泛函分析——武大精品课4-2
泛函分析习题标准答案
第二章 度量空间作业题答案提示 1、试问在R 上,()()2,x y x y ρ=-能定义度量吗?答:不能,因为三角不等式不成立。
如取则有(),4x y ρ=,而(),1x z ρ=,(),1z x ρ= 2、试证明:(1)()12,x y x y ρ=-;(2)(),1x y x y x yρ-=+-在R 上都定义了度量。
证:(1)仅证明三角不等式。
注意到21122x y x z z y x z z y ⎛⎫-≤-+-≤-+- ⎪⎝⎭故有111222x yx z z y-≤-+-(2)仅证明三角不等式 易证函数()1xx xϕ=+在R +上是单调增加的, 所以有()()a b a b ϕϕ+≤+,从而有1111a b a b a ba b a b a b++≤≤+++++++令,,x y z R ∀∈,令,a z x b y z =-=- 即111y x z x y zy x z x y z---≤++-+-+-4.试证明在[]b a C ,1上,)12.3.2()()(),(⎰-=ba dt t y t x y x ρ定义了度量。
证:(1)0)()(0),(≡-⇔=t y t x y x ρ(因为x,y 是连续函数) 0),(≥y x ρ及),(),(x y y x ρρ=显然成立。
[]),(),()()()()()()()()()()(),()2(y z z x dtt y t z dt t z t x dtt y t z dt t z t x dtt y t x y x bab ab aba ρρρ+≤-+-≤-+-≤-=⎰⎰⎰⎰5.试由Cauchy-Schwarz 不等式证明∑∑==≤⎪⎭⎫⎝⎛ni in i i x n x 1221证:∑∑∑∑=====⋅≤⎪⎭⎫ ⎝⎛ni in i n i i n i i x n x x 1212122118.试证明下列各式都在度量空间()11,ρR 和()21,R R 的Descartes 积21R R R ⨯=上定义了度量{}212/1222121,max ~~)3(;)(~)2(;)1(ρρρρρρρρρ=+=+= 证:仅证三角不等式。
泛函分析——武大精品课2-4
1第12讲 Hahn -Banach 延拓定理教学目的掌握线性泛函延拓定理的证明思想及其推论。
授课要点1、 实空间线性泛函的控制延拓定理。
2、 复空间线性泛函的控制延拓定理。
3、保范延拓定理。
4、 延拓定理的推论及其意义。
对于一个线性赋范空间来说,对它上面的线性泛函知道得越多,对这个空间本身就了解得越多(参见第9讲思考题1). 有时候为了某种目的,要求有满足一定条件的线性泛函存在,Hahn -Banach 定理为这样的线性泛函的存在提供了保证.定义1 设()D T 与()1D T 分别是算子T 与1T 的定义域,若()()1D T D T ⊂,并且1,T x Tx =()x D T ∀∈,则称算子1T 是T 的延拓.定义2 线性空间X 上的实泛函()p x 称为是次可加的,若()()()p x y p x p y +≤+,,x y X ∀∈称为是正齐性的,若()()p x p x αα=,x X ∀∈,0α≥.显然线性空间上的每个半范数都是次可加正齐性泛函.定理1(Hahn -Banach ) 设X 是实线性空间,:p X R →是X 上的正齐性次可加泛函,M X ⊂是线性子空间,则(1)对于M 上定义的每个线性泛函0f ,存在0f 从M 到X 的延2拓f :X R →,()()0f x f x =,x M ∀∈ (2)若()()0f x p x ≤,x M ∀∈,可选取f 满足()()f x p x ≤,x X ∀∈ ()1 证 明 1设M X ≠,取0\x X M ∈,记'M =span {}0,x M ,则x M ′′∀∈,0x x tx ′=+,其中x M ∈,t R ∈. 此分解式是唯一的,否则另有110x x t x ′=+,1x M ∈,则()110x x t t x −=−−,若1t t ≠,则101x x x t t −=−M ∈,与0x 的取法矛盾,于是1t t =,并且1x x =. 对于任何常数c ,令()()0f x f x tc ′=+,0x x tx ′∀=+.则容易验证f 是M ′上的线性泛函. 实际上f 是0f 从M 到M ′的延拓,因为当x M ′∈时,0t =,从而()()0f x f x ′=.2 我们将证明当x M ∀∈,()()0f x p x ≤时,适当选择c ,可使()()f x p x ′′≤,x M ′′∀∈.实际上,x y M ∀∈,由于()()()()000f x f y f x y p x y +=+≤+()()00p x x p x y ≤−++,即()()()()0000f x p x x p x y f y −−≤+−,故存在c 满足()()00sup x Mf x p x x c ∈−−≤()()00inf y M p x y f y ∈≤+−, ()23我们将取这样的c 作成所要的线性泛函.此时若0x x tx ′=+,0t >,由()()00p x y f y c +−≥对于每个y M ∈成立,用1t x −代替y ,则()()1100p x t x f t x c −−+−≥,从而()()()()00f x f x tc p x tx p x ′′=+≤+=.若0x x tx ′=+,0t <,由()()00f x p x x c −−≤对于每个x M ∈成立,用1t x −−代替x ,则()()1100f t x p t x x c −−−−−−≤,即()()00f x p x tx tc −++≥. 从而()()()()00f x f x tc p x tx p x ′′=+≤+=.当0t =时,显然()()()()0f x f x p x p x ′′==<. 故f 是0f 从M 到M ′上满足()1的延拓。
泛函分析答案
14
第一步线索小结
进一步,由 T 的齐次性,
U (" ,r ) TB(" ,n)
U
("
,
r n
)
TB(" ,1)
取
=
r 3n
,即得U
(" ,3
)
TB(" ,1).
15
第二步证 TB(" ,1) U (" , ) .
即 y0 U (" , ), 要证 x0 B (" ,1) , 使得
§3 纲与开映象定理
3.1 纲与纲推理
与定义1.2.2 的稠密概念相联系,
引入疏集的概念.
定义2.3.1 设 ( X , ) 是一个度量
空间,集 E X ,称 E 是
疏的,如果 E 的内点在 X 内是
空的.或 E 不包含任一开球.
命题2.3.3 设 ( X , ) 是一度量空
间.为了 E X 是疏集必
( ) En0 B xn0 , rn0 =
矛盾.
3.2 开映象定理
设 X ,Y 都是 B 空间,算子 T 称
为是单射,是指 T 是1-1的,算子 T
称为是满射,是指 T ( X ) = Y .
如果 T 是一个单射,那么可以定义
T 1 ,它是线性的,但其
定义域却未必是全空间 Y .仅当它
还是一个满射时, T 1 才是 Y
下证 y0 Tw, y0 是 Tw 的内点. 事实上,
y0 Tw, x0 w, 使得 Tx0 = y0 .
因为 w 是开集, 所以 r > 0,
使得
B( x0,r ) W TB( x0,r ) Tw.
泛函分析第四讲
Tx M x ,
则称 T是 DT Y 中的有界线性算子.
