典型橡胶制品配方实例
氟橡胶的配方设计(附30例配方)
氟橡胶的配方设计(附30例配方)一、氟橡胶的主要性能物理性能 :氟橡胶具有较好的力学性能, 有较好的拉伸强度和硬度 , 但常态下的弹性较差。
耐热性: 氟橡胶有很好的耐热性 , 26型氟橡胶可在 250 下长期工作 ,在 300 可短期工作。
氟橡胶性能随温度的变化大于硅橡胶 , 其拉伸强度和硬度均随温度升高而明显下降 , 至250~ 260 时, 下降趋势减缓。
耐腐蚀性能 :氟橡胶有很高的化学稳定性, 是所有弹性体中最耐介质的一种 ; 它对有机液体各种烃类有良好的抗耐性 , 仅仅不耐低分子的酯、醚、酮及部分胺类化合物。
耐过热水、蒸汽的性能 : 过氧化物硫化的氟胶优于胺类、酚类化合物硫化的氟橡胶。
抗压缩变形性能 : 据统计 , 50% 以上的氟橡胶用于密封制品 , 压缩变形是一个主要性能。
美国杜邦公司一直致力于改进压缩变形性能。
耐寒性能 : 26 型氟橡胶的耐寒性能较差, 其保持弹性的极限温度为 - 15~ - 20℃。
美国杜邦公司开发的 Viton GLT, 其低温性能得到很好的改进 , 可适用于 - 54 ℃下的密封 ,是阿拉斯加油田用的低温密封材料。
特定的超低温下的密封 , 有时也用氟橡胶。
气透性与真空性能 : 氟橡胶有很低的透气性 , 在高温、高真空条件下 , 具有极小的气体挥发量 (失重 ) , 因此 , 它的耐高真空性能特别好。
耐侯、耐臭氧性能 : 氟橡胶对日光、臭氧和天候老化十分稳定。
硫化胶经过 10 年的自然老化 , 还保持很好的性能。
耐燃性能 :氟橡胶与火接触能燃烧 , 但离开火后即熄灭 , 它属于自熄橡胶。
氟橡胶的氧指数为 61~ 64。
二、氟橡胶配方, 一般是由生胶、吸酸剂、硫化剂、促进剂、补强填充剂、加工助剂等组成。
1、生胶国产氟橡胶和国外的氟橡胶的性能基本相同, 只是加工性能有些差异 , 国产胶的加工性能较差 , 主要是门尼粘度较高 , 相应影响胶料的加工流动性。
国产氟橡胶 26 相当于美国杜邦公司的VitonA , 氟橡胶 246 相当于VitonB , 国外的氟橡胶生胶中有不少已添加了硫化剂 , 美国 3M公司和日本大金公司供应的氟橡胶已经含有硫化剂。
橡胶配方大全范文
橡胶配方大全范文1.天然橡胶配方:-天然橡胶:100份-硫磺:2份-罗塞林:5份-碳黑:50份-橡胶软化剂:5份-稳定剂:1份2.丁苯橡胶配方:-丁苯橡胶:100份-碳黑:40份-硫磺:2份-弹性体:5份-稳定剂:1份-硬质填料:10份3.丁羟橡胶配方:-丁羟橡胶:100份-碳黑:40份-硫磺:2份-粘度调节剂:5份-稳定剂:1份4.乙酸乙烯橡胶配方:-乙酸乙烯橡胶:100份-碳黑:50份-硫磺:2份-塑化剂:5份-硬质填料:10份-稳定剂:1份5.氯丁橡胶配方:-氯丁橡胶:100份-碳黑:40份-硫磺:2份-塑化剂:5份-稳定剂:1份-硬质填料:10份6.氟橡胶配方:-氟橡胶:100份-硫磺:2份-塑化剂:5份-硬质填料:10份-稳定剂:1份以上是几种常见的橡胶配方,其中的各种原料按比例混合,然后进行橡胶化反应。
这些配方可以根据具体的应用要求进行调整和改善,以满足不同领域对橡胶材料性能的需求。
在混合橡胶配方时需要注意以下几点:1.原料的质量:保证配方中的各种原料质量良好,以确保橡胶制品的性能。
2.混合均匀:混合原料时需要确保均匀混合,以避免出现局部性能差异。
3.适当调整配方:根据具体应用要求,可以适当调整配方中各种原料的比例,以获得更优异的性能。
4.工艺条件控制:橡胶化反应需要在一定的工艺条件下进行,如温度、时间等,需要严格控制这些条件,以保证反应的成功。
通过合理的配方设计和优化,可以制备出满足不同应用领域需求的橡胶制品,提供更好的性能和可靠性。
以上仅是几种常见的橡胶配方,实际应用中还需根据具体的要求进行细化和改进。
希望以上内容能对您有所帮助。
三元乙丙橡胶配方
起止日期:2009.1—2009.配位嵌段共聚合制备乙丙橡胶的合成工艺一、聚合方法概述反应方程式:CH3CH3|︱CH2= CH2 + CH= CH2 ( CH2--- CH2)m(CH—CH2)n乙烯丙烯共聚物CH3|CH2= CH2 + CH= CH2 +二烯烃CH3︱(CH2--- CH2)m—(CH—CH2)n—(二烯烃)yEPDM三元共聚物反应机理:以乙烯、丙烯为单体,用钒-铝配合物为引发剂,其聚合机理属于配位离子型聚合反应。
聚合时,首先是单体上双键的∏电子在引发剂活性中心的空位上进行络合,由于R-V键变弱,以致断裂,单体分子插入R-V键,链的增长按这个方式不断重复进行。
主要用途:因乙丙橡胶分子主链为饱和结构而呈现出卓越的耐候性、耐臭氧、电绝缘性、低压缩永久变形、高强度和高伸长率等宝贵性能,其应用极为广泛,消耗量逐年增加。
根据乙丙橡胶的不同系列和分子结构方面的特点,乙丙橡胶应用种类有通用型、混用型、快速硫化型、易加工型和二烯烃橡胶并用型等不同应用类型。
从实际应用情况分析,乙丙橡胶在非轮胎方面得到了广泛的应用。
1.汽车工业乙丙橡胶在汽车制造行业中应用量最大,主要应用于汽车密封条、散热器软管、火花塞护套、空调软管、胶垫、胶管等。
在汽车密封条行业中,主要利用EPDM的弹性、耐臭氧、耐候性等特性,其ENB型的EPDM橡胶已成为汽车密封条的主体材料,国内生胶年消耗量已超过1万吨,但由于品种关系,其一半还依靠进口。
由于热塑性三元乙丙橡胶EPDM/PP强度高、柔性好、涂装光泽度高、易回收利用的特点,在国内外汽车保险杠和汽车仪表板生产中已作为主导材料。
预计到2010年仅汽车保险杠和仪表板两项产品,EPDM/PP的国内年用量可达4.5万吨。
此类产品的回收利用主要采用的工艺方法是:先去掉产品表面的涂料-粉碎-清洗-再造粒-添加新料后生产新产品。
这样在保险杠和仪表板生产中,就能节约大量原材料取得较好的经济效益。
几种橡胶的配方范文
几种橡胶的配方范文橡胶是一种重要的材料,广泛应用于工业和日常生活中。
根据不同的用途和要求,可以使用不同的橡胶配方来生产橡胶制品。
以下是几种常见的橡胶配方。
1.天然橡胶配方:天然橡胶是从橡胶树脂中提取的,具有极高的弹性和耐磨性。
它常用于制造轮胎、橡胶鞋等产品。
天然橡胶配方一般包括以下成分:乙烯丙烯二烯橡胶、纯天然橡胶、防老化剂、硫化剂、填充剂(如炭黑)、软化剂等。
其中,乙烯丙烯二烯橡胶增加了橡胶的强度和耐用性,纯天然橡胶提高了橡胶的弹性和耐磨性。
防老化剂可以延长橡胶制品的使用寿命,硫化剂用于促进橡胶的硫化反应,填充剂用于增加橡胶的硬度和强度,而软化剂则用于提高橡胶的柔软性。
2.丁苯橡胶配方:丁苯橡胶是一种合成橡胶,具有很高的耐热性和化学稳定性。
它常用于制造密封件、橡胶管等产品。
丁苯橡胶配方一般包括以下成分:丁苯橡胶、防老化剂、硫化剂、填充剂(如炭黑)、软化剂等。
丁苯橡胶的优点是具有良好的抗老化性和耐热性,但相对于天然橡胶来说,缺乏弹性和耐磨性。
因此,一般会在配方中加入合适的填充剂来增加橡胶的硬度和强度。
3.氟橡胶配方:氟橡胶是一种特殊的橡胶,具有极高的耐腐蚀性和耐高温性能。
它常用于制造密封件、汽车零部件等产品。
氟橡胶配方一般包括以下成分:氟橡胶、防老化剂、硫化剂、填充剂等。
氟橡胶的优点是具有优异的抗腐蚀性和耐高温性,但相对较高的成本也限制了其应用范围。
在氟橡胶配方中,填充剂的选择十分重要,通常采用石墨、滑石等耐腐蚀材料。
除了上述几种橡胶配方外,根据不同的需求,还可以使用其他合成橡胶(如丁腈橡胶、丙烯橡胶等)进行配方。
此外,还可以根据不同的用途对橡胶配方进行调整,以满足不同的性能需求。
橡胶配方的工艺和操作也非常重要,需要根据具体的情况进行调整。
总之,橡胶配方的选择和调整将直接影响到最终产品的性能和质量。
典型橡胶制品配方实例
典型橡胶制品配方实例
橡胶制品是指通过加工、模具和硫化等工艺,将天然橡胶或合成橡胶与其他辅助材料混合制成的各种产品。
橡胶制品广泛应用于汽车、机械、电气、医疗等领域。
下面是一个典型的橡胶制品(如橡胶密封圈)的配方实例:
1.主橡胶:
主要有天然橡胶和合成橡胶,天然橡胶具有良好的弹性和耐磨性,但价格相对较高;合成橡胶则具有更好的耐化学性和耐油性,选择哪种橡胶主要取决于具体需求。
