thin Wall Refraction(薄壁折射).Luminosity(发光度) Vertex Color(项点颜色).Transparency(透明) Water(水).Index Of Refr(折射率) Wood(木纹).Specular Highlight(反射高光)..Specular Color(高光反射颜色)..Shininess(反射)..Shiness Strength(反光强度).Environment(环境贴图).Bump(凹凸贴图)Shellac(虫漆材质).Base Material(基础材质).Shellac Material(虫漆材质).Shellac Color Blend(虫漆颜色混合)Standard(标准材质)Top/Bottom(项/底材质).Top Material(项材质).Bottom Material(底材质).Swap(置换).Coordinates(坐标轴).Blend(融合).Possition(状态)FILE(文件) EDIT(编辑)Rest(重置) Undo(撤消)XRef Objects(外部参考物体) Clone(复制)XRef Scenes(外部参考场景) Delete(删除)Merge(合并) Select All(对象选择)Replace(替换) Select None(取消对象)Import(输入) Select Invert(对象反转)Export(输出) Hold(保存)Archive(压缩存盘) Fetch(取出)View File(观看文件) Select BY(根据..选择)Select By Color(根据颜色..选择)Select By Name(根据名字..选择)Region(区域)Edit Named Selections(编辑已命名被选物)Properties(属性)TOOLS(工具菜单) GROUP(分组菜单)Mirror(镜像) Group(分组)Array(阵列) Open(打开)Align(对齐) Close(关闭)Place Highlight(放置高亮区) Ungroup(解除群组)Align Camera(对齐摄像机) Explode(分解)Scaping Tool(间距修改工具) Detach(分离)Transform Type-In(输入变换坐标) Attach(合并)Display Floater(显示浮动物体)Hide(隐藏)Freeze(冻结)Selection Floater(选择浮动物体)Snapshot(快照复制)Normal Align(法向对齐)Material Editor(材质编辑器)Material/Map Browser(材质/贴图浏览器)Object(物体工具栏) Create(创建命令面板)Compounds(复合工具栏) Modify(修改命令面板)Lighes&Cameras(光线和照相机工具栏) Hierarchy(层级命令面板) Particles(粒子系统工具栏) Motion(运动命令面板)Helpers(帮助物体工具栏) Display(显示命令面板)Space Warps(空间扭曲工具栏) Utilities(实用程序)Modifiers(修改工具栏)Rendering(渲染工具栏)Shapes(二维图形工具栏)Modeling(造型修改工具栏)MODIFIER STACK(编辑修改器堆栈) 布尔运算与克隆对象Pin Stack(钉住堆栈状态) Union(并集)Active/Inactive(激活/不激活切换) Subtraction(差集)Show End Result(显示最后结果) Intersection(交集)Remove Modifier(删除编辑修改器) Instance(关联复制)Edit Stack(编辑堆栈对话框) Reference(参考复制)控制器械的种类二维项点Track View(轨迹视图) Smooth(光滑项点)Assign Controller(指定控制器) Corner(边角项点)Replace Controller(替换控制器) Bezier(Bezier项点).Linear Controller(直线控制器) Bezier Corner(Bezier角点).TCB Contriller(TCB控制器)).Contriller(连续).Path Controller(路径控制器).List Controller(列表控制器).Expression Controller(噪声控制器).Look At(看着)三维造型Deformations(变形控制)Box(盒子) Scale(缩放)Cone(圆锥体) Twist(扭曲)Sphere(球体) Teeter(轴向变形)Geosphere(经纬球) Bevel(倒角)Cylinder(柱体) Fit(适配变形)Tube(管子)Torus(圆环)Pyramid(金字塔)Teapot(茶壶)Plane(平面)灯光类型摄像机类型Omni(泛光灯) Target(目标).General Parameters(普通参数) .Lens(镜头尺寸).Projector Parameters(投射贴图) .FOV(视域范围).Attenuation Parameters(衰减参数) .Stock Lenses(镜头类型).Shadow Parameters(阴影参数) .Show Core(显示视域范围).Shadow Map Params(阴影贴图参数) .Show Horizor(显示地平线) Target Spot(目标聚光灯) .Near Range(最近范围)Free SPot(自由聚光灯) .Far Range(最远范围)Target Direct(目标平行光灯)Render Scene(渲染).Rime Output(输出时间)..Single(渲染单帖)..Range(所有帖).Output Size(输出尺寸)Rendering(渲染)/Environment(环境) 粒子系统Background(背景) Spray(喷射)Atmosphere(大气) Blizzard(暴风雪) Combustion(燃烧) PArray(粒子列阵) Volume Light(体光) Pcloud(粒子云) Fog(雾) Super Spray(超级喷射).Standard(标准).Layered(分层)V olume Fog(体雾)快捷菜单:A-角度捕捉开关B-切换到底视图C-切换到摄象机视图D-封闭视窗E-切换到轨迹视图F-切换到前视图G-切换到网格视图H-显示通过名称选择对话框I-交互式平移J-选择框显示切换K-切换到背视图L-切换到左视图M-材质编辑器N-动画模式开关O-自适应退化开关P-切换到透视用户视图Q-显示选定物体三角形数目R-切换到右视图S-捕捉开关T-切换到顶视图U-切换到等角用户视图V-旋转场景W-最大化视窗开关X-中心点循环Y-工具样界面转换Z-缩放模式[-交互式移近]-交互式移远/-播放动画F1-帮助文件F3-线框与光滑高亮显示切换F4-Edged Faces显示切换F5-约束到X轴方向F6-约束到Y轴方向F7-约束到Z轴方向F8-约束轴面循环F9-快速渲染F10-渲染场景F12-键盘输入变换Delete-删除选定物体SPACE-选择集锁定开关END-进到最后一帧HOME-进到起始帧INSERT-循环子对象层级PAGEUP-选择父系PAGEDOWN-选择子系CTRL+A-重做场景操作CTRL+B-子对象选择开关CTRL+F-循环选择模式CTRL+L-默认灯光开关CTRL+N-新建场景CTRL+O-打开文件CTRL+P-平移视图CTRL+R-旋转视图模式CTRL+S-保存文件CTRL+T-纹理校正CTRL+T-打开工具箱(Nurbs曲面建模)CTRL+W-区域缩放模式CTRL+Z-取消场景操作CTRL+SPACE-创建定位锁定键SHIFT+A-重做视图操作SHIFT+B-视窗立方体模式开关SHIFT+C-显示摄象机开关SHIFT+E-以前次参数设置进行渲染SHIFT+F-显示安全框开关SHIFT+G-显示网络开关SHIFT+H-显示辅助物体开关SHIFT+I-显示最近渲染生成的图象SHIFT+L-显示灯光开关SHIFT+O-显示几何体开关SHIFT+P-显示粒子系统开关SHIFT+Q-快速渲染SHIFT+R-渲染场景SHIFT+S-显示形状开关SHIFT+W-显示空间扭曲开关SHIFT+Z-取消视窗操作SHIFT+4-切换到聚光灯/平行灯光视图SHIFT+\-交换布局SHIFT+SPACE-创建旋转锁定键ALT+S-网格与捕捉设置ALT+SPACE-循环通过捕捉ALT+CTRL+Z-场景范围充满视窗ALT+CTRL+SPACE-偏移捕捉SHIFT+CTRL+A-自适应透视网线开关SHIFT+CTRL+P-百分比捕捉开关标题栏翻译:一、File<文件>New-----------------------〈新建〉Reset---------------------〈重置〉Open----------------------〈打开〉Save-----------------------〈保存〉Save As-------------------〈保存为〉Save selected----------〈保存选择〉XRef Objects -----------〈外部引用物体〉XRef Scenes -----------〈外部引用场景〉Merge --------------------〈合并〉Merge Animation--------〈合并动画动作〉Replace------------------〈替换〉Import---------------------〈输入〉Export---------------------〈输出〉Export Selected----------〈选择输出〉Archive--------------------〈存档〉Summary Info-----------〈摘要信息〉File Properties----------〈文件属性〉View Image File--------〈显示图像文件〉History--------------------〈历史〉Exit----------------------〈退出〉二、Edit〈菜单〉Undo or Redo----------〈取消/重做〉Hold and fetch---------〈保留/引用〉Delete----------------〈删除〉Clone--------------------〈克隆〉Select All-----------------〈全部选择〉Select None-------------〈空出选择〉Select Invert-------------〈反向选择〉Select By-----------------〈参考选择〉Color--------------------〈颜色选择〉Name---------------------〈名字选择〉Rectangular Region-----〈矩形选择〉Circular Region--------〈圆形选择〉Fabce Region----------〈连点选择〉Lasso Region----------〈套索选择〉Region:-------------------〈区域选择〉Window-----------------〈包含〉Crossing-----------------〈相交〉Named Selection Sets〈命名选择集〉Object Properties--------〈物体属性〉三、Tools〈工具〉TransfromType-In------〈键盘输入变换〉Display Floater-----------〈视窗显示浮动对话框〉Selection Floater--------〈选择器浮动对话框〉Light