高中数学讲义微专题90 取球问题
高中数学讲义取球问题
微专题90 取球问题一、基础知识:在很多随机变量的题目中,常以“取球”作为故事背景,通过对“取球”提出不同的要求,来考察不同的模型,常见的模型及处理方式如下:1、独立重复试验模型:关键词“可放回的抽取”,即下一次的取球试验与上一次的相同。
2、超几何分布模型:关键词“不放回的抽取”3、与条件概率相关:此类问题通常包含一个抽球的规则,并一次次的抽取,要注意前一次的结果对后一步抽球的影响4、古典概型:要注意虽然题目中会说明“相同的”小球,但是为了能使用古典概型(保证基本事件为等可能事件),通常要将“相同的”小球视为“不同的”元素,在利用排列组合知识进行分子分母的计数。
5、数字问题:在小球上标注数字,所涉及的问题与数字相关(奇,偶,最大,最小等),在解决此类问题时,要将数字模型转化为“怎样取球”的问题,从而转化为前几个类型进行求解。
二、典型例题:例1:一袋中有6个黑球,4个白球(1)不放回地依次取出3个球,已知第一次取出的是白球,求第三次取到黑球的概率(2)有放回地依次取出3个球,已知第一次取出的是白球,求第三次取到黑球的概率(3)有放回的依次取出3个球,求取到白球个数X的分布列,期望和方差(1)思路:因为是不放回的取球,所以后面取球的情况受到前面的影响,要使用条件概率相关公式进行计算。
第一次已经取到白球,所以剩下6个黑球,3个白球;若第二次取到黑球,则第三次取到黑球的概率为6598,若第二次取到白球,则第三次取到黑球的概率为3698,从而能够得到第三次取到黑球的概率解:设事件A为“不放回取球,第一次取出白球时,第三次取到黑球”65364829898723P A(2)思路:因为是有放回的取球,所以每次取球的结果互不影响,属于独立重复试验模型,所以第三次取球时依然是6个黑球,3个白球,取得黑球的概率为6 9解:设事件B为“有放回取球,第一次取出白球时,第三次取到黑球”23P B(3)思路:本问依然属于独立重复试验模型,X 的取值为0,1,2,3,则X 符合二项分布,即23,5X B :,所以可通过二项分布的概率计算公式求得概率,得到分布列解:X 的取值为0,1,2,3,依题意可得:23,5X B :30332705125P X C2133254155125P X C12233236255125P X C3332835125P X CX 0123P271255412536125812523,5X B Q :26355EX 231835525DX例2:已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的3个红球和3个黑球,现从甲,乙两个盒内各任取2个球(1)求取出的4个球中没有红球的概率(2)求取出的4个球中恰有1个红球的概率(3)设为取出的4个球中红球的个数,求的分布列和数学期望思路:本题这三问的关键在于所取球中红球的个数,考虑红球个数来自于两个盒内拿出红球个数的总和,所以可将红球总数进行分配,从而得到每个盒中出红球的情况,进而计算出概率(1)设事件i A 为“甲盒中取出i 个红球”,事件j B 为“乙盒中取出j 个红球”则2213332246,i ijjijC C C C P A P B CC设事件A 为“4个球中没有红球”则0202133300224633161510C C C C P AP A P B CC(2)设事件B 为“4个球中恰有1个红球”0211110213331333011022224646393326156155C C C C C C C C P BP A B P A B CCCC(3)可取的值为0,1,2,31010P P A 215PP B22111113331333021122224646225C C C C C C C C PP A B P A B CC C C1121333122246331361510C C C C P P A B CC的分布列为:123P11025251101221301231055102E例3:甲、乙两袋中各装有大小相同的小球9个,其中甲袋中红色、黑色、白色小球的个数分别为2、3、4,乙袋中红色、黑色、白色小球的个数均为3,某人用左右手分别从甲、乙两袋中取球.(1)若左右手各取一球,求两只手中所取的球颜色不同的概率;(2)若左右手依次各取两球,称同一手中两球颜色相同的取法为成功取法,记成功取法次数为随机变量X ,求X 的分布列和数学期望.解:(1)设事件A 为“两只手中所取的球颜色不同”,则A 为“两只手中所取的球颜色相同”2333432119999993P A P A (2)X 可取的值为0,1,2左手取球成功的概率222234129518C C C P C右手取球成功的概率22233322914CC C P C511301118424P X 5151711118418418P X 515218472P X X 的分布列为X 012P132471857213751901224187236EX例4:袋中装有若干个质地均匀大小相同的红球和白球,白球数量是红球数量的两倍,每次从袋中摸出一个球,然后放回,若累计3次摸到红球则停止摸球,否则继续摸球直到第5次摸球后结束(1)求摸球四次就停止的事件发生的概率(2)记摸到红球的次数为,求随机变量的分布列及其期望(1)思路:本题为有放回摸球,可理解为独立重复试验,如果摸球四次就停止,说明在这四次中一共摸到3次红球,且前三次有两次摸到红球,第四次又摸到红球。
高中数学解题技巧之解析几何中的球问题求解
高中数学解题技巧之解析几何中的球问题求解解析几何中的球问题求解在高中数学中,解析几何是一个重要的内容,其中涉及到各种几何图形的性质和求解方法。
而在解析几何中,球问题是一个常见的题型,需要我们掌握一些解题技巧和方法。
本文将从几何图形的性质、求解方法和一些典型题目出发,详细介绍解析几何中的球问题求解。
首先,我们来了解一下球的性质。
球是由空间中的所有离心点构成的几何体,具有以下几个重要的性质:1. 球心:球的中心点称为球心,通常用字母O表示。
2. 半径:球心到球上任意一点的距离称为球的半径,通常用字母r表示。
3. 球面:球的表面称为球面,球面上的点到球心的距离都等于半径r。
