七年级数学乘法公式同步练习1

合集下载

乘法公式讲义(沈上楠)

乘法公式讲义(沈上楠)

泽仕学堂学科教师辅导讲义.号,括到括号里的2的值.主任签字:泽仕学堂教务处15.2 乘法公式同步练习(一)(一)基本训练,巩固旧知1.计算:(1)(x+3)(x-3)= (2)(m+2)(m-2)=(3)(2x+1)(2x-1)=2.用平方差公式计算:(1) (a+3b)(a-3b) (2) (1+2y)(1-2y)==(3) (4x-5)(4x+5) (4) (12-+2m)(12--2m)3.用平方差公式计算:(1) (3b+a)(a-3b) (2) (3m-4n)(4n+3m)(3) (3+2a)(-3+2a) (4) (7-2a)(-7-2a)4.计算:(y+2)(y-2)-(y-1)(y+5)15.2 乘法公式同步练习(二)(一)基本训练,巩固旧知1.填空:两个数的和乘以这两个数的差,等于这两个数的,即(a+b)(a-b)= ,这个公式叫做公式.2.用平方差公式计算(1) (-m+5n)(-m-5n) (2) (3x-1)(3x+1)= == =(3) (y+3x)(3x-y) (4) (-2+ab)(2+ab)= == == =3.判断正误:对的画“√”,错的画“×”.(1)(a-b)(a+b)=a2-b2;() (2)(b+a)(a-b)=a2-b2;() (3)(b+a)(-b+a)=a2-b2;() (4)(b-a)(a+b)=a2-b2;() (5)(a-b)(a-b)=a2-b2. ()4.用多项式乘多项式法则计算:(1) (a+b)2 (2) (a-b)2=(a+b)(a+b) =(a-b)(a-b)= == =5.运用完全平方公式计算:(1) (x+6)2 (2) (y-5)2= == =(3) (-2x+5)2 (4) (34x-23y)2= = = =6.计算:(x+1)(x-3)-(x+2)2+(x+2)(x-2)===7.选做题:如图,利用图形你能得到公式(a+b)2=a2+2ab+b2吗?15.2 乘法公式同步练习(三)(一)基本训练,巩固旧知1.填空:(1)平方差公式(a+b)(a-b)= ;(2)完全平方公式(a+b)2= ,(a-b)2= .2.运用公式计算:(1) (2x-3)2 (2) (-2x+3y)(-2x-3y)= == =(3) (12m-3)(12m+3) (4) (13x+6y)2= == =3.判断正误:对的画“√”,错的画“×”.(1)(a+b)2=a2+b2;() (2)(a-b)2=a2-b2;()(3)(a+b)2=(-a-b)2;()(4)(a-b)2=(b-a)2. ()4.去括号:(1)(a+b)-c= (2)-(a-b)+c=(3)a+(b-c)= (4)a-(b+c)=5.填空:(1)a+b+c=( )+c; (2)a-b+c=( )+c;(3)-a+b-c=-( )-c; (4)-a-b+c=-( )+c;(5)a+b-c=a+( ) (6)a-b+c=a-( );(7)a-b-c=a-( ); (8)a+b+c=a-( ).6.运用乘法公式计算:新课标第一网(1) (a+2b-1)2 (2) (2x+y+z)(2x-y-z)= == == == =。

七年级数学下册第9章 9.4 乘法公式(课时1)精选好题(含答案)

七年级数学下册第9章 9.4 乘法公式(课时1)精选好题(含答案)

9. 4 乘法公式课时1 完全平方公式知识点1 完全平方公式的几何解释1. 我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.例如图1(图中四个长方形完全相同)可以用来解释22()()4a b a b ab +--=.那么通过图2面积的计算,验证了一个恒等式,此等式是( )A. 22()()a b a b a b -=+-B. 222()2a b a ab b -=-+C. 222()2a b a ab b +=++D. 22()(2)2a b a b a ab b -+=+-知识点2 完全平方公式2.计算2(2)a -的结果是( )A. 24a -B. 224a a -+C. 244a a -+D. 24a +3.2(2)a b -+= .4. (x + 221)4x x =++ 5.下列运算中,利用完全平方公式计算正确的是( ) A. 222(2)44a b a ab b --=+-B. 222()2x y x xy y -=++C. 222()2x y x xy y --=-+D. 222()2x y x xy y -+=-+6.若22()10x a x x b +=-+,则,a b 的值分别为( )A. 2,4B. 5,25-C. 2,25-D. 5,25-7.计算:(1) 211()32m -(2) 2(21)t --(3) 21()2cd -+(4)()()x y x y +--8.运用完全平方公式计算:(1) 298(2)2700.19.已知2320x x -+=,求代数式2(1)(31)(2)5x x x -+-++的值.10.一个正方形的边长增加3 cm ,它的面积增加了45 cm 2,求原正方形的边长.【作业精选】1.2(346)x y +-的展开式是( )A. 2292416364836x xy y x y ++---B 2292416364836x xy y x y +++-+C. 2292416364836x xy y x y +++++D. 2292416364836x xy y x y ++--+2.如果15a a +=,则221a a+=( ) A. 25 B. 23C. 21D. 273.已知2()1m n +=,2()9m n -=,则mn =( ) A. 2- B.2C.3-D.34.已知22(2015)(2017)34x x -+-=,则2(2016)x -的值是( ) A. 4 B. 8C. 12D. 165. 我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和()na b +的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算20()a b +的展开式中第三项的系数为( )A. 2 017B. 2 016C. 191D. 1906.将4个数,,,a b c d 排成两行,两列,两边各加一条竖直线记成a bc d ,定义a bad bc c d =-.上述记号叫做2阶行列式,若11811x xx x +-=-+,求x 的值.7.如图是两块边长分别为,a b 的灰色正方形瓷砖和两块白色的长方形瓷砖拼成的无缝图案.(1)根据图中条件,用两种方法表示两块灰色瓷砖的面积的和(只需表示,不必化简);(2)由(1),你能得到怎样的等量关系?请用等式表示;(3)如果图中的,()a b a b >满足2253a b +=,14ab =,求a b -的值.9. 4 乘法公式课时1 完全平方公式1. B2. C3. 2244a ab b -+4. 125. D6. D7.(1) 2211111()32934m m m -=-+ (2) 22(21)441t t t --=++(3) 22211()24cd c d cd -+=-+ (4) 22222()()()(2)2x y x y x y x xy y x xy y +--=-+=-++=---8.(1) 222298(1002)100210022=-=-⨯⨯+1000040049604=-+=(2) 2222700.1(7000.1)70027000.10.1=+=+⨯⨯+4900001400.01490140.01=++=9. 2(1)(31)(2)5x x x -+-++22331445x x x x x =+-----+ 226x x =-22(3)x x =-因为2320x x -+=即232x x -=-所以,原式2(2)4=⨯-=-10. 设原正方形的边长为x cm由题意,得22(3)45x x +-= 所以226945x x x ++-=解得6x =所以原正方形的边长为6 cm【作业精选】1.D2. B3. A4. D5. D6. 根据题意化简11811x x x x +-=-+ 得,22(1)(1)8x x +--=整理得,2221(12)8x x x x ++--+= 即48x =解得2x =7. (1)两块灰色瓷砖的面积的和可表示为 ①22a b +②2()2a b ab +-(2)222()2a b a b ab +=+-(3)因为2253a b +=,14ab =所以222()225a b a b ab -=+-= 所以5a b -=±又因为a b >所以5a b -=。

七年级数学乘法公式测试题

七年级数学乘法公式测试题

7.4乘法公式同步练习【基础能力训练】一、平方差公式1.下列多项式乘法中,可以用平方差公式计算的是()A.(2x+3y)(2x-13y)B.(x-y)(y-x)C.(-4a+3b)(3b-4a)D.(a-b-c)(-a-b-c)2.下列计算正确的是()A.(2y+6)(2y-6)=4y2-6 B.(5y+12)(5y-12)=25y2-14C.(2x+3)(2x-3)=2x2-9 D.(-4x+3)(4x-3)=16x2-9 3.判断正误:(1)(3a-bc)(-bc-3a)=b2c2-9a2()(2)(x+1x)(x-1x)=x2-1 ()4.(3x-4y)(4y+3x)=(_____)2-(_____)2=_______.5.(x+1)(x-1)(x2+1)=_______.6.(2m-3n)(_____)=4m2-9n27.(-3x+2y)(_______)=-9x2+4y28.计算(a4+b4)(a2+b2)(b-a)(a+b)的结果是()A.a8-b8B.a6-b6C.b6-a8D.b6-a69.化简(a+b)2-(a-b)2的结果是()A.0 B.-2ab C.2ab D.4ab10.在下列等式中,A和B应表示什么式子?(1)(a+b+c)(a-b+c)=(A+B)(A-B)(2)(x+y-z)(x-y+z)=(A+B)(A-B)11.为了应用平方差公式计算(2x+y+z)(y-2x-z),下列变形正确的是()A.[2x-(y+z)] 2B.[2x+(y+z)][2x-(y+z)]C.[y+(2x+z)][y-(2x+z)] D.[z+(2x+y)][z-(2x+y)]12.计算:(1)(5m-6n)(-6n-5m)(2)(12x2y2+3m)(-3m+12x2y2)13.计算:(1)898×902 (2)303×297 (3)9.9×10.1 (4)30.8×29.214.计算:(1)(x+y)(x-y)+(y-z)(y+z)+(z-x)(z+x)(2)(3m2+5)(-3m2+5)-m2(7m+8)(7m-8)-(8m)2二、完全平方公式15.下列计算正确的是()A.(x+y)2=x2+y2B.(m-n)2=m2-2mn-n2C.(a+2)2=a2+2a+4 D.(m-3)2=m2-6m+916.已知m≠n,下列等式中计算正确的有()①(m-n)2=(n-m)2②(m-n)2=-(n-m)2③(m+n)(m-n)=(-m-n)·(-m+n)④(-m-n)2=-(m-n)2A.1个B.2个C.3个D.4个17.下列各式中,计算结果为1-2xy2+x2y4的是()A.(-1-x2y2)2B.(1-x2y2)2C.(-1+x2y2)2D.(xy2-1)2 18.计算(4a-3b)(-4a-3b)的结果为()A.16a2-9b2B.-16a2+9b2C.16a2-24ab+9b2D.-16a-24ab-9b219.计算:(1)(14a-13b)2(2)(-x2+3y2)2(3)(-a2-2b)2(4)(0.2x+0.5y)220.计算:(1)198×202 (2)5052【综合创新训练】一、创新应用21.化简求值:4x(x2-2x-1)+x(2x+5)(5-2x),其中x=-1.22.化简求值:(3x+2y)(3x-2y)-(3x+2y)2+(3x-2y)2,其中x=,y=-12.23.解方程:(x-3)(x+1)=x(2x+3)-(x2+1)24.解不等式:(x-4)2-(x-3)(x+4)<2(3x+2)二、巧思妙解25.1232-124×12226.22004200420052003-⨯27.1.23452+0.76552+2.469×0.7655 三、综合测试28.(-23a+3b)(23a+3b)(-23a-3b)(-23a+3b)29.(1+a+b)230.(m+2n-p)231.(3a-b)2-(2a+b)2+5b232.已知x+y=4,xy=2,求x2+y2的值.33.已知x2+4x+y2-2y+5=0,求x,y的值.四、探究学习观察下面各式规律:12+(1×2)2+22=(1×2+1)222+(2×3)2+32=(2×3+1)232+(3×4)2+42=(3×4+1)2……写出第n行的式子,并证明你的结论.答案:【基础能力训练】1.D 2.B 3.(1)∨(2)×4.(3x)2(4y)29x2-16y25.x4-1 6.2m+3n 7.3x+2y 8.C 9.D 10.(1)A代表a+c,B代表b (2)A代表x,B代表y-z11.C 12.(1)36n2-25m2(2)14x4y4-9m213.(1)原式=(900-2)(900+2)=9002-22=810 000-4=809 996 (2)原式=(300+3)(300-3)=3002-32=90 000-9=89 991 (3)原式=(10-0.1)(10+0.1)=102-0.12=100-0.01=99.99 (4)原式=(30+0.8)(30-0.8)=302-0.82=900-0.64=899.36 14.(1)0 (2)25-58m415.D 16.B 17.D 18.B19.(1)116a2-16ab+19b2(2)x4-6x2y2+9y4(3)a4+4a2b+4b2(4)0.04x2+0.2xy+0.25y2 20.(1)39 996 (2)255 025【综合创新应用】21.原式=4x3-8x2-4x+10x2-4x3+25x-10x2=-8x2+21x,当x=-1时,原式=-8-21=-29.22.原式=9x2-4y2-(9x2+12xy+4y2)+9x2-12xy+4y2 =9x2-4y2-9x2-12xy-4y2+9x2-12xy+4y2=9x2-24xy-4y2把x=13,y=-12代入得4.23.去括号,得x2+x-3x-3=2x2+3x-x2-1,合并,得x2-2x-3=x2+3x-1,移项,得x2-2x-x2-3x=-1+3,合并同类项,得-5x=2,系数化为1,得x=-25. 24.去括号,得x 2-8x+16-x 2-4x+3x+12<6x+4,移项,得x 2-x 2-8x -4x+3x -6x<4-16-12,•合并同类项,得-15x<-24,系数化为1,得x>85. 25.原式=1232-(123+1)(123-1)=1232-(1232-12)=1.26.原式=220042004(20041)(20041)-+- 2222200420042004(20041)200420041==---+=2004. 27.原式=(1.234 5+0.765 5)2=22=4.28.原式=[(3b )2-(23a )2]×[(-23a )2-(3b )2] =(9b 2-49a 2)(49a 2-9b 2)=-(9b 2-49a 2)(9b 2-49a 2) =-(9b 2-a 2)2=-81b 4+8a 2b 2-1681a 4. 29.原式=[1+(a+b )] 2=1+2(a+b )+(a+b )2=1+2a+2b+a 2+2ab+b 2.30.原式=[(m+2n )-p] 2=(m+2n )2-2p (m+2n )+p 2=m 2+4mn+4n 2-2pm -4pm+p 2.31.原式=9a 2-6ab+b 2-4a 2-4ab -b 2+5b 2=5a 2-10ab+5b 2.32.x 2+y 2=(x+y )2-2xy=42-2×2=12.33.x 2+4x+y 2-2y+5=0,变形为:(x 2+4x+4)+(y 2-2y+1)=0,即(x+2)2+(y -1)2=0,又因(•x+2)2与(y -1)2皆是非负数,所以(x+2)2=0且(y -1)2=0,即x+2=0,y -1=0,解得x=-2,y=1.【探究学习】第n 个式子:n 2+[n (n+1)] 2+(n+1)2=[n (n+1)+1] 2证明:因为左边n 2+[n (n+1)] 2+(n+1)2=n 2+(n 2+n )2+(n+1)2=(n 2+n )2+n 2+n 2+2n+1=(n 2+n )2+•2(n 2+n )+1=(n 2+n+1)2,而右边=(n 2+n+1)2,所以左边=右边,成立.。