Lister----------------〈灯光列表〉Mirror-----------------------〈镜像物体〉Array------------------------〈阵列〉Align-----------------------〈对齐〉Snapshot------------------〈快照〉Spacing Tool-------------〈间距分布工具〉Normal Align-------------〈法线对齐〉Align Camera------------〈相机对齐〉Align to View--------------〈视窗对齐〉Place Highlight-----------〈放置高光〉Isolate Selection---------〈隔离选择〉Rename Objects----------〈物体更名〉四、Group〈群组〉Group-----------------------〈群组〉Ungroup-------------------〈撤消群组〉Open-----------------------〈开放组〉Close-----------------------〈关闭组〉Attach-----------------------〈配属〉Detach---------------------〈分离〉Explode--------------------〈分散组〉五、Views〈查看〉Undo View Change/Redo View change〈取消/重做视窗变化〉Save Active View/Restore Active View〈保存/还原当前视窗〉Viewport Configuration--------------〈视窗配置〉Grids----------------------------------〈栅格〉Show Home Grid------------------〈显示栅格命令〉Activate Home Grid---------------〈活跃原始栅格命令〉Activate Grid Object---------------〈活跃栅格物体命令〉Activate Grid to View--------------〈栅格及视窗对齐命令〉Viewport Background------------〈视窗背景〉Update Background Image-----〈更新背景〉Reset Background Transfrom〈重置背景变换〉Show TransfromGizmo---------〈显示变换坐标系〉Show Ghosting--------------------〈显示重橡〉Show Key Times------------------〈显示时间键〉Shade Selected-------------------〈选择亮显〉Show Dependencies------------〈显示关联物体〉Match Camera to View----------〈相机与视窗匹配〉Add Default Lights To Scene-〈增加场景缺省灯光〉Redraw All Views----------------〈重画所有视窗〉Activate All Maps------------------〈显示所有贴图〉Deactivate All Maps--------------〈关闭显示所有贴图〉Update During Spinner Drag --〈微调时实时显示〉Adaptive Degradation Toggle---〈绑定适应消隐〉Expert Mode----------------------〈专家模式〉六、Create〈创建〉Standard Primitives--------------〈标准图元〉Box------------------------------------〈立方体〉Cone---------------------------------〈圆锥体〉Sphere-------------------------------〈球体〉GeoSphere-------------------------〈三角面片球体〉Cylinder-----------------------------〈圆柱体〉Tube---------------------------------〈管状体〉Torus--------------------------------〈圆环体〉Pyramid-----------------------------〈角锥体〉Plane--------------------------------〈平面〉Teapot-------------------------------〈茶壶〉Extended Primitives-------------〈扩展图元〉Hedra--------------------------------〈多面体〉Torus Knot-------------------------〈环面纽结体〉Chamfer Box----------------------〈斜切立方体〉Chamfer Cylinder----------------〈斜切圆柱体〉Oil Tank----------------------------〈桶状体〉Capsule----------------------------〈角囊体〉Spindle-----------------------------〈纺锤体〉L-Extrusion------------------------〈L形体按钮〉Gengon-----------------------------〈导角棱柱〉C-Extrusion-----------------------〈C形体按钮〉RingWave-------------------------〈环状波〉Hose--------------------------------〈软管体〉Prism-------------------------------〈三棱柱〉Shapes----------------------------〈形状〉Line---------------------------------〈线条〉Text----------------------------------〈文字〉Arc-----------------------------------〈弧〉Circle-------------------------------〈圆〉Donut-------------------------------〈圆环〉Ellipse------------------------------〈椭圆〉Helix--------------------------------〈螺旋线〉NGon-------------------------------〈多边形〉Rectangle-------------------------〈矩形〉Section-----------------------------〈截面〉Star---------------------------------〈星型〉Lights------------------------------〈灯光〉Target Spotlight-----------------〈目标聚光灯〉Free Spotlight--------------------〈自由聚光灯〉Target Directional Light-------〈目标平行光〉Directional Light----------------〈平行光〉Omni Light-----------------------〈泛光灯〉Skylight----------------------------〈天光〉Target Point Light--------------〈目标指向点光源〉Free Point Light----------------〈自由点光源〉Target Area Light--------------〈指向面光源〉IES Sky---------------------------〈IES天光〉IES Sun--------------------------〈IES阳光〉SuNLIGHT System and Daylight〈太阳光及日光系统〉Camera--------------------------〈相机〉Free Camera-------------------〈自由相机〉Target Camera----------------〈目标相机〉Particles-------------------------〈粒子系统〉Blizzard--------------------------〈暴风雪系统〉PArray----------------------------〈粒子阵列系统〉PCloud---------------------------〈粒子云系统〉Snow------------------------------〈雪花系统〉Spray-----------------------------〈喷溅系统〉Super Spray--------------------〈超级喷射系统〉七、Modifiers〈修改器〉Selection Modifiers〈选择修改器〉Mesh Select〈网格选择修改器〉Poly Select〈多边形选择修改器〉Patch Select〈面片选择修改器〉Spline Select〈样条选择修改器〉Volume Select〈体积选择修改器〉FFD Select〈自由变形选择修改器〉NURBS Surface Select〈NURBS表面选择修改器〉Patch/Spline Editing〈面片/样条线修改器〉:Edit Patch〈面片修改器〉Edit Spline〈样条线修改器〉Cross Section〈截面相交修改器〉Surface〈表面生成修改器〉Delete Patch〈删除面片修改器〉Delete Spline〈删除样条线修改器〉Lathe〈车床修改器〉Normalize Spline〈规格化样条线修改器〉Fillet/Chamfer〈圆切及斜切修改器〉Trim/Extend〈修剪及延伸修改器〉Mesh Editing〈表面编辑〉Cap Holes〈顶端洞口编辑器〉Delete Mesh〈编辑网格物体编辑器〉Edit Normals〈编辑法线编辑器〉Extrude〈挤压编辑器〉Face Extrude〈面拉伸编辑器〉Normal〈法线编辑器〉Optimize〈优化编辑器〉Smooth〈平滑编辑器〉STL Check〈STL检查编辑器〉Symmetry〈对称编辑器〉Tessellate〈镶嵌编辑器〉Vertex Paint〈顶点着色编辑器〉Vertex Weld〈顶点焊接编辑器〉Animation Modifiers〈动画编辑器〉Skin〈皮肤编辑器〉Morpher〈变体编辑器〉Flex〈伸缩编辑器〉Melt〈熔化编辑器〉Linked XForm〈连结参考变换编辑器〉Patch Deform〈面片变形编辑器〉Path Deform〈路径变形编辑器〉Surf Deform〈表面变形编辑器〉* Surf Deform〈空间变形编辑器〉UV Coordinates〈贴图轴坐标系〉UVW Map〈UVW贴图编辑器〉UVW Xform〈UVW贴图参考变换编辑器〉Unwrap UVW〈展开贴图编辑器〉Camera Map〈相机贴图编辑器〉* Camera Map〈环境相机贴图编辑器〉Cache Tools〈捕捉工具〉Point Cache〈点捕捉编辑器〉Subdivision Surfaces〈表面细分〉MeshSmooth〈表面平滑编辑器〉HSDS Modifier〈分级细分编辑器〉Free Form Deformers〈自由变形工具〉FFD 2×2×2/FFD 3×3×3/FFD 4×4×4〈自由变形工具2×2×2/3×3×3/4×4×4〉FFD Box/FFD Cylinder〈盒体和圆柱体自由变形工具〉Parametric