当 DT X时,称 T 是 X Y 中的有界线性算子.
第二章 泛函分析
第二节 赋范线性空间及Banach空间
二、有界线性算子和连续线性泛函
泛函分析
2.2 赋范线性空间及Banach空间
第二章 泛函分析
一、赋范线性空间
1. 赋范线性空间的定义
定义1 设 X 是复(或实)的线性空间,
如果对于 X 中的每个 x ,对应于一个实数 x ,
且满足 (1) x 0,x 0 x 0;
(2) x x , R 或 C;
(非负性) (齐次性)
第二章 泛函分析
第二节 赋范线性空间及Banach空间
三、线性算子空间和共轭空间
定理5 ƁX Y 按通常的线性运算及算子范数
构成一个赋范线性空间. 证Ax sup Ax
x 1
x 1
x 1
A
(3)A B sup A Bx sup Ax Bx
x D, x 0
第二章 泛函分析
第二节 赋范线性空间及Banach空间
二、有界线性算子和连续线性泛函
定理3 设 X ,Y 是两个赋范线性空间, T : X Y 的线性算子,则T连续的充要条件是 T有界.
证明 必要性 若T连续但无界
xn X,xn 0n 1,2, 使 Txn n xn
令
yn
定理2 设 X ,Y 是两个赋范线性空间,T是定义在 X 的子空间D上而值域含在 Y 中的线性算子,则 T 是有界的充要条件是 T将D中任一有界集映成 Y 中有界集.
证明 必要性
泛函分析教学大纲
泛函分析教学大纲第一篇:泛函分析教学大纲一、教学目的通过学习此章,理解线性算子的谱及分类,掌握紧集和全连续算子的定义及紧线性算子的谱。
二、教学重点线性算子的谱及分类,全连续算子。
三、教学难点紧集和紧线性算子的谱。
四、讲授要求通过学习此章,理解线性算子的谱及分类,掌握紧集和全连续算子的定义及紧线性算子的谱。
五、讲授要点谱集及分类,有界线性算子谱的性质,紧集合全连续算子,紧线性算子的谱。
第二篇:泛函分析教学大纲课号:218.116.1泛函分析教学大纲(Functional Analysis)学分数 3 周学时 4一.说明1.课程名称: 泛函分析(一学期课程),第五学期(3+1)*18=72.2.教学目的和要求:(1)课程性质: 本课程是数学系专业基础课, 为数学系本科三年级学生所必修。
(2)基本内容: 本课程主要内容: 度量空间中点集分析,赋范空间上算子与几何,内积空间中几何与算子,线性算子谱理论。
(3)基本要求: 通过本课程的学习, 学生应熟练掌握度量,范数,线性算子,内积,直交投影,谱等概念, 熟练掌握纲理论及有界线性算子的基本原理和线性泛函的延拓理论, 为今后学习打下坚实基础。
3.教学方式: 课堂授课。
4.考试方式: 考试。
5.教材: 《泛函分析》讲义,郭坤宇,徐胜芝编参考书: 《实变函数与泛函分析》夏道行等编, 高等教育出版社。
二.讲授纲要第一章度量空间中点集分析1.1 度量空间(3学时)1.2 度量拓扑(2学时)1.3 数值函数(2学时)1.4 紧~~~与极值(2学时)1.5 贝尔纲论(3学时)1.6 函数空间(2学时)本章要求: 通过学习度量空间的基本点集理论, 读者应能熟悉紧集与其应用, 熟悉纲理论及其应用, 掌握映射的连续性与数值函数的上半连续与下半连续性及其特征.第二章赋范空间上算子与几何有界线性算子(3学时)连续线性泛函(3学时)弱收敛与共轭(2学时)一致有界原理(2学时)开映射与闭算子(3学时)凸集与超平面(2学时)本章要求: 通过学习有界线性算子的基本理论, 读者应能掌握线性泛函分析的基本原理:泛函延拓原理及其在分析与几何上的应用;一致有界原理及其应用;开映射原理与闭图像定理的应用等.第三章内积空间上几何与算子内积空间(2学时)共轭算子(2学时)投影算子(2学时)基与维数(2学时)赋范代数(2学时)本章要求: 通过学习内积空间的几何, 掌握投影定理与投影算子的应用,直交基的确立及其应用.第四章线性算子谱理论正则点与谱点(3学时)紧算子谱分析(3学时)有界正规算子(2学时)无界线性算子(2学时)谱测度与积分(3学时)指标理论初步(2学时)本章要求: 通过学习线性算子谱理论, 读者应能计算一些典型线性算子如单向平移和乘法算子等的谱, 提高利用Gelfand谱理论分析谱的能力, 掌握正规算子谱分解及其应用, 能分析紧算子的谱并掌握Fredholm算子指标的应用.第三篇:泛函分析1.设(X,d)为距离空间。
“泛函分析”课程学习指南
“泛函分析”课程学习指南本课程主要分为四部分内容:绪论,空间理论,算子理论和算子谱理论。
绪论从分析和代数中的若干问题出发,运用类比、联想、化归等方法,引入泛函分析中的一些基本概念和研究方法,诠释数学研究的基本思想。
空间理论中主要介绍距离空间,赋范空间和内积空间三类空间结构,重点讲授Hilbert空间的几何特征。
算子理论中主要介绍了Banach空间中有界线性算子的基本定理和它们的应用,即:一致有界原则,开映射定理,闭图像定理和Hahn-Banach定理,这是本门课程的核心内容。
算子谱理论中主要介绍有界线性算子的基本性质,重点讲述了有界自共轭算子和紧算子谱的性质。
为了让学生更好地理解和掌握这些内容,下面按章列出知识要点,重点难点和学习要求。
绪论1.知识要点泛函分析中十分抽象的基本概念(空间的结构、收敛性、按坐标分解等)的来源和背景2.重点难点从有限维空间到无穷维空间的过渡,数学研究的基本方法:化归,类比,归纳,联想。
3.学习要求从分析和代数中具体的实例中感悟数学研究的思想方法。
第一章距离空间1.知识要点距离空间的定义;收敛性;开集;闭集;连续映射;可分的距离空间;距离空间中的列紧集;完备的距离空间;距离空间的完备化;压缩映射原理2.重点难点一些具体的距离空间(如:[,],,,,p pC a b L l S s)的完备性,可分性及收敛的具体含义。
3.学习要求(1)掌握距离空间的定义及例;(2)掌握距离空间中点集的拓扑概念;(3)清楚具体的距离空间的拓扑性质和收敛的具体含义;(4)掌握压缩映射原理的内容及证明,并能利用压缩映射原理解决一些具体问题。
第二章赋范空间1.知识要点赋范空间和Banach空间的定义;范数与距离的关系;Riesz引理;有限维空间的几何特征;赋范空间中的级数;赋范空间的商空间2.重点难点(1)范数与距离的关系;(2)Riesz引理的内容与应用。
3.学习要求(1)掌握赋范空间的定义和典型例子;(2)能够证明一些具体空间是赋范空间及它的完备性;(3)准确掌握Riesz引理的背景,内容和应用;(4)掌握有限维空间的几何特征;(5)了解赋范空间中的级数和商空间的含义。
武汉大学泛函分析授课教案
授课班级:XX级XX班授课时间:2023年X月X日授课教师:XXX教学目标:1. 使学生掌握泛函分析的基本概念和基本性质。
2. 使学生能够运用泛函分析的理论和方法解决实际问题。