2.塑化剂:
塑化剂用于提高橡胶的柔软性和可加工性,常用的塑化剂有脂肪酸和酯类,如硬脂酸和蜡状酯。
3.加硫剂:
加硫剂用于促进橡胶的硫化反应,增加产品的强度和耐磨性。
常用的加硫剂有硫芥等。
4.填料:
填料主要用于增加橡胶制品的硬度和耐磨性,降低成本。
常用的填料有炭黑、白炭黑、硅灰、滑石粉等。
5.防老化剂:
防老化剂用于保护橡胶制品免受光、热、氧化等环境因素的影响,提高使用寿命。
常用的防老化剂有脂类、醇类等。
6.加工助剂:
加工助剂用于提高橡胶的加工性能,如增塑剂、润滑剂等。
7.制剂:
制剂可根据具体需求进行选择,例如,如果需要改善橡胶的耐油性,
可以加入耐油制剂。
以上是一个典型的橡胶密封圈的配方实例,根据具体产品的要求和性
能需求,配方可能有所不同。
通过合理的配方选择,可以制备出性能优异、符合要求的橡胶制品。
橡胶制品实用配方大全
橡胶制品实用配方大全A:汽车轮胎1.胎面胶、胎冠胶NR 100 ZnO 5 SA 4 石蜡 1 防D 1 防A 1槽黑20 N330 30 松焦油 2 液体古马龙 2 DM0.35 CZ 0.3 S 2.62#烟100 ZnO 5 SA 3.5 防D 1.5 防A 1 槽黑30 N330 15 松焦油 3.5 M 0.8 S 2.6(4010NA、BLE、H /CZ 0.6 /NOBS 0.42 DTDM 0.5/NOBS0.6/) S 2.62.抗撕裂:NR 100 ZnO 5 SA 2 RD 1 4020 2 微晶蜡 1 N22030 SiO2 35 聚乙二醇(4000) 1.3 妥尔油 1 氢化松香6 古马龙 5 促MDB 2 NOBS 2 TBTD 0.3 S0.33.抗割口增长载重车胎胎面胶:NR 100 ZnO 4 SA 2 RD 1 HPPD 2 混合蜡 1 N29928 SiO2 28 聚乙二醇(4000) 1 A-189 1 古马龙 5芳烃油 5 NOBS 2 S 3NR 100 ZnO 4 SA 2 RD 2 混合蜡 1 4020 2 N28535 SiO2 20 聚乙二醇(4000)0.5 妥尔油 3 古马龙 3促NS 2 促D 0.4 S 2.5并用SBR:NR 70 SBR 30 ZnO 4 SA 3 石蜡 1.5 防D 0.7 40101.5 H 0.5 槽黑27 N330 20 古马龙 4.5 DM 1.2M 0.8 S 2.2NR烟70 SBR 30 ZnO 5 SA 3 防D 1.5 防A 1槽黑30 混气炭黑15 松焦油 4.5 DM 1 CZ 0.4 S 2.3NR烟70 SBR 30 ZnO 5 SA 2.5 防 D 1.5 防 A1 石蜡 1 槽黑28 N330 18 松焦油 4.5 DM0.63 CZ 0.33 S 2.15胎冠上层胶:2#烟70 SBR 30 ZnO 4 SA 3 4010 1 防D 1防H0.4 石蜡 2 槽黑25 N330 20 三线油 4.5 DM0.35 NOBS 0.6 S 2.21#烟60 SBR 40 ZnO 4 SA 3 4010 0.5 防 A 1 石蜡 1.5 中超耐磨炭黑52 芳烃油10 NOBS 0.8 S1.8白胎面:NR 70 SBR 30 ZnO 3 SA 2 防ODA 1 混合蜡 2 Si 50 A-189 0.8 聚乙二醇(4000)1.5 古马龙10 TiO2 5 NOBS 2 S 2.8NR 50 SBR(溶聚) 50 ZnO 4 SA 3 防4010NA 1.5 石蜡 1 RD 1.5 中超耐磨53 操作油8NOBS 0.8 S 1.5NR 35 SBR 65 ZnO 5 SA 5 防HPPD 2 混合蜡 2 RD 1.5 Si 25 N285 45 聚乙二醇(4000) 1 古马龙20 油 5 NOBS 1.3 D 0.3 S 1.7NR 30 SBR 70 ZnO 4 SA 3 防D 1.5 防4010NA 1.5 石蜡 1 防H 0.3 RP-3 防护蜡1.5 中超50 机油10 NOBS 0.8 S 1.8与BR并用:NR 75 BR 25 ZnO 4 SA 3 防D 1.5 防4010NA 1.5 石蜡 1 槽黑10 中超37 机油10 CTP 0.1 CZ 0.9 S 1.2(1.5)NR 70 BR 30 ZnO 4 SA 3 防D 1.2 防4010NA 0.5 石蜡 1 防AW 1.3 石蜡 1 中超20 N330 30 锭子油 5 NOBS 0.6 S 1.5(屈挠龟裂OK)耐磨抗撕裂载重越野胎面:。
几种橡胶的配方范文
几种橡胶的配方范文橡胶是一种重要的材料,被广泛应用于各种领域。
它的特性可以通过不同的配方来调整,并使其适应不同的应用需求。
下面是几种常见的橡胶配方:1.天然橡胶配方:天然橡胶是从橡胶树的乳液中提取的。
它具有优异的弹性、耐磨性和耐冲击性。
天然橡胶的主要成分是聚异戊二烯,其中还含有少量的蛋白质、酯类和水分。
为了制备天然橡胶,可以加入硫化剂和其他辅助剂,例如促进剂、防老化剂和加工助剂,以改善其弹性、耐久性和加工性能。
2.合成橡胶配方:合成橡胶是由石油产物合成的人造材料。
它可以根据不同的应用需求和目的进行配方。
常见的合成橡胶有丁苯橡胶、丁二烯橡胶、氯丁橡胶等。
合成橡胶的配方通常包括聚合物、半成品和添加剂。
聚合物通常是由多种单体进行聚合而成。
半成品可以改善橡胶的加工性能和特性。
添加剂包括硫化剂、促进剂、填料、增塑剂、防老化剂等。
通过调整这些成分的比例,可以改变合成橡胶的硬度、弹性、耐久性和热稳定性。
3.聚氨酯橡胶配方:聚氨酯橡胶是一种通过聚合氨酯单体制备的合成材料。
它具有很高的抗撕裂性、耐化学品腐蚀性和耐磨性。
聚氨酯橡胶的配方通常包括两种主要成分:聚醚或聚酯型多元醇和异氰酸酯。
这两种成分通过反应生成聚氨酯链。
为了改善橡胶的加工性能和力学性能,常常添加一些辅助剂,如填料、增塑剂、防老化剂和润滑剂。
4.丁腈橡胶配方:丁腈橡胶是一种合成橡胶,具有出色的耐油性、耐溶剂性和耐热性。
它的主要成分是丁二烯和丙烯腈。
丁腈橡胶的配方通常还包括填料、填充剂、增塑剂、稳定剂等。
填料可以改变橡胶的硬度、强度和抗撕裂性。
填充剂用于调节橡胶的流动性和流变性能。
通过控制这些配方成分的比例,可以获得不同硬度和性能的丁腈橡胶。
总之,橡胶的配方对于其性能和应用非常重要。
通过调整聚合物、添加剂和填料的比例,可以满足不同的需求和应用要求。
无论是天然橡胶、合成橡胶、聚氨酯橡胶还是丁腈橡胶,都需要仔细选择和控制配方,以获得所需的特性和性能。
标准橡胶配方
标准橡胶配方
标准橡胶配方是根据具体橡胶制品的需求和性能要求进行设计的,因此不同类型和用途的橡胶制品会有不同的配方。
以下是一般橡胶制品常见的标准橡胶配方的成分和比例参考:
1. 橡胶基础材料:
- 天然橡胶:50% - 100%
- 合成橡胶(如丁苯橡胶、丁腈橡胶等):0% - 50%
2. 填充剂:
- 炭黑:20% - 50%(用于增强橡胶的耐磨、抗老化性能)
- 无机填料(如白炭黑、硅石粉等):0% - 20%(用于调节硬度、强度和耐磨性)
3. 加工助剂:
- 加硫剂(如硫化硫、硫醇类化合物):1% - 5%(用于橡胶的硫化反应)
- 加热剂(如过氧化物):0.5% - 5%(加速橡胶的硫化反应)
- 填充剂分散剂:0.5% - 3%(用于提高填充剂的分散性)
4. 弹性体改性剂:
- 塑化剂(如油类、酯类):0% - 10%(用于提高橡胶的柔软性和延展性)
- 耐热剂(如酚醛树脂、聚酰胺):0% - 10%(用于提高橡胶的耐高温性能)
以上配方只是一般参考,具体的橡胶制品配方还需要根据产品的具体要求进行调整。
同时,在实际生产中也会根据工艺要求和使用条件的变化进行微调和优化。
因此,如果需要具体的橡胶配方,建议咨询橡胶化学工程师或专业生产厂家以获得更准确的配方。
三元乙丙橡胶实用配方
三元乙丙橡胶实用配方配方一:原材料:-三元乙丙橡胶:100份-碳酸钙:30份-增塑剂:15份-促进剂:5份-抗老化剂:3份-防火剂:2份-空气分散剂:2份-硫化剂:1份步骤:1.将三元乙丙橡胶加入橡胶混炼机中进行预混。