4. 直径:通过球心的两个相对点称为球的直径,直径的长度等于半径的两倍。
在解析几何中,我们常常需要根据给定的条件来求解球的性质或者求解与球相关的问题。
下面,我们通过一些典型的题目来具体说明解析几何中的球问题求解的方法和技巧。
【例题1】已知球心O(-2, 3, 1),球面上一点A(1, 2, 3),求球的半径和球面方程。
解析:首先,我们可以根据球心和球面上的一点求解球的半径。
根据两点间距离公式,球的半径r等于球心到球面上一点的距离,即:r = √[(x2 - x1)² + (y2 - y1)² + (z2 - z1)²]= √[(-2 - 1)² + (3 - 2)² + (1 - 3)²]= √[9 + 1 + 4]= √14接下来,我们可以根据球心和半径求解球面的方程。
根据球面的一般方程,球面上的任意一点(x, y, z)满足以下条件:(x - x0)² + (y - y0)² + (z - z0)² = r²代入已知条件,即可求解出球面的方程:(x + 2)² + (y - 3)² + (z - 1)² = 14【例题2】已知球心O(1, -2, 3),球面与平面2x - y + 3z = 9相切,求球的半径。
2020高中数学---取球问题
第90炼 取球问题一、基础知识:在很多随机变量的题目中,常以“取球”作为故事背景,通过对“取球”提出不同的要求,来考察不同的模型,常见的模型及处理方式如下:1、独立重复试验模型:关键词“可放回的抽取”,即下一次的取球试验与上一次的相同。
2、超几何分布模型:关键词“不放回的抽取”3、与条件概率相关:此类问题通常包含一个抽球的规则,并一次次的抽取,要注意前一次的结果对后一步抽球的影响4、古典概型:要注意虽然题目中会说明“相同的”小球,但是为了能使用古典概型(保证基本事件为等可能事件),通常要将“相同的”小球视为“不同的”元素,在利用排列组合知识进行分子分母的计数。
5、数字问题:在小球上标注数字,所涉及的问题与数字相关(奇,偶,最大,最小等),在解决此类问题时,要将数字模型转化为“怎样取球”的问题,从而转化为前几个类型进行求解。
二、典型例题:例1:一袋中有6个黑球,4个白球(1)不放回地依次取出3个球,已知第一次取出的是白球,求第三次取到黑球的概率 (2)有放回地依次取出3个球,已知第一次取出的是白球,求第三次取到黑球的概率 (3)有放回的依次取出3个球,求取到白球个数X 的分布列,期望和方差(1)思路:因为是不放回的取球,所以后面取球的情况受到前面的影响,要使用条件概率相关公式进行计算。
第一次已经取到白球,所以剩下6个黑球,3个白球;若第二次取到黑球,则第三次取到黑球的概率为6598⋅,若第二次取到白球,则第三次取到黑球的概率为3698⋅,从而能够得到第三次取到黑球的概率 解:设事件A 为“不放回取球,第一次取出白球时,第三次取到黑球”()65364829898723P A ∴=⋅+⋅== (2)思路:因为是有放回的取球,所以每次取球的结果互不影响,属于独立重复试验模型,所以第三次取球时依然是6个黑球,3个白球,取得黑球的概率为69解:设事件B 为“有放回取球,第一次取出白球时,第三次取到黑球”()23P B ∴=(3)思路:本问依然属于独立重复试验模型,X 的取值为0,1,2,3,则X 符合二项分布,即23,5XB ⎛⎫⎪⎝⎭,所以可通过二项分布的概率计算公式求得概率,得到分布列 解:X 的取值为0,1,2,3,依题意可得:23,5XB ⎛⎫ ⎪⎝⎭()30332705125P X C ⎛⎫∴=== ⎪⎝⎭ ()2133254155125P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭ ()12233236255125P X C ⎛⎫⎛⎫=== ⎪⎪⎝⎭⎝⎭ ()3332835125P X C ⎛⎫=== ⎪⎝⎭23,5XB ⎛⎫⎪⎝⎭26355EX ∴=⋅= 231835525DX =⋅⋅=例2:已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的3个红球和3个黑球,现从甲,乙两个盒内各任取2个球 (1)求取出的4个球中没有红球的概率 (2)求取出的4个球中恰有1个红球的概率(3)设ξ为取出的4个球中红球的个数,求ξ的分布列和数学期望思路:本题这三问的关键在于所取球中红球的个数,考虑红球个数来自于两个盒内拿出红球个数的总和,所以可将红球总数进行分配,从而得到每个盒中出红球的情况,进而计算出概率(1)设事件i A 为“甲盒中取出i 个红球”,事件j B 为“乙盒中取出j 个红球”则()()2213332246,i i j ji j C C C C P A P B C C --== 设事件A 为“4个球中没有红球”则()()()0202133300224633161510C C C C P A P A P B C C =⋅=⋅=⋅= (2)设事件B 为“4个球中恰有1个红球”()()()0211110213331333011022224646393326156155C C C C C C C C P B P A B P A B C C C C ∴=+=⋅+⋅=⋅+⋅= (3)ξ可取的值为0,1,2,3()()1010P P A ξ∴===()()215P P B ξ===()()()0220111113331333021122224646225C C C C C C C C P P A B P A B C C C C ξ==+=⋅+⋅= ()()11021333122246331361510C C C C P P A B C C ξ===⋅=⋅=ξ∴的分布列为:01231055102E ξ∴=⨯+⨯+⨯+⨯=例3:甲、乙两袋中各装有大小相同的小球9个,其中甲袋中红色、黑色、白色小球的个数分别为2、3、4,乙袋中红色、黑色、白色小球的个数均为3,某人用左右手分别从甲、乙两袋中取球.(1)若左右手各取一球,求两只手中所取的球颜色不同的概率;(2)若左右手依次各取两球,称同一手中两球颜色相同的取法为成功取法,记成功取法次数为随机变量X ,求X 的分布列和数学期望.