3. 培养学生的逻辑思维能力和创新意识。
教学内容:1. 泛函分析的基本概念2. 线性赋范空间3. 线性算子4. 共鸣定理及其应用5. 自反空间与一致凸空间教学过程:一、导入1. 回顾实变函数和复变函数的基本知识,引出泛函分析的概念。
2. 强调泛函分析在数学和自然科学中的应用。
二、基本概念1. 泛函分析的基本概念:函数空间、线性赋范空间、线性算子等。
2. 通过实例讲解,使学生理解这些概念。
三、线性赋范空间1. 定义线性赋范空间,并举例说明。
2. 讲解线性赋范空间的性质,如闭性、完备性等。
3. 介绍一些常见的线性赋范空间,如Lp空间、C空间等。
四、线性算子1. 定义线性算子,并举例说明。
2. 讲解线性算子的性质,如连续性、有界性等。
3. 介绍一些常见的线性算子,如积分算子、微分算子等。
五、共鸣定理及其应用1. 介绍共鸣定理的定义和证明。
2. 通过具体例子分析共鸣定理在经典分析中的应用。
3. 讲解如何将经典分析中的问题转化为泛函分析中的问题。
六、自反空间与一致凸空间1. 定义自反空间和一致凸空间,并举例说明。
2. 讲解自反空间和一致凸空间的性质,如自然嵌入映射、等距同构等。
3. 介绍一些常见的自反空间和一致凸空间,如Lp空间、Lq空间等。
七、总结1. 总结本节课的主要内容,强调泛函分析在数学和自然科学中的应用。
2. 布置课后作业,巩固所学知识。
教学评价:1. 通过课堂提问、讨论等方式,了解学生对本节课内容的掌握程度。
2. 课后作业的完成情况作为评价学生掌握知识的重要依据。
3. 定期进行测试,了解学生对泛函分析的整体掌握情况。
《泛函分析》课程教学大纲
《泛函分析》课程教学大纲课程编码:171210140课程性质:专业方向限选课程适用专业:统计学专业所需先修课数学分析高等代数实变函数论学时学分:32学时1.5学分编写单位:数学与信息科学系一、课程说明1、课程简介:泛函分析课程是数学与应用数学专业的专业课程,是数学分析的后续课程,是近代数学中的一个重要分支,在古典分析、线性代数、线性微分方程、积分方程、变分学、逼近论等的开展基础上逐渐形成。
其内容已渗透到逼近论、偏微分方程、概率论、最优化理论等各方面.近年来,在工程技术上更是获得了广泛而有效的应用.它的开展受到了数学物理方程和量子力学的推动,后来又整理、概括了经典分析和函数论的许多成果,因此学习泛函分析时需要学生掌握分析、代数、概率论、拓扑学等基本知识,是数理方程、稳定性理论等后续课程的必要基础课程.2、教学目的要求:通过泛函分析的教学,使学生了解和掌握度量空间,赋范线性空间,有界线性算子,Hilbert空间,Banach空间的基本概念和基本理论,培养学生理论思维能力,为学习数学的其它专业课打下扎实的理论基础.3、教学重点难点教学重点:离散度量空间、序列空间、有界空间、可测函数空间的性质、度量空间中极限、稠密集、可分空间的概念、用极限的形式和集合对应关系给出两个重要定理、空间的结构理论,度量收敛;完备度量空间的定义、压缩映照原理及其应用、对向量组的线性相关、线性无关定义的理解和判定向量组的线性相关性、三个定理的内容;有界线性算子与连续线性泛函,算子的范数,经典空间,l p的共地空间、内积空间,施瓦茨不等式,直交投影,希尔伯特空间中的规范正交系,贝塞尔不等式,帕塞瓦尔不等式,同构映射,连续线性泛函,自共朝,本章难点柯西积分定理的证明、刘维尔定理的应用.本章内容第一节复积分的概念及其简单性质1.1复变函数积分的定义1.2复变函数积分的计算问题1.3复变函数积分的基本性质第二节柯西积分定理2.1不定积分2.2柯西积分定理的推广2.3柯西积分定理推广到复围线的情形第三节柯西积分公式及其推论3.1柯西积分公式3.1解析函数的无穷可微性3.2柯西不等式与刘维尔定理3.3摩勒拉定理第四章解析函数的幕级数表示法(8学时)教学目标1、使学生掌握复级数的基本概念及其相关性质,能够深刻认识理解复级数与实级数在概念、性质、定理上的区别与联系;2、使学生理解并掌握解析函数零点的孤立性及唯一性定理.本章重点.1、理解并掌握复级数的基本性质;2、理解并掌握幕级数敛散性的判别,收敛域的求法以及和函数的求法;3、能够熟练掌握并运用直接展法和间接展法,将某些解析函数展成泰勒级数,牢记sin z,cosz,—匚,一匚的展式,并注意展式的可展范围; 1-Z 1 + Z4、深刻理解解析函数零点的孤立性、唯一性定理及最大模定理,并能够综合运用证明有关数学问题.本章难点事级数的和函数在其收敛圆周上的状况、解析函数零点的孤立性、唯一性定理、最大模原理.本章内容第一节复级数的基本性质1.1复数项级数1.2一致收敛的复函数项级数1.3解析函数项级数第二节累级数1.1塞级数的敛散性1.2收敛半径的求法、柯西一阿达玛公式1.3基级数的解析性第三节解析函数的泰勒展式3.1泰勒定理3.2累级数的和函数在其收敛圆周上的状况3.3 一些初等函数的泰勒展式第四节解析函数零点的孤立性、唯一性定理4.1解析函数零点的孤立性4.3最大模原理第五章解析函数的罗朗展式与孤立奇点(6学时)教学目标使学生理解并掌握解析函数的罗朗展式的概念与展法,并注意与泰勒级数进行相关性质的比拟.深刻理解并牢固掌握可去奇点、极点、本性奇点的概念及等价定义.为下一章残数理论的学习打下坚实的基础.本章重点1、理解并掌握解析函数的罗朗展式以及罗朗级数与泰勒级数的关系.熟练掌握解析函数在孤立奇点邻域内的罗朗展式的基本方法与技巧;5.理解并深刻认识孤立奇点的三种类型及分类方法,熟练掌握可去奇点、极点、本性奇点的概念及等价定义;6.了解解析函数在无穷远点处的性质.本章难点解析函数在孤立奇点邻域内的罗朗展式的基本方法与技巧.本章内容第一节解析函数的罗朗展式1.1双边塞级数1.2解析函数的罗朗展式1.3罗朗级数与泰勒级数的关系1.4解析函数在孤立奇点邻域内的罗朗展式第二节解析函数的孤立奇点2.1孤立奇点的三种类型2.2可去奇点2.3极点2.4本质奇点第六章留数理论及其应用(6学时)教学目标1、使学生理解并掌握留数的定义及留数定理,会利用留数定理求解复积分与实积分,并知晓其内在联系与区别.深刻理解留数定理与柯西积分定理、柯西积分公式之间的关系;2、理解并掌握辐角原理、儒歇定理,会判定复方程根的个数及存在范围. 本章重点1、理解并掌握留数的定义及留数的求法;2、深刻理解并熟练掌握留数定理并能够灵活运用留数定理求解复积分3、了解用留数定理计算实积分的理论及基本方法;4、深刻理解并熟练掌握辐角原理、儒歇定理,会判定复方程根的个数及存在范围.本章难点留数定理与柯西积分定理、柯西积分公式之间的关系.本章内容第一节留数1.1留数的定义及留数定理1.2留数的求法1.3函数在无穷远点的留数1.4用留数定理计算实积分简介第二节辐角原理及其应用2.1对数留数2.2辐角原理2.3儒歇定理三、使用教材及参考书指定教材:钟玉泉编,复变函数论(第三版),高等教育出版社,2001年.