预混时间约为5分钟,温度控制在120-140℃。
2.将碳酸钙、增塑剂、促进剂、抗老化剂、防火剂和空气分散剂逐一加入预混橡胶中,并进行均匀混合。
混合时间约为15分钟,温度控制在120-140℃。
3.将硫化剂加入混合橡胶中,并继续混合20分钟,温度保持在120-140℃。
4.将混合橡胶取出,放入橡胶成型机中进行成型。
成型时可采用挤出、压延或注塑等方法。
5.成型后的橡胶制品放置在恒温恒湿条件下进行硫化。
硫化温度为150℃,时间根据制品大小而定,一般为20-30分钟。
6.经硫化后的橡胶制品经冷却后即可包装出库。
配方二:原材料:-三元乙丙橡胶:100份-丙烯酸甲酯:30份-丁二酸二丁酯:15份-酸性活化剂:5份-抗氧剂:3份-防火剂:2份-空气分散剂:2份-硫化剂:1份步骤:1.将三元乙丙橡胶和丙烯酸甲酯加入橡胶混炼机中进行预混。
预混时间约为5分钟,温度控制在110-130℃。
2.将丁二酸二丁酯、酸性活化剂、抗氧剂、防火剂和空气分散剂逐一加入预混橡胶中,并进行均匀混合。
混合时间约为15分钟,温度控制在110-130℃。
3.将硫化剂加入混合橡胶中,并继续混合20分钟,温度保持在110-130℃。
4.将混合橡胶取出,放入橡胶成型机中进行成型。
成型时可采用挤出、压延或注塑等方法。
5.成型后的橡胶制品放置在恒温恒湿条件下进行硫化。
硫化温度为140℃,时间根据制品大小而定,一般为20-30分钟。
6.经硫化后的橡胶制品经冷却后即可包装出库。
这两种配方可以根据具体的应用需求和工艺要求进行调整,比例也可以根据实际需要进行微调。
配方中的增塑剂、促进剂、抗老化剂、防火剂、空气分散剂和硫化剂的种类和用量可以根据橡胶制品的性能要求来选择。
橡胶配方——精选推荐
橡胶配⽅从事橡胶技术⼯作时,⾸先会⾯对下述各问题:─—什么叫做橡胶配⽅?─—如何设计橡胶配⽅?─—成功的橡胶配⽅是什么?事实上,橡胶配⽅技术乃是⼀种选择和运⽤材料之科学和艺术。
⼀般之橡胶配⽅⽬的有三:⾸先是使橡胶制品具有实⽤之物性;其次是能配合现有加⼯设备进⾏良好之加⼯作业;最后是以可能之最低成本之配料达到符合客户所要求之物性⽔平。
换⾔之,设计橡胶配⽅最需考虑之三要素为配料之物性者、加⼯性和成本,并使三者获得⼀个适当之平衡点,此即配⽅设计都最主要之⼯作。
配⽅中常⽤之添加剂可摘要分类成⼗个主要成份:橡胶或弹性体(elastomers ):橡胶配⽅设计第⼀个步骤也是最重要的步骤即为选择橡胶基材或原料胶。
橡胶为⼯程材料之⼀种,不论其组成为何,都带有⼀些共通之基本特性。
所有橡胶都带有弹性,可弯曲性、韧性、不易透⽔和透空⽓等性质。
除了这些共通特性外,每种橡胶因组成之不同,各⾃具有其本⾝之性质。
加硫剂(Vulcanizing agents ):添加加硫剂之⽬的是使配料产⽣化学反应⽽在橡胶分⼦之间产⽣架桥(cross linking )之现象⽽改变橡胶之物性。
化学架桥作⽤使橡胶配料由柔软、带粘性之热可塑体变成强韧之热固物,此时受温度之影响较少。
到⽬前为⽌,硫磺仍是最⼴泛使⽤之加硫剂。
其它载硫剂(sulfur donor )如⼆硫化秋兰姆类之TMTD(TUEX) 有时亦⽤作全部或局部取代元素硫磺于低硫或⽆硫加硫系统之配⽅,使制品得以改善其耐热性。
配⽅设计者其第⼆个最重要之⼯作为对于配料加硫系统,加硫剂和促进剂之选择。
加硫促进剂(Accelerators ):加硫促进剂可使配料硫化速率加快⽽缩短加硫时间。
活化剂(Activators )和迟延剂(Retarders):活化剂是⽤来帮助促进剂增强其活性和效能,最常⽤之活化剂有锌氧粉、硬脂酸、氧化铅、氧化镁和胺类(H )。
防⽼剂(Antidegradants ):防⽼剂可延缓橡胶制品因受氧⽓、臭氧、热、⾦属催化作⽤和屈曲运动之影响⽽劣化。
通用橡胶配方集锦_一_王作龄
配方例 1 天然橡胶(NR)
1 .配方特征 ①传统配方 ; ②一般用于模型橡胶制品 ;
③能与再生胶并用 , 所以耐老化性能好 ; ④加工性能好 , 但生胶的切断性能较差 ; ⑤硬度 50°(配方 A)和 60°(配方 B)。 2 .配方表
配方
用量 , 份
A
B
天然橡胶(RSS #3)
100
100
再生橡胶(#1 胎面再生胶)
3)在将 EPDM 用于实用橡胶配方以前 , 除 了 CR 以外 , 设计污染性小的耐臭氧橡胶配方 比较困难 。 通过将防老剂 NBC 和石蜡类防老 剂并用 , 经臭氧浓度为 50 PPhm , 老化时间 48 h 的臭氧试验后符合使用要求 。有轻微污染性 。 防老剂 NBC 的用量超过 1 .5 份时产生污染 。
No 12. 3 Заявка на пат.2293419 Beликобритании, МКИ F 16C
33 20.Oпубл.27.03.1996 . 4 Пат.2108496 Pоссии, МКИ 16C 17 02 .Oпубл.10.04 .
1998 .бюл.N o 10. 5 Baukasten fbrErwachsene , [ J] .Produktion .— .1999.—
4)防老剂 RD 可用作耐热防老剂 。 以前使 用防老剂 C , 但在致癌性物质的序列中它被列 入禁用化学品 。此外 , 防老剂 PA(N-苯基-α-萘 胺)也被禁止用于氯丁橡胶的标准配方 。
5)也可用促进剂 TT 或促进剂 M 代替促进 剂 PZ 。配合量系根据硫 化条件适当确定 。 但 用量超过规定时无效 。
4)为了使胶料充分硫化 , 在添加了大量陶 土 、白 炭 黑 等 的 胶 料 中 使 用 有 机 胺 活 性 剂 (Acting B)。此外 , 二甘醇也可用作活性剂 。
丁腈橡胶厚制品配方
丁腈橡胶厚制品配方1. 引言1.1 背景介绍丁腈橡胶是一种优异的合成橡胶材料,具有优良的耐油性、耐磨性、耐高温和耐候性等特性,广泛应用于汽车制造、航空航天、化工等领域。
厚制品是指较厚的橡胶制品,如橡胶管、橡胶板等。
丁腈橡胶厚制品在工业生产中扮演着重要角色,其品质直接影响产品的性能和使用寿命。
随着市场需求的不断增长和技术的不断进步,人们对丁腈橡胶厚制品配方提出了更高的要求。
如何更好地控制配方中各种材料的比例,提高产品的耐磨性、耐腐蚀性和耐热性等性能,成为当前研究的重点之一。
本文旨在探讨丁腈橡胶厚制品配方的优化方法,通过对丁腈橡胶的特性及应用进行分析,探讨厚制品配方的影响因素,设计实验方案并进行实验研究,最终为丁腈橡胶厚制品的生产提供技术支持和理论指导。
通过优化配方和工艺,提高产品质量,降低生产成本,促进丁腈橡胶厚制品在各个领域的广泛应用。
1.2 研究目的研究目的旨在对丁腈橡胶厚制品的配方进行深入探讨,以提高产品的性能和质量。
通过研究不同配方对厚制品性能的影响,探讨各种成分对产品性能的影响规律,为优化丁腈橡胶厚制品的配方提供科学依据。
通过实验设计和数据分析,可以揭示不同配方因素对产品性能的影响途径,为进一步提高丁腈橡胶厚制品的生产效率和品质提供可靠的技术支持。
通过本研究,旨在为工程领域的丁腈橡胶厚制品生产提供技术指导和理论依据,促进丁腈橡胶产品在工程应用中的更广泛推广和应用。
2. 正文2.1 丁腈橡胶厚制品配方的探讨丁腈橡胶是一种优良的合成橡胶材料,具有出色的耐油、耐高温和耐腐蚀性能,因此在工业领域广泛应用于密封制品、输送带、胶管等领域。
在使用丁腈橡胶制作厚制品时,配方的选择对产品的性能至关重要。
厚制品的配方包括胶料、填料、硬化剂、加工助剂等,其中胶料为主要成分,填料和硬化剂起着增强和硬化作用。
正确选择各种成分的比例和配方,可以提高丁腈橡胶制品的物理性能、耐磨性和耐老化性能。
在探讨丁腈橡胶厚制品配方时,需要考虑到各种成分间的相容性、反应活性以及制品的使用环境和要求。
橡胶配方实例题目
选择题
在设计耐油橡胶配方时,首选的橡胶种类是?
A. 天然橡胶
B. 丁苯橡胶
C. 丁腈橡胶(正确答案)
D. 氯丁橡胶
为了提高橡胶制品的耐磨性,常加入的填料是?
A. 碳酸钙
B. 炭黑(正确答案)
C. 硫酸钡
D. 滑石粉
在橡胶配方中加入防老剂的主要目的是?