北师大初一数学7年级下册 第1章(整式的乘除)1.2幂的乘方与积的乘方 一课一练 习题1(含答案)

北师大初一数学7年级下册 第1章(整式的乘除)1.2幂的乘方与积的乘方 一课一练 习题1(含答案)

1.2《幂的乘方与积的乘方》习题1一、选择题1.已知2m a =,3n a =,则m n a +的值是( )A .5B .6C .8D .92.32x 可以表示为( )A .33x x +B .33x x ⋅C .222x x x ⋅⋅D .6x3.下列计算正确的是( ).A .3332x x x ⋅=B .33x x x ⋅=C .326x x x ⋅=D .347x x x ⋅=4.计算-x 3·x 2的结果是( )A .-x 5B .x 5C .-x 6D .x 65.如果x m =2,x n =14,那么x m +n 的值为( )A .2B .8C .12 D .2146.若(7×106)(5×105)(2×10)=a ×10n ,则a ,n 的值分别为( )A .a =7,n =11B .a =5,n =12C .a =7,n =13D .a =2,n =137.一个长方体的长为4×103厘米,宽为2×102厘米,高为2.5×103厘米,则它的体积为( )立方厘米.(结果用科学记数法表示)A .2×109B .20×108C .20×1018D .8.5×1088.广阔无垠的太空中有无数颗恒星,其中离太阳系最近的一颗恒星称为“比邻星”,它距离太阳系约4.2光年.光年是天文学中一种计量天体时空距离的长度单位,1光年约为9500000000000千米.则“比邻星”距离太阳系约为( )A .13410⨯千米B .12410⨯千米C .139. 510⨯千米D .129. 510⨯千米9.太阳光照射到地球上需要的时间约是2510s ⨯,光的速度约是5310/km s ⨯,那么太阳到地球的距离用科学记数法表示约为( )A .71510⨯B .71.510⨯C .81.510⨯D .101510⨯10.下列运算中,正确的是( )A .224a a a +=B .532a a a -=C .2222a a a ⋅=D .()326a a =11.下列运算正确的是( )A .(x 3)4=x 7B .x 2•x 3=x 5C .x 4÷x =x 4D .x +x 2=x 312.计算(a 3)2•a 3的结果是( )A .a 8B .a 9C .a 10D .a 1113.计算()23a的结果是( )A .4a B .5a C .6a D .9a 14.计算623()a a a ⋅⋅的结果是( )A .11aB .12aC .13aD .14a 15.计算(-x 2y)3的结果是( )A .x 6y 3B .x 5y 3C .-x 6y 3D .-x 2y 316.下列运算正确的是( )A .235a a a +=B .236a a a ⋅=C .22(2)4a a =D .325()a a =17.下面计算正确的是( )A .2a+3b =5abB .a 2+a 3=a 5C .(﹣2a 3b 2)3=﹣8a 9b 6D .a 3•a 2=a 618.下列运算错误的是( )A .2363(2)8a b a b -=-B .243612()x y x y =C .23282()()x x y x y -⋅=D .77()ab ab -=-19.下列选项的各式,计算正确的是( )A .()323ab ab =B .()326a a =C .3332b b b ⋅=D .2242a a a +=20.计算:()()22323268a a a a a a a ⋅⋅⋅===,其中,第一步运算的依据是( )A .同底数幂的乘法法则B .幂的乘方法则C .乘法分配律D .积的乘方法则21.下列计算中,不正确的有( )①(ab 2)3=ab 6;②(3xy 2)3=9x 3y 6;③(﹣2x 3)2=﹣4x 6;④(﹣a 2m )3=a 6m .A .1个B .2个C .3个D .4个22.下列运算正确的是( )A .842x x x ÷=B .347x x x ⋅=C .()32528x x -=-D .()32628x y x y -=-二、填空题1.已知m+n ﹣2=0,则3m ×3n 的值为________.2.若a m =2,a n =4,则a m +n =_____.3.计算:(87)2019×(87)﹣2020=_____.4.若2107777p ⨯⨯﹣﹣=,则p 的值为_____.5.若102·10n-1=106,则n 的值为______6.光速约为3810⨯米/秒,太阳光照到地球上的时间为2510⨯秒,则地球与太阳的距离约是_____米(结果用科学计数法表示)7.计算式子53(1.510)(0.3810)⨯⨯⨯的结果用科学记数法表示为___________.8.一个长方体的长是5210cm ⨯,宽是31.510cm ⨯,高是41.310cm ⨯,则它的体积是________3m .9.计算:(3×108)×(4×104)=_______.(结果用科学记数法表示)10.计算:()()56410510⨯⨯⨯=_________ (结果用科学计数法表示)11.一种计算机每秒可做4×109次运算,它工作5×102秒,可做_______________次运算.12.已知22n x =,则3222()()n n x x -的值为______ .13.已知m +2n ﹣2=0,则2m •4n 的值为_____.14.计算:()()4223-⋅=a a _____15.(1)如果,3915(2)m m n a b ka b +-⋅=,则k m n ++=__________.(2)计算:312a ⎛⎫- ⎪⎝⎭=____.(3)计算24(2)a a ⋅-=________.(4)计算:(2a 2b )2=_____.16.若()286m n a b a b =,那么m 2-2n 的值是__________.三、计算题1.计算:(1)()()24576332x x x x x ⋅+⋅-+ (2)2324251(3)()()2a b a b -⋅-⋅-(3)()333292323a a a a -⋅+; (4)33432332()()()()x x x x ⋅-÷÷.(5)(﹣x)3x 5+(2x 4)2.(6)(2x 2 )3+x 4⋅x 2(7)()()2332423x x x x --- ; (8)()()2434422a a a a a ⋅⋅+-+.答案一、选择题1.B .2.A .3.D .4.A.5.C .6.C .7.A.8.A .9.C10.D .11.B .12.B .13.C .14.C15.C.16.C .17.C .18.D .19.B .20.D .21.D.22.B .二、填空题1.9.2.8.3.78.4.﹣3.5.56.111.510⨯7.75.710⨯8.63.910⨯9.1.2×101310.12210⨯.11.2×1012.12.4.13.4.14.2a .15.(1)3-(2)318a -(3)64a (4)4a 4b 2.16.10三、计算题1.解:(1)()()24576332x x x x x ⋅+⋅-+ =1266122x x x x +⋅+=1212122x x x ++=412x (2)2324251(3)()()2a b a b -⋅-⋅-=63810127()16a b a b -⋅⋅-=14132716a b (3)原式95995863116a a a a a =-+=-;(4)原式()91266912669x x x x xx +--=⋅-÷÷=-=-.(5)=﹣x 8+4x 8=3x 8.(6)66=8x x +6=9x (7)原式666697x x x x =--=.(8)()()2434428888246a a a a a a a a a ⋅⋅+-+=++=.。

七(下)1.1同底数幂的乘法练习题

七(下)1.1同底数幂的乘法练习题

北师大版七年级数学(下)同步辅导系列资料1.1 同底数幂的乘法基本知识:1.同底数幂的乘法公式:m n a a ⋅= , m n p a a a ⋅⋅= .2.同底数幂的乘法公式的逆用:m n a+= , 同步练习:一、填空题1.同底数幂相乘,底数 ,指数 。

2.a ()·a 4=a 20.(在括号内填数)3.若102·10m =102003,则m= .4.23·83=2n ,则n= .5.-a 3·(-a )5= ; x ·x 2·x 3y= .6.a 5·a n +a 3·a 2+n –a ·a 4+n +a 2·a 3+n = .7.(a-b )3·(a-b )5= ; (x+y )·(x+y )4= .8. 111010m n +-⨯=________,456(6)-⨯-=______.9. 234x x x x ⋅+⋅=________,25()()x y x y ++=_________________.10. 31010010100100100100001010⨯⨯+⨯⨯-⨯⨯=___________.11. 若34m a a a =⋅,则m=________;若416a x x x ⋅=,则a=__________;12. 若2,5m n a a ==,则m n a +=________.13.-32×33=_________; -(-a )2=_________;(-x )2·(-x )3=_________; (a +b )·(a +b )4=_________;0.510×211=_________; a ·a m ·_________=a 5m +114.a 4·_________=a 3·_________=a 915.(1)a ·a 3·a 5= (2)(3a)·(3a)= (3)=⋅⋅-+11m m m x x x(4)(x+5)3·(x+5)2= (5)3a 2·a 4+5a ·a 5=(6)4(m+n)2·(m+n)3-7(m+n)(m+n)4+5(m+n)5=二、选择题1. 下面计算正确的是( )A.326mm m=a a a+=; D.56=; B.336+=; C.426x x xb b b2. 81×27可记为( )A.39B.73C.63D.1233. 若x y≠,则下面多项式不成立的是( )A.22-=- C.22()x x-= D.222()y y-=- B.33()()y x x yx y x y+=+()4.下列各式正确的是()A.3a2·5a3=15a6 B.-3x4·(-2x2)=-6x6C.3x3·2x4=6x12 D.(-b)3·(-b)5=b8m+=()5.设a m=8,a n=16,则a nA.24 B.32 C.64 D.1286.若x2·x4·()=x16,则括号内应填x的代数式为()A.x10 B. x8 C. x4 D. x27.若a m=2,a n=3,则a m+n=( ).A.5B.6C.8D.98.下列计算题正确的是( )A.a m·a2=a2mB.x3·x2·x=x5C.x4·x4=2x4D.y a+1·y a-1=y2a9.在等式a3·a2( )=a11中,括号里面的代数式应当是( ).A.a7B.a8C.a6D.a510.x3m+3可写成( ).A.3x m+1B.x3m+x3C.x3·x m+1D.x3m·x311已知算式:①(-a)3·(-a)2·(-a)=a6;②(-a)2·(-a)·(-a)4=a7;③(-a)2·(-a)3·(-a2)=-a7;④(-a2)·(-a3)·(-a)3=-a8.其中正确的算式是( )A.①和②B.②和③C.①和④D.③和④12一块长方形草坪的长是x a+1米,宽是x b-1米(a、b为大于1的正整数),则此长方形草坪的面积是( )平方米.A.x a-bB.x a+bC.x a+b-1D.x a-b+213.计算a-2·a4的结果是()A.a-2 B.a2C.a-8 D.a814.若x≠y,则下面各式不能成立的是()A.(x-y)2=(y-x)2 B.(x-y)3=-(y-x)3C.(x+y)(x-y)=(x+y)(y-x) D.(x+y)2=(-x-y)215.a16可以写成()A.a8+a8 B.a8·a2C.a8·a8 D.a4·a416.下列计算中正确的是()A.a2+a2=a4 B.x·x2=x3C.t3+t3=2t6 D.x3·x·x4=x717.下列题中不能用同底数幂的乘法法则化简的是()A.(x+y)(x+y)2 B.(x-y)(x+y)2C.-(x-y)(y-x)2 D.(x-y)2·(x-y)3·(x-y) 18. 计算2009200822-等于( )A、20082-2 B、 2 C、1 D、200919.用科学记数法表示(4×102)×(15×105)的计算结果应是()A.60×107B.6.0×107C.6.0×108D.6.0×1010三.判断下面的计算是否正确(正确打“√”,错误打“×”)1.(3x+2y)3·(3x+2y)2=(3x+2y)5( ) 2.-p2·(-p)4·(-p)3=(-p)9( ) 3.t m·(-t2n)=t m-2n( ) 4.p4·p4=p16( )5.m3·m3=2m3() 6.m2+m2=m4()7.a2·a3=a6() 8.x2·x3=x5()9.(-m)4·m3=-m7()四、解答题1.计算(1)(-2)3·23·(-2) (2)81×3n(3)x 2n+1·x n-1·x 4-3n (4)4×2n+2-2×2n+12、计算题(1) 23x x x ⋅⋅ (2) 23()()()a b a b a b -⋅-⋅-(3) 23324()2()x x x x x x -⋅+⋅--⋅ (4)122333m m m x x x x x x ---⋅+⋅-⋅⋅。