参考书:[1]张锦豪、邱维元编,复变函数论,高等教育出版社,2001年.[2]钟玉泉编,复变函数学习指导书,高等教育出版社,1996年.[3]刚家泰,谭欣欣编,复变函数全程学习指导与解题能力训练,大连理工大学出版社,2001年.共辗算子,巴拿赫空间,汉恩一巴拿赫定理,一致有界性定理,逆算子定理,闭图像定理.教学难点:连续映射、空间完备性的证明、压缩映照原理及其应用、对向量组的线性相关、线性无关定义的理解和掌握一些判定定理、Holder不等式和Minkowski不等式的内容;有界线性算子与连续线性泛函;经典空间广〃的共辗空间,各种收敛性之间的各种联系,投影定理,斯捷克洛夫定理,汉恩一巴拿赫定理,一致有界性定理,逆算子定理,闭图像定理.5、教学手段及教学方法建议主要以教师讲授为主,适当的时候可以应用多媒体辅助教学.4、考核方式1)考核形式:考查2)开卷笔试3)期末总评成绩评定方法考试:试卷总分值100分,其中平时作业、期中考试及考勤占总评成绩的40%, 期末考查成绩占总评成绩的60%.5、学时分配表本课程的教学包括如下环节:课堂讲授,主要以教师讲授为主,要求学生课下预习;辅导或习题课,师生互动,边讲边练,解决学生学习过程中出现的一些问题;课外作业,通过对作业的批改,使学生加深巩固对所学内容的理解与掌握。
泛函分析讲义02
泛函分析讲义第二讲:距离空间中的点集关 键 词:领域、内点、开集、聚点、导集、闭集、闭包; 稠密子集、可分的主要内容:介绍距离空间中的开集、闭集定义及其性质; 介绍可分空间的定义一、 开集与闭集本节将直线上有关点集的基本概念推广到距离空间中去。
定义1. 设0x ),(ρX ∈,0>r ,以0x 为中心,以r 为半径的开球),(0r x S 称为0x 的一个球形邻域,简称为邻域。
设,,G x X G ∈⊂ 若存在x 的一个邻域,),(0G r x S ⊂则称x 是G 的一个内点。
若G 中每一个点都是它的内点,则称G 为开集。
例1.开球都是开集。
证明:设),(0r x S 为开球。
任取),(0r x S x ∈, 即r x x <),(0ρ,令0,(x x r ρε-=),),(εx S y ∈∀, 即ερ<),(y x ,则r r y x x x y x =+-<+≤εερρρ),(),(),(00∴).(),(,0r x S x S ⊂ε 即),(0r x S 为开集.定理1 设),(ρX 为距离空间, 则 (1) 空集φ全空间X 是开集. (2) 任意多个开集之并是开集. (3) 有限个开集之交是开集.证明:设I a a G ∈}{是一族开集,证明 IG ∈αα为开集。
对 IG x ∈∈∀αα,0α∃,使0αG x ∈,由0αG 是开集,则存在x 的一个邻域⊂),(r x S0αG ,从而⊂),(r x S IG ∈αα. ∴ x 是 IG ∈αα的一个内点,从而 IG ∈αα为开集。
(3). 设i G 是开集,n i ,...,2,1=,证明 ni i G 1=是开集。
对∈∀x ni i G 1=,则∈x i G n i ,...,2,1=,由i G 是开集,则存在x 的一个邻域⊂),(i r x S i G ,令},...,,min{21n r r r r =,则 从而),(),(i r x S r x S ⊂,n i ,...,2,1=. 从而),(r x S ni i G 1=⊂,所以 ni i G 1=为开集。
泛函分析答案
泛函分析答案:1、 所有元素均为0的n ×n 矩阵2、 设E 为一线性空间,L 是E 中的一个子集,若对任意的x,y ∈L ,以及变数λ和μ均有λx +μy ∈L ,则L 称为线性空间E 的一个子空间。
子空间心室包含零元素,因为当λ和μ均为0时,λx +μy =0∈L ,则L 必定含零元素。
3、 设L 是线性空间E 的子空间,x 0∈E\L,则集合x 0+L={x 0+l,l ∈L}称为E 中一个线性流形。
4、 设M 是线性空间E 中一个集合,如果对任何x,y ∈M ,以及λ+μ=1,λ≥0,μ≥0的λ和μ,都有λx +μy ∈M ,则称M 为E 中的凸集。
5、 设x,y 是线性空间E 中的两个元素,d(x,y)为其之间的距离,它必须满足以下条件:(1) 非负性:d(x,y)>0,且d(x,y)=0<―――>x=y (2) d(x,y)=d(y,x)(3) 三角不等式:d(x,y)≤d(x,z)+d(y,z) for every x,y,z ∈E n 维欧几里德空间常用距离定义:设x={x 1,x 2,…x n }T ,y={y 1y 2,…y n }Td 2(x,y)=(21||niii x y=-∑)1/2d 1(x,y)=1||ni i i x y =-∑d p (x,y) = (1||np iii x y=-∑ )1/p d ∞(x,y)=1max ||i i i nx y ≤≤-6、距离空间(x,d)中的点列{x n }收敛到x 0是指d(x n ,x 0)→0(n →∞),这时记作0lim nn xx -->∞=,或简单地记作x n →x 07、设||x||是线性空间E 中的任何一个元素x 的范数,其须满足以下条件: (1)||x||≥0,且||x||=0 iff x=0 (2)||λx||=λ||x||,λ为常数(3)||x+y||≤||x||+||y||,for every x,y ∈E8、设E 为线性赋范空间,{x n }∞n=1是其中的一个无穷列,如果对于任何ε>0,总存在自然数N ,使得当n>N,m>N 时,均有|x m -x n |<ε,则称序列{x n }是E 中的基本列。
泛函分析讲义
第三章 赋范空间3.1. 范数的概念“线性空间”强调元素之间的运算关系,“度量空间”则强调元素之间的距离关系,两者的共性在于:只研究元素之间的关系,不研究元素本身的属性。
为了求解算子方程,需要深入地了解函数空间的结构与性质,为此,我们不仅希望了解函数之间的运算关系和距离关系,还希望了解函数本身的属性。
那么,究竟需要了解函数的什么属性呢?3.1.1. 向量的长度为了回答上述问题,我们需要从最简单的函数空间——欧氏空间——中寻找灵感。
回想一下,三维欧氏空间中的元素被称为“向量”,向量最重要的两大属性是:长度和方向,向量的许多重要性质都是由其长度和方向所决定的。
这一章的任务就是将欧氏空间中向量的长度推广为(以函数空间为原型的)一般线性空间中元素的广义长度,下一章的任务就是将欧氏空间中向量的方向推广为(以函数空间为原型的)一般线性空间中元素的广义方向。
可以想象:其元素具有广义长度和广义方向的线性空间必将像欧氏空间那样,呈现出丰富多彩的性质,并且这些性质必将有助于求解算子方程。