A. 增加硬度
B. 提高拉伸强度
C. 延缓老化过程(正确答案)
D. 改善加工性能
制备耐高温橡胶配方时,可能会选用的橡胶材料是?
A. 硅橡胶(正确答案)
B. 顺丁橡胶
C. 乙丙橡胶(虽也耐温,但硅橡胶更耐高温)
D. 丁基橡胶
橡胶配方中,用于提高制品撕裂强度的增塑剂是?
A. 邻苯二甲酸二辛酯
B. 石油树脂
C. 古马隆树脂(正确答案)
D. 松香
下列哪种硫化体系常用于快速硫化橡胶配方?
A. 硫磺-促进剂体系(正确答案)
B. 过氧化物硫化体系
C. 金属氧化物硫化体系
D. 树脂硫化体系
在制备低硬度橡胶配方时,应适当?
A. 增加交联密度
B. 减少填充量(正确答案)
C. 提高硫化温度
D. 使用高粘度橡胶
为了改善橡胶制品的阻燃性能,可加入的阻燃剂是?
A. 氢氧化铝(正确答案)
B. 碳酸钙
C. 炭黑
D. 硅灰石
在橡胶配方设计中,为了调节胶料的粘度,常加入的助剂是?
A. 增塑剂(正确答案)
B. 防老剂
C. 硫化剂
D. 填充剂。
常用橡胶制品参考配方_美国橡胶协会
4.12 Manufacture of Rubber Products4.12.1 General Process Description1Many of the rubber manufacturing facilities in the United States produce pneumatic tires for automobile, trucks, airplanes and farm machinery. However, many rubber manufacturing facilities produce other engineered rubber products. The processes involved in these industries are very similar. Differences basically consist of the raw rubber material (natural or synthetic) used, the chemical additives, and the type of curing employed. The following is a description of a generic rubber manufacturing facility applicable to both tire and other manufactured rubber products, except where noted.The manufacturing of rubber products involves six principal processing steps (mixing, milling, extrusion, calendering, curing, and grinding), with ancillary steps in between. Initially, the raw rubber (natural or synthetic) is mixed with several additives which are chosen based upon the desired properties of the final product. The mixed rubber is often milled and transferred to an extruder where it can be combined with other rubbers. Many rubber products contain synthetic fabric or fibers for strengthening purposes. These fibers are typically coated with mixed rubber using a calender. The extruded rubber and rubber coated materials are then assembled into a final shape and cured. Among the steps in the tire assembly process, described in more detail below, are bead building; cementing and marking; cutting and cooling; tire building; and green tire spraying. It is during the curing process that the rubber vulcanizes (crosslinks), producing the characteristic properties of finished rubber. Once the final product is cured, it is often ground to remove rough surfaces and/or to achieve symmetry.Mixing consists of taking the raw rubber and mixing it with several chemical additives. These additives consist of accelerators (to initiate the vulcanization process), zinc oxides (to assist in accelerating vulcanization), retarders (to prevent premature vulcanization), antioxidants (to prevents aging), softeners (to facilitate processing of the rubber), carbon black or other fillers (to serve as reinforcing / strengthening agents), and inorganic or organic sulfur compounds (to serve as vulcanizing agents).Mixing typically is performed in an internal batch mixer. The internal mixer contains two rotors which shear the rubber mix against the wall of the vessel. Internal mixing is performed at elevated temperatures up to approximately 330o F.Once mixed, the rubber is discharged from the mixer and processed into slab rubber or pellets. Rubber mixing typically occurs in two or more stages wherein the rubber is returned to the mixer and re-mixed with additional chemicals. The initial stage results in non-productive compounds, and the final stage results in productive compounds. It should also be noted that various rubber compounds produced at a particular facility can be exported to other facilities for use there.Non-productive compounds consist of the raw rubber, process oils, reinforcing materials such as carbon black and / or silica and the antioxidant / antiozonant protection system. These materials are mixed at temperatures around 330o F. The final, “productive,” stage involves mixing the rubber from the last non-productive stage with the activators, accelerators and sulfur curing agents. This stage is mixed at a lower temperature (around 230o F) because the rubber compound will now scorch and cure at elevated temperatures.The majority of rubber products produced in the United States are composed of one or more of 23 generic rubber compounds shown in Table 4.12-14. Emissions factors were derived from the specific compound recipes shown in Table 4.12-2. Emissions from manufacturing aids such as solvents and adhesives ARE NOT included in these emission factors.4.12-1TableIndex of Rubber CompoundsCompound #1: Tire Inner Liner (BrIIR/NR)Compound #2: Tire Ply Coat (Natural Rubber / Synthetic Rubber)Compound #3: Tire Belt Coat (Natural Rubber)Compound #4: Tire Base/Sidewall (Natural Rubber / Polybutadiene Rubber)Compound #5: Tire Apex (Natural Rubber)Compound #6: Tire Tread (Styrene Butadiene Rubber / Polybutadiene Rubber)Compound #7: Tire Bladder (Butyl Rubber)Compound #8: EPDM 1 (EPDM Sulfur Cure)Compound #9: EPDM 2 (Peroxide Cure)Compound #10: EPDM 3 (Non-Black EPDM Sulfur Cure)Compound #11: CRW (Polychloroprene W Type)Compound #12: CRG (Polychloroprene G Type)Compound #13: Paracryl OZO (NBR/PVC)Compound #14: Paracryl BLT (NBR)Compound #15: Hypalon (CSM)Compound #16: Fluoroelastomer (FKM)Compound #17: AEM (Vamac)Compound #18: Hydrogenated Nitrile (HNBR)Compound #19: Silicone (VMQ)Compound #20: Acrylate Rubber (ACM)Compound #21: Chlorinated Polyethylene (CPE)Compound #22: Emulsion SBR (SBR 1502)Compound #23: Epichlorohydrin (ECO)Table4.12-2Rubber Compound Recipes aCompound #1: Tire Inner Liner (BrIIR/NR)Recipe:Brominated IIR X-2 85.00SMR 20 Natural Rubber 15.00Black 60.00 GPFStearic Acid 1.00Paraffinic Medium Process Oil 15.00Unreactive Phenol Formaldehyde Type Resin (Arofene 8318, SP1068) 5.00Oxide 3.00 ZincSulfur .50MBTS 1.50186.00Number of Passes/Temperature:1 (NP Temperature: 320°F; Chlorobutyl or 290°F Bromobutyl)2 (P) Temperature: 220°FCompound #2: Tire Ply Coat (Natural Rubber / Synthetic Rubber)Recipe:50472 Natural RubberSMR-GP Natural Rubber 70.00707 30.00 DuradeneN330 36.50Sundex790 20.00H 1.50 FlectolIP 2.30 SantoflexSunproof Super Wax 1.20Oxide 5.00 ZincAcid 1.00 StearicSulfur 2.30CBS .80170.60Number of Passes / Temperature:1 (NP) Temperature: 330°F2 (P) Temperature: 220°FTable 4.12-2 (cont.)Rubber Compound RecipesCompound #3: Tire Belt Coat (Natural Rubber)Recipe:#1RSS Natural Rubber 100.00HAF Black (N330) 55.00Oil 5.00 AromaticN-(1,3 dimethylbutyl)-N-phenyl-P-phenylene diamine (Santoflex 13) 1.00ZincOxide 10.00Acid 2.00 Stearicn-tertiary-butyl-2-benzothiazole disulfide (Vanax NS) .80Sulfur 4.00Cobalt Neodecanate (20.5% cobalt) 2.50180.30Number of Passes / Temperatures:1 (NP) Temperature: 330°F; add 1/2 black, add 1/2 oil2 (NP) Temperature: 330°F, add remainder of black and oil3 (remill) Temperature: 300°F4 (P) Temperature: 220°FCompound #4: Tire Base / Sidewall (Natural Rubber / Polybutadiene Rubber)Non-Productive Recipe:CV 50.00 NR-SMR-51220 50.00 TakteneN330 Carbon Black 50.00Oxide 1.50 ZincAcid 2.00 StearicAgerite Resin D 2.00Vulkanox4020 3.00Vanwax H Special 3.00Flexon 580 Oil 10.00171.50Productive Recipe:Productive 171.50 NonOxide 1.50 ZincRubber Maker Sulfur 