Deformers〈参数变形工具〉Bend〈弯曲〉Taper〈锥形化〉Twist〈扭曲〉Noise〈噪声〉Stretch〈缩放〉Squeeze〈压榨〉Push〈推挤〉Relax〈松弛〉Ripple〈波纹〉Wave〈波浪〉Skew〈倾斜〉Slice〈切片〉Spherify〈球形扭曲〉Affect Region〈面域影响〉Lattice〈栅格〉Mirror〈镜像〉Displace〈置换〉XForm〈参考变换〉Preserve〈保持〉Surface〈表面编辑〉Material〈材质变换〉Material By Element〈元素材质变换〉Disp Approx〈近似表面替换〉NURBS Editing〈NURBS面编辑〉NURBS Surface Select〈NURBS表面选择〉Surf Deform〈表面变形编辑器〉Disp Approx〈近似表面替换〉Radiosity Modifiers〈光能传递修改器〉Subdivide〈细分〉* Subdivide〈超级细分〉八、Character〈角色人物〉Create Character〈创建角色〉Destroy Character〈删除角色〉Lock/Unlock〈锁住与解锁〉Insert Character〈插入角色〉Save Character〈保存角色〉Bone Tools〈骨骼工具〉Set Skin Pose〈调整皮肤姿势〉Assume Skin Pose〈还原姿势〉Skin Pose Mode〈表面姿势模式〉九、Animation〈动画〉IK Solvers〈反向动力学〉HI Solver〈非历史性控制器〉HD Solver〈历史性控制器〉IK Limb Solver〈反向动力学肢体控制器〉SplineIK Solver〈样条反向动力控制器〉Constraints〈约束〉Attachment Constraint〈附件约束〉Surface Constraint〈表面约束〉Path Constraint〈路径约束〉Position Constraint〈位置约束〉Link Constraint〈连结约束〉LookAt Constraint〈视觉跟随约束〉Orientation Constraint〈方位约束〉Transform Constraint〈变换控制〉Link Constraint〈连接约束〉Position/Rotation/Scale〈PRS控制器〉Transform Script〈变换控制脚本〉Position Controllers〈位置控制器〉Audio〈音频控制器〉Bezier〈贝塞尔曲线控制器〉Expression〈表达式控制器〉Linear〈线性控制器〉Motion Capture〈动作捕捉〉Noise〈燥波控制器〉Quatermion(TCB)〈TCB控制器〉Reactor〈反应器〉Spring〈弹力控制器〉Script〈脚本控制器〉XYZ〈XYZ位置控制器〉Attachment Constraint〈附件约束〉Path Constraint〈路径约束〉Position Constraint〈位置约束〉Surface Constraint〈表面约束〉Rotation Controllers〈旋转控制器〉注:该命令工十一个子菜单。
3dmax英文翻译(最全的)
编辑器菜单翻译:SELECTION MODIFIERS 选择修改器MESH SELECT 网格选择POL Y SELECT 多边形选择PATCH SELECT 面片选择SPLINE SELECT 样条线选择FFD SELECT FFD选择SELECT BY CHANNEL 按通道选择SURFACE SELECT(NSURF SEL)NURBS 曲面选择PATCH/SPLINE EDITING 面片/样条线编辑EDIT PA TCH 编辑面片EDIT SPLINE 编辑样条线CROSS SECTION 横截面SURFACE 曲面DELETE PATCH 删除面片DELETE SPLINE 删除样条线LATHE 车削旋转NORMALIZE SPLINE 规格化样条线FILLET/CHAMFER 圆角/切角TRIM/EXTEND 修剪/延伸RENDERABLE SPLINE 可渲染样条线SWEEP 扫描MESH EDITING 网格编辑DELETE MESH 删除网格EDIT MESH 编辑网格EDIT POL Y 编辑多边形EXTRUDE 挤出FACE EXTRUDE 面挤出NORMAL 法线SMOOTH 平滑BEVEL 倒角、斜切BEVEL PROFILE 倒角剖面TESSELLATE 细化STL CHECK STL检查CAP HOLES 补洞VERTEXPAINT 顶点绘制OPTIMIZE 优化MULTIRES 多分辨率VERTEX WELD 顶点焊接SYMMETRY 对称EDIT NORMALS 编辑法线EDITABLE POL Y 可编辑多边形EDIT GEOMETRY 编辑几何体SUBDIVISION SURFACE 细分曲面SUBDIVISION DISPLACEMENT 细分置换PAINT DEFORMATION 绘制变形CONVERSION 转化TURN TO POL Y 转换为多边形TURN TO PATCH 转换为面片TURN TO MESH 转换为网格ANIMATION MODIFIERS 动画EDIT ENVELOPE 编辑封套WEIGHT PROPERTIES 权重属性MIRROR PARAMETERS 镜像参数DISPLAY 显示ADV ANCED PARAMETERS 高级参数GIZMO 变形器MORPHER 变形器CHANNEL COLOR LEGEND 通道颜色图例GLOBAL PARAMETERS 全局参数CHANNEL LIST 通道列表CHANNEL PARAMETERS 通道参数ADV ANCED PARAMETERS 高级参数FLEX 柔体PARAMETERS 参数SIMPLE SOFT BODIES 简章软体WEIGHTS AND PAINTING 权重和绘制FORCES AND DEFLECTORS 力和导向器ADV ANCED PARAMETERS 高级参数ADV ANCED SPRINGS 高级弹力线MELT 融化LINKED XFORM 链接变换PATCH DEFORM 面片变形PATH DEFORM 路径变形SURF DEFORM 曲面变形PATCH DEFORM(WSM)面片变形(WSM)PATH DEFORM(WSM)路径变形(WSM)SURF DEFORM(WSM)曲面变形(WSM)SKIN MORPH 蒙皮变形SKIN WRAP 蒙皮包裹SKIN WRAP PATCH 蒙皮包裹面片SPLINE IK CONTROL 样条线IK控制ATTRIBUTE HOLDER 属性承载器UV COORDINA TES MODIFIERS UV坐标修改器UVW MAP UVW贴图UNWRAP UVW 展开UVWUVW XFORM UVW变换MAPSCALER(WSM)贴图缩放器(WSM)MAPSCALER 贴图缩放器(OSM)CAMERA MAP 摄影机贴图CAMERA MAP(WSM)摄影机贴图(WSM)SURFACE MAPPER(WSM)曲面贴图(WSM)PROJECTION 投影UVW MAPPING ADD UVW贴图添加UVW MAPPING CLEAR UVW贴图清除CACHE TOOLS 缓存工具POINT CACHE 点缓存POINT CACHE(WSM)点缓存(WSM)SUBDIVISION SURFACES 细分曲面TURBOSMOOTH 涡轮平滑MESHSMOOTH 网格平滑HSDS MODIFIER HSDS修改器FREE FORM DEFORMA TIONS 自由形式变形FFD MODIFIERS FFD修改FFD BOX/CYLINDER FFD长方形/圆柱体PARAMETRIC MODIFIERS 参数化修改器BEND 弯曲TAPER 锥化TWIST 扭曲NOISE 噪波STRETCH 拉伸、伸展SQUEEZE 挤压PUSH 推力RELAX 松弛RIPPLE 涟漪WA VE 波浪SKEW 倾斜ALICE 切片SPHERIFY 球形化AFFECT REGION 影响区域LATTICE 晶格MIRROR 镜像DISPLACE 置换XFORM 变换SUBSTITUTE 替换PRESERVE 保留SHELL 壳SURFACE 曲面MATERIAL 材质MATERIAL BY ELEMENT 按元素分配材质DISP APPROX 置换近似DISPLACE MESH(WSM)置换网格(WSM)DISPLACE NURBS(WSM)置换网格(WSM)RADIOSITY MODIFIERS 沟通传递修改器SUBDIVIDE(WSM)细分(WSM)SUBDIVIDE 细分材质编辑器:Reglection(反射)Basic Parameters(基本参数) Refraction(折射).Ambient(环境反射) 3D Procedural Maps(三维贴图).Diffuse(漫反射) Face-mapped(面贴图)Specular(镜面反射)Extended Parameters(扩展参数)Maps(贴图).Bitmap(位图).Checker(棋盘格) 复合材质.Gradient(渐变) Double Sided(双面).Adobe Photoshop Plug-In Filter(PS滤镜)Blend(混合).Adove Premiere Video Filter(PM滤镜) Matte/Shoadow() .Cellular(细胞) Multi/Sub-object(多重子物体).Dent(凹痕) Raytrace(光线追踪).Noise(干扰) Top/Bottom(项底).Splat(油彩).Matrble(大理石).Wood(木纹).Water(水) Time Configuration(时间帧速率).Falloff(衰减) Frame Rate(帧速率).Flat Mirror(镜面反射) NTSC(NTSC制式).Mask(罩框) Film(胶片速度).Mix(混合) PAL(PAL制式).Output(输出) Custom(自定义).Planet(行星).Raytrace(光线跟踪).Reglect/Refrace(反射/折射).Smoke(烟雾) Create(创建).Speckle(斑纹) Helpers(帮助物体).Stucco(泥灰) Dummy(虚拟体).Vertex Color(项点颜色) Forward Kinematics(正向运动) .Composite(合成贴图) Inverse Kinematics(反向运动).Particle age(粒子寿命).Patticle Mblur(粒子模糊)参数区卷展栏:Shader Basic Parameters(着色基本参数区).Blinn(宾氏).Anisotropic(各向异性).Metal(金属).Multi-layer(多层式).Phong(方氏) 塑性.Oren-Nayar-Blinn(表面粗糙的对象).Strauss(具有简单的光影分界线).Wire(线架结构显示模式).2-Sided(双面材质显示).Face Map(将材质赋予对象所有的面).Faceted(将材质以面的形式赋予对象)Blinn Basic Patameters(宾氏基本参数区).Diffuse(固有色).Ambient(阴影色).Specular(高光色).Self-Illumination(自发光).Opacity(不透明度).Specular Highlights(高光曲线区)..Specular Level(高光级别)..Glossiness(光泽度)..Soften(柔和度)Extended Parameters(扩展参数区).Falloff(衰减).Filer(过滤法).Subtractive(删减法).Additive(递增法).Index of Refraction(折射率).Wire(线架材质).Reflection