图3.1.1. 三维欧氏空间中向量的大小和方向矩阵论知识告诉我们:可以为欧氏空间中的向量赋予各种各样的长度,并且可以根据问题需要来选择最合适的向量长度。
实际上,可以在数域F 上的n 维欧式空间n F 上定义向量12(,,,)n x x x x 的如下三种长度(称为“范数”):● 2-范数(也称为欧氏范数):2x =● 1-范数:11n k k x x ==∑;● ∞-范数:1max k k nx x ∞≤≤=。
图3.1.2. 三种向量范数对应的“单位圆” 图3.1.3. “单位圆”集合的艺术形式下一节将谈到:就分析性质而言,这三种向量范数没有任何区别。
我们注意到:通常将2或3中两个向量之间的距离定义为两者的差向量的长度。
由此可知:如果有了长度的概念,就可以诱导出距离;反之则不然。
因此,长度是比距离更本质的概念。
3.1.2. 范数的定义我们希望将向量范数的概念推广到(以函数空间为原型的)无限维线性空间的场合。
泛函分析ppt课件
∈X都有ρ(Tx, Ty)<aρ(x, y),则称T是压缩映照
定理:完备距离空间 X 上的压缩映照T,必 存 唯一的不动点x*,使得Tx*=x*. (Banach压 缩映 照定理)
距离空间:不动点原理
应用:微分方程,代数方程,积分方程解的唯一存在 性
n
S f (i )xi
i 1
若其极限存在则称Riemann可积
b
n
(R) a f (x)dx lxim0 i1 f (i )xi
从Riemann积分到Lebesgue积分
Riemann积分的思想是,将曲边梯形分成若干个小 曲 边梯形,并用每一个小曲边梯形的面积用小矩形 来代 替,小矩形的面积之和就是积分值的近似。剖 分越精 细,近似程度越好。
距离空间:定义
设 X 是非空集合,对于X中的任意两元素x与y,按某一法则都
对 应唯一的实数ρ(x, y),并满足以下三条公理(距离公理)
:
1. 非负性: ρ(x, y) ≥0, ρ(x, y) =0当且仅当x=y; 2. 对称性: ρ(x, y) =ρ(y, x);
3. 三角不等式;对任意的x, y, z
例子:Fredholm第二类积分方程
b
x(s) f (s) a K (s,t)x(t)dt
对充分小的| λ |,可证
当f ∈ C[a, b], K(s, t)∈ C[a, b; a, b]时有唯一连续解 当f ∈ L2[a, b], K(s, t)∈ L2 [a, b; a, b]时有唯一平方可积解
(x, y) (a b )2 1/ 2 i i i
则 Rn是距离空 间
距离空间: Lp[a,b]
“泛函分析”课程教学大纲
“泛函分析”课程教学大纲(本教学大纲按适用专业分(A)、(B)两类)“泛函分析”课程教学大纲(A)课程编号:00834250课程名称:泛函分析英文名称:FunctionalAnalysis课程学分:4课程学时数:64开课学期:春季适用专业:数理学基地班,数学与应用数学先修课程:数学分析,高等代数,实变函数一、基本教学目的和任务泛函分析是20世纪初从变分法、微分方程、积分方程、函数论、量子物理等研究中发展起来的数学分支学科,它综合函数论、几何和代数的观点与方法研究解决数学中提出的重要问题。
泛函分析是大学数学系的一门重要的专业主干基础课。
本课程主要讲述线性泛函分析。
使学生了解和掌握空间、线性算子以及线性算子空间、线性算子谱理论的基本概念和基本理论。
本课程的基本目的是使学生把具体的分析、代数、几何中的问题抽象到一种更加纯粹的形式中加以研究,使学会综合运用分析、代数、几何手段处理问题的方法。
本课程在数学系的课程体系中具有承上启下的作用,可以使学生从全新的视点审视和处理数学基础课程的内容和问题,为学生进一步学习近代数学、近代物理、从事数学和应用数学研究打下基础。
二、课程内容与建议学时本课程的内容包括以下几个部分:绪论、距离空间、赋范空间、内积空间与Hilbert空间、有界线性算子、共轭空间和共轭算子以及线性算子的谱理论。
绪论从有限维空间元素的分解、对称矩阵按照特征值对角化等实例出发,采用类比、归纳等方法引入无穷维空间、线性算子、谱理论这样一些抽象概念;通过数学分析、线性代数、微分方程中一些熟悉的例子,研究和探讨如何类比地建立起无穷维空间框架,把有限维空间的数学方法自然地推广到无穷维空间。
内容的前三章侧重于泛函分析中的空间理论,特别是Hilbert空间的几何特征。
第四章介绍了有界线性算子以及有界线性算子空间的概念,系统地讲述Banach空间中的基本定理和它们的应用,即:一致有界原理,开映像定理和闭图像定理。
泛函分析教学大纲
泛函分析教学大纲泛函分析教学大纲一、课程简介泛函分析是现代数学的重要分支之一,其研究对象为函数空间、算子、无限维空间以及相关概念与性质。
本课程将系统介绍泛函分析的基本理论、方法及其应用。
通过本课程的学习,学生将掌握泛函分析的基本概念、方法和技巧,为进一步学习其他数学课程以及解决实际问题打下坚实的基础。
二、教学目的1、掌握泛函分析的基本概念、方法和技巧;2、理解并掌握函数空间、算子、无限维空间等基本概念及其性质;3、理解并掌握泛函分析中的重要定理及其证明方法;4、能够运用泛函分析的思想和方法解决实际问题;5、培养抽象思维、逻辑推理和数学表达能力。
三、教学内容第一章绪论1、泛函分析的基本概念和发展历程;2、泛函分析的研究对象和基本方法;3、泛函分析的应用领域和重要性。
第二章函数空间基础1、函数空间的定义和例子;2、函数空间的运算和性质;3、连续函数的概念和性质;4、收敛性和完备性。
第三章线性算子和无限维空间1、线性算子的概念和例子;2、线性算子的性质和运算;3、无限维空间的定义和例子;4、无限维空间的性质和运算。
第四章拓扑和代数基础1、拓扑学的概念和基本概念;2、代数的基本概念和性质;3、群、环、域的基本概念和性质。
第五章泛函分析的核心理论1、紧算子和有界线性算子的概念和性质;2、开映射定理和逆算子定理;3、自伴算子和自伴方程;4、谱理论及其应用。
第六章泛函分析的应用1、微分方程和积分方程的泛函分析解法;2、最优化问题的泛函分析方法;3、控制理论的泛函分析方法;4、其他应用领域。
四、教学方法1、采用讲解、示例、练习相结合的教学方法,强调实际应用和实例分析;2、注重培养学生的抽象思维和逻辑推理能力,加强数学表达能力的训练;3、利用多媒体技术辅助教学,提高教学效果。
五、教学评估1、课堂表现:包括提问、回答问题、参与讨论等情况;2、作业:包括课后练习、课堂作业、论文等;3、期中考试:考查学生对基本知识和理论的掌握情况;4、期末考试:全面考查学生对课程内容的掌握情况和应用能力。
实变函数与泛函分析基础课件4-2
称
→ f n (x) 在E上依测度m收敛与f:记为: f n ( x ) 上依测度m收敛与f
m
f ( x).