1.75DPG 0.10CBS 0.60175.45Number of Passes / Temperatures:1 (NP) Temperature: 330°F2 (P) Temperature: 220°FTable 4.12-2 (cont.)Rubber Compound RecipesCompound #5: Tire Apex (Natural Rubber)Recipe:TSR 20 Natural Rubber 100.00HAF Black (N330) 80.00AromaticOil 8.00Acid 1.00 StearicResorcinol 3.00Hexamethylenetetramine 3.00Oxide 3.00 ZincN-tertiary-butyl-2-benzothiazole disulfide (Vanax NS) 1.50 n-cyclohexythiophthalimide (Santogard PVI) .30Sulfur 3.00202.801 (NP) Temperature: 330°F; add 60 parts black, add 6 parts oil2 (NP) Temperature: 330°F; add Resorcinol, add 20 parts black, add 2 parts oil3 (P) Temperature: 200°F; add HexamCompound #6: Tire Tread (Styrene Butadiene Rubber / Polybutadiene Rubber)Non-Productive Recipe #1:1712C 110.00 SBRN299 Carbon Black 60.00 1220 20.00 TakteneOxide 1.50 ZincAcid 3.00 Stearic4020 2.00 Vulkanox100 2.00 WingstayVanox H Special 2.50Sundex 8125 Oil 20.00221.00Non-Productive Recipe #2:#1: 221.00 Non-ProductiveN299 Carbon Black 20.00Sundex 8125 Oil 5.00246.00Productive Recipe:#2 246.00 Non-ProductiveOxide 1.50 ZincRubber Makers Sulfur 1.60TMTD 0.20CBS 3.00252.30Rubber Compound RecipesNumber of Passes / Temperatures:1(NP) Temperature: 330°F; add 60 parts black, add 20 parts oil2(NP) Temperature: 330°F; add 20 parts black, add 5 parts oil3 (P) Temperature: 220°FCompound #7: Tire BladderRecipe:BUTYL268 100.00N330 55.00Oil 5.00 CastorSP 1045 Resin 10.00Oxide 5.00 ZincW 5.00Neoprene180.00Number of Passes / Temperatures:NP 1 All Butyl, Castor Oil, Zinc Oxide, 45 phr N330, discharge approx 330°F / 340°F+Resin, 10 phr N330, discharge approx 270 / 280°F DO NOT EXCEED 290°FPROD NP2 = neoprene, discharge approx 250F / 260°FCompound #8: EPDM 1 (EPDM Sulfur Cure)Non-Productive Recipe:Vistalon7000 50.003777 87.50 VistalonN650 GPF-HS Black 115.00N762 SRF-LM Black 115.00Process Oil Type 104B (Sunpar 2280) 100.00Oxide 5.00 ZincAcid 1.00Stearic473.50Productive Recipe:Non-Productive 473.50 Sulfur 0.50 TMTDS 3.00 ZDBDC 3.00 ZDMDC 3.00 DTDM 2.00485.00Number of Passes / Temperatures1 (NP) Temperature: 340°F; upside down mix, rubber then black and oil2 (P) Temperature: 220°FRubber Compound RecipesCompound #9: EPDM 2 (Peroxide Cure)Non-Productive Recipe:502 100.00 RoyaleneN 762 Carbon Black 200.00SunparOil 85.00 2280Oxide 5.00 ZincAcid 1.00Stearic391.00 Productive:Non-Productive 391.00 40C 6.00 DICUPSARET 500 (on carrier / 2 parts active) 2.56399.56 NP Temperature: 330°FP Temperature: 240°FCompound #10: EPDM 3 (Non-black EPDM Sulfur Cure)Recipe:Vistalon5600 50.003777 87.50 VistalonHard Clay (Suprex) 180.00Mistron Vapor Talc 100.00 Whiting 40.00 AtomiteProcess Oil Type 104B (Sunpar 2280) 60.00Silane(A-1100) 1.50Wax 5.00 ParaffinZincOxide 5.00Acid 1.00 StearicSulfur 1.50 Cupsac 0.50 TMTD 3.00535.00 Number of Passes / Temperatures:1 (NP) Temperature: 330°F2 (P) Temperature: 220°F, add Sulfur, Cupsac, and TMTDSRubber Compound RecipesCompound #11: CRW (Polychloroprene W Type)Recipe:NonProductive:WRT 100.00 NeopreneN550 13.20762 15.70 NAgerite Staylite S 2.00Sunproof Super Wax 2.00IP 1.00 SantoflexOxide 4.00 MagnesiumAcid 0.50 StearicDoz 15.00PlastHall153.40 Productive Recipe:Non-Productive 153.40 Oxide 5.00 ZincTMTD 0.50 Dispersed Ethylene Thiourea 1.00159.90 Number of Passes / Temperatures:1 pass at 240°F; add accelerator package at 200°FCompound #12: CRG (Polychloroprene G Type)Non-Productive Recipe:GN 100.00 NeopreneSRF 50.00 Sundex790 10.00 Octamine 2.00 Acid 1.00 StearicMaglite D 4.00167.00 Productive Recipe:Non-Productive 167.00 TMTM 0.50 Sulfur 1.00 DOTG 0.50 Oxide 5.00Zinc174.00 Number of Passes / Temperatures:1 (NP) Temperatures: 240°F; add zinc oxide and curatives late at 200°F2 (P) Temperature: 200°FRubber Compound RecipesCompound #13: Paracryl OZO (NBR / PVC)Recipe:PARACRILOZO 100.00Oxide 5.00 ZincOCTAMINE 2.00Clay 80.00 HardBlack 20.00 (N-550)FEFAcid 1.00 StearicMBTS 2.50 TUEX 1.50 ETHYLTUEX 1.50 DOP 15.00 KP-140 15.00 Sulfur 0.20Spider243.70Number of Passes:(NP) Temperature: 330°F(P) Temperature: 220°F; add MBTS, TUEX, ETHYLTUEX, Spider SulfurCompound #14: Paracryl BLT (NBR)Recipe:BLT 100.00 PARACRILOxide 5.00 ZincBlack 100.00 SRF(N-774)TP-95 15.00G-25 5.00 ParaplexAMINOX 1.50Acid 1.00 StearicESEN 0.50MONEX 1.50Sulfur 0.75230.25Number of Passes / Temperatures:(NP) Temperature: 280°F(P) Temperature: 220°F; add sulfur, MONEX, and possibly ESENTable 4.12-2 (cont.)Rubber Compound RecipesCompound #15: Hypalon (CSM)Recipe:40 100.00 HypalonCLS 4 PBD 3.00Carbo wax 4000 3.00PE617A 3.00Mag Lite D 5.00200 3.00 PE(Atomite) 100.00 WhitingN650 100.00 Oil 70.00 TOTMMBTS 1.00A 1.50 TetroneNBC 0.50HVA-2 0.50390.50Uses of Formulas / Temperatures:Number of Passes:1 (P) Temperature: 280°FCompound #16: Fluoroelastomer (FKM)Recipe:VitonE60C 100.00Black 20.00 N990CalciumHydroxide 6.00D 3.00Maglite129.00Compound #17: AEM (Vamac)Recipe:Masterbatch 124.00 VAMAC*B-12418D .50 ARMEENAcid .20 StearicSRF Carbon Black (N-774) 10.00 #1 4.00 DIAKDPG 4.00142.70Table 4.12-2 (cont.)Rubber Compound RecipesCompound #18: Hydrogenated Nitrile (HNBR)Non-Productive Recipe:HNBR Zetpol 2020 100.00 Black 45.00 N6507P 1.00 FlexoneAgerite Resin D 1.00ZMTI 1.00 Kadox 911 C 5.00 Acid 1.00 StearicTrioctyl trimellitate (TOTM) 7.00161.00 Productive Recipe:Sulfur 0.50 MBTS 1.50 TMTD 1.50 MTDMonex .50165.00 Number of Passes / Temperatures:1 (NP) Temperature: 275°F2 (P) Temperature: 210°FCompound #19: Silicone (VMQ)Recipe:Rubber 70.00 SiliconeSilastic NPC-80 silicone rubber 30.005 Micron Min - U - Sil 68.00Silastic HT - 1 modifier 0.80Vulcanizing agent: Varox DBPH 50 1.00169.80Compound #20: Acrylate Rubber (ACM)Non-Productive Recipe:AR71 100.00 HytempAcid 1.00 Stearic550 65.00N166.00 Productive Recipe:Non-Productive 166.00 SodiumStearate 2.25Stearate 0.75 PotassiumSulfur 0.30169.30 Number of Passes / Temperatures:1 (NP) Temperature: 260°F2 (P) Temperature: 220°FTable 4.12-2 (cont.)Rubber Compound RecipesCompound #21: Chlorinated Polyethylene (CPE)Recipe:0136 100.00 CMMagliteD 10.00N 774 Black 30.00 VH 35.00 SterlingDER 331 DLC 7.00Agerite Resin D 0.20Oil 35.00 TOTMTriallyl Isocyanurate Cure 5223 (provided by Gates) 2.9017/40 10.00Trigonox230.10Number of Passes / Temperatures:Single pass mixed to 240°F; add Triallylisocyanurate,Triganox 17/40 at 200°FCompound #22: Emulsion SBR (SBR 1502)Non-Productive Recipe:1502 100.00 SBRN330 Carbon Black 58.50Oxide 10.00 ZincStearicAcid 2.00Agerite Resin D (Naugard Q) 2.007P 1.00 FlexoneSunproof Super Wax 1.50Sundex 790 Oil 7.00182.00Productive Recipe:Non-Productive 182.00Rubber Makers Sulfur 2.00TBBS 1.80185.80 Number of Passes / Temperatures:Non-productive pass mixed to 330°F,Second pass mixed to 220°F.Table 4.12-2 (cont.)Rubber Compound RecipesCompound #23: Epichlorohydrin (ECO)Recipe:2000 100.00 HydrinN330 Carbon Black 50.00 Acid 1.00 StearicVulkanox MB-2 / MG / C 1.00Carbonate 5.00 CalciumZisnetF-PT 1.00Diphenylguanadine 0.50 PVI 0.50Santogard159.00Number of Passes / Temperatures:1 Pass at 240°Fa Reference 4Emissions of volatile organic compounds (VOCs) due to use