浙教版七年级数学下册4乘法公式同步练习

浙教版七年级数学下册4乘法公式同步练习

浙教版七年级下 3.4乘法公式同步练习一.选择题1.(2020•雁塔区校级模拟)下列计算正确的是()A.2a3•3a3=6a9B.(a4b)2=a6b2C.6a4b3÷3a2b3=2a2D.(a+2)(a﹣2)=a2﹣22.(2021秋•武威月考)下列式子可用平方差公式计算的是()A.(a+b)(﹣a﹣b)B.(a﹣b)(b﹣a)C.(a+2b)(2b+a)D.(y﹣2x)(2x+y)3.(2022春•杏花岭区校级月考)计算2022﹣201×203的结果是()A.1 B.﹣1 C.2 D.﹣24.(2021秋•硚口区期末)计算(x+2y﹣3)(x﹣2y+3)的结果是()A.x2﹣4y2+12y﹣9 B.﹣x2+4y2﹣12y+9C.x2﹣4y2+9 D.x2﹣4y2﹣12y﹣95.(2021秋•普兰店区期末)已知(m+n)2=18,(m﹣n)2=2,那么m2+n2=()A.20 B.10 C.16 D.86.(2021秋•望城区期末)如果4x2+2kx+25是一个完全平方式,那么k的值是()A.20 B.±20 C.10 D.±107.(2021秋•船山区校级期末)利用乘法公式计算正确的是()A.(4x﹣3)2=8x2+12x﹣9 B.(2m+5)(2m﹣5)=4m2﹣5C.(a+b)(a+b)=a2+b2D.(4x+1)2=16x2+8x+18.(2021春•博山区期末)如图1,将一个大长方形沿虚线剪开,得到两个长方形,再将这两个长方形拼成图2所示图形,正好是边长为x的大正方形剪去一个边长为1的小正方形(阴影部分).这两个图能解释下列哪个等式()A.(x﹣1)2=x2﹣2x+1 B.(x+1)(x﹣1)=x2﹣1C.(x+1)2=x2+2x+1 D.x(x﹣1)=x2﹣x9.(2022•鼓楼区校级开学)已知:(2021﹣a)(2020﹣a)=3,则(2021﹣a)2+(2020﹣a)2的值为()A.7 B.8 C.9 D.1210.(2021秋•宁波期末)如图,将长方形ABCD分成2个长方形与2个正方形,其中③、④为正方形,记长方形①的周长为C1,长方形②的周长为C2,则C1与C2的大小为()A.C1>C2B.C1=C2C.C1<C2D.不确定二.填空题11.(2021秋•西岗区期末)计算:(2﹣3x)(﹣2﹣3x)=.12.(2020秋•普陀区期末)计算:(﹣2x﹣y)2=.13.(2021秋•枣阳市期末)已知(x+y)2=2,(x﹣y)2=8,则x2+y2=.14.(2021秋•南岗区校级期中)化简:(a+2)(a2+4)(a4+16)(a﹣2)=.15.(2021秋•沐川县期末)如图,边长为a+3的正方形纸片剪出一个边长为a的正方形之后,剩余部分可剪拼成一个长方形.若拼成的长方形一边长为3,则另一边长为.16.(2021春•拱墅区校级期中)若25x2+1加上一个单项式能成为一个完全平方式,这个单项式是.三.解答题17.利用平方差公式计算:(1)59.8×60.2;(2)103×97;(3)(5+1)(52+1)(54+1)(58+1)•(516+1)+.18.(2021秋•宜州区期末)计算:(m﹣3)(m+3)﹣(m﹣3)2.19.(2021秋•龙山县期末)计算:(3x﹣5)2﹣(2x+7)2.20.(2021秋•丰台区期末)计算:(2x﹣3)2﹣(x﹣3)(2x+1).21.(2021秋•自贡期末)计算:x(2﹣x)+(x+2y)(x﹣2y).22.(2021秋•庐江县期末)化简:(3m+n)2﹣3m(m+2n).23.计算题:(1)(a﹣2b﹣3c)2;(2)(x+2y﹣z)(x﹣2y﹣z)﹣(x+y﹣z)2.24.(2021秋•长沙期末)已知(a+b)2=11,ab=1.(1)求a2+b2的值;(2)求a﹣b的值.25.(2021秋•江陵县期末)如图1是一个长为2a、宽为2b的长方形(a>b>0),沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成的一个“回形”正方形(如图2).(1)图2中的阴影部分正方形的边长为;(2)观察图2请你写出(a+b)2、(a﹣b)2、ab之间的等量关系是;(3)根据(2)中的结论,若x﹣y=4,xy=2.25,求x+y的值.答案与解析一.选择题1.(2020•雁塔区校级模拟)下列计算正确的是()A.2a3•3a3=6a9B.(a4b)2=a6b2C.6a4b3÷3a2b3=2a2D.(a+2)(a﹣2)=a2﹣2 【解析】解:A.2a3•3a3=6a6,故本选项不合题意;B.(a4b)2=a8b2,故本选项不合题意;C.6a4b3÷3a2b3=2a2,故本选项符合题意;D.(a+2)(a﹣2)=a2﹣4,故本选项不合题意.故选:C.2.(2021秋•武威月考)下列式子可用平方差公式计算的是()A.(a+b)(﹣a﹣b)B.(a﹣b)(b﹣a)C.(a+2b)(2b+a)D.(y﹣2x)(2x+y)【解析】解:A:原式=﹣(a+b)2用完全平方公式,∴不符合题意;B:原式=﹣(a﹣b)2用完全平方公式,∴不符合题意;C:原式=(a+2b)2用完全平方公式,∴不符合题意;D:原式=y2﹣4x2用平方差公式,∴符合题意;故选:D.3.(2022春•杏花岭区校级月考)计算2022﹣201×203的结果是()A.1 B.﹣1 C.2 D.﹣2 【解析】解:2022﹣201×203=2022﹣(202﹣1)×(202+1)=2022﹣2022+1=1.故选:A.4.(2021秋•硚口区期末)计算(x+2y﹣3)(x﹣2y+3)的结果是()A.x2﹣4y2+12y﹣9 B.﹣x2+4y2﹣12y+9C.x2﹣4y2+9 D.x2﹣4y2﹣12y﹣9【解析】解:原式=[x+(2y﹣3)][x﹣(2y﹣3)]=x2﹣(2y﹣3)2=x2﹣4y2+12y﹣9,故选:A.5.(2021秋•普兰店区期末)已知(m+n)2=18,(m﹣n)2=2,那么m2+n2=()A.20 B.10 C.16 D.8【解析】解:已知等式化简得:(m+n)2=m2+n2+2mn=18①,(m﹣n)2=m2+n2﹣2mn=2②,由①+②得:2(m2+n2)=20,则m2+n2=10.故选:B.6.(2021秋•望城区期末)如果4x2+2kx+25是一个完全平方式,那么k的值是()A.20 B.±20 C.10 D.±10【解析】解:∵4x2+2kx+25=(2x±5)2,∴2kx=±2×2x•5=±20x,∴k=±10,故选:D.7.(2021秋•船山区校级期末)利用乘法公式计算正确的是()A.(4x﹣3)2=8x2+12x﹣9 B.(2m+5)(2m﹣5)=4m2﹣5C.(a+b)(a+b)=a2+b2D.(4x+1)2=16x2+8x+1【解析】解:A.(4x﹣3)2=16x2﹣24x+9,故本选项不合题意;B.(2m+5)(2m﹣5)=4m2﹣25,故本选项不合题意;C.(a+b)(a+b)=a2+2ab+b2,故本选项不合题意;D.(4x+1)2=16x2+8x+1,故本选项符合题意;故选:D.8.(2021春•博山区期末)如图1,将一个大长方形沿虚线剪开,得到两个长方形,再将这两个长方形拼成图2所示图形,正好是边长为x的大正方形剪去一个边长为1的小正方形(阴影部分).这两个图能解释下列哪个等式()A.(x﹣1)2=x2﹣2x+1 B.(x+1)(x﹣1)=x2﹣1C.(x+1)2=x2+2x+1 D.x(x﹣1)=x2﹣x【解析】解:图1的面积为:(x+1)(x﹣1),图2中白色部分的面积为:x2﹣1,∴(x+1)(x﹣1)=x2﹣1,故选:B.9.(2022•鼓楼区校级开学)已知:(2021﹣a)(2020﹣a)=3,则(2021﹣a)2+(2020﹣a)2的值为()A.7 B.8 C.9 D.12【解析】解:设x=2021﹣a,y=2020﹣a,∴x﹣y=2021﹣a﹣2020+a=1,∵(2021﹣a)(2020﹣a)=3,∴xy=3,∴原式=x2+y2=(x﹣y)2+2xy=1+2×3=7,故选:A.10.(2021秋•宁波期末)如图,将长方形ABCD分成2个长方形与2个正方形,其中③、④为正方形,记长方形①的周长为C1,长方形②的周长为C2,则C1与C2的大小为()A.C1>C2B.C1=C2C.C1<C2D.不确定【解析】解:如图,设MN=a,NP=b,PQ=m,即正方形③的边长为a,正方形④的边长m,所以长方形①的长为a+b,宽为m,因此周长C1=(a+b+m)×2=2a+2b+2m,长方形②的长为m+b,宽为a,因此周长C2=(m+b+a)×2=2a+2b+2m,所以C1=C2,故选:B.二.填空题11.(2021秋•西岗区期末)计算:(2﹣3x)(﹣2﹣3x)=﹣4+9x2.【解析】解:(2﹣3x)(﹣2﹣3x)=﹣(2﹣3x)(2+3x)=﹣[22﹣(3x)2]=﹣4+9x2.故答案为:﹣4+9x2.12.(2020秋•普陀区期末)计算:(﹣2x﹣y)2=4x2+4xy+y2.【解析】解:原式=[﹣(2x+y)]2=(2x+y)2=4x2+4xy+y2,故答案为:4x2+4xy+y2.13.(2021秋•枣阳市期末)已知(x+y)2=2,(x﹣y)2=8,则x2+y2=5.【解析】解:∵(x+y)2=2,(x﹣y)2=8,∴x2+2xy+y2=2①,x2﹣2xy+y2=8②,①+②得:2(x2+y2)=10,∴x2+y2=5.故答案为:5.14.(2021秋•南岗区校级期中)化简:(a+2)(a2+4)(a4+16)(a﹣2)=a8﹣256.【解析】解:(a+2)(a2+4)(a4+16)(a﹣2)=(a+2)(a﹣2)(a2+4)(a4+16)=(a2﹣4)(a2+4)(a4+16)=(a4﹣16)(a4+16)=a8﹣256.故答案为:a8﹣256.15.(2021秋•沐川县期末)如图,边长为a+3的正方形纸片剪出一个边长为a的正方形之后,剩余部分可剪拼成一个长方形.若拼成的长方形一边长为3,则另一边长为2a+3.【解析】解:如图,将剩余部分拼成一个长方形.这个长方形一边长为3,另一边长为a+(a+3), 即2a+3,故答案为:2a+3.16.(2021春•拱墅区校级期中)若25x2+1加上一个单项式能成为一个完全平方式,这个单项式是10x 或﹣10x或﹣1或﹣25x2或.【解析】解:①25x2是平方项时,25x2±10x+1=(5x±1)2,∴可添加的项是10x或﹣10x,②25x2是乘积二倍项时,+25x2+1=,∴可添加的项是,③可添加﹣1或﹣25x2,综上所述可添加的项是:10x或﹣10x或﹣1或﹣25x2或.故答案为:10x或﹣10x或﹣1或﹣25x2或.三.解答题17.利用平方差公式计算:(1)59.8×60.2;(2)103×97;(3)(5+1)(52+1)(54+1)(58+1)•(516+1)+.【解析】解:(1)59.8×60.2=(60﹣0.2)(60+0.2)=3600﹣0.04=3599.96;(2)103×97=(100+3)(100﹣3)=10000﹣9=9991;(3)(5+1)(52+1)(54+1)(58+1)•(516+1)+=(5﹣1)(5+1)(52+1)(54+1)(58+1)•(516+1)+=(52﹣1)(52+1)(54+1)(58+1)•(516+1)+=(532﹣1)+=×532=.18.(2021秋•宜州区期末)计算:(m﹣3)(m+3)﹣(m﹣3)2.【解析】解:原式=m2﹣9﹣(m2﹣6m+9)=m2﹣9﹣m2+6m﹣9=6m﹣18.19.(2021秋•龙山县期末)计算:(3x﹣5)2﹣(2x+7)2.【解析】解:(3x﹣5)2﹣(2x+7)2=(3x﹣5+2x+7)(3x﹣5﹣2x﹣7)=(5x+2)(x﹣12)=5x2﹣60x+2x﹣24=5x2﹣58x﹣24.20.(2021秋•丰台区期末)计算:(2x﹣3)2﹣(x﹣3)(2x+1).【解析】解:原式=4x2﹣12x+9﹣2x2﹣x+6x+3=2x2﹣7x+12.21.(2021秋•自贡期末)计算:x(2﹣x)+(x+2y)(x﹣2y).【解析】解:x(2﹣x)+(x+2y)(x﹣2y)=2x﹣x2+x2﹣4y2=2x﹣4y2.22.(2021秋•庐江县期末)化简:(3m+n)2﹣3m(m+2n).【解析】解:原式=(9m2+6mn+n2)﹣(3m2+6mn)=9m2+6mn+n2﹣3m2﹣6mn=6m2+n2.23.计算题:(1)(a﹣2b﹣3c)2;(2)(x+2y﹣z)(x﹣2y﹣z)﹣(x+y﹣z)2.【解析】解:(1)原式=(a﹣2b)2﹣2×(a﹣2b)×3c+9c2=a2+4b2﹣4ab﹣6ac+12bc+9c2=a2+4b2+9c2﹣4ab﹣6ac+12bc;(2)原式=[(x﹣z)+2y][(x﹣z)﹣2y]﹣[(x﹣z)+y]2=(x﹣z)2﹣4y2﹣(x﹣z)2﹣2(x﹣z)y﹣y2=﹣5y2﹣2xy+2yz.24.(2021秋•长沙期末)已知(a+b)2=11,ab=1.(1)求a2+b2的值;(2)求a﹣b的值.【解析】解:(1)a2+b2=(a+b)2﹣2ab=11﹣2=9;(2)∵(a﹣b)2=a2+b2﹣2ab=9﹣2=7,∴a﹣b=.25.(2021秋•江陵县期末)如图1是一个长为2a、宽为2b的长方形(a>b>0),沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成的一个“回形”正方形(如图2).(1)图2中的阴影部分正方形的边长为a﹣b;(2)观察图2请你写出(a+b)2、(a﹣b)2、ab之间的等量关系是(a+b)2=(a﹣b)2+4ab;(3)根据(2)中的结论,若x﹣y=4,xy=2.25,求x+y的值.【解析】解:(1)由拼图可知,阴影正方形的边长为a﹣b,故答案为:a﹣b;(2)大正方形的边长为a+b,因此面积为(a+b)2,阴影小正方形的边长为a﹣b,因此面积为(a﹣b)2,而每个长方形的面积为ab,由S大正方形=S小正方形+4S长方形可得,(a+b)2=(a﹣b)2+4ab,故答案为:(a+b)2=(a﹣b)2+4ab;(3)由(2)得,(x+y)2=(x﹣y)2+4xy, 即(x+y)2=42+4×2.25=26,∴x+y=±.。