Dimming(反射暗淡)SuperSampling(超级样本)Maps(贴图区).Ambient Color(阴影色贴图).Diffuse Color(固有色贴图).Specular Color(高光色贴图).Glossiness(光泽度贴图).Self-Illmination(自发光贴图).Opacity(不透明贴图).Filter Color(过滤色贴图).Bump(凹凸贴图).Reflction(反射贴图).Refraction(折射贴图)..Refract Map/Ray Trace IOR(折射贴图/光线跟踪折射率) .Displacement(置换贴图)Dvnamics Properties(动力学属性区)材质类型Blend(混合材质).Material#1(材质#1).Material#2(材质#2).Mask(遮罩).Interactive(交互).Mix Amount(混合数值).Mixing Curve(混合曲线).Use Curve(使用曲线).Transition Zone(交换区域)Composite(合成材质).Composite Bisic Parameters(合成材质基础参数区)..Base Material(基本材质)..Mat.1~Mat.9(材质1~材质9)Double Sided(双面材质).Translucency(半透明) 贴图类型.Facing material(表面材质) Bitmap(位图).Back Material(背面材质) Cellular(细胞)Matte/Shadow(投影材质) Checker(棋盘格).Matte(不可见) Composite(合成贴图).Atmosphere(大气) Dent(凹痕贴图)..Apply Atmosphere(加入大气环境) Falloff(衰减)..At Background Depth(在背景深度) Flat Mirror(镜面反射) ..At Object Depth(在物体深度) Gradient(渐变).Shadow(阴影) Marble(大理石)..Receive Shadow(接受阴影) Madk(罩框)..Shadow Brightness(阴影的亮度) Mix(混合).Reflection(反射) Noise(干扰)Morpher(形态结构贴图) Output(输出)Muti/Sub-Object(多重子物体材质) Partcle Age(粒子寿命) .Set Number(设置数目) Perlin Marble(珍珠岩).Number Of Materials(材质数目) Planet(行星)Raytrace(光线追踪材质) Raytrance(光线跟踪).Shading(明暗) Reflect/Refract(反射/折射).2-Sided(双面) RGB Multiply(RGB倍增).Face Map(面贴图) RGB Tint(RGB染色).Wire(线框) Smoke(烟雾).Super Sample(超级样本) Speckle(斑纹).Ambient(阴影色) Splat(油彩).Diffuse(固有色) Stucco(泥灰).Reflect(反射) Thin Wall Refraction(薄壁折射).Luminosity(发光度) Vertex Color(项点颜色).Transparency(透明) Water(水).Index Of Refr(折射率) Wood(木纹).Specular Highlight(反射高光)..Specular Color(高光反射颜色)..Shininess(反射)..Shiness Strength(反光强度).Environment(环境贴图).Bump(凹凸贴图)Shellac(虫漆材质).Base Material(基础材质).Shellac Material(虫漆材质).Shellac Color Blend(虫漆颜色混合)Standard(标准材质)Top/Bottom(项/底材质).Top Material(项材质).Bottom Material(底材质).Swap(置换).Coordinates(坐标轴).Blend(融合).Possition(状态)FILE(文件) EDIT(编辑)Rest(重置) Undo(撤消)Save Selected(保存所选择的对象) Redo(恢复) XRef Objects(外部参考物体) Clone(复制)XRef Scenes(外部参考场景) Delete(删除) Merge(合并) Select All(对象选择)Replace(替换) Select None(取消对象)Import(输入) Select Invert(对象反转)Export(输出) Hold(保存)Archive(压缩存盘) Fetch(取出)View File(观看文件) Select BY(根据..选择) Select By Color(根据颜色..选择)Select By Name(根据名字..选择)Region(区域)Edit Named Selections(编辑已命名被选物) Properties(属性)TOOLS(工具菜单) GROUP(分组菜单)Mirror(镜像) Group(分组)Array(阵列) Open(打开)Align(对齐) Close(关闭)Place Highlight(放置高亮区) Ungroup(解除群组) Align Camera(对齐摄像机) Explode(分解) Scaping Tool(间距修改工具) Detach(分离) Transform Type-In(输入变换坐标) Attach(合并) Display Floater(显示浮动物体)Hide(隐藏)Freeze(冻结)Selection Floater(选择浮动物体)Snapshot(快照复制)Normal Align(法向对齐)Material Editor(材质编辑器)Material/Map Browser(材质/贴图浏览器)Object(物体工具栏) Create(创建命令面板) Compounds(复合工具栏) Modify(修改命令面板)Lighes&Cameras(光线和照相机工具栏) Hierarchy(层级命令面板) Particles(粒子系统工具栏) Motion(运动命令面板)Helpers(帮助物体工具栏) Display(显示命令面板)Space Warps(空间扭曲工具栏) Utilities(实用程序)Modifiers(修改工具栏)Rendering(渲染工具栏)Shapes(二维图形工具栏)Modeling(造型修改工具栏)MODIFIER STACK(编辑修改器堆栈) 布尔运算与克隆对象Pin Stack(钉住堆栈状态) Union(并集)Active/Inactive(激活/不激活切换) Subtraction(差集)Show End Result(显示最后结果) Intersection(交集)Make Unipue(使独立) Copy(复制)Remove Modifier(删除编辑修改器) Instance(关联复制)Edit Stack(编辑堆栈对话框) Reference(参考复制)控制器械的种类二维项点Track View(轨迹视图) Smooth(光滑项点)Assign Controller(指定控制器) Corner(边角项点)Replace Controller(替换控制器) Bezier(Bezier项点).Linear Controller(直线控制器) Bezier Corner(Bezier角点).TCB Contriller(TCB控制器)).Contriller(连续).Path Controller(路径控制器).List Controller(列表控制器).Expression Controller(噪声控制器).Look At(看着)三维造型Deformations(变形控制)Box(盒子) Scale(缩放)Cone(圆锥体) Twist(扭曲)Sphere(球体) Teeter(轴向变形)Geosphere(经纬球) Bevel(倒角)Cylinder(柱体) Fit(适配变形)Tube(管子)Torus(圆环)Pyramid(金字塔)Teapot(茶壶)Plane(平面)灯光类型摄像机类型Omni(泛光灯) Target(目标).General Parameters(普通参数) .Lens(镜头尺寸).Projector Parameters(投射贴图) .FOV(视域范围).Attenuation Parameters(衰减参数) .Stock Lenses(镜头类型).Shadow Parameters(阴影参数) .Show Core(显示视域范围).Shadow Map Params(阴影贴图参数) .Show Horizor(显示地平线) Target Spot(目标聚光灯) .Near Range(最近范围)Free SPot(自由聚光灯) .Far Range(最远范围)Target Direct(目标平行光灯)Render Scene(渲染).Rime Output(输出时间)..Single(渲染单帖)..Range(所有帖).Output Size(输出尺寸)Rendering(渲染)/Environment(环境) 粒子系统Background(背景) Spray(喷射)Global Lighting(球形照明) Snow(雪)Atmosphere(大气) Blizzard(暴风雪)Combustion(燃烧) PArray(粒子列阵)Volume Light(体光) Pcloud(粒子云)Fog(雾) Super Spray(超级喷射).Standard(标准).Layered(分层)V olume Fog(体雾)快捷菜单:A-角度捕捉开关B-切换到底视图C-切换到摄象机视图D-封闭视窗E-切换到轨迹视图F-切换到前视图G-切换到网格视图H-显示通过名称选择对话框I-交互式平移J-选择框显示切换K-切换到背视图L-切换到左视图M-材质编辑器N-动画模式开关O-自适应退化开关P-切换到透视用户视图Q-显示选定物体三角形数目R-切换到右视图S-捕捉开关T-切换到顶视图U-切换到等角用户视图V-旋转场景W-最大化视窗开关X-中心点循环Y-工具样界面转换Z-缩放模式[-交互式移近]-交互式移远/-播放动画F1-帮助文件F3-线框与光滑高亮显示切换F4-Edged Faces显示切换F5-约束到X轴方向F6-约束到Y轴方向F7-约束到Z轴方向F8-约束轴面循环F9-快速渲染F10-渲染场景F11-MAX脚本程序编辑F12-键盘输入变换Delete-删除选定物体SPACE-选择集锁定开关END-进到最后一帧HOME-进到起始帧INSERT-循环子对象层级PAGEUP-选择父系PAGEDOWN-选择子系CTRL+A-重做场景操作CTRL+B-子对象选择开关CTRL+F-循环选择模式CTRL+L-默认灯光开关CTRL+N-新建场景CTRL+O-打开文件CTRL+P-平移视图CTRL+R-旋转视图模式CTRL+S-保存文件CTRL+T-纹理校正CTRL+T-打开工具箱(Nurbs曲面建模)CTRL+W-区域缩放模式CTRL+Z-取消场景操作CTRL+SPACE-创建定位锁定键SHIFT+A-重做视图操作SHIFT+B-视窗立方体模式开关SHIFT+C-显示摄象机开关SHIFT+E-以前次参数设置进行渲染SHIFT+F-显示安全框开关SHIFT+G-显示网络开关SHIFT+H-显示辅助物体开关SHIFT+I-显示最近渲染生成的图象SHIFT+L-显示灯光开关SHIFT+O-显示几何体开关SHIFT+P-显示粒子系统开关SHIFT+Q-快速渲染SHIFT+R-渲染场景SHIFT+S-显示形状开关SHIFT+W-显示空间扭曲开关SHIFT+Z-取消视窗操作SHIFT+4-切换到聚光灯/平行灯光视图SHIFT+\-交换布局SHIFT+SPACE-创建旋转锁定键ALT+S-网格与捕捉设置ALT+SPACE-循环通过捕捉ALT+CTRL+Z-场景范围充满视窗ALT+CTRL+SPACE-偏移捕捉SHIFT+CTRL+A-自适应透视网线开关SHIFT+CTRL+P-百分比捕捉开关SHIFT+CTRL+Z全部场景范围充满视窗标题栏翻译:一、File<文件>New-----------------------〈新建〉Reset---------------------〈重置〉Open----------------------〈打开〉Save-----------------------〈保存〉Save