of cements, solvent tackifiers, and release agents in rubber manufacturing are generally determined by either material balance, assuming a 100% loss to the atmosphere or, in some cases, by direct measurement. In cases where solvent emissions are determined by a mass balance calculation which assumes 100% loss at the time of application to the rubber substrate, there is a potential for double-counting a small percentage of the solvent emissions when using the emission factors to determine process volatile organic emissions. This situation is due to the partial absorbption of some solvents into the rubber surface during manufacturing, and subsequent volatilization during downstream processing or curing.It is not possible to determine to what extent typical hydrocarbon solvent constituents reported in the emission factors may have resulted from use of solvents or adhesives upstream in the manufacturing process. Anecdotal evidence suggests that as much as 5% of the solvent applied to the surface of the rubber may migrate into the rubber and appear later in the process as a volatile emission. Caution should therefore be exercised when compiling a facility-wide VOC emission inventory which combines the use of process emission factors and mass balance calculations of solvent usage. Otherwise, this methodology will generally result in an overstatement of the actual facility-wide VOC emissions.Milling operations are conducted to form the rubber compounds into sheets or strips for introduction into calenders or extruders, for warming up rubber for ease of handling and processing and to homogenize recycled rubber compounds for reuse in the process.In the mixing area rubber compound is discharged from the Banbury mixer into a drop mill, extruder or pelletizer which forms it into a long sheet of rubber compound. Additional mills may be located directly downstream from the Banbury drop mill to provide additional mixing or handling capability. From the mill(s) the hot, tacky rubber sheet is then passed through a water-based "anti-tack" solution which prevents the rubber sheets from sticking together as they cool to ambient temperature. The rubber sheets are placed directly onto a long conveyor belt (festoon) which, through the application of cool air or water, lowers their temperature. After cooling the rubber sheets are piled onto a storage pallet for transfer to the component preparation area.Mills are also used to prepare rubber for introduction to calendering and extruding processes. In these cases the mills are used to heat the rubber compound in order to make the rubber stock more flexible for further handling and processing.Mills are also used to homogenize recycled rubber compounds for reintroduction into the process.Extrusion is often performed to combine several types of previously mixed rubber compounds. The extruder consists of a power-driven screw within a stationary cylinder. A die is attached to the head of the screw to produce the desired shape or cross section of the extruded rubber.Extruders may have multiple heads providing laminations of extruded shapes. Extruding heats the rubber and the rubber remains hot until it is cooled via air cooling or use of a water bath or spray conveyor where cooling takes place.Extrusion can be performed with both warm or cold rubber feed. The extruder is jacketed to maintain the desired operating temperature.Extruders may be utilized in the mixing area, along with mills to shape mixed rubber compound for further processing.Calendering is often used in the rubber manufacturing industry to apply a rubber coat onto a continuous textile or metal mesh web. The calender is a heavy-duty machine equipped with multiple rolls revolving in opposite directions. Calenders receive hot strips of rubber from mills and squeeze the rubber into reinforcing fibers of cloth or steel or cloth-like fiber matrices, thus forming thin sheets of rubber coated materials. Calenders are also used to produce non-reinforced, thickness controlled sheets of rubber called innerliner or gum strip. After calendering, the calendered stock is wound into a liner to prevent sticking on itself. The calendered material is next cut to desired width and / or length for use in tire building.The function of the bead is to provide a proper seal between the tire and the wheel rim when a tire is mounted on the rim. Bead compounds produced in mixing are used to coat bead wires. Brass-plated bead wire is received on large spools. Bundles of wires are passed through an extrusion die and given a coating of rubber. The rubber coated wire is then wound into a hoop of specific diameter and thickness and sent to the tire-building machine. In some cases, cement may be applied to the finished bead.Cementing operations are used at various stages in the tire building process. For example, cements (adhesives) may be used to improve the adhesion of different components to each other during the tire building process. Traditionally cements have been used in the bead building process, applied to extruded tread stock (end cementing for cut treads and undertread cementing for retreads and certain other tread stocks) and at tire building machines. It is important to note that cement usage can vary significantly from facility to facility depending on the type of tire being manufactured and the process being utilized.Marking inks are used at various stages of the process to aid in the identification of the components being managed. Typically marking inks are applied to extruded tread stocks to aid in the identification and handling of cured tires. Again, it is important to note that marking practices can vary significantly from facility to facility.The various components manufactured in component preparation must be cut and cooled prior to introduction into tire building. Typically, the processing of the rubber compounds generates heat which causes an increase in rubber temperature. If this temperature is not controlled properly the compound may begin to cure prematurely, thus rendering it unusable.Tire components from bead making, extrusion, and calendering are moved to the component assembly area. The assembly of various tire components is referred to as tire building. The main mechanical component of the tire-building operation is the drum, which is a collapsible cylinder that can be turned and controlled by the tire builder.The typical tire building process begins with the application of a thin layer of special calendered rubber compound, called the inner liner, to the drum. Next, plies are placed on the drum, one at a time. The cords (calendered stock - rayon, nylon, polyester and related fabrics coated with rubber) are laid in alternate direction in each successive ply. This step is followed by a process of setting the beads in place. The plies are turned up around the beads and incorporate the beads into the tire. Chafer (extruder) stock from extruding or calendering is added if needed. Belts (metal or fabric calendered stock), if any are then applied. Finally, the tread and sidewalls are added to complete the tire. The tire may be “stitched” under pressure to remove air from between the components and bind them together. Radial tire production involves limited use of cements and solvents. Cement usage during tire building will vary significantly from facility to facility.The drum is then collapsed and the uncured (green) tire is transferred to the green tire spraying operation. In preparation for curing, the uncured green tire may be coated with a lubricant (green tirespray). The lubricating spray is either a solvent-based or a water-based silicone. The function of the green tire spray is to ensure the cured tire does not stick to the curing mold when being removed.The final step in manufacturing of rubber products is vulcanizing (curing). There are three predominant vulcanizing processes: press mold curing, autoclave curing, and hot air curing. Press mold curing uses high temperature and pressure to cure the final product. The high pressure (600-10,000 psi) forces the rubber to conform to the shape of the mold. Press mold curing is used in tire and engineered products manufacturing.Autoclave curing utilizes saturated steam at an elevated pressure to cure the rubber mix. Unlike press mold curing, the product is formed into its final shape prior to the curing process. Autoclave curing is the common method in non-tire rubber manufacturing facilities.Hot air curing entails passing uncured, engineered products through a chamber with a heated atmosphere. Temperature and residence times may vary, depending on the product type and formulation. As with the autoclave curing, these products have already been formed into their final shape prior to undergoing the curing process.Grinding is often performed to remove rough edges and other blemishes from the final product or in some cases to actually form and shape the product. The ground rubber is occasionally recycled and utilized as filler in some rubber manufacturing processes. In the tire manufacturing industry, grinding is performed to balance the tire and also to expose the white sidewall or lettering. Relative to the engineered products industry, grinding may actually be used to obtain the correct shape of the final product such as the final shaping of drive belts.4.12.2 Equipment Scale ConsiderationsEmissions testing was performed on several sizes of similar process equipment. These size differences are the most profound on the sizes of internal mixers tested. Emissions tests were performed on internal mixers ranging from a two-pound laboratory mixer, to a 200-pound pilot scale system up to a 500-pound production mixer. On a pound of pollutant emitted per pound of rubber mixed basis, test data indicated that emissions were not dependent on mixer size. This is especially true for the volatiles and semivolatile emissions. There was some variability of metals emissions which is most likely the result of greater particulate losses into the ventilation system on the larger mixers during charging than on smaller scale equipment.Since there was no direct correlation to process equipment size and emissions, no scaling factors were developed for equipment size.4.12.3 Emissions And ControlsThe mechanically-created or externally-added heat present during the six principal processes (mixing, milling, extrusion, calendering, curing, and grinding) cause volatile organic compounds (VOC) and hazardous air pollutants (HAP) to be emitted. Particulate matter is primarily emitted from the dry chemicals utilized in mixing and as a result of grinding.Dust collectors (baghouses, fabric filters) are commonly used to control particulate matter emissions from mixing. Cyclone separators in combination with dust collectors or electrostatic precipitators are typically used in grinding applications.4.12.4 Emission Factors3The following is common to each of the emission factors tables:(1) Total VOCs were analyzed by EPA Reference Method 25A / FID.(2) Total speciated organics were analyzed by EPA Reference Methods TO-14 / GC-MS(speciated volatiles), TO-14 / GC-FID (volatile ozone precursors) and M8270 (semi-volatiles).Note: Results from Method 25A and results from the total speciated organics reference methods are not directly comparable due to the inherent differences in the method ofanalysis.(3) Total Organic HAP are hazardous air pollutants as defined by the Clean Air Act Amendmentsof 1990, Section 301 and were analyzed by EPA Reference Method TO-14 / GC-MS andM8240 (volatiles), M8270 (semi-volatiles), and TO-14 / GC / FPD (sulfur compounds).(4) Total Metal HAP are hazardous air pollutants as defined by the Clean Air Act Amendmentsof 1990, Section 301 and were analyzed by EPA Reference Methods M6010 and M7000(metals).(5) Total HAP are the sum of total organic HAP and total metal HAP.(6) Total Particulate Matter (PM) was analyzed by EPA Reference Method 5.(7) Target analytes which were not detected in any runs for a particular process and compoundwere not included in the tables. The assumption is that if a target analyte went undetected inany runs, there is a high probability that even if it was present, the low detection limitsindicate that its overall contribution is insignificant.(8) Target analytes detected in one or more runs were averaged together. Target analytes thatwere not detected in a test run were assumed to have been present at a concentration of one-half the test detection limit for averaging purposes.(9) Metals were expected to be detected in the particulate matter emitted during rubber mixingbut were not expected to be a significant emission in any other process. To confirm thisassumption, the extruder emissions were analyzed for metals. Metals emitted proved to be soinsignificant that they could be within the margin of error of the analytical procedure. Metalemissions were therefore considered to be insignificant in other processes.Nine separate tables of emission factors comprise the remainder of this section. The tables are available in spreadsheets on the CHIEF web site at /ttn/chief/ap42/ch04/. The tables are too large to include in the section and are more useful as spreadsheets. The contents of the MS Excel spreadsheet are shown in Table 4.12-3.4.12.5 Updates since the Fifth EditionThis section was released as a draft in 1997 for review and comment. It was not finalized.。
橡胶配方大全
橡胶配方大全(一)橡胶配方设计的原则可以概况如下:1、保证硫化胶具有指定的技术性能,使产品优质;2、在胶料和产品制造过程中加工工艺性能良好,使产品达到高产;3、成本低、价格便宜;4、所用的生胶、聚合物和各种原材料容易得到;5、劳动生产率高,在加工制造过程中能耗少;6、符合环境保护及卫生要求;任何一个橡胶配方都不可能在所有性能指标上达到全优。
在许多情况下,配方设计应遵循如下设计原则:①在不降低质量的情况下,降低胶料的成本;②在不提高胶料成本的情况下,提高产品质量。
要使橡胶制品的性能、成本和加工工艺可行性三方面取得最佳的综合平衡。
用最少物质消耗、最短时间、最小工作量,通过科学的配方设计方法,掌握原材料配合的内在规律,设计出实用配方。
天然橡胶(NR)基础配方注:硫化时间为140℃×10min,20min,40min,80min。
NBS为美国国家标准局编写Phr指每百质量份橡胶的分量数注:硫化时间为145℃×25min,35min,50min氯丁橡胶(CR)基础配方注:硫化时间为150℃×15min,30min,60min丁基橡胶(IIR)基础配方注:硫化时间为150℃×20min,40min,80min;150℃×25min,50min,100min 丁腈橡胶(NBR)基础配方注:硫化时间为150℃×10min,20min,80min顺丁橡胶(BR)基础配方注:硫化时间为145℃×25min ,35min ,50min 异戊橡胶(IR )基础配方注:硫化时间为15℃×20min ,30min ,40min ,60min 。