或者记为: f n ( x ) ⇒
f ( x).
注1. 依测度收敛是数列的收敛. 即: 依测度收敛是数列的收敛.
∀σ > 0和ε > 0, ∃N (ε ,σ ),当n ≥ N (ε ,σ )时,有 (| f n − f |≥ σ ) < ε . m
k =1 N =1 n = N
∞
∞
∞
1 [| f n − f | ≥ ] k
).
2)
f n → f a.e.于E ⇔ m( E[ f n → f ] ) = 0 ⇔ m( ∪ ∩ ∪ E[| f n − f |≥ 1 ] ) = 0
k =1 N =1 n = N
k
∞
∞
∞
⇔ m ( ∩ ∪ E [| f n − f | ≥ 1 ] ) = 0
是否成立,如果成立,应该具备怎样的条件?先看下例。
回顾:{f 回顾:{fn}点点收敛,但 fn不近一致收敛于f。 不近一致收敛于f
∃δ > 0, ∀ 可测子集 Eδ ⊂ E , m ( Eδ) δ , < ∃ε > 0, ∀N > 0, ∃n ≥ N , ∃x ∈ Eδ) , 使 | f n ( x ) − f ( x ) |≥ ε (
∀δ > 0, ∃可测子集 Eδ ⊂ E , m ( Eδ) δ , < ∀ε > 0, ∃N ε δ > 0, ∀n ≥ N εδ , ∀x ∈ E − Eδ , 有 | f n ( x ) − f ( x ) |< ε
《泛函分析》课程教学大纲
《泛函分析》课程教学大纲《泛函分析》课程教学大纲一、课程基本信息课程代码:课程名称:泛函分析英文名称:Functional analysis课程类别:选修课学时:54学分:3适用对象: 数学类本科生考核方式:考察先修课程:数学分析,高等代数,实变函数二、课程简介《泛函分析》是现代教学中的一门较新的数学分支,是高等师范院校数学专业的一门重要专业课,它是在学生掌握了数学分析、高等代数的理论知识的基础上,继实变函数之后开设的。
本课程主要内容包括:⑴度量空间和赋范线性空间;⑵有界线性算子和连续线性泛函;⑶内积空间和希尔伯特(Hilbert)空间;(4)巴拿赫空间中的基本定理;(5) 线性算子的谱等。
通过该课程的学习,学生不仅能学到泛函分析的基本理论和方法,而且对学习其他数学分支以及把他应用到数理经济,现代控制论,量子场论,工程技术等领域有很大帮助。
三、课程性质与教学目的1、本课程是数学基础之一,授课对象为数学专业学生。
在讲授和学习时,应注重提高学生分析问题和解决问题的能力,培养学生良好的逻辑思维习惯,让学生掌握全面考虑问题的思维方法,这将有助于学生们顺利地学习其他现代专业数学理论课。
2、本课程主要内容包括:⑴度量空间和赋范线性空间;⑵有界线性算子和连续线性泛函;⑶内积空间和希尔伯特(Hilbert)空间;(4)巴拿赫空间中的基本定理;(5) 线性算子的谱等内容。
3、本大纲的教学总时数为54学时(含习题课),各章节教学时数的具体分配,请参考附表。
4、本课程以课堂讲授为主,讨论辅导为辅,课堂练习与课外作业相结合。
5、在制定本教学大纲时,为了明确对教学大纲中所列具体内容的要求程度,将本要求分为由低到高的三个等级,即对概念和理论性的知识,由低到高分别用“知道”、“了解”、“理解”三级区分,对运算、方法和应用方面的知识,由低到高分别用“会或能”、“掌握”、“熟练掌握”三级区分。
四、理论教学内容与教学基本要求1、第一章度量空间和赋范线性空间(14学时)(1) 度量空间的进一步例子(2) 度量空间中的极限,稠密集,可分空间(几类特殊的点集,稠密性与可分性)(3) 连续映射(度量空间上的连续映射)(4) 柯西(Cauchy)点列和完备度量空间(5) 度量空间的完备化(完备的距离空间,第一第二类型集,距离空间的完备化)(6) 压缩映射原理及其应用(7) 线性空间(8) 赋范线性空间和巴拿赫(Banach)空间教学目的及要求:要求学生掌握距离空间的一些基本概念,为后面学习打下基础。
泛函分析讲义(中文版-武汉大学)-4a786423a5e9856a5612604e
定义 1
设 X 是某个集合, d : X × X → R 是一个二元映射,满足
(1) d ( x, y ) ≥ 0 ; d ( x, y ) = 0 当且仅当 x = y . (2) d ( x, y ) = d ( y, x) . (3) d ( x, z ) ≤ d ( x, y ) + d ( y, z ) (三角不等式) . 则称 d 是 X 上的度量(距离)函数,称 X 为度量(距离)空间.有时为了明确,记为 ( X , d ) . 度量空间的子集合 E ,仍以 d 为 E 上度量构成的度量空间称为 ( X , d ) 的子空间. 例1 对于 n 维空间 Φ n 中的点 x = ( x1 ,
Hamel 基.换句话说,任一线性空间必存在 Hamel 基.