As-------------------〈保存为〉Save selected----------〈保存选择〉XRef Objects -----------〈外部引用物体〉XRef Scenes -----------〈外部引用场景〉Merge --------------------〈合并〉Merge Animation--------〈合并动画动作〉Replace------------------〈替换〉Import---------------------〈输入〉Export---------------------〈输出〉Export Selected----------〈选择输出〉Archive--------------------〈存档〉Summary Info-----------〈摘要信息〉File Properties----------〈文件属性〉View Image File--------〈显示图像文件〉History--------------------〈历史〉Exit----------------------〈退出〉二、Edit〈菜单〉Undo or Redo----------〈取消/重做〉Hold and fetch---------〈保留/引用〉Delete----------------〈删除〉Clone--------------------〈克隆〉Select All-----------------〈全部选择〉Select None-------------〈空出选择〉Select Invert-------------〈反向选择〉Select By-----------------〈参考选择〉Color--------------------〈颜色选择〉Name---------------------〈名字选择〉Rectangular Region-----〈矩形选择〉Circular Region--------〈圆形选择〉Fabce Region----------〈连点选择〉Lasso Region----------〈套索选择〉Region:-------------------〈区域选择〉Window-----------------〈包含〉Crossing-----------------〈相交〉Named Selection Sets〈命名选择集〉Object Properties--------〈物体属性〉三、Tools〈工具〉TransfromType-In------〈键盘输入变换〉Display Floater-----------〈视窗显示浮动对话框〉Selection Floater--------〈选择器浮动对话框〉Light Lister----------------〈灯光列表〉Mirror-----------------------〈镜像物体〉Array------------------------〈阵列〉Align-----------------------〈对齐〉Snapshot------------------〈快照〉Spacing Tool-------------〈间距分布工具〉Normal Align-------------〈法线对齐〉Align Camera------------〈相机对齐〉Align to View--------------〈视窗对齐〉Place Highlight-----------〈放置高光〉Isolate Selection---------〈隔离选择〉Rename Objects----------〈物体更名〉四、Group〈群组〉Group-----------------------〈群组〉Ungroup-------------------〈撤消群组〉Open-----------------------〈开放组〉Close-----------------------〈关闭组〉Attach-----------------------〈配属〉Detach---------------------〈分离〉Explode--------------------〈分散组〉五、Views〈查看〉Undo View Change/Redo View change〈取消/重做视窗变化〉Save Active View/Restore Active View〈保存/还原当前视窗〉Viewport Configuration--------------〈视窗配置〉Grids----------------------------------〈栅格〉Show Home Grid------------------〈显示栅格命令〉Activate Home Grid---------------〈活跃原始栅格命令〉Activate Grid Object---------------〈活跃栅格物体命令〉Activate Grid to View--------------〈栅格及视窗对齐命令〉Viewport Background------------〈视窗背景〉Update Background Image-----〈更新背景〉Reset Background Transfrom〈重置背景变换〉Show TransfromGizmo---------〈显示变换坐标系〉Show Ghosting--------------------〈显示重橡〉Show Key Times------------------〈显示时间键〉Shade Selected-------------------〈选择亮显〉Show Dependencies------------〈显示关联物体〉Match Camera to View----------〈相机与视窗匹配〉Add Default Lights To Scene-〈增加场景缺省灯光〉Redraw All Views----------------〈重画所有视窗〉Activate All Maps------------------〈显示所有贴图〉Deactivate All Maps--------------〈关闭显示所有贴图〉Update During Spinner Drag --〈微调时实时显示〉Adaptive Degradation Toggle---〈绑定适应消隐〉Expert Mode----------------------〈专家模式〉六、Create〈创建〉Standard Primitives--------------〈标准图元〉Box------------------------------------〈立方体〉Cone---------------------------------〈圆锥体〉Sphere-------------------------------〈球体〉GeoSphere-------------------------〈三角面片球体〉Cylinder-----------------------------〈圆柱体〉Tube---------------------------------〈管状体〉Torus--------------------------------〈圆环体〉Pyramid-----------------------------〈角锥体〉Plane--------------------------------〈平面〉Teapot-------------------------------〈茶壶〉Extended Primitives-------------〈扩展图元〉Hedra--------------------------------〈多面体〉Torus Knot-------------------------〈环面纽结体〉Chamfer Box----------------------〈斜切立方体〉Chamfer Cylinder----------------〈斜切圆柱体〉Oil Tank----------------------------〈桶状体〉Capsule----------------------------〈角囊体〉Spindle-----------------------------〈纺锤体〉L-Extrusion------------------------〈L形体按钮〉Gengon-----------------------------〈导角棱柱〉C-Extrusion-----------------------〈C形体按钮〉RingWave-------------------------〈环状波〉Hose--------------------------------〈软管体〉Prism-------------------------------〈三棱柱〉Shapes----------------------------〈形状〉Line---------------------------------〈线条〉Text----------------------------------〈文字〉Arc-----------------------------------〈弧〉Circle-------------------------------〈圆〉Donut-------------------------------〈圆环〉Ellipse------------------------------〈椭圆〉Helix--------------------------------〈螺旋线〉NGon-------------------------------〈多边形〉Rectangle-------------------------〈矩形〉Section-----------------------------〈截面〉Star---------------------------------〈星型〉Lights------------------------------〈灯光〉Target Spotlight-----------------〈目标聚光灯〉Free Spotlight--------------------〈自由聚光灯〉Target Directional Light-------〈目标平行光〉Directional Light----------------〈平行光〉Omni Light-----------------------〈泛光灯〉Skylight----------------------------〈天光〉Target Point Light--------------〈目标指向点光源〉Free Point Light----------------〈自由点光源〉Target Area Light--------------〈指向面光源〉IES Sky---------------------------〈IES天光〉IES Sun--------------------------〈IES阳光〉SuNLIGHT System and Daylight〈太阳光及日光系统〉Camera--------------------------〈相机〉Free Camera-------------------〈自由相机〉Target