解:(1)设事件A 为“两只手中所取的球颜色不同”,则A 为“两只手中所取的球颜色相同”()()2333432119999993P A P A ⎛⎫=-=-⋅+⋅+⋅= ⎪⎝⎭(2)X 可取的值为0,1,2左手取球成功的概率222234129518C C C P C ++==右手取球成功的概率22233322914C C C P C ++== ()511301118424P X ⎛⎫⎛⎫∴==-⋅-= ⎪ ⎪⎝⎭⎝⎭()5151711118418418P X ⎛⎫⎛⎫==-⋅+⋅-= ⎪ ⎪⎝⎭⎝⎭ ()515218472P X ==⋅=X ∴的分布列为01224187236EX ∴=⨯+⨯+⨯= 例4:袋中装有若干个质地均匀大小相同的红球和白球,白球数量是红球数量的两倍,每次从袋中摸出一个球,然后放回,若累计3次摸到红球则停止摸球,否则继续摸球直到第5次摸球后结束(1)求摸球四次就停止的事件发生的概率(2)记摸到红球的次数为ξ,求随机变量ξ的分布列及其期望(1)思路:本题为有放回摸球,可理解为独立重复试验,如果摸球四次就停止,说明在这四次中一共摸到3次红球,且前三次有两次摸到红球,第四次又摸到红球。
高中数学重复取球教案
高中数学重复取球教案教学目标:学生能够掌握重复取球的概率计算方法,并能够运用所学知识解决实际问题。
教学重点:重复取球的概率计算方法。
教学难点:解决复杂的取球问题。
教学准备:球盒、彩色球、黑白板、书写工具。
教学过程:一、引入问题老师向学生提出如下问题:在一个装有10个红球和5个蓝球的盒子中,每次从中取出一个球,并将取出的球放回,不停地取球直至取出5个红球为止,求取出的球中有3个蓝球的概率是多少?二、讲解概念1. 重复取球:每次取球后将球放回,继续取球的过程。
2. 概率计算方法:在这个问题中,我们可以利用排列组合的方法来计算概率。
三、计算概率1. 首先,我们计算共有多少种取球的可能结果。
将问题简化为将10个红球和5个蓝球拉成一条线,共15个球,然后从中取出5个球的不同排列方式为C(15,5) = 3003。
2. 接着,我们计算取出的球中有3个蓝球的可能结果。
需要从5个蓝球中取出3个蓝球,并从10个红球中取出2个红球,即C(5,3) * C(10,2) = 10 * 45 = 450。
3. 最后,我们可以得到取出的球中有3个蓝球的概率为450/3003 ≈ 0.15。
四、练习与拓展老师引导学生进行类似问题的练习,并鼓励学生尝试通过概率计算解决更复杂的取球问题。
五、总结与评价通过本节课的学习,学生应该掌握了重复取球的概率计算方法,能够运用所学知识解决实际问题。
同时,老师可以对学生进行评价,鼓励他们在概率计算方面不断探索和拓展。
六、作业布置布置相关作业,巩固学生对于重复取球问题的理解和运用能力。
七、教学反思教师进行教学反思,总结教学过程中的不足与收获,为下一堂课的教学做好准备。
高考二轮复习《球的有关问题》课件(共30张PPT)
优秀ppt公开课ppt免费课件下载免费 课件高 考二轮 复习《 球的有 关问题 》课件 (共30 张PPT)
探究问题:1、球心的位置; 2、球半径与棱长的关系。
优秀ppt公开课ppt免费课件下载免费 课件高 考二轮 复习《 球的有 关问题 》课件 (共30 张PPT)
考点4:《球》
环节三:合作探究
3、掌握平面截球的结构特征(重点、难点);
考点4:《球》
环节三:合作探究
(一)球内接棱柱: (二)球内接棱锥: (三)球内接圆柱与圆锥: (四)平面截球: (五)常见几何体与球相切:
考点4:《球》
环节三:合作探究
(一)球内接棱柱: 1、球内接长方体、正四棱柱、正方体;
探究问题:1、球心的位置; 2、球半径与棱长的关系。
(二)球内接棱锥: 2、球内接正四(五、六)棱锥、直角四棱锥。
优秀ppt公开课ppt免费课件下载免费 课件高 考二轮 复习《 球的有 关问题 》课件 (共30 张PPT)
探究问题:1、球心的位置; 2、球半径与棱长的关系。
优秀ppt公开课ppt免费课件下载免费 课件高 考二轮 复习《 球的有 关问题 》课件 (共30 张PPT)
优秀ppt公开课ppt免费课件下载免费 课件高 考二轮 复习《 球的有 关问题 》课件 (共30 张PPT)
优秀ppt公开课ppt免费课件下载免费 课件高 考二轮 复习《 球的有 关问题 》课件 (共30 张PPT)
考点4:《球》
环节三:合作探究
(一)球内接棱柱: (二)球内接棱锥: (三)球内接圆柱与圆锥: (四)平面截球: (五)常见几何体与球相切:
环节三:合作探究
(一)球内接棱柱: 3、球内接正三棱柱、直三角棱柱。
全国高考数学复习微专题: 取球问题
取球问题一、基础知识:在很多随机变量的题目中,常以“取球”作为故事背景,通过对“取球”提出不同的要求,来考察不同的模型,常见的模型及处理方式如下:1、独立重复试验模型:关键词“可放回的抽取”,即下一次的取球试验与上一次的相同。
2、超几何分布模型:关键词“不放回的抽取”3、与条件概率相关:此类问题通常包含一个抽球的规则,并一次次的抽取,要注意前一次的结果对后一步抽球的影响4、古典概型:要注意虽然题目中会说明“相同的”小球,但是为了能使用古典概型(保证基本事件为等可能事件),通常要将“相同的”小球视为“不同的”元素,在利用排列组合知识进行分子分母的计数。
5、数字问题:在小球上标注数字,所涉及的问题与数字相关(奇,偶,最大,最小等),在解决此类问题时,要将数字模型转化为“怎样取球”的问题,从而转化为前几个类型进行求解。
二、典型例题:例1:一袋中有6个黑球,4个白球(1)不放回地依次取出3个球,已知第一次取出的是白球,求第三次取到黑球的概率 (2)有放回地依次取出3个球,已知第一次取出的是白球,求第三次取到黑球的概率 (3)有放回的依次取出3个球,求取到白球个数X 的分布列,期望和方差(1)思路:因为是不放回的取球,所以后面取球的情况受到前面的影响,要使用条件概率相关公式进行计算。