凸集和子空间是线性空间中时常用到的子集. X 的子集 E 称为是凸的,若 ∀x, y ∈ E ,
0 ≤ r ≤ 1 , rx + (1 − r ) y ∈ E .对于任一集合 E ⊂ X ,记
n n co E = ∑ ri xi : xi ∈ E , ri ≥ 0, ∑ ri = 1, n = 1, 2, i =1 i =1
(提示:设 X 不是仅有 0 元构成,记 X 中全体线性无关子集全体为 F,以集合包含关 系为 F 上的半序,则 F 成为半序集。验证其中的每个全序子集族之并是这个全序子集族的 上界。根据 Zorn 引理,F 有极大元,此极大元就是 X 的 Hamel 基。读者在第一次阅读时可 以隔过这一问题) 4、设 X 是线性空间,证明 E ⊂ X 是 X 的线性子空间当且仅当
记此空间为 (Φ n , d ) . 称之为 n 维欧几里德(Euclid)空间. 实际上在 Φ n 上还可以定义其他度量,例如 d1 ( x, y ) = max xi − y i ,此时 (Φ n , d1 ) 仍是度
湖北师范大学继续教育学院泛函分析
湖北师范大学继续教育学院泛函分析所谓泛函分析,顾名思义,就是研究连续变换下不同函数空间之间相互关系的学科。
泛函分析最初源自于黎曼,所以泛函分析又称为“黎曼分析”。
它们的联系在于:一个函数 f,如果可以用若干个函数 f,把其表示成(一)有限维空间上的线性映射,这种由几个独立变量 x, y 构造出来的函数叫做泛函,泛函 f 满足的方程组称为泛函分析中重要的基本定理或原理;(二)当且仅当对任意的 x, y∈[0,1],存在常数 c,使得 f (x, y)= f (c),则称 f 是定义在区域 D 上的一个线性泛函,简称为泛函。
高等代数知识,主要包括实数、复数和向量三部分内容。
而线性代数是建立在实数和复数运算及向量运算基础上的一门新兴学科。
因此,掌握了高等代数,也就具备了进行线性代数计算的能力。
但是,线性代数作为一门应用性很强的课程,需要将抽象的概念转化为直观形式,并结合实际问题加以阐述才更易被人接受。
例如,求解一元二次方程时,通过引入线性方程组的概念,从而将问题归结到线性方程组的求解上去,避免了繁琐的讨论。
再比如,利用矩阵的特征值和特征向量的概念,将许多看似无法解决的问题转化为较为明确的矩阵问题,便于处理。
另外,还可以借助线性代数中的相关公式推导出一些新的结论,甚至发现某类问题的普遍规律。
总之,只有熟练地掌握了高等代数,才会真正体验到线性代数的价值所在。
所以,线性代数与高等代数虽然都属于数学范畴,但两者却各有侧重点,彼此紧密联系着。
首先,线性代数是高等代数的基础,没有线性代数,高等代数就失去了依托,难以想像高等代数竟然可以如此精彩!其次,高等代数是培养逻辑思维能力的好帮手,离开了严谨的证明,怎么能够提升自己的创造力呢?第三,高等代数教给你的是一套完整的工具,让你轻松面对生活中遇见的每一道难题。
第四,线性代数是高考必修的内容,如何取舍全凭你自己的选择。
综上所述,既然已经选择了高等代数,那么请务必认真对待,努力学习吧!以上是我对高等代数与线性代数之间关系的理解,希望大家喜欢。
《泛函分析》教学大纲
《泛函分析》教学大纲一、课程概述1.1课程名称:泛函分析1.2学分:3学分1.3总学时:54学时(每周3学时,共18周)1.4先修课程:数学分析、线性代数1.5课程性质:必修课程1.6课程教材:《泛函分析导论》(杨宗胜著)、《泛函分析》(顾兆麟著)二、教学目标2.1知识目标掌握泛函空间的基本概念、性质和结构;熟悉泛函的连续性、可分性和完备性的相关理论;学习泛函的一些常用技巧和方法。
2.2能力目标能够利用泛函分析的基本理论解决实际问题;能够运用泛函分析的方法进行数学建模和分析。
三、教学内容3.1泛函空间3.1.1基本概念:范数、内积、赋范线性空间、希尔伯特空间3.1.2基本算子:线性算子、有界线性算子、伴随算子、幂零算子3.1.3 例子和常见空间:有限维空间、无穷维空间、连续函数空间、$L^p$空间、Sobolev空间等3.2连续性与收敛性3.2.1等价范和等度量空间3.2.2函数序列的一致收敛与逐点收敛3.2.3一致收敛对收敛性的影响3.2.4可分性的等价定义3.3完备性与紧性3.3.1 Cauchy序列与完备性3.3.2 Baire范胞定理3.3.3可列并的完备性和范数完备性3.3.4紧性的等价定义3.4泛函空间的结构3.4.1赋范线性空间的线性性质3.4.2收敛序列的性质与特征3.4.3线性算子的开集定理3.4.4可分空间的稠密性3.5一些重要的泛函3.5.1 凸泛函与Legendre-Fenchel变换3.5.2泛函的连续可微性3.5.3范数空间的双共轭空间3.5.4双线性泛函和正交分解四、教学方法4.1讲授教学法:通过教师的讲授和示范,介绍泛函分析的基本概念、理论和技巧。
4.2引导教学法:通过引导学生解决实际问题和讨论习题,培养学生的分析和解决问题的能力。
4.3实践教学法:通过课堂练习、实例分析和泛函分析的应用实例,让学生对泛函分析的方法和技巧有更深入的认识。
五、教学评价方法5.1平时成绩:包括课堂表现、课后作业和小测验成绩等,占总评成绩的40%。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(闭凸 集)的最佳 逼近 元。不 仅如 此,在 Hilbert 空间上 我们还 可以 定 量地计 算出 一点到 最佳 逼近元 的距 离。 例 1 设 H 是 Hilbert 空间, E ⊂ H 是线 性子空 间, dim E = n ,
n i =1
e1 ,
, en 是 E 的一组 规范正 交基 ,则 ∀x ∈ H , PE x = ∑ ( x, ei )ei 并且
P 是从 H 到 E 上的 投影算 子 .
当 x1 = 0 , 即 Px = 0 或 x ∈ N ( P ) . 从而 E
⊥
由 定 理 2, ∀x ∈ H , x = x1 + x 2 , 其 中 x1 ∈ E , x 2 ⊥ E . 即
= N ( P) .
思考题
若
H 是内积空间, M , N ⊂ H .
( 1) 若 ( 2) 若 ( 3)
→ ρ ( y, E ) = d ,由于
xm − xn
2
= ( x − xn ) − ( x − xm )
= 2( x − xn
2
2
+ x − xm
2
x +x ) -4 x − n m 2
2
2
≤ 2( y − x n
2
+ y − xm ) - 4 d 2 → 0 ,
{x n } 是 Cauchy 序列。 不妨 设 x n → x0 , E 闭,所 以 x0 ∈ E . 现在
称 E 是 P 的投影 子空间 .
3
证明 则
1 设 x = x1 + x 2 , y = y1 + y 2 , 其 中 x1 , y1 ∈ E , x2 , y2 ⊥ E ,
αx + βy = (αx1 + βy1 ) + (αx2 + βy 2 ),
其中 αx1 + βy1 ∈ E , 而 ∀z ∈ E , ( x 2 , z ) = 0, ( y 2 , z ) = 0, 故
2 2 i =1
∞
(4-2-4)
实 际 上 , 令 x1 =
n
∑ ( x, e ) e
i =1 i
n
i
, x 2 = x − x1 , 则 x1 ∈ E , ∀z ∈ E ,
z = ∑ ( z , ei )ei , 实际计 算 得到
i =1
( x2 , z ) = ( x − x1 , z ) = ( x, z ) − ( x1 , z ) = 0
λ = 0 的最小 性即 ( 4-2-1 ) .