Camera----------------〈目标相机〉Particles-------------------------〈粒子系统〉Blizzard--------------------------〈暴风雪系统〉PArray----------------------------〈粒子阵列系统〉PCloud---------------------------〈粒子云系统〉Snow------------------------------〈雪花系统〉Spray-----------------------------〈喷溅系统〉Super Spray--------------------〈超级喷射系统〉七、Modifiers〈修改器〉Selection Modifiers〈选择修改器〉Mesh Select〈网格选择修改器〉Poly Select〈多边形选择修改器〉Patch Select〈面片选择修改器〉Spline Select〈样条选择修改器〉Volume Select〈体积选择修改器〉FFD Select〈自由变形选择修改器〉NURBS Surface Select〈NURBS表面选择修改器〉Patch/Spline Editing〈面片/样条线修改器〉:Edit Patch〈面片修改器〉Edit Spline〈样条线修改器〉Cross Section〈截面相交修改器〉Surface〈表面生成修改器〉Delete Patch〈删除面片修改器〉Delete Spline〈删除样条线修改器〉Lathe〈车床修改器〉Normalize Spline〈规格化样条线修改器〉Fillet/Chamfer〈圆切及斜切修改器〉Trim/Extend〈修剪及延伸修改器〉Mesh Editing〈表面编辑〉Cap Holes〈顶端洞口编辑器〉Delete Mesh〈编辑网格物体编辑器〉Edit Normals〈编辑法线编辑器〉Extrude〈挤压编辑器〉Face Extrude〈面拉伸编辑器〉Normal〈法线编辑器〉Optimize〈优化编辑器〉Smooth〈平滑编辑器〉STL Check〈STL检查编辑器〉Symmetry〈对称编辑器〉Tessellate〈镶嵌编辑器〉Vertex Paint〈顶点着色编辑器〉Vertex Weld〈顶点焊接编辑器〉Animation Modifiers〈动画编辑器〉Skin〈皮肤编辑器〉Morpher〈变体编辑器〉Flex〈伸缩编辑器〉Melt〈熔化编辑器〉Linked XForm〈连结参考变换编辑器〉Patch Deform〈面片变形编辑器〉Path Deform〈路径变形编辑器〉Surf Deform〈表面变形编辑器〉* Surf Deform〈空间变形编辑器〉UV Coordinates〈贴图轴坐标系〉UVW Map〈UVW贴图编辑器〉UVW Xform〈UVW贴图参考变换编辑器〉Unwrap UVW〈展开贴图编辑器〉Camera Map〈相机贴图编辑器〉* Camera Map〈环境相机贴图编辑器〉Cache Tools〈捕捉工具〉Point Cache〈点捕捉编辑器〉Subdivision Surfaces〈表面细分〉MeshSmooth〈表面平滑编辑器〉HSDS Modifier〈分级细分编辑器〉Free Form Deformers〈自由变形工具〉FFD 2×2×2/FFD 3×3×3/FFD 4×4×4〈自由变形工具2×2×2/3×3×3/4×4×4〉FFD Box/FFD Cylinder〈盒体和圆柱体自由变形工具〉Parametric Deformers〈参数变形工具〉Bend〈弯曲〉Taper〈锥形化〉Twist〈扭曲〉Noise〈噪声〉Stretch〈缩放〉Squeeze〈压榨〉Push〈推挤〉Relax〈松弛〉Ripple〈波纹〉Wave〈波浪〉Skew〈倾斜〉Slice〈切片〉Spherify〈球形扭曲〉Affect Region〈面域影响〉Lattice〈栅格〉Mirror〈镜像〉Displace〈置换〉XForm〈参考变换〉Preserve〈保持〉Surface〈表面编辑〉Material〈材质变换〉Material By Element〈元素材质变换〉Disp Approx〈近似表面替换〉NURBS Editing〈NURBS面编辑〉NURBS Surface Select〈NURBS表面选择〉Surf Deform〈表面变形编辑器〉Disp Approx〈近似表面替换〉Radiosity Modifiers〈光能传递修改器〉Subdivide〈细分〉* Subdivide〈超级细分〉八、Character〈角色人物〉Create Character〈创建角色〉Destroy Character〈删除角色〉Lock/Unlock〈锁住与解锁〉Insert Character〈插入角色〉Save Character〈保存角色〉Bone Tools〈骨骼工具〉Set Skin Pose〈调整皮肤姿势〉Assume Skin Pose〈还原姿势〉Skin Pose Mode〈表面姿势模式〉九、Animation〈动画〉IK Solvers〈反向动力学〉HI Solver〈非历史性控制器〉HD Solver〈历史性控制器〉IK Limb Solver〈反向动力学肢体控制器〉SplineIK Solver〈样条反向动力控制器〉Constraints〈约束〉Attachment Constraint〈附件约束〉Surface Constraint〈表面约束〉Path Constraint〈路径约束〉Position Constraint〈位置约束〉Link Constraint〈连结约束〉LookAt Constraint〈视觉跟随约束〉Orientation Constraint〈方位约束〉Transform Constraint〈变换控制〉Link Constraint〈连接约束〉Position/Rotation/Scale〈PRS控制器〉Transform Script〈变换控制脚本〉Position Controllers〈位置控制器〉Audio〈音频控制器〉Bezier〈贝塞尔曲线控制器〉Expression〈表达式控制器〉Linear〈线性控制器〉Motion Capture〈动作捕捉〉Noise〈燥波控制器〉Quatermion(TCB)〈TCB控制器〉Reactor〈反应器〉Spring〈弹力控制器〉Script〈脚本控制器〉XYZ〈XYZ位置控制器〉Attachment Constraint〈附件约束〉Path Constraint〈路径约束〉Position Constraint〈位置约束〉Surface Constraint〈表面约束〉Rotation Controllers〈旋转控制器〉注:该命令工十一个子菜单。
详细的3D MAX中文和英文对照
SELECTION MODIFIERS 选择修改器MESH SELECT 网格选择POLY SELECT 多边形选择PATCH SELECT 面片选择SPLINE SELECT 样条线选择FFD SELECT FFD选择SELECT BY CHANNEL 按通道选择SURFACE SELECT(NSURF SEL)NURBS 曲面选择PATCH/SPLINE EDITING 面片/样条线编辑EDIT PATCH 编辑面片EDIT SPLINE 编辑样条线CROSS SECTION 横截面SURFACE 曲面DELETE PATCH 删除面片DELETE SPLINE 删除样条线LATHE 车削NORMALIZE SPLINE 规格化样条线FILLET/CHAMFER 圆角/切角TRIM/EXTEND 修剪/延伸RENDERABLE SPLINE 可渲染样条线SWEEP 扫描MESH EDITING 网格编辑DELETE MESH 删除网格EDIT MESH 编辑网格EDIT POLY 编辑多边形EXTRUDE 挤出FACE EXTRUDE 面挤出NORMAL 法线SMOOTH 平滑BEVEL 倒角BEVEL PROFILE 倒角剖面TESSELLATE 细化STL CHECK STL检查CAP HOLES 补洞VERTEXPAINT 顶点绘制OPTIMIZE 优化MULTIRES 多分辨率VERTEX WELD 顶点焊接SYMMETRY 对称EDIT NORMALS 编辑法线EDITABLE POLY 可编辑多边形EDIT GEOMETRY 编辑几何体SUBDIVISION SURFACE 细分曲面SUBDIVISION DISPLACEMENT 细分置换PAINT DEFORMATION 绘制变形CONVERSION 转化TURN TO POLY 转换为多边形TURN TO PATCH 转换为面片TURN TO MESH 转换为网格ANIMATION MODIFIERS 动画EDIT ENVELOPE 编辑封套WEIGHT PROPERTIES 权重属性MIRROR PARAMETERS 镜像参数DISPLAY 显示ADVANCED PARAMETERS 高级参数GIZMO 变形器MORPHER 变形器CHANNEL COLOR LEGEND 通道颜色图例GLOBAL PARAMETERS 全局参数CHANNEL LIST 通道列表CHANNEL PARAMETERS 通道参数ADVANCED PARAMETERS 高级参数FLEX 柔体PARAMETERS 参数SIMPLE SOFT BODIES 简章软体WEIGHTS AND PAINTING 权重和绘制FORCES AND DEFLECTORS 力和导向器ADVANCED PARAMETERS 高级参数ADVANCED SPRINGS 高级弹力线MELT 融化LINKED XFORM 链接变换PATCH DEFORM 面片变形PATH DEFORM 路径变形SURF DEFORM 曲面变形PATCH DEFORM(WSM)面片变形(WSM)PATH DEFORM(WSM)路径变形(WSM)SURF DEFORM(WSM)曲面变形(WSM)SKIN MORPH 蒙皮变形SKIN WRAP 蒙皮包裹SKIN WRAP PATCH 蒙皮包裹面片SPLINE IK CONTROL 样条线IK控制ATTRIBUTE HOLDER 属性承载器UV COORDINATES MODIFIERS UV坐标修改器UVW MAP UVW贴图UNWRAP UVW展开UVWUVW XFORM UVW变换MAPSCALER(WSM)贴图缩放器(WSM)MAPSCALER 贴图缩放器(OSM)CAMERA MAP 摄影机贴图CAMERA MAP(WSM)摄影机贴图(WSM)SURFACE MAPPER(WSM)曲面贴图(WSM)PROJECTION 投影UVW MAPPING ADD UVW贴图添加UVW MAPPING CLEAR UVW贴图清除CACHE TOOLS 缓存工具POINT CACHE 点缓存POINT CACHE(WSM)点缓存(WSM)SUBDIVISION SURFACES 细分曲面TURBOSMOOTH 涡轮平滑MESHSMOOTH 网格平滑HSDS MODIFIER HSDS修改器FREE FORM DEFORMATIONS 自由形式变形FFD MODIFIERS FFD修改FFD BOX/CYLINDER FFD长方形/圆柱体PARAMETRIC MODIFIERS 参数化修改器BEND 弯曲TAPER 锥化TWIST 扭曲NOISE 噪波STRETCH 拉伸SQUEEZE 挤压PUSH 推力RELAX 松弛RIPPLE 涟漪WAVE 波浪SKEW 倾斜ALICE 切片SPHERIFY 球形化AFFECT REGION 影响区域LATTICE 晶格MIRROR 镜像DISPLACE 置换XFORM 变换SUBSTITUTE 替换PRESERVE 保留SHELL 壳SURFACE 曲面MATERIAL 材质MATERIAL BY ELEMENT 按元素分配材质DISP APPROX 置换近似DISPLACE MESH(WSM)置换网格(WSM)DISPLACE NURBS(WSM)置换网格(WSM)RADIOSITY MODIFIERS 沟通传递修改器SUBDIVIDE(WSM)细分(WSM)SUBDIVIDE 细分FILE(文件) EDIT(编辑)Rest(重置) Undo(撤消)Save Selected(保存所选择的对象) Redo(恢复) XRef Objects(外部参考物体) Clone(复制)XRef Scenes(外部参考场景) Delete(删除)Merge(合并) Select All(对象选择)Replace(替换) Select None(取消对象)Import(输入) Select Invert(对象反转)Export(输出) Hold(保存)Archive(压缩存盘) Fetch(取出)View File(观看文件) Select BY(根据..