华东师大版数学七年级乘法公式同步训练

华东师大版数学七年级乘法公式同步训练

15.2 乘法公式同步练习(一)1.计算:(1)(x+3)(x-3)= (2)(m+2)(m-2)= (3)(2x+1)(2x-1)=2.用平方差公式计算:(1) (a+3b)(a-3b) (2) (1+2y)(1-2y) (3) (4x-5)(4x+5) (4) (12-+2m)(12--2m)3.用平方差公式计算:(1) (3b+a)(a-3b) (2) (3m-4n)(4n+3m) (3) (3+2a)(-3+2a) (4) (7-2a)(-7-2a) 4.计算: (y+2)(y-2)-(y-1)(y+5)15.2 乘法公式同步练习(二)1.填空:两个数的和乘以这两个数的差,等于这两个数的,即(a+b)(a-b)= ,这个公式叫做公式.2.用平方差公式计算(1) (-m+5n)(-m-5n) (2) (3x-1)(3x+1) (3) (y+3x)(3x-y) (4) (-2+ab)(2+ab)3.判断正误:对的画“√”,错的画“×”.(1)(a-b)(a+b)=a2-b2;() (2)(b+a)(a-b)=a2-b2;()(3)(b+a)(-b+a)=a2-b2;() (4)(b-a)(a+b)=a2-b2;()(5)(a-b)(a-b)=a2-b2. ()4.用多项式乘多项式法则计算:(1) (a+b)2 (2) (a-b)2=(a+b)(a+b) =(a-b)(a-b) = == =5.运用完全平方公式计算:(1) (x+6)2 (2) (y-5)2 (3) (-2x+5)2 (4) (34x-23y)26.计算:(x+1)(x-3)-(x+2)2+(x+2)(x-2)7.选做题:如图,利用图形你能得到公式(a+b)2=a2+2ab+b2吗?15.2 乘法公式同步练习(三)1.填空:(1)平方差公式(a+b)(a-b)= ;(2)完全平方公式(a+b)2= ,(a-b)2= .2.运用公式计算:(1) (2x-3)2 (2) (-2x+3y)(-2x-3y) (3) (12m-3)(12m+3) (4) (13x+6y)23.运用乘法公式计算:(1) (a+2b-1)2 (2) (2x+y+z)(2x-y-z)2a 2a 2a a a 2.5a 1.5a 二、填空题9.102×103=____________________.10.()222137xy z x y z -⋅-= ____________________.11.()()()352199m x y x y y x +⎡⎤----=⎢⎥⎣⎦ ____________________.12.()()2323x t x t -+=____________________.13.()()824m n m n -+=__________________ .14.204196⨯=___________________.15.()()()()2244n n n n n n n n x y x y x y x y -+++=___________________.16.()()()()()248162121212121+++++=____________________.三、解答题17.计算:()()()23543p p p p p p -⋅-⋅-⋅⋅-.18.已知3312228x -=⨯,求x .19.已知()27x y += ,()29x y -=,求22x y +及xy 的值.20.计算图中阴影部分的面积.21.把20厘米长的一条线段分成两段,将每一段围成一个正方形框,已知这两个正方形面积的差等于20平方厘米,求这两条线段的长.22.已知13x x +=,求441x x+的值.23.已知:5a b +=,ab =2,求下列各式的值.(1)22a b + (2)()2a b - (3)22a ab b -+.24.解不等式()()()()221321511y y y y --->-+.25.当2x =,12y =时,求代数式()()()()223x y x y x y x xy +-+---的值.。

2021-2022学年苏科版七年级数学下册《9-4乘法公式-平方差公式》同步练习题(附答案)

2021-2022学年苏科版七年级数学下册《9-4乘法公式-平方差公式》同步练习题(附答案)

2021-2022学年苏科版七年级数学下册《9-4乘法公式-平方差公式》同步练习题(附答案)一.选择题1.运用乘法公式计算(4+x)(x﹣4)的结果是()A.x2﹣16B.x2+16C.16﹣x2D.﹣x2﹣162.若(x+3)(x﹣3)=55,则x的值为()A.8B.﹣8C.±8D.6或83.已知a+b=﹣3,a﹣b=1,则a2﹣b2的值是()A.8B.3C.﹣3D.104.若a2﹣b2=10,a﹣b=2,则a+b的值为()A.5B.2C.10D.无法计算5.下列算式中不能利用平方差公式计算的是()A.(x+y)(x﹣y)B.(x﹣y)(﹣x﹣y)C.(x﹣y)(﹣x+y)D.(x+y)(y﹣x)6.下列运算正确的是()A.(5﹣m)(5+m)=m2﹣25B.(1﹣3m)(1+3m)=1﹣3m2C.(﹣4﹣3n)(﹣4+3n)=﹣9n2+16D.(2ab﹣n)(2ab+n)=4ab2﹣n27.计算(x+1)(x﹣1)(x2+1)的结果是()A.x2﹣1B.x3﹣1C.x4+1D.x4﹣18.从边长为a的正方形中剪掉一个边长为b的正方形(如图1所示),然后将剩余部分拼成一个长方形(如图2所示).根据图形的变化过程,写出的一个正确的等式是()A.(a﹣b)2=a2﹣2ab+b2B.a(a﹣b)=a2﹣abC.b(a﹣b)=ab﹣b2D.a2﹣b2=(a+b)(a﹣b)二.填空题9.计算:(2a﹣b)(2a+b)=.10.计算:(a+1)(1﹣a)=.11.计算(x+y)(x﹣y)+16=.12.若x2﹣y2=16,x+y=8,则x﹣y=.13.当a=﹣1时,代数式(2a+1)(2a﹣1)=.14.化简:(a+2)(a2+4)(a4+16)(a﹣2)=.三.解答题15.计算(2+y)(y﹣2)+(2y﹣4)(y+3).16.计算:(3x+2)(3x﹣2)+x(x﹣2).17.计算:(3x+2)(3x﹣2)(9x2+4).18.计算:(1)|﹣3|+()2017×(﹣3)2018﹣(π﹣4)0;(2)(2x+3y)(2x﹣3y)﹣(x﹣2y)(4x+y).19.已知a+b=2,求代数式a2﹣b2+4b的值.20.如果﹣3x2+mx+nx2﹣x+3的值与x的取值无关,求(m+n)(m﹣n)的值.21.若(x﹣2)(x2+ax﹣8b)的展开式中不含x的二次项和一次项.(1)求b a的值;(2)求(a+1)(a2+1)(a4+1)…(a32+1)+1的值.22.观察下列各式:(x﹣1)(x+1)=x2﹣1;(x﹣1)(x2+x+1)=x3﹣1;(x﹣1)(x3+x2+x+1)=x4﹣1;…(1)根据以上结果,写出下列各式的结果.①(x﹣1)(x4+x3+x2+x+1)=;②(x﹣1)(x9+x8+x7+…+x+1)=;③(x﹣1)(x n﹣1+x n﹣2+…+x+1)=(n为正整数);(2)(x﹣1)•m=x11﹣1.则m=;(3)根据猜想的规律,计算:226+225+…+2+1.参考答案一.选择题1.解:(4+x)(x﹣4)=(x+4)(x﹣4)=x2﹣42=x2﹣16,故选:A.2.解:(x+3)(x﹣3)=55,x2﹣9=55,x2=64,x=±8.故选:C.3.解:∵a+b=﹣3,a﹣b=1,∴a2﹣b2=(a+b)(a﹣b)=(﹣3)×1=﹣3.故选:C.4.解:∵a2﹣b2=10,∴(a+b)(a﹣b)=10,∵a﹣b=2,∴a+b=5.故选:A.5.解:A、原式=x2﹣y2,不符合题意;B、原式=y2﹣x2,不符合题意;C、原式=﹣(x﹣y)2=﹣x2+2xy﹣y2,符合题意;D、原式=y2﹣x2,不符合题意.故选:C.6.解:A、(5﹣m)(5+m)=25﹣m2,错误;B、(1﹣3m)(1+3m)=1﹣9m2,错误;C、(﹣4﹣3n)(﹣4+3n)=﹣9n2+16,正确;D、(2ab﹣n)(2ab+n)=4a2b2﹣n2,错误;7.解:原式=(x2﹣1)(x2+1)=x4﹣1.故选:D.8.解:根据图1和图2可得阴影部分的面积为:a2﹣b2和(a+b)(a﹣b),∴a2﹣b2=(a+b)(a﹣b),故选:D.二.填空题9.解:(2a﹣b)(2a+b)=4a2﹣b2.故答案为:4a2﹣b2.10.解:(a+1)(1﹣a)=(1+a)(1﹣a)=12﹣a2=1﹣a2.故答案为:1﹣a2.11.解:(x+y)(x﹣y)+16=x2﹣y2+16.故答案为:x2﹣y2+16.12.解:∵x2﹣y2=(x+y)(x﹣y)=16,x+y=8,∴x﹣y=16÷8=2.故答案为:2.13.解:∵a=﹣1,∴(2a+1)(2a﹣1)=4a2﹣1=4×(﹣1)2﹣1=4﹣1=3.故答案为:3.14.解:(a+2)(a2+4)(a4+16)(a﹣2)=(a+2)(a﹣2)(a2+4)(a4+16)=(a2﹣4)(a2+4)(a4+16)=(a4﹣16)(a4+16)=a8﹣256.故答案为:a8﹣256.15.解:原式=y2﹣4+2y2+6y﹣4y﹣12=3y2+2y﹣16.16.解:原式=9x2﹣4+x2﹣2x=10x2﹣2x﹣4.17.解:(3x+2)(3x﹣2)(9x2+4)=(9x2﹣4)(9x2+4)=81x4﹣16.18.解:(1)|﹣3|+()2017×(﹣3)2018﹣(π﹣4)0=3+()2017×32017×3﹣1=3+×3﹣1=3+12017×3﹣1=3+3﹣1=5;(2)(2x+3y)(2x﹣3y)﹣(x﹣2y)(4x+y)=(2x)2﹣(3y)2﹣(4x2+xy﹣8xy﹣2y2)=4x2﹣9y2﹣4x2﹣xy+8xy+2y2=7xy﹣7y2.19.解:∵a+b=2,∴a2﹣b2+4b=(a+b)(a﹣b)+4b=2(a﹣b)+4b =2a﹣2b+4b=2a+2b=2(a+b)=4.20.解:﹣3x2+mx+nx2﹣x+3=(﹣3+n)x2+(m﹣1)x+3,∵﹣3x2+mx+nx2﹣x+3的值与x的取值无关,∴﹣3+n=0,m﹣1=0,解得:n=3,m=1,故(m+n)(m﹣n)=(1+3)×(1﹣3)=4×(﹣2)=﹣8.21.解:(1)(x﹣2)(x2+ax﹣8b)=x2+ax2﹣8bx﹣2x2﹣2ax+16b=x3+(a﹣2)x2﹣(2a+8b)x+16b,∵展开式中不含x的二次项和一次项,∴,解得:,所以:;(2)当a=2时,(a+1)(a2+1)(a4+1)⋅⋅⋅(a32+1)+1=(2+1)(22+1)(24+1)⋅⋅⋅(232+1)+1=(2﹣1)(2+1)(22+1)(24+1)⋅⋅⋅(232+1)+1=264﹣1+1=264.22.解:观察下列各式:(x﹣1)(x+1)=x2﹣1;(x﹣1)(x2+x+1)=x3﹣1;(x﹣1)(x3+x2+x+1)=x4﹣1;…得:①(x﹣1)(x4+x3+x2+x+1)=x5﹣1;②(x﹣1)(x9+x8+x7+…+x+1)=x10﹣1;③(x﹣1)(x n﹣1+x n﹣2+…+x+1)=x n﹣1(n为正整数);(2)∵(x﹣1)(x10+x9+x8+•+x+1)=x11﹣1.∴m=x10+x9+x8+•+x+1.故答案为:x10+x9+x8+•+x+1.(3)226+225+…+2+1=(2﹣1)(226+225+…+2+1)=227﹣1.。