第一次已经取到白球,所以剩下6个黑球,3个白球;若第二次取到黑球,则第三次取到黑球的概率为6598⋅,若第二次取到白球,则第三次取到黑球的概率为3698⋅,从而能够得到第三次取到黑球的概率 解:设事件A 为“不放回取球,第一次取出白球时,第三次取到黑球”()65364829898723P A ∴=⋅+⋅== (2)思路:因为是有放回的取球,所以每次取球的结果互不影响,属于独立重复试验模型,所以第三次取球时依然是6个黑球,3个白球,取得黑球的概率为69解:设事件B 为“有放回取球,第一次取出白球时,第三次取到黑球”()23P B ∴=(3)思路:本问依然属于独立重复试验模型,X 的取值为0,1,2,3,则X 符合二项分布,即23,5X B ⎛⎫ ⎪⎝⎭:,所以可通过二项分布的概率计算公式求得概率,得到分布列解:X 的取值为0,1,2,3,依题意可得:23,5X B ⎛⎫ ⎪⎝⎭:()30332705125P X C ⎛⎫∴=== ⎪⎝⎭ ()2133254155125P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭ ()12233236255125P X C ⎛⎫⎛⎫=== ⎪⎪⎝⎭⎝⎭ ()3332835125P X C ⎛⎫=== ⎪⎝⎭23,5X B ⎛⎫⎪⎝⎭Q :26355EX ∴=⋅= 231835525DX =⋅⋅=例2:已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的3个红球和3个黑球,现从甲,乙两个盒内各任取2个球 (1)求取出的4个球中没有红球的概率 (2)求取出的4个球中恰有1个红球的概率(3)设ξ为取出的4个球中红球的个数,求ξ的分布列和数学期望思路:本题这三问的关键在于所取球中红球的个数,考虑红球个数来自于两个盒内拿出红球个数的总和,所以可将红球总数进行分配,从而得到每个盒中出红球的情况,进而计算出概率(1)设事件i A 为“甲盒中取出i 个红球”,事件j B 为“乙盒中取出j 个红球”则()()2213332246,i i j ji j C C C C P A P B C C --== 设事件A 为“4个球中没有红球”则()()()0202133300224633161510C C C C P A P A P B C C =⋅=⋅=⋅= (2)设事件B 为“4个球中恰有1个红球”()()()0211110213331333011022224646393326156155C C C C C C C C P B P A B P A B C C C C ∴=+=⋅+⋅=⋅+⋅= (3)ξ可取的值为0,1,2,3()()1010P P A ξ∴===()()215P P B ξ===()()()0220111113331333021122224646225C C C C C C C C P P A B P A B C C C C ξ==+=⋅+⋅= ()()11021333122246331361510C C C C P P A B C C ξ===⋅=⋅=ξ∴的分布列为:01231055102E ξ∴=⨯+⨯+⨯+⨯=例3:甲、乙两袋中各装有大小相同的小球9个,其中甲袋中红色、黑色、白色小球的个数分别为2、3、4,乙袋中红色、黑色、白色小球的个数均为3,某人用左右手分别从甲、乙两袋中取球.(1)若左右手各取一球,求两只手中所取的球颜色不同的概率;(2)若左右手依次各取两球,称同一手中两球颜色相同的取法为成功取法,记成功取法次数为随机变量X ,求X 的分布列和数学期望.解:(1)设事件A 为“两只手中所取的球颜色不同”,则A 为“两只手中所取的球颜色相同”()()2333432119999993P A P A ⎛⎫=-=-⋅+⋅+⋅= ⎪⎝⎭(2)X 可取的值为0,1,2左手取球成功的概率222234129518C C C P C ++==右手取球成功的概率22233322914C C C P C ++== ()511301118424P X ⎛⎫⎛⎫∴==-⋅-= ⎪ ⎪⎝⎭⎝⎭()5151711118418418P X ⎛⎫⎛⎫==-⋅+⋅-= ⎪ ⎪⎝⎭⎝⎭ ()515218472P X ==⋅=X ∴的分布列为01224187236EX ∴=⨯+⨯+⨯= 例4:袋中装有若干个质地均匀大小相同的红球和白球,白球数量是红球数量的两倍,每次从袋中摸出一个球,然后放回,若累计3次摸到红球则停止摸球,否则继续摸球直到第5次摸球后结束(1)求摸球四次就停止的事件发生的概率(2)记摸到红球的次数为ξ,求随机变量ξ的分布列及其期望(1)思路:本题为有放回摸球,可理解为独立重复试验,如果摸球四次就停止,说明在这四次中一共摸到3次红球,且前三次有两次摸到红球,第四次又摸到红球。
高三总复习数学课件 与球有关的切、托问题
[方法技巧] 由几何体外接球的定义可知,几何体的各顶点到球心的距离相等.常见的 两种情况是: (1)若四面体的两个面是公共斜边的直角三角形,则球心是斜边的中点; (2)直三棱柱的外接球的球心在该直三棱柱的上下底面三角形外心的连线的 中点处.
[针对训练]
1.(2022·宣城期末)在三棱锥 P-ABC 中,PA⊥平面 ABC,AP=2,AB=2 2,
[针对训练]
1.《九章算术》中将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥P-
ABC为鳖臑,PA⊥平面ABC,PA=AB=2,AC=4,三棱锥P-ABC的四个
顶点都在球O的球面上,则球O的表面积为
()
A.12π B.20π C.24π
D.32π
解析:将三棱锥P-ABC放入长方体中,如图,三棱锥P-ABC 的外接球就是长方体的外接球.因为PA=AB=2,AC=4, △ABC为直角三角形,所以BC=2 3 .设外接球的半径为R, 依题意可得(2R)2=4+4+12=20,故R2=5,则球O的表面 积为S=4πR2=20π. 答案:B
球心O到底面△PAB的距离为d=
1 2
AC=1,由
正弦定理,可得△PAB的外接圆的半径为r=12×sinPA60°= 23,所以球O的半径为
R= d2+r2= 12+ 2 2= 3
[答案]
77 (1) 6 π
28π (2) 3
73,所以球O的表面积为S=4πR2=4π×73=283π.