选择) Select By Color(根据颜色..选择)Select By Name(根据名字..选择)Region(区域)Edit Named Selections(编辑已命名被选物) Properties(属PPP)TOOLS(工具菜单) GROUP(分组菜单)Mirror(镜像) Group(分组)Array(阵列) Open(打开)Align(对齐) Close(关闭)Place Highlight(放置高亮区) Ungroup(解除群组) Align Camera(对齐摄像机) Explode(分解) Scaping Tool(间距修改工具) Detach(分离) Transform Type-In(输入变换坐标) Attach(合并) Display Floater(显示浮动物体)Hide(隐藏)Freeze(冻结)Selection Floater(选择浮动物体)Snapshot(快照复制)Normal Align(法向对齐)Material Editor(材质编辑器)Material/Map Browser(材质/贴图浏览器)VIEWS(视图菜单)Undo(撤消)Redo(重复)Save Active View(保存当前激活的视图状态)Restore Active View(还原当前激活的视图状态)Grids(栅格)Show Home Grid显示主栅格)Activate Home Grid(激活主栅格)Activate Grid Object(激活栅格对象)ALign To View(对齐视图)Viewport Background(背景图像)Update Background Transform(更新背景图像)Rest Background Transform(重设背景转换)Show Transform Gizmo(显示转换范围框)Show Ghosting(显示前后帖)Show Key Times(显示轨迹点时间)Shade selected(阴影选择)Show Dependencies(显示从属物体)Instances(相依物体)Reference(参考物体)Match Camera To View(相机与视图相配)Add Default Lights To Scene(向场景添加缺省灯光)Redraw All Views(重画所有的视图)Deactivate All Maps(休眠所有贴图)Update During Spinner Drag(微调控制项拖动时更新)Expert Mode(专家模式)Object(物体工具栏) Create(创建命令面板)Compounds(复合工具栏) Modify(修改命令面板)Lighes&Cameras(光线和照相机工具栏) Hierarchy(层级命令面板) Particles(粒子系统工具栏) Motion(运动命令面板)Helpers(帮助物体工具栏) Display(显示命令面板)Space Warps(空间扭曲工具栏) Utilities(实用程序)Modifiers(修改工具栏)Rendering(渲染工具栏)Shapes(二维图形工具栏)Modeling(造型修改工具栏)MODIFIER STACK(编辑修改器堆栈) 布尔运算与克隆对象Pin Stack(钉住堆栈状态) Union(并集)Active/Inactive(激活/不激活切换) Subtraction(差集)Show End Result(显示最后结果) Intersection(交集)Make Unipue(使独立) Copy(复制)Remove Modifier(删除编辑修改器) Instance(关联复制)Edit Stack(编辑堆栈对话框) Reference(参考复制)材质编辑器 Reglection(反射)Basic Parameters(基本参数) Refraction(折射).Ambient(环境反射) 3D Procedural Maps(三维贴图).Diffuse(漫反射) Face-mapped(面贴图)Specular(镜面反射)Extended Parameters(扩展参数)Maps(贴图).Bitmap(位图).Checker(棋盘格) 复合材质.Gradient(渐变) Double Sided(双面).Adobe Photoshop Plug-In Filter(PS滤镜)Blend(混合).Adove Premiere Video Filter(PM滤镜) Matte/Shoadow().Cellular(细胞) Multi/Sub-object(多重子物体).Dent(凹痕) Raytrace(光线追踪).Noise(干扰) Top/Bottom(项底).Splat(油彩).Matrble(大理石).Wood(木纹).Water(水) Time Configuration(时间帧速率).Falloff(衰减) Frame Rate(帧速率).Flat Mirror(镜面反射) NTSC(NTSC制式).Mask(罩框) Film(胶片速度).Mix(混合) PAL(PAL制式).Output(输出) Custom(自定义).Planet(行星).Raytrace(光线跟踪).Reglect/Refrace(反射/折射).Smoke(烟雾) Create(创建).Speckle(斑纹) Helpers(帮助物体).Stucco(泥灰) Dummy(虚拟体).Vertex Color(项点颜色) Forward Kinematics(正向运动).Composite(合成贴图) Inverse Kinematics(反向运动).Particle age(粒子寿命).Patticle Mblur(粒子模糊)控制器械的种类二维项点Track View(轨迹视图) Smooth(光滑项点)Assign Controller(指定控制器) Corner(边角项点)Replace Controller(替换控制器) Bezier(Bezier项点).Linear Controller(直线控制器) Bezier Corner(Bezier角点) .TCB Contriller(TCB控制器)).Contriller(连续).Path Controller(路径控制器).List Controller(列表控制器).Expression Controller(噪声控制器).Look At(看着)三维造型 Deformations(变形控制)Box(盒子) Scale(缩放)Cone(圆锥体) Twist(扭曲)Sphere(球体) Teeter(轴向变形) Geosphere(经纬球) Bevel(倒角)Cylinder(柱体) Fit(适配变形)Tube(管子)Torus(圆环)Pyramid(金字塔)Teapot(茶壶)Plane(平面)参数区卷展栏Shader Basic Parameters(着色基本参数区) .Blinn(宾氏).Anisotropic(各向异PPP).Metal(金属).Multi-layer(多层式).Phong(方氏).Oren-Nayar-Blinn(表面粗糙的对象).Strauss(具有简单的光影分界线).Wire(线架结构显示模式).2-Sided(双面材质显示).Face Map(将材质赋予对象所有的面).Faceted(将材质以面的形式赋予对象) Blinn Basic Patameters(宾氏基本参数区) .Diffuse(固有色).Ambient(阴影色).Specular(高光色).Self-Illumination(自发光).Opacity(不透明度).Specular Highlights(高光曲线区)..Specular Level(高光级别)..Glossiness(光泽度)..Soften(柔和度)Extended Parameters(扩展参数区).Falloff(衰减).Filer(过滤法).Subtractive(删减法).Additive(递增法).Index of Refraction(折射率).Wire(线架材质).Reflection Dimming(反射暗淡) SuperSampling(超级样本)Maps(贴图区).Ambient Color(阴影色贴图).Diffuse Color(固有色贴图).Specular Color(高光色贴图).Glossiness(光泽度贴图).Self-Illmination(自发光贴图).Opacity(不透明贴图).Filter Color(过滤色贴图).Bump(凹凸贴图).Reflction(反射贴图).Refraction(折射贴图)..Refract Map/Ray Trace IOR(折射贴图/光线跟踪折射率).Displacement(置换贴图)Dvnamics Properties(动力学属PPP区)材质类型Blend(混合材质).Material#1(材质#1).Material#2(材质#2).Mask(遮罩).Interactive(交互).Mix Amount(混合数值).Mixing Curve(混合曲线).Use Curve(使用曲线).Transition Zone(交换区域)Composite(合成材质).Composite Bisic Parameters(合成材质基础参数区)..Base Material(基本材质)..Mat.1~Mat.9(材质1~材质9)Double Sided(双面材质).Translucency(半透明) 贴图类型.Facing material(表面材质) Bitmap(位图).Back Material(背面材质) Cellular(细胞)Matte/Shadow(投影材质) Checker(棋盘格).Matte(不可见) Composite(合成贴图).Atmosphere(大气) Dent(凹痕贴图)..Apply Atmosphere(加入大气环境) Falloff(衰减)..At Background Depth(在背景深度) Flat Mirror(镜面反射) ..At Object Depth(在物体深度) Gradient(渐变).Shadow(阴影) Marble(大理石)..Receive Shadow(接受阴影) Madk(罩框)..Shadow Brightness(阴影的亮度) Mix(混合).Reflection(反射) Noise(干扰)Morpher(形态结构贴图) Output(输出)Muti/Sub-Object(多重子物体材质) Partcle Age(粒子寿命).Set Number(设置数目) Perlin Marble(珍珠岩).Number Of Materials(材质数目) Planet(行星)Raytrace(光线追踪材质) Raytrance(光线跟踪).Shading(明暗) Reflect/Refract(反射/折射).2-Sided(双面) RGB Multiply(RGB倍增).Face Map(面贴图) RGB Tint(RGB染色).Wire(线框) Smoke(烟雾).Super Sample(超级样本) Speckle(斑纹).Ambient(阴影色) Splat(油彩).Diffuse(固有色) Stucco(泥灰).Reflect(反射) Thin Wall