北师大版七年级上册数学有理数的乘法法则同步练习题

北师大版七年级上册数学有理数的乘法法则同步练习题

2.7 有理数的乘法第1课时有理数的乘法法则一、选择题(每小题4分,共12分)1.下面计算正确的是( )A.(-0.25)×(-8)=B.16×(-0.125)=-2C.(-)×(-1)=-D.(-3)×(-1)=-42.(2012·黔西南中考)-1的倒数是( )A.-B.C.-D.3.如果五个有理数相乘,积为负,那么其中正因数有( )A.2个B.3个C.4个D.2个或4个或0个二、填空题(每小题4分,共12分)4.甲、乙两同学进行数学猜谜游戏:甲说,一个数a的相反数是它本身;乙说,一个数b的倒数也等于它本身,请你算一下,a×b= .5.在-2,3,4,-5这四个数中,任取两个数相乘,所得的积最大的是.6.绝对值小于8的所有的整数的积是.三、解答题(共26分)7.(8分)计算:(1)(-)×(+2).(2)(-3.25)×(-16).(3)(-0.75)×(+1.25)×(-40)×(-2).(4)(+1)×(-2)-(-1)×(-1).8.(8分)某货运公司去年1~3月份平均每月亏损1.5万元,4~6月份平均每月盈利2万元,7~10月份平均每月盈利1.7万元,11~12月份平均每月亏损2.3万元,这个公司去年总的盈亏情况如何?【拓展延伸】9.(10分)观察下列等式:第1个等式:a1==×(1-);第2个等式:a2==×(-);第3个等式:a3==×(-);第4个等式:a4==×(-);……请回答下列问题:(1)按以上规律列出第5个等式:a5= .(2)用含n的式子表示第n个等式:a n= = (n为正整数).(3)求a1+a2+a3+a4+…+a100的值.答案解析1.【解析】选B.A中结果错误;C,D中积的符号错;B正确.2.【解析】选C.-1=-,所以-1的倒数是-.3.【解析】选 D.五个有理数相乘积为负,则必有奇数个负因数,即1个或3个或5个,故正因数为4个或2个或0个.4.【解析】数a的相反数是它本身,则a=0.数b的倒数也等于它本身,则b=1或b=-1,所以a×b=0.答案:05.【解析】因为正数大于负数,所以同号两数相乘一定大于异号两数相乘.又因为(-2)×(-5)=10,3×4=12,所以所得的积最大的是12. 答案:126.【解析】绝对值小于8的整数有±7,±6,±5,±4,±3,±2,±1,0.故其积为0.答案:07.【解析】(1)(-)×(+2)=-(×)=-3.(2)(-3.25)×(-16)=3.25×16=52.(3)(-0.75)×(+1.25)×(-40)×(-2)=-××40×=-100.(4)(+1)×(-2)-(-1)×(-1)=-(×)-(×)=-4-2=-6.8.【解析】记盈利额为正数,亏损额为负数,公司去年全年盈亏额为(-1.5)×3+2×3+1.7×4+(-2.3)×2=-4.5+6+6.8-4.6=3.7(万元),所以这个公司去年全年盈利3.7万元.9.【解析】(1)a5==×(-).(2)a n ==×(-).(3)a 1+a 2+a 3+a 4+…+a 100 =×(1-+-+-+…+-+-)=×(1-)=×=.北师大版九年级数学上册期中测试题一、选择题(本大题共10小题,每小题3分,共30分) 1.随机掷两枚硬币,落地后全部正面朝上的概率是 A.1 B.12C.13D.142. 关于方程x 2-2=0的理解错误的是A.这个方程是一元二次方程B.方2C.这个方程可以化成一元二次方程的一般形式D.这个方程可以用公式法求解 3.下列说法正确的个数是①菱形的对角线相等 ②对角线互相垂直的四边形是菱形;③有两个角是直角的四边形是矩形 ④正方形既是菱形又是矩形⑤矩形的对角线相等且互相垂直平分 A.1 B.2 C.3 D.4乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..4.方程x 2-3x+6=0的根的情况是A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.不能确定5.如图显示了用计算机模拟随机投掷一枚图钉的某次试验的结果.下面有三个推断:①某次试验投掷次数是500,计算机记录“钉尖向上”的次数是308,则“钉尖向上”的频率是0.616;②随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟试验,则当投掷次数为1000时,“钉尖向上"”的频率一定是0.620.其中合理的是A.①②B.②③C.①③D.①②③ 6.将一张正方形纸片按如图所示步骤①②沿虚线对折两次,然后沿③中的虚线剪去一个角,展开铺平后的图形是7.现有三张质地大小完全相同的卡片,上面分别标有数字-2,-1,1,把卡片背面朝上洗匀,从中任意抽取一张卡片,乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________………………………密………………………………….封……………………….线…………………………………………………………………………..记下数字后放回,洗匀,再任意抽取一张卡片,则第一次抽取的卡片上的数字大于第二次抽取的卡片上的数字的概率是A.23B.12C.13D.498.如图,在菱形ABCD 中,AB =13,对角线AC =10,若过点A 作AE ⊥BC 垂足为E ,则AE 的长为 A.8 B.6013 C.12013 D.240139.如图,点O 是矩形ABCD 的对角线AC 的中点,OM ∥AB 交AD 于点M ,若OM =3,BC =10,则OB 的长为 A.5 B.4 C.342D.3410.如图,已知正方形ABCD 的边长为12,BE =EC ,将正方形的边CD 沿DE 折叠到DF ,延长EF 交AB 于G ,连接DG ,现在有如下4个结论:①△ADG ≌△FDG:②GB =2AG:③3∠GDE =45°④S △BEF =725,在以上4个结论中,正确的有乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..A.1个B.2个C.3个D.4个二、填空题(本题共6小题,每小题4分,共24分) 11.将分别标有“柠”“檬”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球不放回,再随机摸出球,两次摸出的球上的汉字能组成“柠幪”的概率是________.12.如图,菱形ABCD 中,∠ABC =2∠A ,若对角线BD =3,则菱形ABCD 的周长为________.13.桌上放有完全相同的三张卡片,卡片上分别标有数字2,1,4,随机摸出一张卡片(不放回),其数字记为P ,再随机摸出一张卡片,其数字记为q ,则关于的方程x 2+px+q =0有实数根的概率是________.14.某种油菜籽在相同条件下的发芽试验结果如下: 由此可以估计油菜籽发芽的概率约为________.(精确到乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..0.1)15.一个两位数,十位数字比个位数字大3,而这两个数字之积等于这个两位数的27,若设个位数字为x ,则列出的方程为________.16.如图,已知正方形ABCD 的边长为4,点E ,F 分別在AD ,DC 上,AE =DF =1,BE 与AF 相交于点G ,点为BF 的中点,连接GH ,则GH 的长为________.三、解答题(本题共7小题,共66分) 17.(8分)解方程:(1)2x 2-4x+1=0 (2)(x+8)(x+1)=-12乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..18.(8分)甲乙两人在玩转盘游戏时,把转盘A 、B 分别分成4等份、3等份,并在每一份内标上数字,如图所示.游戏规定:转动两个转盘停止后,指针必须指到某数字,否则重转(1)请用画树状图法或列表法列出所有可能的结果; (2)若指针所指的两个数字都是方程x2-5x+6=0的解,则甲获胜若指针所指的两个数字都不是方程x2-5x+6=0的解,则乙获胜.问他们两人谁获胜的概率大?请分析说明19.(10分)某商场销售一批名牌衬衫,平均每天可销售20件,每件盈利40元,为了扩大销售量,增加盈利,尽量减少库存,商场决定采取适当的降价措施,经调查发现,如果每件村衫每降价1元,商场平均每天可多售出2件. (1)若商场平均每天要盈利1200元,且让顺客尽可能多得实惠,则每件衬衫应降价多少元?乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________………………………密………………………………….封……………………….线…………………………………………………………………………..(2)商场平均每天可能盈利1700元吗?请说明理由.20.(10分)如图,矩形ABCD 中AB =3,BC =2,过对角线BD 的中点O 的直线分別交AB 、CD 边于点E 、F. (1)求证:四边形BEDF 是平行四边形; (2)当四边形BEDF 是菱形时,求EF 的长.21.(10分)如图,若要建一个长方形鸡场,鸡场的一边靠墙,另三边用竹篱笆園成,篱笆总长33米,墙对面有一个2米宽的门,国成长方形的鸡场除门之外四周不能有空隙.求:(1)若墙长为18米,要围成鸡场的面积为150平方米,则鸡场的长和宽各为多少米?(2)能围成面积为200平方米的鸡场吗?乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..22.(10分)某茶叶专卖店经销一种日照绿茶,每千克成本80元,据销售人员调查发现,每月的销售量(千克)与销售单价x(元/千克)之间存在如图所示的变化规律.(1)求每月销售量y 与销售单价x 之间的函数关系式;(2)若某月该茶叶专卖店销售这种绿茶获得利润1350元,试求该月茶叶的销售单价x.23.(10分)如图①,将一张矩形纸片ABCD 沿着对角线BD 向上折叠,顶点C 落到点E 处,BE 交AD 于点F. (1)求证:△BDF 是等腰三角形; (2)如图②,过点D 作DG ∥BE ,交BC 于点G ,连接FC 交BD 于点O ①判断四边形BFDC 的形状,并说明理由; ②若AB =6,AD =8,求FG 的长.乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………………密………………………………….封……………………….线…………………………………………………………………………..。

苏科版数学七年级下册_2021最新同步训练:乘法公式-完全平方公式

苏科版数学七年级下册_2021最新同步训练:乘法公式-完全平方公式

初中数学苏科版七年级下册9.4 乘法公式——完全平方公式同步训练一、单选题(本大题共10题,每题3分,共30分)1.等于()A. B. C. D.2.下列等式能够成立的是()A. (2x-y)2=4x2-2xy+y2B. (x+y)2=x2+y2C. (a-b)2= a2-ab+b2D. (+x)2= +x23.若代数式x2-6x+b可化为(x-a)2-1,则b-a的值是()A. 5B. -5C. 11D. -114.已知a+b=-5,ab=-4,则a2-ab+b2的值是()A. 37B. 33C. 29D. 215.已知x﹣y=3,xy=1,则x2+y2=()A. 5B. 7C. 9D. 116.若,,则的值为()A. 6B. 7C. 8D. 97.对于任何实数m、n,多项式m2+n2-6m-10n+36的值总是()A. 非负数B. 0C. 大于2D. 不小于28.已知(m 2018)2+(m 2020)234,则(m 2019)2的值为()A. 4B. 8C. 12D. 169.小淇将(2019x+2020)2展开后得到a1x2+b1x+c1;小尧将(2020x﹣2019)2展开后得到a2x2+b2x+c2,若两人计算过程无误,则c1﹣c2的值为()A. 2019B. 2020C. 4039D. 110.已知a=2019x+2018,b=2019x+2019,c=2019x+2020.则多项式a2+b2+c2﹣ab﹣bc﹣ac 的值为()A. 1B. 2C. 3D. 4二、填空题(本大题共9题,每题2分,共18分)11.若a+b=17,ab=60,则(a- b)2=________12.若a2+b2=6,a+b=3,则ab的值为________.13.已知x﹣=6,求x2+ 的值为________.14.已知xy=-3,x+y=-4,则x2-xy+y2的值为________.15.计算:20202﹣4040×2019+20192=________.16.设(a+2b) 2=(a-2b) 2+A,则A=________.17.已知,则的值是________.18.已知关于的二次三项式是完全平方式,则a=________.19.我围古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和(a+b)“的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a+b)20的展开式中第三项的系数为________.三、解答题(本大题共7题,共82分)20.计算:(a+b+c)221.先化简,再计算:(2a+b)(b﹣2a)﹣(a﹣3b)2,其中a=﹣2,b= .22.已知(x+y)2=25,(x﹣y)2=81,求x2+y2和xy的值.23.已知,,求下列各式的值.(1);(2);(3).24. (1)当,时,分别求代数式和的值;(2)当,时,________ (填“ ”,“ ”,“ ”)(3)观察(1)(2)中代探索代数式和有何数量关系,并把探索的结果写出来:________ (填“ ”,“ ”,“ ”)(4)利用你发现的规律,求的值.25.如图1,A纸片是边长为a的正方形,B纸片是边长为b的正方形,C纸片是长为b,宽为a的长方形.现用A种纸片一张,B种纸片一张,C种纸片两张拼成如图2的大正方形.(1)请用两种不同的方法求图2大正方形的面积.方法1:________;方法2:________;(2)观察图2,请你写出下列三个代数式:(a+b)2,a2+b2,ab之间的等量关系________;(3)根据(2)题中的等量关系,解决如下问题:若a+b=5,a2+b2=13,求ab的值;26.(阅读理解)“若满足,求的值”.解:设,,则,,(解决问题)(1)若满足,则的值为________;(2)若满足,则的值为________;(3)如图,正方形的边长为,,,长方形的面积是200,四边形和都是正方形,四边形是长方形,求图中阴影部分的面积(结果必须是一个具体的数值).答案解析部分一、单选题1.【答案】B【考点】完全平方公式及运用解:(−a+b)2=a2−2ab+b2.故答案为:B.【分析】根据完全平方式的定义,将(−a+b)2展开即可求解.2.【答案】C【考点】完全平方公式及运用解:A、(2x-y)2=4x2-4xy+y2 ,故A错误;B、(x+y)2=x2+2xy+y2,故C错误;C、(a-b)2=a2-ab+b2,故C正确;D、( +x)2= +2+x2,故D错误;故答案为:C.【分析】根据(a b)2=a22ab+b2逐一判断即可.3.【答案】A【考点】完全平方公式及运用解:由x2-6x+b=x2-6x+9+(b-9)=(x-3)2+(b-9)=(x-a)2-1,所以a=3,b-9=-1,即a=3,b=8,故b-a=5.故选A.【分析】利用配方法可得x2-6x+b=(x-3)2+(b-9),从而可得(x-3)2+(b-9)=(x-a)2-1,继而得出a=3,b-9=-1,求出a、b的值并代入计算即可.4.【答案】A【考点】完全平方公式及运用解:∵a+b=-5,ab=-4,∴a2-ab+b2=(a+b)2-3ab=(-5)2-3×(-4)=37,故答案为:A.【分析】先根据完全平方公式进行变形,再代入求出即可.5.【答案】D【考点】代数式求值,完全平方公式及运用解:∵x﹣y=3,xy=1,∴(x﹣y)2=x2+y2﹣2xy,∴9=x2+y2﹣2,∴x2+y2=11,故答案为:D.【分析】由完全平方公式:(x﹣y)2=x2+y2﹣2xy,然后把x﹣y,xy的值整体代入即可求得答案.6.【答案】A【考点】完全平方公式及运用解:将a﹣b=1两边平方得:(a﹣b)2=a2+b2﹣2ab=1,把a2+b2=13代入得:13﹣2ab=1,解得:ab=6.故答案为:A.【分析】将a﹣b=1两边平方,利用完全平方公式化简,将第一个等式代入计算即可求出ab的值.7.【答案】D【考点】完全平方公式及运用解:m2+n2-6m-10n+36=(m2-6m+9)+(n2-10n+25)+2=(m-3)2+(n-5)2+2≥2故对于任何实数m、n多项式m2+n2-6m-10n+36的值都不小于2.故答案为:D.【分析】将多项式进行变形,整理成含有两个完全平方式的形式,再改写成平方的形式,根据平方的非负性进行解答.8.【答案】D【考点】完全平方公式及运用解:∵(m-2018)2+(m-2020)2=34,∴(m-2019+1)2+(m-2019-1)2=34,∴(m-2019)2+2(m-2019)+1+(m-2019)2-2(m-2019)+1=34,2(m-2019)2+2=34,2(m-2019)2=32,(m-2019)2=16.故答案为:D.【分析】先把(m -2018)2+(m-2020)2=34变形为(m-2019+1)2+(m-2019-1)2=34,把(m-2019)看作一个整体,根据完全平方公式展开,得到关于(m-2019)2的方程,解方程即可求解.9.【答案】C【考点】完全平方公式及运用解:∵(2019x+2020)2展开后得到a1x2+b1x+c1;∴c1=20202,∵(2020x﹣2019)2展开后得到a2x2+b2x+c2,∴c2=20192,∴c1﹣c2=20202﹣20192=(2020+2019)(2020﹣2019)=4039,故答案为:C.【分析】依据小淇将(2019x+2020)2展开后得到a1x2+b1x+c1;小尧将(2020x﹣2019)2展开后得到a2x2+b2x+c2,即可得到c1﹣c2=20202﹣20192,进而得出结论.10.【答案】C【考点】代数式求值,完全平方公式及运用解:∵a=2019x+2018,b=2019x+2019,c=2019x+2020.,∴a﹣b=﹣1,a﹣c=﹣2,b﹣c=﹣1,则原式=(2a2+2b2+2c2﹣2ab﹣2ac﹣2bc)=[(a2﹣2ab+b2)+(a2﹣2ac+c2)+(b2﹣2bc+c2)]=[(a﹣b)2+(a﹣c)2+(b﹣c)2]=×[1+4+1]=3,故答案为:C.【分析】把已知的式子化成[(a-b)2+(a-c)2+(b-c)2]的形式,然后代入求解.二、填空题11.【答案】49【考点】完全平方公式及运用解:∵,,∴.故答案为:49.【分析】利用完全平分公式的变形公式进行计算即可.12.【答案】【考点】完全平方公式及运用解:由a+b=3两边平方,得a2+2ab+b2=9 ①,a2+b2=6 ②,①﹣②,得2ab=3,两边都除以2,得ab= .故答案为:.【分析】根据完全平方公式,可得a2+2ab+b2=9,再根据等式的性质,可得答案.13.【答案】38【考点】完全平方公式及运用解:将x﹣=6两边平方,可得:,解得:,故答案为:38.【分析】把x﹣=6两边平方后化简整理解答即可.14.【答案】25【考点】完全平方公式及运用解:x2-xy+y2=(x+y)2-3xy=(-4)2-3×(-3)=25.【分析】利用配方将原式变形为(x+y)2-3xy,然后整体代入计算即可.15.【答案】1【考点】完全平方公式及运用解:20202﹣4040×2019+20192=20202﹣2×2020×2019+20192=(2020﹣2019)2=12=1.故答案为:1.【分析】完全平方公式式的应用,a2-2ab+b2=(a-b)2。