[方法技巧] 补形求心的常用模型
+OG2=DO2,即 23a×232+12a2=1,得 a=2 721,故正三棱
柱
的
体
积
为
1 2
a2×
3 2
×a
千锤百炼-高考数学100个热点问题——第90炼 取球问题
第90炼 取球问题一、基础知识:在很多随机变量的题目中,常以“取球”作为故事背景,通过对“取球”提出不同的要求,来考察不同的模型,常见的模型及处理方式如下:1、独立重复试验模型:关键词“可放回的抽取”,即下一次的取球试验与上一次的相同。
2、超几何分布模型:关键词“不放回的抽取”3、与条件概率相关:此类问题通常包含一个抽球的规则,并一次次的抽取,要注意前一次的结果对后一步抽球的影响4、古典概型:要注意虽然题目中会说明“相同的”小球,但是为了能使用古典概型(保证基本事件为等可能事件),通常要将“相同的”小球视为“不同的”元素,在利用排列组合知识进行分子分母的计数。
5、数字问题:在小球上标注数字,所涉及的问题与数字相关(奇,偶,最大,最小等),在解决此类问题时,要将数字模型转化为“怎样取球”的问题,从而转化为前几个类型进行求解。
二、典型例题:例1:一袋中有6个黑球,4个白球(1)不放回地依次取出3个球,已知第一次取出的是白球,求第三次取到黑球的概率 (2)有放回地依次取出3个球,已知第一次取出的是白球,求第三次取到黑球的概率 (3)有放回的依次取出3个球,求取到白球个数X 的分布列,期望和方差(1)思路:因为是不放回的取球,所以后面取球的情况受到前面的影响,要使用条件概率相关公式进行计算。
第一次已经取到白球,所以剩下6个黑球,3个白球;若第二次取到黑球,则第三次取到黑球的概率为6598⋅,若第二次取到白球,则第三次取到黑球的概率为3698⋅,从而能够得到第三次取到黑球的概率解:设事件A 为“不放回取球,第一次取出白球时,第三次取到黑球”()65364829898723P A ∴=⋅+⋅== (2)思路:因为是有放回的取球,所以每次取球的结果互不影响,属于独立重复试验模型,所以第三次取球时依然是6个黑球,3个白球,取得黑球的概率为69解:设事件B 为“有放回取球,第一次取出白球时,第三次取到黑球”()23P B ∴=(3)思路:本问依然属于独立重复试验模型,X 的取值为0,1,2,3,则X 符合二项分布,即23,5XB ⎛⎫⎪⎝⎭,所以可通过二项分布的概率计算公式求得概率,得到分布列 解:X 的取值为0,1,2,3,依题意可得:23,5XB ⎛⎫ ⎪⎝⎭()30332705125P X C ⎛⎫∴=== ⎪⎝⎭ ()2133254155125P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭ ()12233236255125P X C ⎛⎫⎛⎫=== ⎪⎪⎝⎭⎝⎭ ()3332835125P X C ⎛⎫=== ⎪⎝⎭23,5XB ⎛⎫ ⎪⎝⎭26355EX ∴=⋅= 231835525DX =⋅⋅= 例2:已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的3个红球和3个黑球,现从甲,乙两个盒内各任取2个球 (1)求取出的4个球中没有红球的概率 (2)求取出的4个球中恰有1个红球的概率(3)设ξ为取出的4个球中红球的个数,求ξ的分布列和数学期望思路:本题这三问的关键在于所取球中红球的个数,考虑红球个数来自于两个盒内拿出红球个数的总和,所以可将红球总数进行分配,从而得到每个盒中出红球的情况,进而计算出概率(1)设事件i A 为“甲盒中取出i 个红球”,事件j B 为“乙盒中取出j 个红球”则()()2213332246,i i j ji j C C C C P A P B C C --== 设事件A 为“4个球中没有红球”则()()()0202133300224633161510C C C C P A P A P B C C =⋅=⋅=⋅= (2)设事件B 为“4个球中恰有1个红球”()()()0211110213331333011022224646393326156155C C C C C C C C P B P A B P A B C C C C ∴=+=⋅+⋅=⋅+⋅= (3)ξ可取的值为0,1,2,3()()1010P P A ξ∴===()()215P P B ξ===()()()0220111113331333021122224646225C C C C C C C C P P A B P A B C C C C ξ==+=⋅+⋅= ()()11021333122246331361510C C C C P P A B C C ξ===⋅=⋅=ξ∴的分布列为:01231055102E ξ∴=⨯+⨯+⨯+⨯=例3:甲、乙两袋中各装有大小相同的小球9个,其中甲袋中红色、黑色、白色小球的个数分别为2、3、4,乙袋中红色、黑色、白色小球的个数均为3,某人用左右手分别从甲、乙两袋中取球.(1)若左右手各取一球,求两只手中所取的球颜色不同的概率;(2)若左右手依次各取两球,称同一手中两球颜色相同的取法为成功取法,记成功取法次数为随机变量X ,求X 的分布列和数学期望.解:(1)设事件A 为“两只手中所取的球颜色不同”,则A 为“两只手中所取的球颜色相同”()()2333432119999993P A P A ⎛⎫=-=-⋅+⋅+⋅= ⎪⎝⎭(2)X 可取的值为0,1,2左手取球成功的概率222234129518C C C P C ++==右手取球成功的概率22233322914C C C P C ++== ()511301118424P X ⎛⎫⎛⎫∴==-⋅-=⎪ ⎪⎝⎭⎝⎭ ()5151711118418418P X ⎛⎫⎛⎫==-⋅+⋅-= ⎪ ⎪⎝⎭⎝⎭()515218472P X ==⋅= X ∴的分布列为01224187236EX ∴=⨯+⨯+⨯= 例4:袋中装有若干个质地均匀大小相同的红球和白球,白球数量是红球数量的两倍,每次从袋中摸出一个球,然后放回,若累计3次摸到红球则停止摸球,否则继续摸球直到第5次摸球后结束(1)求摸球四次就停止的事件发生的概率(2)记摸到红球的次数为ξ,求随机变量ξ的分布列及其期望(1)思路:本题为有放回摸球,可理解为独立重复试验,如果摸球四次就停止,说明在这四次中一共摸到3次红球,且前三次有两次摸到红球,第四次又摸到红球。