纯胶配方采用天然橡胶基础配方。
注:硫化条件在第三单体为DCDP 时为160℃×30min ,40min ,第三单体为ENB 时为160℃×10min ,20min注:硫化时间为153℃×30min,40min ,50min 氯化丁基橡胶(CIIR )基础配方 注:硫化时间为153℃×30min ,40min ,50min 聚硫橡胶(PSR )基础配方注:硫化时间为150℃×30min ,40min ,50min 丙烯酸酯橡胶(ACM )基础配方注:硫化条件为一段166℃×10min; 二段硫化180℃×8h 。
阻燃橡胶配方范文
阻燃橡胶配方范文
下面是一种常见的阻燃橡胶配方:
1.橡胶基料:主要选用具有良好阻燃性能的橡胶材料,如氯丁橡胶(CR)、乙丙橡胶(EPR)等。
这些橡胶材料具有一定程度的自熄性能,在遇到明火或高温时,不易自行燃烧。
2.填充剂:常用的填充剂有石蜡粉、硅酸镁、氢氧化铝等。
这些填充剂具有抑制橡胶燃烧的效果,能有效减缓火焰的蔓延速度。
3.阻燃剂:阻燃剂是提高橡胶阻燃性能的关键因素。
常用的阻燃剂有溴系阻燃剂、磷氮系阻燃剂等。
溴系阻燃剂的阻燃机理是通过反应释放出溴离子,形成氧化剂,破坏火焰的链式反应,达到阻燃的效果;磷氮系阻燃剂则通过在燃烧过程中释放出磷氮化合物,形成惰性材料层,阻止氧气与橡胶接触,从而达到阻燃的目的。
4.助剂:助剂包括增塑剂、稳定剂、硫化剂、活性剂等。
增塑剂和稳定剂能够提高橡胶的加工性能和耐热性,确保橡胶制品在高温环境下不会变形和老化;硫化剂和活性剂则用于橡胶的硫化反应,提高橡胶制品的物理和机械性能。
实际的配方会根据具体的橡胶制品和阻燃要求进行调整,以达到最佳的阻燃效果。
同时,为了确保生产的阻燃橡胶制品符合国际标准和行业要求,配方中还需要考虑有害物质的含量、物性测试指标等。
总之,阻燃橡胶配方是一个复杂的工程,需要根据具体情况进行调整和优化,以满足不同领域对阻燃橡胶制品的需求。
正确选择橡胶基料、填充剂和阻燃剂,合理使用助剂,能够生产出优质的阻燃橡胶制品,提高产品的安全性和可靠性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
典型橡胶制品配方实例————————————————————————————————作者:————————————————————————————————日期:轿车子午胎不同补强体系胎面配方2005-7-1组份I II III高乙烯基溶聚丁苯胶 103 103 103高顺式顺丁胶25 25 25炭黑N347 85高分散白炭黑70标准白炭黑70硅烷偶联剂--- 11.2 11.2氧化锌 1.5 1.5 1.5硬脂酸 1 1 1防老剂4020 2 2 2硫黄 1.5 1.5 1.5促进剂CZ 1.25 1.25 1.25促进剂D 1.25 1.25 1.25硫化胶物理性能硬度邵尔A 72 73 71滚动阻力tanδ(70℃) 0.262 0.129 0.12湿牵引性tanδ(0℃) 0.72 0.732 0.651DIN磨耗损失% 137 124 135全天候轿车胎胎面胶配方2005-7-1组份重量份(phr)SBR1712 82.5NR(SMR20) 20BR 20炭黑N234 65高芳烃油22.5氧化锌 4硬脂酸 2防老剂4010NA 1.5微晶蜡 1硫黄 2促进剂NS 1.2促进剂TMTD80 0.15硫化胶物理性能硬度(国际硬度)61拉伸强度MPa 20300%定伸应力Mpa 6.8扯断伸长率% 615回弹性(登录普)℃23% 46.2轿车胎低滚动阻力胎面配方2005-7-1组份重量份phrSSBR1216 75BR1207 25白炭黑16.5炭黑58.5偶联剂 6.5芳烃油25硬脂酸 2氧化锌 2.5防老剂4020 2.0防老剂RD 1.5促进剂NS 1.7促进剂D 2.0硫黄 1.7硫化胶物理性能拉伸强度MPa 19.3扯断伸长率% 444300%定伸应力Mpa 11.4tanδ(60℃) 0.05tanδ(0℃) 0.11轿车子午胎胎侧胶配方2005-7-1组份重量份phrNR(SMR20) 50BR(Budene1207) 50炭黑N660 50环烷油641 12酚醛增粘树脂 5聚乙烯蜡 1防老剂4020 2.5防老剂RD 1硬脂酸 1氧化锌 3促进剂NS 1硫黄 2硫化胶物理性能拉伸强度MPa 13.8300%定伸应力Mpa 5.4扯断伸长率% 620硬度(BPA)54撕裂强度KN/M 31.5轿车胎胎体胶料配方2005-7-1组份重量份CIIR1060 55NR(SMR20)45炭黑660 55环烷油641 5酚醛树脂8均匀剂40MS 7硬脂酸 1氧化锌 3石蜡0.4促进剂NS 1硫化剂Vultac5 0.8促进剂D 1硫黄0.75胶料性能拉伸强度Mpa 13300%定伸强度Mpa 6.1扯断伸率% 570硬度(邵A)57粘合液胶料撕裂轿车子午胎气密层胶料配方2005-7-1组份重量份(phr)BIIR 100炭黑N762 60操作油15氧化锌 4硬脂酸 1增粘树脂 4促进剂DM 2硫黄0.5胶料物理性能拉伸强度Mpa 10.2100%定伸应力Mpa 1扯断伸长率% 842硬度(邵A)42生热℃80载重子午胎胎面胶配方2005-7-1组份重量份(phr)NR 100 100炭黑N330 50 50操作油 5 5氧化锌 5 5硬脂酸 2 2防老剂4020 2 2促进剂NS 0.6 0.6硫黄给予体DTDM 0.6 ---硫黄 1.5 2.5抗硫化返原剂HTS --- 2胶料性能门尼焦烧125℃分40.5 20.4拉伸强度Mpa 28.86 24.93300%定伸应力Mpa 12.56 11.2扯断伸长率% 574 536硬度(邵A)61 59流变仪返原(降低2个转矩单位) 3.9 9.5裤形撕裂N 8.9 17地硫胶撕裂N 7 12老化后撕裂(100℃×48h) 5 8.7载重胎胎侧抗臭氧胶料配方2005-7-1组份重量份(phr)NR 55BR 45炭黑N660 50氧化锌 3硬脂酸 1.5环烷油7防老剂4020 3石蜡 2促进剂NS 1不溶性硫黄(80%) 2硫化胶性能拉伸强度Mpa 19.3300%定伸强度Mpa 8.6扯断伸长率% 550硬度(邵A)52撕裂强度(KN/M)38.596 极轻微龟裂静态臭氧龟裂(50pphm40℃)h20%拉伸72 极轻微龟裂动态臭氧龟裂(50pphm40℃)h25%拉伸载重子午胎胎面基部胶配方2005-7-1 组份重量份NR 60 100BR 40 Renacil7 0.15炭黑N660 45 ---炭黑N220 --- 20白炭黑VN3 --- 25硅烷偶联剂Si-69 --- 4氧化锌 5 5硬脂酸 1.5 3防老剂4020 1.5 1.5环烷油 6 ---蜡0.5 ---促进剂NS 1 ---促进剂CZ --- 1.8防焦剂CTP --- 0.1硫黄给予体DTDM 1 ---硫黄 3 1.4硫化胶性能拉伸强度Mpa 15.4 21.5300%定伸应力Mpa 11.1 9.3硬度(邵A)55 58扯断伸长率% 370 550钢丝帘布层胶配方2005-7-1组份重量份NR(SMR)100炭黑N330 50活性白炭黑10活性氧化锌 6防老剂4010NA 2.5间苯二酚RS 1甲醛给予体AS/F 1钴-硼络合物Manobonclc-16 0.1促进剂DZ 2促进剂TMTD 0.1硫黄 4.5防焦剂CTP 0.3硫化胶性能拉伸强度Mpa 18.6300%定伸应力Mpa 16.7硬度(邵A)78回弹性% 38撕裂强度N/4mm 248钴盐增进钢丝帘线粘合胶料配方2005-7-1组份重量份NR 100活性剂PCTP 0.15炭黑N326 55芳烃油12白炭黑10.5氧化锌8硬脂酸0.75防老剂4020 2防老剂BLE 1树脂PF 2.5HMMM 3.5不溶性硫黄 6促进进剂DZ 0.8防焦剂CTP 0.1树脂 2钴盐monobond680C 0.25硫化胶性能拉伸强度Mpa 15.6扯断伸长率% 194撕裂强度KN/m 44静态粘合力(141℃×60min)N 473斜交轮胎载重胎胎面胶配方2005-7-1组份重量份NR 60 40BR 40 60炭黑N220 55 55操作油15 15氧化锌 5 5硬脂酸 2 2防老剂RD 2 2防老剂4020 1 1硫黄 2 2促进剂NS 0.8 0.8防焦剂CTP 0.1 0.1硫化胶性能拉伸强度Mpa 23.1 20300%定伸应力Mpa 11.9 8.33扯断伸长率% 616 442回弹性% 58.4 64.2撕裂强度KN/m 86 70阿克隆磨耗指数206 59斜交载重胎胎体胶配方2005-7-1组份重量份NR 100炭黑N770 50氧化锌 5硬脂酸 2防老剂4020 3环烷油8促进剂NS 0.5硫黄 2.5硫化胶物理性能拉伸强度Mpa 23.81300%定伸应力Mpa 8.13扯断伸长率% 570硬度(邵A)50生热℃17回弹性% 87.4工程轮胎胎面胶配方2005-7-1组份重量份(phr)NR 50SBR 10BR 40炭黑N220 25炭黑N330 40氧化锌 3硬脂酸 2填充油23防老剂4020 2防老剂RD 1.5石蜡 4促进剂CZ 0.7硫黄 2.2硫化胶物理性能拉伸强度Mpa 18.4300%定伸应力Mpa 8.8扯断伸长率% 606撕裂强度KN/m 38硬度(邵A)57丁基胶囊配方2005-7-1组份重量份IIR 90CIIR 10氧化锌10炭黑N220 50树脂2402 10硬脂酸 1丁基操作油 4石蜡 1硫化胶性能拉伸强度Mpa 16.9300%定伸强度Mpa 10.9扯断伸长率% 490永久变形% 10撕裂强度KN/m 63.7硬度(邵A)70蒸汽老化后性能(147℃×30h)拉伸强度变化率% —8扯断伸长率变化率% —27摩托车轮胎胎面胶配方2005-7-1组份重量份NR 50BR 35SBR 15炭黑N330 55硫黄 1.5促进剂CZ 0.8胶粉(40-80目)10硫化胶物理性能拉伸强度Mpa 19.4300%定伸应力Mpa 9.4扯断伸长率% 535永久变形% 16回弹性% 32撕裂强度KN/m 104输油胶管配方2005-7-1组份重量份NBR 100氧化锌 3硬脂酸 1炭黑N770 60硬质陶土59增塑剂DOP 20增粘树脂 5促进剂CZ 1.5促进剂D 0.3硫黄 1.5硫化胶物理性能拉伸强度MPa 14.11300%定伸应力Mpa 8.53扯断伸长率% 560硬度(邵A)64耐油性能(燃料油室温70h)拉伸强度变化率% -1扯断伸长变化率% 0硬度变化率0体积变化率0耐高温输送带橡胶与镀黄铜钢丝粘合配方2005-7-1组份重量份CIIR 40ZPDM 60氧化镁0.5硬脂酸0.5烷基酚醛树脂 5间苯二酚 1.25粘合增进剂 2.5六亚甲基四胺0.8半补强炭黑70白炭黑15石蜡油20氧化锌 5促进剂TMTD 1促进剂CZ 1.5硫黄 1硫化胶物理性能拉伸强度Mpa 9.8300%定伸应力Mpa 8.1扯断伸长率% 320撕裂强度KN/M 37硬度(邵A)61粘附强度N/2cm 720V-带胶料配方2005-7-1组份重量份(phr)SBR1502 85NR(SMR)15炭黑N774 125芳烃油10氧化锌 5硬脂酸 2抗氧剂 2促进剂NS 1促进剂TB2TD 0.3硫黄 2硫化胶物理性能拉伸强度Mpa 18.3300%定伸应力Mpa 9.9扯断伸长率% 240胶鞋鞋底配方2005-7-1组份重量份(phr)SBR1502 100硬质陶土100古马隆树脂15聚乙烯蜡 4硬脂酸 1.5氧化锌 5促进剂DM 1.75硫黄 1.5硫化胶物理性能拉伸强度Mpa 13.62300%定伸应力Mpa 12.35扯断伸长率% 400硬度(邵A)75撕裂强度KN/m 35.28胶辊胶料配方2005-7-1组份重量份NBR 100炭黑N550 50氧化锌 5硬脂酸 1促进剂TMTD 2促进剂CZ 1.5增塑剂(RS1000) 20硫黄0.3硫化胶物理性能拉伸强度Mpa 21扯断伸长率% 640硬度(邵A)60脆性温度℃—38砻谷胶辊胶料配方2005-7-1组份重量份(phr)NBR 100沉淀法白炭黑55偶联剂Si-69 2聚乙烯二醇 2古马龙树脂 5酚醛树脂25DOP 10促进剂TMTM 1.5KRYNAC CD 50 10硬脂酸 3硫黄 1硫化胶物理性能拉伸强度Mpa 16扯断伸长率% 37硬度(邵A)90DIN磨耗mm3110电线电缆外套胶料配方2005-7-1组份重量份(phr)NBR 35V 100炭黑N550 50硬质陶土100增塑剂35混合蜡 3防老剂RD 1.5氧化锌 3硬脂酸 1.5促进剂DM 1促进剂DOTC 0.3促进剂TMTD 0.4硫黄 1.5硫化胶物理性能拉伸强度Mpa 9.6200%定伸应力Mpa 8.8扯断伸长率% 250硬度(邵A)82耐臭氧(50ppm、拉伸20%、70h)无龟裂O型密封圈配方2005-7-1组份重量份(phr)NBR 100炭黑550 40硬脂酸 1.5氧化锌 5促进剂DM 1促进剂TMTD 3给予体DTDM 3硫黄0.25硫化胶物理性能拉伸强度Mpa 14.8100%定伸应力Mpa 5.5扯断伸长率% 200硬度(邵A)69压缩变形(硫化15min)%125℃×70h 16.2150℃×70h 39.6油封配方2005-7-1组份重量份NBR 100氧化锌 5硬脂酸 1.5炭黑N770 110增塑剂DOP 10防老剂OD 1.5促进剂CZ 1.5促进剂TT 1.5硫黄0.3硫化胶物理性能拉伸强度Mpa 17.74扯断伸长率% 280硬度(邵A)79压缩永久变形% 18工业用密封胶配方2005-6-30组份重量份NBR 100氧化锌 5硬脂酸 1炭黑N550 50轻度碳酸钙25表面处理碳酸钙20增塑剂DOP 10增粘剂 1石蜡 1防老剂RD 1促进剂CZ 2促进剂TT 2.5硫黄0.5硫化胶物理性能拉伸强度Mpa 11.9100%定伸应力Mpa 1.3扯断伸长率% 490硬度(邵A)60发动机用橡胶减震器配方2005-6-30组份重量份11R268 75EPDM 25炭黑N330 55热裂法炭黑25环烷油40硬脂酸 1氧化锌 5硫黄 1.5促进剂TMTD 1.5促进剂MBT 0.5硫化胶物理性能拉伸强度Mpa 13.72300%定伸应力Mpa 7.25扯断伸长率% 540硬度(邵A)58EPDM屋顶防水卷材配方2005-6-30组份重量份(phr)EPDM 100炭黑N347 120滑石粉30石蜡油105氧化锌 5硬脂酸 1促进剂DM 2.2促进剂TT 0.75促进剂TETD 0.75硫黄 1硫化胶物理性能拉伸强度Mpa 13.7300%定伸应力Mpa 8.4扯断伸长率% 480撕裂强度KN/m 35.3汽车雨刷胶条配方2005-6-30组份重量份I II IIINR(标准胶)100 100 100炭黑N550 40 40 40热裂法炭黑20 30 20炭黑N660 10 --- 10增塑剂 2 2 2分散剂--- --- 2防老剂 3.75 3.75 3.75硬脂酸--- 1 ---硬脂酸锌 1 --- 2氧化锌8 5 5硫黄 1 1 1.2DTDM 1.2 1.2 1.2促进剂MBTS 0.6 0.6 0.6促进剂TMTM 0.2 0.2 ---促进剂TMTD --- --- 0.3促进剂NS 0.65 0.65 ---促进剂CZ --- --- 0.65防焦剂CTP 0.1 0.2 0.2医用橡胶瓶塞配方2005-6-30组份重量份IIR 100烧土120石蜡(mp133℃ 2硬脂酸锌 2氧化锌 5硫黄0.75促进剂BZ 1.5促进剂CZ 0.5硫化胶物理性能拉伸强度Mpa 6.57300%定伸应力Mpa 1.18扯断伸长率% 880硬度(邵A)53高发泡软质海绵胶配方2005-6-30组份重量份NR 100氧化锌 5硬脂酸 5白艳华 5环烷油 5防老剂 1发泡剂A 5促进剂DM 0.4促进剂D 0.4硫黄 2硫化胶性能(发泡试验)表观密度Mg.m-3140℃×27min 0.106145℃×23min 0.104150℃×20min 0.103。