2020—2021年湘教版七年级数学下册《公式法》同步练习题及参考答案.docx

2020—2021年湘教版七年级数学下册《公式法》同步练习题及参考答案.docx

新课标2017-2018学年湘教版七年级数学下册3.3 公式法第1课时用平方差公式因式分解要点感知1 把乘法公式从右到左地使用,可以把某些形式的多项式进行__________,这种__________的方法叫做公式法.要点感知2 平方差公式:a2-b2=__________.适用平方差公式因式分解的多项式特点:①必须是__________式;②两项符号__________;③能写成__________的形式.预习练习2-1 若x2-9=(x-3)(x+a),则a=__________.2-2 因式分解结果为-(2a+b)(2a-b)的多项式是( )A.4a2-b2B.4a2+b2C.-4a2+b2D.-4a2-b2知识点1 用平方差公式因式分解1.下列多项式中,不能用平方差公式因式分解的是( )A.x2-y2B.-x2-y2C.4x2-y2D.-4+y22.因式分解x2-16的结果为( )A.(x+8)(x-2)B.(x+4)(x-4)C.(x+2)(x-8)D.(x+1)(x-16)3.下列多项式中,与-x-y相乘的结果是x2-y2的多项式是( )A.y-xB.x-yC.x+yD.-x-y4.下列因式分解正确的是( )A.(x-3)2-y2=x2-6x+9-y2B.a2-9b2=(a+9b)(a-9b)C.4x6-1=(2x3+1)(2x3-1)D.-x2-y2=(x-y)(x+y)5.因式分解:(1) a2-1;(2)x2-81;(3) x2-9y2;(4)(a-2b)2-25b2.知识点2 两步因式分解6.若16-x n=(2+x)(2-x)(4+x2),则n的值为( )A.2B.3C.4D.67.因式分解a3-a的结果是( )A.a(a2-1)B.a(a-1)2C.a(a+1)(a-1)D.(a2+a)(a-1)8.(2014·中山)把x3-9x因式分解,结果正确的是( )A.x(x2-9)B.x(x-3)2C.x(x+3)2D.x(x+3)(x-3)9.因式分解:a3-4ab2=__________.10.因式分解:(1)3x2-3y2;(2)(x+p)2-(x+q)2;(3) xy2-4x;(4) 2x4-2.11.在下列各式中,①-m2-n2;②16x2-9y2;③(-a)2-(-b)2;④-121m2+225n2;⑤(6x)2-9(2y)2.可用平方差公式因式分解的有( ) A.5个 B.4个 C.3个D.2个12.已知多项式4x2-(y-z)2的一个因式为2x-y+z,则另一个因式是( )A.2x-y-zB.2x-y+zC.2x+y+zD.2x+y-z13.因式分解:(1)(2014·怀化)2x2-8=__________;(2)(2013·绵阳)x2y4-x4y2=__________;(3)4-(3-x)2=__________;(4)16(a+b)2-9(a-b)2=__________.14.已知a+b=4,a-b=3,则a2-b2=__________.15.写出一个在有理数范围内能用平方差公式因式分解的多项式:____________________.16.因式分解:(1)9a2-4b2;(2)x4-16y4;(3)(a-b)(3a+b)2+(a+3b)2(b-a);(4)-(x2-y2)(x+y)-(y-x)3.17.用平方差公式进行简便计算:(1)4012-5992;(2)152-4×2.52.18.试说明:两个连续奇数的平方差是8的倍数.19.已知x,y 为正整数,且4x 2-9y 2=31,你能求出x ,y 的值吗?20.如果在一个半径为a 的圆内,挖去一个半径为b(b<a)的圆.(1)写出剩余部分面积的代数表达式,并因式分解它;(2)当a=15.5 cm ,b=5.5 cm ,π取3时,求剩下部分面积.21.计算:(1-212)(1-213)(1-214)…(1-212014)(1-212015).参考答案要点感知1 因式分解因式分解要点感知2 (a+b)(a-b) 二项相反平方差预习练习2-1 32-2 C1.B2.B3.A4.C5.(1)原式=(a+1)(a-1).(2)原式=x2-92=(x-9)(x+9).(3)原式=(x+3y)(x-3y).(4)原式=(a-2b+5b)(a-2b-5b)=(a+3b)(a-7b).6.C7.C8.D9.a(a+2b)(a-2b)10.(1)原式=3(x2-y2)=3(x+y)(x-y).(2)原式=[(x+p)+(x+q)][(x+p)-(x+q)]=(2x+p+q)(p-q).(3)原式=x(y2-4)=x(y+2)(y-2).(4)原式=2(x4-1)=2(x2+1)(x2-1)=2(x2+1)(x+1)(x-1).11.B 12.D13.(1)2(x+2)(x-2)(2)-x2y2(x+y)(x-y)(3)(5-x)(x-1)(4)(7a+b)(a+7b)14.1215.答案不唯一,如:x2-116.(1)原式=(3a+2b)(3a-2b).(2)原式=(x2+4y2)(x2-4y2)=(x2+4y2)(x+2y)(x-2y).(3)原式=(a-b)[(3a+b)2-(a+3b)2]=(a-b)[(3a+b)+(a+3b)][(3a+b)-(a+3b)]=8(a+b)(a-b)2.(4)原式=(x-y)3-(x2-y2)(x+y)=(x-y)3-(x+y)2(x-y)=(x-y)[(x-y)2-(x+y)2]=-4xy( x-y).17.(1)原式=(401+599)×(401-599)=-198 000.(2)原式=152-52=(15+5)×(15-5)=200.18.设两个连续奇数为2n-1,2n+1(n为正整数).则(2n+1)2-(2n-1)2=(2n+1+2n-1)(2n+1-2n+1)=8n,所以两个连续奇数的平方差是8的倍数.19.等式左边因式分解,得(2x-3y)(2x+3y),右边的31是一个质数,只可分解为1×31.因为x,y 为正整数,所以231,2331.x y x y -=+=⎧⎨⎩解得8,5.x y ==⎧⎨⎩ 20.(1)πa 2-πb 2.原式=π(a 2-b 2)=π(a+b)(a-b).(2)当a=15.5 cm ,b=5.5 cm ,π取3时,原式=3×(15.5+5.5)×(15.5-5.5)=3×21×10=630(cm 2).21.原式=(1+12)(1-12)(1+13)(1-13)(1+14)(1-14)…(1+12014)(1-12014)(1+12015)(1-12015) =32×12×43×23×54×34…20152014×20132014×20162015×20142015=12×32×23×43×34×54…20132014×20152014×20142015×20162015=12×20162015=10082015.第2课时 用完全平方公式因式分解要点感知1 完全平方公式:a 2+2ab+b 2=(a+b)2,a 2-2ab+b 2=(a-b)2.适合用完全平方公式因式分解的多项式的特点:①必须是__________;②两个平方项的符号__________;③第三项是两平方项的__________.预习练习1-1 下列式子中,完全平方式有__________.(填序号)①x2+4x+4;②1+16a2;③x2+2x-1;④x2+xy+y2;⑤m2+n2+2mn. 1-2 因式分解:x2+6x+9=__________.要点感知2 因式分解的一般步骤:首先__________,然后再用__________进行因式分解.在因式分解时,必须进行到每一个因式都不能分解为止.预习练习2-1 因式分解:3a2+6a+3=__________.2-2 因式分解:x2y-4xy+4y.知识点1 用完全平方公式因式分解1.下列各式能用完全平方公式进行因式分解的是( )A.x2+x+1B.x2+2x-1C.x2-1D.x2-6x+92.因式分解(x-1)2-2(x-1)+1的结果是( )A.(x-1)(x-2)B.x2C.(x+1)2D.(x-2)23.因式分解:(1) x2+2x+1=__________;(2) x2-4(x-1)=__________.4.利用1个a×a的正方形,1个b×b的正方形和2个a×b的长方形可拼成一个正方形(如图所示),从而可得到因式分解的公式____________________.5.因式分解:(1)-x2+4xy-4y2;(2)4a4-12a2y+9y2;(3)(a+b)2-14(a+b)+49.知识点2 综合运用提公因式法和公式法因式分解6.把x2y-2y2x+y3因式分解正确的是( )A.y(x2-2xy+y2)B.x2y-y2(2x-y)C.y(x-y)2D.y(x+y)27.把a3-2a2+a因式分解的结果是( )A.a2(a-2)+aB.a(a2-2a)C.a(a+1)(a-1)D.a(a-1)28.将多项式m2n-2mn+n因式分解的结果是__________.9.把下列各式因式分解:(1)2a3-4a2b+2ab2;(2)5x m+1-10x m+5x m-1;(3)(2x-5)2+6(2x-5)+9;(4)16x4-8x2y2+y4;(5)(a2+ab+b2)2-9a2b2.10.下列多项式能因式分解的是( )A.x2+y2B.-x2-y2C.-x2+2xy-y2D.x2-xy+y211.(2013·西双版纳)因式分解x3-2x2+x正确的是( )A.(x-1)2B.x(x-1)2C.x(x2-2x+1)D.x(x+1)212.下列各式:①x2-2xy-y2;②x2-xy+2y2;③x2+2xy+y2;④x2-2xy+y2,其中能用公式法因式分解的有( )A.1个B.2个C.3个D.4个13.因式分解:4a3-12a2+9a=__________.14.多项式ax2-a与多项式x2-2x+1的公因式是__________.15.因式分解:16-8(x-y)+(x-y)2=__________.16.若m=2n+1,则m2-4mn+4n2的值是__________.17.把下列各式因式分解:(1)16-8xy+x2y2;(2)9(a-b)2+12(a2-b2)+4(a+b)2;(3)(2a+b)2-8ab; (4)3a(x2+4)2-48ax2.18.利用因式分解计算:(1)12×3.72-3.7×2.7+12×2.72;(2)1982-396×202+2022.19.在三个整式x2+2xy,y2+2xy,x2中,请你任意选出两个进行加(或减)运算,使所得整式可以因式分解,并进行因式分解.20.若|m+4|与n2-2n+1互为相反数,把多项式x2+4y2-mxy-n因式分解.21.当a,b为何值时,多项式4a2+b2+4a-6b-8有最小值,并求出这个最小值.参考答案要点感知1 三项式相同底数的积的2倍预习练习1-1 ①⑤1-2 (x+3)2要点感知2 提取公因式公式法预习练习2-1 3(a+1)22-2 原式=y(x2-4x+4)=y(x-2)2.1.D2.D3.(1)(x+1)2(2)(x-2)24.a2+2ab+b2=(a+b)25.(1)原式=-(x2-4xy+4y2)=-(x-2y)2.(2)原式=(2a2-3y)2.(3)原式=(a+b-7)2.6.C7.D8.n(m-1)29.(1)原式=2a(a2-2ab+b2)=2a(a-b)2.(2)原式=5x m-1(x2-2x+1)=5x m-1(x-1)2.(3)原式=[(2x-5)+3]2=(2x-2)2=4(x-1)2.(4)原式=(4x2-y2)2=(2x+y)2(2x-y)2.(5)原式=(a2+ab+b2+3ab)(a2+ab+b2-3ab)=(a2+4ab+b2)(a-b)2.10.C 11.B 12.B 13.a(2a-3)214.x-1 15.(x-y-4)216.117.(1)原式=(4-xy)2.(2)原式=[3(a-b)+2(a+b)]2=(5a-b)2.(3)原式=4a 2+4ab+b 2-8ab=4a 2-4ab+b 2=(2a-b)2.(4)原式=3a [(x 2+4)2-16x 2]=3a(x+2)2(x-2)2.18.(1)原式=12×(3.7-2.7)2=12.(2)原式=(198-202)2=16.19.(x 2+2xy)+x 2=2x 2+2xy=2x(x+y);或(y 2+2xy)+x 2=(x+y)2;或(x 2+2xy)-(y 2+2xy)=x 2-y 2=(x+y)(x-y);或(y 2+2xy)-(x 2+2xy)=y 2-x 2=(y+x)(y-x).20.由题意可得|m+4|+(n-1)2=0,所以40,10.m n +=-=⎧⎨⎩解得4,1.m n =-=⎧⎨⎩ 所以,原式=x 2+4y 2+4xy-1=(x+2y )2-1=(x+2y+1)(x+2y-1).21.4a 2+b 2+4a-6b-8=(4a 2+4a+1)+(b 2-6b+9)-18=(2a+1)2+(b-3)2-18,当2a+1=0,b-3=0时,原多项式有最小值.这时a=-12,b=3,这个最小值是-18.。