高中数学讲义 取球问题
微专题90 取球问题一、基础知识:在很多随机变量的题目中,常以“取球”作为故事背景,通过对“取球”提出不同的要求,来考察不同的模型,常见的模型及处理方式如下:1、独立重复试验模型:关键词“可放回的抽取”,即下一次的取球试验与上一次的相同。
2、超几何分布模型:关键词“不放回的抽取”3、与条件概率相关:此类问题通常包含一个抽球的规则,并一次次的抽取,要注意前一次的结果对后一步抽球的影响4、古典概型:要注意虽然题目中会说明“相同的”小球,但是为了能使用古典概型(保证基本事件为等可能事件),通常要将“相同的”小球视为“不同的”元素,在利用排列组合知识进行分子分母的计数。
5、数字问题:在小球上标注数字,所涉及的问题与数字相关(奇,偶,最大,最小等),在解决此类问题时,要将数字模型转化为“怎样取球”的问题,从而转化为前几个类型进行求解。
二、典型例题:例1:一袋中有6个黑球,4个白球(1)不放回地依次取出3个球,已知第一次取出的是白球,求第三次取到黑球的概率 (2)有放回地依次取出3个球,已知第一次取出的是白球,求第三次取到黑球的概率 (3)有放回的依次取出3个球,求取到白球个数X 的分布列,期望和方差(1)思路:因为是不放回的取球,所以后面取球的情况受到前面的影响,要使用条件概率相关公式进行计算。
第一次已经取到白球,所以剩下6个黑球,3个白球;若第二次取到黑球,则第三次取到黑球的概率为6598⋅,若第二次取到白球,则第三次取到黑球的概率为3698⋅,从而能够得到第三次取到黑球的概率解:设事件A 为“不放回取球,第一次取出白球时,第三次取到黑球”()65364829898723P A ∴=⋅+⋅== (2)思路:因为是有放回的取球,所以每次取球的结果互不影响,属于独立重复试验模型,所以第三次取球时依然是6个黑球,3个白球,取得黑球的概率为69解:设事件B 为“有放回取球,第一次取出白球时,第三次取到黑球”()23P B ∴=(3)思路:本问依然属于独立重复试验模型,X 的取值为0,1,2,3,则X 符合二项分布,即23,5XB ⎛⎫⎪⎝⎭,所以可通过二项分布的概率计算公式求得概率,得到分布列 解:X 的取值为0,1,2,3,依题意可得:23,5XB ⎛⎫ ⎪⎝⎭()30332705125P X C ⎛⎫∴=== ⎪⎝⎭ ()2133254155125P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭ ()12233236255125P X C ⎛⎫⎛⎫=== ⎪⎪⎝⎭⎝⎭ ()3332835125P X C ⎛⎫=== ⎪⎝⎭23,5XB ⎛⎫⎪⎝⎭26355EX ∴=⋅= 231835525DX =⋅⋅=例2:已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的3个红球和3个黑球,现从甲,乙两个盒内各任取2个球 (1)求取出的4个球中没有红球的概率 (2)求取出的4个球中恰有1个红球的概率(3)设ξ为取出的4个球中红球的个数,求ξ的分布列和数学期望思路:本题这三问的关键在于所取球中红球的个数,考虑红球个数来自于两个盒内拿出红球个数的总和,所以可将红球总数进行分配,从而得到每个盒中出红球的情况,进而计算出概率(1)设事件i A 为“甲盒中取出i 个红球”,事件j B 为“乙盒中取出j 个红球”则()()2213332246,i i j ji j C C C C P A P B C C --== 设事件A 为“4个球中没有红球”则()()()0202133300224633161510C C C C P A P A P B C C =⋅=⋅=⋅=(2)设事件B 为“4个球中恰有1个红球”()()()0211110213331333011022224646393326156155C C C C C C C C P B P A B P A B C C C C ∴=+=⋅+⋅=⋅+⋅= (3)ξ可取的值为0,1,2,3()()1010P P A ξ∴===()()215P P B ξ=== ()()()0220111113331333021122224646225C C C C C C C C P P A B P A B C C C C ξ==+=⋅+⋅= ()()11021333122246331361510C C C C P P A B C C ξ===⋅=⋅=ξ∴的分布列为:01231055102E ξ∴=⨯+⨯+⨯+⨯=例3:甲、乙两袋中各装有大小相同的小球9个,其中甲袋中红色、黑色、白色小球的个数分别为2、3、4,乙袋中红色、黑色、白色小球的个数均为3,某人用左右手分别从甲、乙两袋中取球.(1)若左右手各取一球,求两只手中所取的球颜色不同的概率;(2)若左右手依次各取两球,称同一手中两球颜色相同的取法为成功取法,记成功取法次数为随机变量X ,求X 的分布列和数学期望.解:(1)设事件A 为“两只手中所取的球颜色不同”,则A 为“两只手中所取的球颜色相同”()()2333432119999993P A P A ⎛⎫=-=-⋅+⋅+⋅= ⎪⎝⎭(2)X 可取的值为0,1,2左手取球成功的概率222234129518C C C P C ++== 右手取球成功的概率22233322914C C C P C ++==()511301118424P X ⎛⎫⎛⎫∴==-⋅-= ⎪ ⎪⎝⎭⎝⎭()5151711118418418P X ⎛⎫⎛⎫==-⋅+⋅-= ⎪ ⎪⎝⎭⎝⎭ ()515218472P X ==⋅=X ∴的分布列为01224187236EX ∴=⨯+⨯+⨯= 例4:袋中装有若干个质地均匀大小相同的红球和白球,白球数量是红球数量的两倍,每次从袋中摸出一个球,然后放回,若累计3次摸到红球则停止摸球,否则继续摸球直到第5次摸球后结束(1)求摸球四次就停止的事件发生的概率(2)记摸到红球的次数为ξ,求随机变量ξ的分布列及其期望(1)思路:本题为有放回摸球,可理解为独立重复试验,如果摸球四次就停止,说明在这四次中一共摸到3次红球,且前三次有两次摸到红球,第四次又摸到红球。