1
(3) ⇒ (1)
∀z ∈ E ,取 λ 为实 变量, 则
f (λ ) − f (0)
λ →0
f ′(0) = lim
λ
λ →0
= lim
λ →0
x − x1 + λ z − x − x1
2
2
λ
2
= lim ( x − x1 , z ) + ( z , x − x1 ) + λ z = 2 Re ( x − x1 , z ) .
E ⊥ = {x ∈ H , x ⊥ E} , 则
(1)
E ⊥ 是 H 的闭 线性子 空间 .
⊥⊥
(2) 若 E 是闭 的 , 则 E
= E.
⊥
(3) 若 E 是闭 的 , 则 H = E ⊕ E , 即
H = E + E ⊥ , E ∩ E ⊥ = {0}.
⊥
(4-2-5)
(4) 若 E 是闭 的 , P : H → E 是投影 算子 , 则 E = N ( P ) . 通 常 称 E 是 E 的 正 交 补 空 间 . 由 于 (4-2-5), 称 H 是 E 与 E 的
(α x2 + β y2 , z ) = α ( x2 , z ) + β ( y2 , z ) = 0.
所以
αx2 + βy 2 ⊥ E , 于是
P(αx + βy ) = αx1 + βy1 = αPx + βPy.
P 是线性 的 .
2
而
∀x ∈ H , 若 x = x1 + x2 是 正 交 分 解 , 则 x = x1 + x 2
是 E 的规范正交基, 证明类似的结论成
设 H 是 Hilbert 空间 , E ⊂ H 是 闭线性 子空 间 , 记从 H
到 E 的投 影算 子是 P, 则 (1) (2) (3)
P : H → E 是线性 算子 .
P ≤ 1. 若 E = {0} , 则 P = 0; 若 E ≠ {0}, 则 P = 1. E = R ( P ) = N ( I − P ), N ( P ) = R ( I − P ).
= ( x1 + x 2 , y1 ) = ( x, Py ) .
P 自伴 .
(2) ⇒ (3). 若 x ∈ N ( P), 则 Px = 0, 若 y ∈ R( P) 则 ∃x1 ∈ H , y = Px1 . 于是
( x, y ) = ( x, Px1 ) = ( Px, x1 ) =0
即 N ( P) ⊥ R( P) . (3) ⇒ (1). 令 E = N ( I − P) , E 是 H 的 闭 线 性 子 空 间 , 现 在 验 证
⊥ ⊥
4
直和 . 换句 话说 , (3) 表明 Hilbert 空间的 每 个闭子 空间 存在正 交补 空 间. 证明
1
若 x, y ∈ E , 则 ∀z ∈ E , x ⊥ z , y ⊥ z , 从而
⊥
(αx + βy, z ) = α ( x, z ) + β ( y, z ) =0,
故 αx + βy ∈ E , E 是线 性 子空间 .
故 x 2 = 0 , x = x1 ∈ E , 即 E
⊥⊥
⊂ E . 最后 E = E ⊥⊥ .
3
x 2 ∈ E ⊥ 从而 H = E + E ⊥ . 另一 方面 E ∩ E ⊥ = {0}. 故 H = E ⊕ E ⊥ .
4 ∀x ∈ H , x = x1 + x 2 其中 x1 ∈ E , x 2 ⊥ E . 故 x ∈ E ⊥ 当且仅
x − x0 = lim x − xn = d = inf x − z ,
n →∞
z∈E
由定理 1 , PE x = x0 。 由于 Hilbert 空间是严 格凸的 , x0 是唯一的 最佳 逼近元 。 其实为 了得 到最佳 逼近 元,定 理 2 中的集 合 E 可以是任 一闭 凸子 集, x0 的存在 唯一性 结论 及其证 明都 不改变 。定 理 2 和定理 1 还说明 空间一 点到 闭子空 间( 闭凸集 )的 投影, 恰恰 是这一 点关 于闭子 空 间
M ⊥ N ,则 M ⊂ N ⊥ , N ⊂ M ⊥ . M ⊂ N ,则 M ⊥ ⊃ N ⊥ .
M ⊥ = (M ) ⊥ .
(1) 称线 性算 子 T : X → X 是幂 等的 , 若 T
2
定义 2
=T .
(2) 设 H 是内 积空间 , 称 T ∈ B ( H ) 是自伴 算子 , 若
(Tx, y ) = ( x, Ty ) , ∀x, y ∈ H .
定理 4
(4-2-6)
设 H 是 Hilbert 空间 , P ∈ B ( H ) , 则下列 诸条 件等价 :
5
(1) P 是投 影 算子 . (2) P = P 并且 P 是 自伴的 .
2 2
(3) P = P 并且 N ( P) ⊥ R ( P) . (4) 若 H 是复 空间 , 以上 条件还 等价 于
( Px, x) = Px , ∀x ∈ H .
证明
2
(4-2-7)
(1) ⇒ (2). 首 先 设 P 是 从 H 到 闭 线 性 子 空 间 E 上 的 投 影
2 2
算 子 , ∀x ∈ H , Px ∈ E , 故 P x = P( Px) = Px . 于 是 P = P . 其 次 ,
∀x, y ∈ H , x = x1 + x 2 , y = y1 + y 2 , x1 , y1 ∈ E , x 2 , y 2 ⊥ E , 则 ( Px, y ) = ( x1 , y1 + y 2 ) = ( x1 , y1 )
⊥⊥ ⊥
⊥
知道 E ⊂ E
⊥⊥
. 另一方 面 , 若
⊥
x∈E
, 则 x ⊥ E . 若 x = x1 + x 2 , x1 ∈ E , x 2 ⊥ E , 则 x 2 ∈ E ,
从
而 ( x, x 2 ) = 0 . 于是
( x 2 , x 2 ) = ( x1 + x 2 , x 2 ) = ( x, x 2 ) = 0 ,
由 于 y ∈ R( P) 当 且 仅 当 y = x1 + x 2 时 x 2 = 0 , 此 即
y − Py = 0 从而 y ∈ N ( I − P) , 反过 来也一 样 , 另一式 子可 同样证 明 .
定理 3 设 H 是 Hilbert 空 间 , E ⊂ H 是 线 性 子 空 间 , 记
2
2
2
. 从
Px = x1
2
2
≤ x , Px ≤ x , P ≤ 1.
2
若 E = {0} , 则 ∀x ∈ H , Px = 0 , 故 P = 0 . 若 E ≠ {0} , 则 有 x1 ∈ E , x1 = 1 使 得 Px1 = x1 ,
P ≥ Px1 =
x1 =1, 从而 P =1.