乘法公式同步练习

乘法公式同步练习

初中数学苏科版七年级下册9.4 乘法公式同步训练一、单选题(本大题共10题,每题3分,共30分)1.在计算( x+2y) ( −2y+x)时,最佳的方法是()A.运用多项式乘多项式法则B.运用平方差公式C.运用单项式乘多项式法则D.运用完全平方公式2.下列整式运算正确的是()A.(a﹣b)2=a2﹣b2B.(a+2)(a﹣2)=a2﹣2C.(a+2)(a﹣2)=a2﹣4D.(a+2b)2= a2+2ab+4b23.若a+b=100,ab=48,那么a2+b2值等于()A.5200B.1484C.5804D.99044.如果x2+x=3,那么代数式(x+1)(x−1)+x(x+2)的值是()A.2B.3C.5D.65.如果(a+b)2=16,(a﹣b)2=4,且a、b是长方形的长和宽,则这个长方形的面积是()A.3B.4C.5D.66.我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.例如图①可以用来解释(a+b)2-(a-b)2=4ab.那么通过图②中阴影部分面积的计算验证了一个恒等式,此等式是()A.a2-b2=(a+b)(a-b)B.(a-b)2=a2-2ab+b2C.(a+b)2=a2+2ab+b2D.(a-b)(a+2b)=a2+ab-b27.定义新运算:a*b=ab+a2﹣b2,则(x+y)*(x﹣y)=()A.x2﹣y2B.x2﹣y2﹣2xyC.x2﹣y2﹣4xyD.x2﹣y2+4xy8.计算(x+1)(x2+1)(x﹣1)的结果正确的是()A.x4+1B.(x+1)4C.x4﹣1D.(x﹣1)49.已知a−b=b−c=25,且a2+b2+c2=1,则ab+bc+ac的值()A.1325B.−225C.1925D.182510.如图,有A,B,C三种不同型号的卡片,每种各10张.A型卡片是边长为a的正方形,B型卡片是相邻两边长分别为a、b的长方形,C型卡片是边长为b的正方形.从中取出若干张卡片(每种卡片至少一张),把取出的这些卡片拼成一个正方形,所有符合要求的正方形的个数是()A.4B.5C.6D.7二、填空题(本大题共8题,每题2分,共16分)11.计算:2021×2019−20202=________12.已知x=y+4,则代数式x2−2xy+y2−25的值为________.13.若x2+2(m-3)x+16是完全平方式,则m表示的数是________.14.若(2a﹣3b)2=(2a+3b)2+N,则表示N的代数式是________.15.若x2+4x+8y+y2+20=0,则x﹣y=________.16.若规定符号|a bc d|的意义是:|a bc d|=ad﹣bc,则当m2﹣2m﹣3=0时,|m2m−31−2m m−2|的值为________.17.利用平方差计算(2+1)(22+1)(24+1)(28+1)+1=________.18.若a=2009x+2007,b=2009x+2008,c=2009x+2009,则a2+b2+c2﹣ab﹣bc﹣ca的值为________.三、解答题(本大题共10题,共84分)19.先化简,再求值:(x+y+2)(x+y﹣2)﹣(x+2y)2+3y2,其中x=﹣12,y= 13.20.先化简,再求值:(x+y)2-2x(x+3y)+(x+2y)(x-2y),其中x=-1,y=2.21.若|x﹣y+1|与(x+2y+4)2互为相反数,化简求代数[(2x+2y)2﹣(3x+y)(3x﹣y)﹣5y2]÷(2x)的值.22.小明同学在学习整式时发现,如果合理地使用乘法公式可以简化运算,于是在解此道计算题时他是这样做的(如下):(2x−3y)2−(x−2y)(x+2y)=4x2−6xy+3y2−x2−2y2第一步=3x2−6xy+y2第二步小华看到小明的做法后,对他说:“你做错了,在第一步运用公式时出现了错误,你好好检查一下.”小明认真仔细检查后,自己发现了一处错误圈画了出来,并进行了纠正(如下):小华看到小明的改错后说:“你还有错没有改出来.”(1)你认为小华说的对吗?________(填“对”或“不对”);(2)如果小华说的对,那么小明还有哪些错误没有找出来,请你帮助小明把第一步中的其它错误圈画出来并改正,然后写出此题的正确解题过程.23.在边长为a的正方形的一角减去一个边长为b的小正方形(a>b),如图①(1)由图①得阴影部分的面积为________;(2)沿图①中的虚线剪开拼成图②,则图②中阴影部分的面积为________;(3)由(1)(2)的结果得出结论:________=________;(4)利用(3)中得出的结论计算:20202−2019224.(1)已知a−b=2,ab=5,求a2+b2−3ab的值;(2)已知a2−a−1=0,求a3−2a2+3的值.(3)如图,有A型、B型、C型三种不同类型的纸板,其中A型是边长为a的正方形,B型是长为a,宽为b的长方形,C型是边长为b的正方形.若想用这些纸板拼成一个长方形,使其面积为(a+b)(a+2b).完成下列各题:①填空(a+b)(a+2b)=________;②请问需要A型纸板、B型纸板、C型纸板各多少张?试说明理由________.25.如图①所示是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的方式拼成一个正方形,根据这一操作过程回答下列问题:(1)图②中阴影部分的正方形的边长为________;(2)请用两种方法表示图②中阴影部分的面积.方法一:________;方法二:________;(3)观察图②,写出代数式(m+n)2、(m−n)2、mn之间的等量关系式:________;(4)计算:(10.5+2)2−(10.5−2)2=________.26.乘法公式的探究及应用.(1)小题1:如图1,可以求出阴影部分的面积是________(写成两数平方差的形式);(2)小题2:如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是________,长是________,面积是________(写成多项式乘法的形式).(3)小题3:比较图1,图2的阴影部分面积,可以得到乘法公式________ (用式子表达).27.从边长为a 的正方形剪掉一个边长为b 的正方形(如图1),然后将剩余部分拼成一个长方形(如图2). (1)上述操作能验证的等式是(请选择正确的一个)A.a 2﹣2ab+b 2=(a﹣b)2B.a 2﹣b 2=(a+b)(a﹣b)C.a 2+ab=a(a+b)(2)若x 2﹣9y 2=12,x+3y=4,求x﹣3y 的值;(3)计算:(1−122)(1−132)(1−142)⋯(1−120192)(1−120202).28.如图1是一个长为2a、宽为2b的长方形,沿图中虚线用剪刀剪成四块完全一样的小长方形,然后按图2的形状拼成一个正方形。

七年级数学下:4.4乘法公式同步练习湘教版(无答案)

七年级数学下:4.4乘法公式同步练习湘教版(无答案)

一、平方差公式(1)1、填空题⑴ (b + a)(b -a) = _______________, (x -2) (x + 2) = _________________;⑵ (3a + b) (3a -b) =________________, (2x 2-3) (-2x 2-3) = ______________________; ⑶2294)3)(______3(______________,__________)2132)(2132(b a b b a a -=-+=-+ ⑷ (x + y) (-x + y) = ______________, (-7m -11n) (11n -7m) = ____________________; ⑸_____________________)2)(4)(2(___,__________)2)(2(2=++-=---a a a y x x y ;2、计算题(写过程)⑴)5)(5(33m n n m -+⑵)2.02)(22.0(x y y x -+⑶)1)(1(---xy xy⑷)23)(23(2222b a ab b a ab ++-⑸)1)(1)(1(2++-a a a ⑹)132)(132(++--y x y x3、用简便方法计算(写过程)⑴ 92×88 ⑵32593160⨯⑶225.365.38-⑷2220012003-4、计算)13)(13)(13)(13)(13(16842+++++二、平方差公式(2)一、选择题⑴下列可以用平方差公式计算的是( )A 、(x -y) (x + y)B 、(x -y) (y -x)C 、(x -y)(-y + x)D 、(x -y)(-x + y) ⑵下列各式中,运算结果是22169b a -的是( )A 、)43)(43(b a b a --+-B 、)34)(34(a b a b --+-C 、)34)(34(a b a b -+D 、)83)(23(b a b a -+⑶若2422549))(________57(y x y x -=--,括号内应填代数式( )A 、y x 572+B 、y x 572--C 、y x 572+-D 、y x 572- ⑷22)213()213(-+a a 等于( )A 、4192-a B 、161814-a C 、161298124+-a a D 、161298124++a a二、计算题⑴ x (9x -5)-(3x + 1) (3x -1) ⑵ (a + b -c) (a -b + c)⑶)49)(23)(23(22b a b a b a ++-⑷ (2x -1) (2x + 1)-2(x -2) (x + 2)三、应用题学校警署有一块边长为 (2a + b)米的正方形草坪,经统一规划后,南北向要缩短3米,而东西向要加长3米,问改造后的长方形草坪的面积是多少?4、解不等式1)3)(3()2(2<-+-+y y y三、完全平方公式(1)一、填空题⑴ (x + y)2=_________________,(x -y)2=______________________;⑵______________________)2(_________,__________)3(22=+-=-b a b a ⑶41________)21(22+=-x x ⑷ (3x + ________)2=__________+ 12x + ____________;⑸_________________________)2(__,__________)()(222=--+-=+y x b a b a ; ⑹ (x 2-2)2-(x 2 + 2)2 = _________________________;二、计算题(写过程)⑴2)2332(y x -⑵22)2()2(a b b a -++⑶)1)(1)(1(2--+m m m ⑷22)2()2(n m n m -+⑸22)23()32(+-+x x ⑹2)32(z y x +-三、用简便方法计算(写过程)⑴ 982⑵ 20102 ⑶2-2×24、已知x + y = a , xy = b ,求(x -y) 2 ,x 2 + y 2 ,x 2-xy + y 2的值5、已知3)()1(2-=+-+y x x x ,求xy y x -+222的值四、完全平方公式一、判断题⑴222964)32(y xy x y x +-=- ( )⑵ (3a 2 + 2b)2 = 9a 4 + 4b 2 ( )⑶2234226.004.0)2.0(n m n m m mn m ++=-- ( )⑷ (-a + b) (a -b) = -(a -b) (a -b) = -a 2-2ab + b 2 ( )二、选择题⑴2)2(n m +-的运算结果是 ( )A 、2244n mn m ++B 、2244n mn m +--C 、2244n mn m +-D 、2242n mn m +- ⑵运算结果为42421x x +-的是 ( )A 、22)1(x +-B 、22)1(x +C 、22)1(x --D 、2)1(x -⑶已知2264b Nab a +-是一个完全平方式,则N 等于 ( )A 、8B 、±8C 、±16D 、±32⑷如果22)()(y x M y x +=+-,那么M 等于 ( )A 、 2xyB 、-2xyC 、4xyD 、-4xy三、计算题⑴22)()(y x y x +-⑵22)35()35(y x y x ++-⑶))((c b a c b a +--+⑷2222)2()4()2(++-t t t4、已知(a + b) 2 =3,(a-b) 2 =2 ,分别求a 2 + b 2, ab的值。