Refraction(薄壁折射).Luminosity(发光度) Vertex Color(项点颜色).Transparency(透明) Water(水).Index Of Refr(折射率) Wood(木纹).Specular Highlight(反射高光)..Specular Color(高光反射颜色)..Shininess(反射)..Shiness Strength(反光强度).Environment(环境贴图).Bump(凹凸贴图)Shellac(虫漆材质).Base Material(基础材质).Shellac Material(虫漆材质).Shellac Color Blend(虫漆颜色混合)Standard(标准材质)Top/Bottom(项/底材质).Top Material(项材质).Bottom Material(底材质).Swap(置换).Coordinates(坐标轴).Blend(融合).Possition(状态)灯光类型摄像机类型Omni(泛光灯) Target(目标).General Parameters(普通参数) .Lens(镜头尺寸).Projector Parameters(投射贴图) .FOV(视域范围).Attenuation Parameters(衰减参数) .Stock Lenses(镜头类型) .Shadow Parameters(阴影参数) .Show Core(显示视域范围).Shadow Map Params(阴影贴图参数) .Show Horizor(显示地平线) Target Spot(目标聚光灯) .Near Range(最近范围)Free SPot(自由聚光灯) .Far Range(最远范围)Target Direct(目标平行光灯)Render Scene(渲染).Rime Output(输出时间)..Single(渲染单帖)..Range(所有帖).Output Size(输出尺寸)Rendering(渲染)/Environment(环境) 粒子系统Background(背景) Spray(喷射)Global Lighting(球形照明) Snow(雪) Atmosphere(大气) Blizzard(暴风雪) Combustion(燃烧) PArray(粒子列阵) Volume Light(体光) Pcloud(粒子云)Fog(雾) Super Spray(超级喷射).Standard(标准).Layered(分层)Volume Fog(体雾)。
第五章Subdivision细分曲面建模
2、细分曲面可以是一个整体,不用象NURBS建模一样,使用面片缝合等技术,不 用担心表面的连续性和接缝等问题。
3、细分曲面可以象Polygon一样任意的拓扑,可以任意连线。不象NURBS表面一样 一定要四边形。它产生自一个任意拓扑的Polygon网格。这个Polygon网格就是它的 Base Mesh(基本网格),控制着细分表面的大型,在Maya里,你可以在使用任意 的Polygon建模工具对这个基本网格进行编辑。
第四节 Subdiv SurfacSurfces(细分表面)物体可以通过 两种途径创建:一种是从菜单栏内Create(创建) >Subdiv Primtives(细分基本几何体)中创建细 分表面的基本物体。另外一种是用polygon或 NURBS物体创建基本形状,再使用菜单栏内 modify(修改)>convert(转换)>polygons to Subdiv或NURBS to Subdiv转成细分物体,转换 后可以对物体继续进行编辑。
4、细分曲面建模速度快。用户可以很快地设计一个粗略的多边形形式,将此形式转 换到一个平滑细分面,然后对所要求细节进行操作,而不必担心缝合和连续性。
5、细分曲面可以只在需要细节的部位执行细分操作增加顶点,以便编辑更多的细节。 这样可以让模型尽量减少不必要的顶点,即减轻了系统的运算负担,又保证了模型 的精细度。
第三节 Subdiv Surfaces(细分曲面)的特点
在 Maya 中细分曲面建模代表了一种全新的建模方式,同时具备NURBS 和多边形建 模的优势。细分曲面建模提供如下优于传统的 NURBS 或多边形建模的功能特点:
3d美术英语专业词汇
3d美术英语专业词汇英文回答:3D Art Terminology for English Majors.3D Modeling: The process of creating three-dimensional objects using digital tools.Animation: Adding movement to objects or characters.Baking: Process of merging multiple layers or mapsinto a single texture.Bevel: To add a sloped or rounded edge to an object.Bounding Box: A box that defines the spatial dimensions of an object.Bump Map: A texture map that adds the illusion of depth to a surface.Cinematic: Relating to the techniques and conventions of filmmaking.Diffuse Map: A texture map that determines the color of an object.Displacement Map: A texture map that modifies the geometry of an object.Dystopian: A genre characterized by a dark, pessimistic future.Edge Loop: A series of vertices and edges that form a loop around an object.Extrusion: The process of creating a new shape by extending part of an existing object.Facet: A flat surface on a 3D object.Game Engine: A software program that allows users tocreate and run 3D games.Hard Surface Modeling: Creating objects with sharp, defined edges, such as cars or weapons.LOD (Level of Detail): Reducing the level of detail of objects based on their distance from the camera.Material: A set of properties that define the surface characteristics of an object.Mesh: A collection of vertices, edges, and faces that form a 3D object.Normal Map: A texture map that stores information about the surface orientation of an object.Orthographic: A projection method that displays objects from a parallel angle.PBR (Physically Based Rendering): A rendering technique that simulates the physical properties of lightand materials.Polygon: A shape with three or more straight sides, forming one face of a 3D object.Quads: Polygons with four sides.Ray Tracing: A rendering technique that traces thepath of light to accurately calculate shadows and reflections.Rigging: The process of creating a skeleton for an object, allowing it to be animated.Shader: A program that defines how an object's surface is rendered.Subdivision Surface: A technique that creates a smooth, organic surface from a low-polygon mesh.Texture: A 2D image applied to a 3D object to add details and realism.Transform: The process of moving, rotating, or scaling an object.UV Mapping: Assigning 2D coordinates to a 3D model to allow textures to be applied correctly.Vertex: A point in space that defines the shape of a 3D object.Voxel: A 3D pixel that represents a point in space.中文回答:3D美术英语专业词汇。
如何创建Blender中的游戏模型
如何创建Blender中的游戏模型Blender是一款功能强大且免费的3D建模和动画软件,广泛应用于游戏开发行业。
如果你想要成为一名游戏艺术家或者对游戏模型的创建感兴趣,那么使用Blender将是一个很好的选择。
本文将教你如何在Blender中创建游戏模型,希望能为你提供一些帮助和指导。
首先,启动Blender并选择一个合适的场景。
你可以从头开始创建一个自己的模型,或者使用Blender的内置模型库。
在开始之前,确保你对Blender的基本操作和界面熟悉,并且已经掌握了一些基本的建模技巧。
接下来,我们将介绍一些常用的建模技巧和工具。
1. Box Modeling(盒子建模):这是一种常见的建模技术,通过绘制基本的几何形状(如立方体、圆柱体等),然后逐渐修改、添加细节来创建模型。
你可以使用Blender中的各种变形工具(如拉伸、收缩、旋转等)来调整形状,并使用分割和填充面来添加新的几何体。
2. Edge Loops(边环):边环是由相连的边构成的循环。
在建模过程中,使用边环可以更好地控制模型的形状和曲线。
你可以使用选择和循环选择工具来选择和编辑边环。
3. Mirror Modifier(镜像修饰器):使用镜像修饰器可以使对称模型的创建更加容易和高效。
你只需要编辑其中一侧,镜像修饰器将自动反映在另一侧。
4. Subdivision Surface Modifier(细分表面修饰器):细分表面修饰器可以创建光滑的曲面效果。
它会根据低分辨率模型的几何形状生成更多的多边形,使模型表面更加光滑和细腻。
5. UV Unwrapping(UV展开):在进行纹理贴图之前,你需要将模型的表面展开为2D纹理空间,这个过程叫做UV展开。
你可以使用Blender中的各种UV工具来展开模型,并根据需要进行调整和优化。
6. Texture Painting(纹理绘制):通过纹理绘制,你可以为模型添加各种细节和质感。
Blender提供了强大的纹理绘制工具,包括笔刷、图层和混合模式等。