概率统计之比赛闯关和取球类问题 2021-2022学年高考数学解题技巧归纳(新高考地区专用)
局三种情况,通过后两场连胜赢得比赛,其余各场按“胜负交替”进行排列;
(2)首先依题意能确定 X 可取的值为 2,3, 4,5 ,若提前结束比赛,则按
(1)的想法,除了最后两场要连胜(或连败),其余各场应“胜负交替”。 在每个事件中要分甲获胜和乙获胜两种情况进行讨论
能 是 在 前 两 局 打 成 1:1 , 然 后 一 方 连 赢 两 局 结 束 比 赛 。 计 算 出
P 2,P 4 ,即可求出 P 6
解:(1)设事件 Ai 为“甲在第i 局获胜”
P 2 P A1A2 P
A1 A2
2 3
2
1
2
3
5 9
(2) 可取的值为 2,4,6
P 2 5
分别计算概率即可得到分布列和期望
解:(1)设事件 Ai 为“甲队在第i 场获胜”,
则
P
A5
P
A6
3 5
,
P
A7
2 5
设事件 A 为“甲队 4:2 获胜”,事件 B 为“甲队 4:3 获胜”
P A P
A5 A6
23 6 5 5 25
PB P
A5 A6 A7
222 8 5 5 5 125
1 4
3 4
3
27 256
跟踪练习 2、甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,
若赛完 5 局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜
的概率为 2 ,乙获胜的概率为 1 ,各局比赛结果相互独立.
3
3
(1)求甲在4 局以内(含4 局)赢得比赛的概率;
(2)记 X 为比赛决出胜负时的总局数,求 X 的分布列和期望.
微专题-与球有关的内切、外接问题--高一数学-(-必修第二册)
(2)三棱锥 A-BCD,侧棱长为 2 5,底面是边长为 2 3的等边三角形, 125
则该三棱锥外接球的体积为____6__π__.
解析 如图所示,该三棱锥为正三棱锥,O为底面BCD的中心且AO垂直 于底面BCD,O′在线段AO上,O′为外接球球心, 令 O′A=O′D=R,OD=23DE=23×2 3× 23=2,AD=2 5, ∴AO= AD2-OD2=4,∴OO′=4-R, 又OO′2+OD2=O′D2, ∴(4-R)2+4=R2,解得 R=52, ∴V 球=43πR3=1265π.
解析 如图所示,O为△BCD的中心,且AO垂直于底面BCD,E为BC的
中点,
∵底面边长为2,
∴DE= 3,OD=233,OE= 33,
∴AE= AO2+OE2=
1+
332=23 3,
S△ABC=12×2×233=233,S△BCD= 3,
S 表=3S△ABC+S△BCD=2 3+ 3=3 3,
a 切球半径为__2__.
解析 设该正方体的外接球半径为R,内切球半径为r, 正方体的体对角线长即为外接球直径,棱长即为内切球的直径, 即 2R= 3a,2r=a,
∴R= 23a,r=a2.
(2)一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的
顶点都在同一个球面上,且该六棱柱的体积为 9 ,底面周长为3,则这个
反思 感悟
一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为 a,b,c,则就可以将这个三棱锥补成一个长方体,于是长方 体的体对角线的长就是该三棱锥的外接球的直径.设其外接球 的半径为 R,则有 2R= a2+b2+c2.
三、寻求轴截面圆半径法
例 3 (1)正四棱锥 S-ABCD 的底面边长和各侧棱长都为 2,点 S,A,B, 4π
高考数学一轮复习探求球心位置的方法
16
B. π
3
C.16π
(
)
D.20π
解析 因为三棱柱ABC-A1B1C1的6个顶点都在球O的表面上,所以三棱柱ABC
-A1B1C1为直三棱柱,则三棱柱ABC-A1B1C1的高为AA1=2,因为AB=AC=2,
=
sin∠
∠BAC=120°,所以BC=2 3,设△ABC的外接圆半径为r,则2r=
线的中点处.
二、补形找心
长方体或正方体的外接球的球心在其体对角线的中点处.部分空间几何体可以
通过补形补成正方体、长方体或棱柱等途径确定球心.
【例2】 在四面体A-BCD中,AB=2,BC=CD=DB=3,AC=AD= 13,则
四面体A-BCD外接球的表面积是
.
解析 由题意,可得AB2+BC2=22+32=13=AC2,所以AB⊥BC.同理:
的半径r=1,根据正方体的棱长为4,可知球心到截面
的距离d=2,所以球的半径R= 2 + 2 = 5,所以球
的表面积S=4πR2=20π,故选A.
(
)
3.高为 2的四棱锥S-ABCD的底面是边长为1的正方形,点S,A,B,C,D均
在半径为1的同一球面上,则底面ABCD的中心与顶点S之间的距离为(
公共弦长为2 2.若球心到这两个平面的距离相等,则这两个圆的半径之和
3
1
4 3
3
S△BCP+S△CDP)×r,所以 ×(4+4×2)r= .解得r= .则正四棱锥P-
3
3
3
4 3 4 3
ABCD内切球的体积V= πr = π.故选B.