湘教版七年级下册数学第2章2.2.3运用乘法公式进行计算习题课件1

湘教版七年级下册数学第2章2.2.3运用乘法公式进行计算习题课件1

能力提升练
12.解方程:2x(x-1)-(x-4)(x+4)=(x+2)2. 解:2x(x-1)-(x-4)(x+4)=2x2-2x-x2+16= x2-2x+16.(x+2)2=x2+4x+4. 故原方程可化为6x=12. 解得x=2.
能力提升练
13.【教材改编题】如果一个正方形的边长增加4厘米,那 么它的面积就增加40平方厘米,这个正方形的边长是 多少? 解:设这个正方形的边长是x厘米, 由题意,得(x+4)2-x2=40, 解得x=3. 答:这个正方形的边长是3厘米.
+312n)+1
能力提升练
=-1-3111+3111+3121+3141+3181+3116… 1+312n+1=-1-321n+1+1=-1+321n+1+1 =321n+1.
【答案】D
能力提升练
11.若x+1x2=9,则x-1x2的值为___5_____. 【点拨】因为x+1x2=x-1x2+4,x+1x2=9, 所以x-1x2=9-4=5.
基础巩固练
(5)【2021·武汉洪山区校级月考】(a-2b-1)(a+2b-1) -(a-2b+1)2.
原式=[(a-1)-2b][(a-1)+2b]-[(a-2b)+1]2 =(a-1)2-(2b)2-(a-2b)2-2(a-2b)-1 =a2-2a+1-4b2-a2+4ab-4b2-2a+4b-1 =-4a-8b2+4ab+4b.
能力提升练
10.【2021·福州仓山区期末】若 …1+312n+1,则 A 的值是(
)
A.0
B.1
1 C.322n
1 D.32n+1
【点拨】A=-23(1+311)(1+312)(1+314)(1+318)(1+3116)…(1
能力提升练

七年级数学-乘法公式专项练习(含答案解析)

七年级数学-乘法公式专项练习(含答案解析)

1. 已知(x+y)2=49,(x-y)2=25,则xy=七年级数学 乘法公式专项练习(含答案解析)( )A .-6B .6C .12D .242. 已知x-y=3,xy=2,则x 2+y 2的值为( )A .5B .7C .11D .133. 设a=x-2020,b=x-2022,c=x-2021,若a 2+b 2=56,则c 2=( )A .27B .24C .22D .204. 若16x 2+1加上一个单项式能成为一个完全平方式(是个多项式),这个单项式是 .5.6. (2022春•金水区期中【)知识生成】用两种不同方法计算同一图形的面积,可以得到一个等式,如图1,是用长为a,宽为b 的四个相同的长方形拼成的一个大正方形,用两种不同的方法计算阴影部分(小正方形)的面积,可以得到(a+b)2、(a-b)2、ab 三者之间的等量关系式: ;【知识迁移】类似地,用两种不同的方法计算同一个几何体的体积,也可以得到一个等式,如图2,观察大正方体分割,可以得到等式:(a+b)3=a 3+b 3+3ab(a+b).利用上面所得的结论解答下列问题:⑴已知x+y=6,xy=411,求(x-y)2的值;⑵已知a+b=6,ab=7,求a 3+b 3的值.1.解:因为(x+y)2-(x-y)2=4xy=49-25=24,所以xy=6,故选:B .2. 解:将x-y=3两边平方得:(x-y)2=x 2+y 2-2xy=9,∴a=c+1,b=c-1,∵a 2+b 2=56,∴(c+1)2+(c-1)2=56,∴c 2=27将xy=2代入得:x 2+y 2-2×2=9,即x 2+y 2=13,故选:D .3. 解:∵a=x-2020,b=x-2022,c=x-2021,.故选:A .4. 解:8x 或-8x 或64x 4.5. a-b)26. 解:【知识生成】(a+b)2=4ab+(, 故答案为:(a+b)2=4ab+(a-b)2;【知识迁移】⑴∵x+y=6,xy=411, ∴(x-y)2=(x+y)2-4xy=36-11=25;⑵∵a+b=6,ab=7,∴a 3+b 3=(a+b)3-3ab (a+b)=216-3×7×6=216-126=90.。

七年级数学下册2、2乘法公式第1课时平方差公式习题新版湘教版

七年级数学下册2、2乘法公式第1课时平方差公式习题新版湘教版

A.a2+b2=(a+b)(a-b) B.a2-b2=(a+b)(a-b) C.(a+b)2=a2+2ab+b2 D.(a-b)2=a2-2ab+b2
【答案】B
10.【中考·吉林】某同学化简a(a+2b)-(a+b)(a-b)出 现了错误,解答过程如下: 原式=a2+2ab-(a2-b2)(第一步) =a2+2ab-a2-b2(第二步) =2ab-b2.(第三步) (1)该同学解答过程从第____二____步开始出错,错误原 因是___去__括__号__时__没__有__变__号_____;
【点拨】学生易因对平方差公式的左右结构特征认 识不清楚从而导致选错. 【答案】D
12.(1)【中考·济宁】先化简,再求值: (x+1)(x-1)+x(2-x),其中 x=12. 解:(x+1)(x-1)+x(2-x)=x2-1+2x-x2=2x-1. 当 x=12时,原式=2×12-1=0.
(2)已知a-b=2,b-c=2,a+c=14,求a2-b2的值.
2.下列计算能运用平方差公式的是( D ) A.(m+n)(-m-n) B.(2x+3)(3x-2) C.(5a2-b2c)(bc2+5a2) D.23m2-34n3-23m2-34n3
*3.下列各式中不能用平方差公式计算的是( ) A.(x-y)(-x+y) B.(-x+y)(-x-y) C.(-x-y)(x-y) D.(x+y)(-x+y)
7.【中考·孝感】下列计算正确的是( B ) A.b3·b3=2b3 B.(a+2)(a-2)=a2-4 C.(ab2)3=ab6 D.(8a-7b)-(4a-5b)=4a-12b
*8.若 (- 5a+ M)(4b+N)= 16b2- 25a2,则 M, N分别为
( A) A.4b,5a
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7.4乘法公式同步练习
【基础能力训练】
一、平方差公式
1.下列多项式乘法中,可以用平方差公式计算的是()
A.(2x+3y)(2x-1
3
y)B.(x-y)(y-x)
C.(-4a+3b)(3b-4a)D.(a-b-c)(-a-b-c)2.下列计算正确的是()
A.(2y+6)(2y-6)=4y2-6 B.(5y+1
2
)(5y-
1
2
)=25y2-
1
4
C.(2x+3)(2x-3)=2x2-9 D.(-4x+3)(4x-3)=16x2-9 3.判断正误:
(1)(3a-bc)(-bc-3a)=b2c2-9a2()
(2)(x+1
x
)(x-
1
x
)=x2-1 ()
4.(3x-4y)(4y+3x)=(_____)2-(_____)2=_______.
5.(x+1)(x-1)(x2+1)=_______.
6.(2m-3n)(_____)=4m2-9n2
7.(-3x+2y)(_______)=-9x2+4y2
8.计算(a4+b4)(a2+b2)(b-a)(a+b)的结果是()
A.a8-b8B.a6-b6C.b6-a8D.b6-a6
9.化简(a+b)2-(a-b)2的结果是()
A.0 B.-2ab C.2ab D.4ab
10.在下列等式中,A和B应表示什么式子?
(1)(a+b+c)(a-b+c)=(A+B)(A-B)
(2)(x+y-z)(x-y+z)=(A+B)(A-B)
11.为了应用平方差公式计算(2x+y+z)(y-2x-z),下列变形正确的是()A.[2x-(y+z)] 2B.[2x+(y+z)][2x-(y+z)]
C.[y+(2x+z)][y-(2x+z)] D.[z+(2x+y)][z-(2x+y)]
12.计算:(1)(5m-6n)(-6n-5m)(2)(1
2
x2y2+3m)(-3m+
1
2
x2y2)
13.计算:
(1)898×902 (2)303×297 (3)9.9×10.1 (4)30.8×29.2
14.计算:
(1)(x+y)(x-y)+(y-z)(y+z)+(z-x)(z+x)
(2)(3m2+5)(-3m2+5)-m2(7m+8)(7m-8)-(8m)2
二、完全平方公式
15.下列计算正确的是()
A.(x+y)2=x2+y2B.(m-n)2=m2-2mn-n2
C.(a+2)2=a2+2a+4 D.(m-3)2=m2-6m+9
16.已知m≠n,下列等式中计算正确的有()
①(m-n)2=(n-m)2②(m-n)2=-(n-m)2
③(m+n)(m-n)=(-m-n)·(-m+n)④(-m-n)2=-(m-n)2
A.1个B.2个C.3个D.4个
17.下列各式中,计算结果为1-2xy2+x2y4的是()
A.(-1-x2y2)2B.(1-x2y2)2C.(-1+x2y2)2D.(xy2-1)2 18.计算(4a-3b)(-4a-3b)的结果为()
A.16a2-9b2B.-16a2+9b2
C.16a2-24ab+9b2D.-16a-24ab-9b2
19.计算:
(1)(1
4
a-
1
3
b)2(2)(-x2+3y2)2
(3)(-a2-2b)2(4)(0.2x+0.5y)2
20.计算:
(1)198×202 (2)5052
【综合创新训练】
一、创新应用
21.化简求值:4x(x2-2x-1)+x(2x+5)(5-2x),其中x=-1.
22.化简求值:(3x+2y)(3x-2y)-(3x+2y)2+(3x-2y)2,其中x=,y=-1
2

23.解方程:(x-3)(x+1)=x(2x+3)-(x2+1)24.解不等式:(x-4)2-(x-3)(x+4)<2(3x+2)
二、巧思妙解25.1232-124×122
26.
22004
200420052003
-⨯
27.1.23452+0.76552+2.469×0.7655 三、综合测试
28.(-2
3
a+3b)(
2
3
a+3b)(-
2
3
a-3b)(-
2
3
a+3b)
29.(1+a+b)2
30.(m+2n-p)2
31.(3a-b)2-(2a+b)2+5b2
32.已知x+y=4,xy=2,求x2+y2的值.33.已知x2+4x+y2-2y+5=0,求x,y的值.
四、探究学习
观察下面各式规律:
12+(1×2)2+22=(1×2+1)2
22+(2×3)2+32=(2×3+1)2
32+(3×4)2+42=(3×4+1)2
……
写出第n行的式子,并证明你的结论.
答案:
【基础能力训练】
1.D 2.B 3.(1)∨(2)×
4.(3x)2(4y)29x2-16y25.x4-1 6.2m+3n 7.3x+2y 8.C 9.D 10.(1)A代表a+c,B代表b (2)A代表x,B代表y-z
11.C 12.(1)36n2-25m2(2)1
4
x4y4-9m2
13.(1)原式=(900-2)(900+2)=9002-22=810 000-4=809 996 (2)原式=(300+3)(300-3)=3002-32=90 000-9=89 991 (3)原式=(10-0.1)(10+0.1)=102-0.12=100-0.01=99.99 (4)原式=(30+0.8)(30-0.8)=302-0.82=900-0.64=899.36 14.(1)0 (2)25-58m4
15.D 16.B 17.D 18.B
19.(1)
1
16
a2-
1
6
ab+
1
9
b2(2)x4-6x2y2+9y4
(3)a4+4a2b+4b2(4)0.04x2+0.2xy+0.25y2 20.(1)39 996 (2)255 025
【综合创新应用】
21.原式=4x3-8x2-4x+10x2-4x3+25x-10x2=-8x2+21x,当x=-1时,原式=-8-21=-29.
22.原式=9x2-4y2-(9x2+12xy+4y2)+9x2-12xy+4y2 =9x2-4y2-9x2-12xy-4y2+9x2-12xy+4y2
=9x2-24xy-4y2
把x=1
3
,y=-
1
2
代入得4.
23.去括号,得x2+x-3x-3=2x2+3x-x2-1,合并,得x2-2x-3=x2+3x-1,
移项,得x2-2x-x2-3x=-1+3,
合并同类项,得-5x=2,
系数化为1,得x=-2
5

24.去括号,得x2-8x+16-x2-4x+3x+12<6x+4,移项,得x2-x2-8x-4x+3x-6x<4-16-12,•
合并同类项,得-15x<-24,系数化为1,得x>8
5

25.原式=1232-(123+1)(123-1)=1232-(1232-12)=1.
26.原式=220042004(20041)(20041)
-+- 2222200420042004(20041)200420041=
=---+=2004. 27.原式=(1.234 5+0.765 5)2=22=4.
28.原式=[(3b )2-(23a )2]×[(-23
a )2-(3
b )2] =(9b 2-49a 2)(49a 2-9b 2)=-(9b 2-49a 2)(9b 2-49
a 2) =-(9
b 2-a 2)2=-81b 4+8a 2b 2-1681
a 4. 29.原式=[1+(a+
b )] 2=1+2(a+b )+(a+b )2=1+2a+2b+a 2+2ab+b 2.
30.原式=[(m+2n )-p] 2=(m+2n )2-2p (m+2n )+p 2=m 2+4mn+4n 2-2pm -4pm+p 2.
31.原式=9a 2-6ab+b 2-4a 2-4ab -b 2+5b 2=5a 2-10ab+5b 2.
32.x 2+y 2=(x+y )2-2xy=42-2×2=12.
33.x 2+4x+y 2-2y+5=0,变形为:(x 2+4x+4)+(y 2-2y+1)=0,
即(x+2)2+(y -1)2=0,又因(•x+2)2与(y -1)2皆是非负数,
所以(x+2)2=0且(y -1)2=0,即x+2=0,y -1=0,解得x=-2,y=1.
【探究学习】
第n 个式子:n 2+[n (n+1)] 2+(n+1)2=[n (n+1)+1] 2
证明:因为左边n 2+[n (n+1)] 2+(n+1)2=n 2+(n 2+n )2+(n+1)2
=(n 2+n )2+n 2+n 2+2n+1=(n 2+n )2+•2(n 2+n )+1=(n 2+n+1)2,
而右边=(n 2+n+1)2,
所以左边=右边,成立.。

相关文档
最新文档