3
27
6.已知三棱柱ABC-A1B1C1的6个顶点都在球O的表面上,AB=AC,∠BAC
高中数学概率取球练习题.doc
高中数学概率取球练习题1•下列说法正确的是A.任何事件的概率总是在之间B频率是客观存在的,与试验次数无关C.随着试验次数的增加,频率一般会越来越接近概率D.概率是随机的,在试验前不能确定2•集合A={2,3},B={1,2,3},从A, B中各取任意一个数,则这两数之和等于4的概率是A.IllB.C.D. 363.从一批产品中取出三件产品,设A二“三件产品全不是次品”,“三件产品全是次品”,C= “三件产品不全是次品”,则下列结论正确的是A. A与C互斥B. E与C互斥C.任何两个均互斥D. 任何两个均不互斥4.抛掷一枚质地均匀的硬币,如果连续抛掷1000次, 那么第999次出现正面朝上的概率是A. 19B. 11000C. 991000D. 15•从一批羽毛球产品中任取一个,其质量小于 4. 8g 的概率为0.3,质量小于4.85g的概率为0. 32,那么质量在[4.8, 4.85]范围内的概率是A. 0.B. 0. 3C. 0. 0D. 0. 686.从1004名学生中选取50名参加活动,若采用下面的方法选取:选用简单随机抽样从1004人中剔除4人,剩下的1000人再按系统抽样的方法进行抽样,则每人入选的概率A.不全相等均不相等C.都相等且为25/502D.都相等且为1/207.甲,乙两人随意入住两间空房,则甲乙两人各住一间房的概率是A. 1 .B. 1C. 1D.无法确定8•从五件正品,一件次品中随机取出两件,则取出的两件产品中恰好是一件正品,一件次品的概率是A. IB. 12C. 1D.9.一个袋中装有2个红球和2个白球,现从袋中取岀1球,然后放回袋中再取出一球,则取出的两个球同色的概率是A. IB. 1C. 1D.10.现有五个球分别记为A、C、J、K、S,随机放进三个盒子,每个盒子只能放一个球,则K或S在盒中的概率是A. 1 10B. 5C. 9D. 101011.如图,在半径为R的圆内随机撒一粒黄豆,它落在阴影部分内接正三角形上的概率是D1A. 11B. 1C. 1D. 613、在500mL的水中有一个草履虫,现从中随机取出2mL水样放到显微镜下观察,则发现草履虫的概率是A. O.B. 0.C. 0.004D.不能确定14、下列事件中,随机事件的个数是①如果a、b 是实数,那么b+a二a+b;②某地1月1日刮西北风;③当x是实数时,x220;④一个电影院当天的上座率超过50%。
第7章 §7.2 球的切、接问题--新高考数学新题型一轮复习课件
思维升华
(3)长方体的共顶点的三条棱长分别为 a,b,c,外接球的半 径为 R,则 2R= a2+b2+c2.
跟踪训练2 已知三棱锥P-ABC中,PA,PB,PC两两垂直,且PA=1, PB=2,PC=3,则三棱锥P-ABC的外接球的表面积为
7 14 A. 3 π
√B.14π
C.56π
D. 14π
则r=2cos α,
圆柱的高为4sin α,
∴圆柱的侧面积为4πcos α×4sin α=8πsin 2α, 当且仅当 α=π4,sin 2α=1 时,圆柱的侧面积最大, ∴圆柱的侧面积的最大值为8π.
(2)(2022·长沙检测)在封闭的直三棱柱ABC-A1B1C1内有一个体积为V的
9π 球.若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是__2__.
所以球的体积为43π 233=
3π 2.
延伸探究 本例(1)条件不变,则四面体P-ABC的内切球的半径为 2-1
____2____.
设四面体P-ABC的内切球半径为r. 由本例(1)知, S△PAC=12PA·AC=12×1× 2= 22, S△PAB=12PA·AB=12×1×1=12, S△ABC=12AB·BC=12×1×1=12, S△PBC=12PB·BC=12× 2×1= 22,
作出圆锥的轴截面PAB,如图所示,
则△PAB的内切圆为圆锥的内切球的大圆.
在△PAB中,PA=PB=3,D为AB的中点,AB=2,E为切点,
则 PD=2 2,△PEO∽△PDB,
故PPOB=ODEB,即2 23-r=1r,解得 r= 22,
故内切球的体积为43π
223=
2 3 π.
思维升华
(1)与球截面有关的解题策略 ①定球心:如果是内切球,球心到切点的距离相等且为半 径;如果是外接球,球心到接点的距离相等且为半径; ②作截面:选准最佳角度作出截面,达到空间问题平面化 的目的. (2)正四面体的外接球的半径 R= 46a,内切球的半径 r=126a, 其半径 R∶r=3∶1(a 为该正四面体的棱长).
高中数学如何求解球体题目的技巧和实例分析
高中数学如何求解球体题目的技巧和实例分析在高中数学中,球体题目是一个常见且重要的考点。
解决这类题目需要掌握一些特定的技巧和方法。
本文将通过具体的例子来分析和说明这些技巧,帮助高中学生和他们的家长更好地理解和应对球体题目。
一、球的体积和表面积计算首先,我们来看一个计算球体体积的例子。
假设有一个半径为r的球体,求其体积。
根据球体的定义,我们知道球体的体积公式为V = (4/3)πr³。
因此,我们只需要将球的半径代入公式中即可得到结果。
例如,如果半径r = 5cm,那么球体的体积V = (4/3)π(5)³ ≈ 523.6 cm³。
这个例子展示了如何使用球体的体积公式进行计算。
接下来,我们来看一个计算球体表面积的例子。
假设有一个半径为r的球体,求其表面积。
根据球体的定义,我们知道球体的表面积公式为S = 4πr²。
同样地,我们只需要将球的半径代入公式中即可得到结果。
例如,如果半径r = 5cm,那么球体的表面积S = 4π(5)² ≈ 314.16 cm²。
这个例子展示了如何使用球体的表面积公式进行计算。
二、球的相交问题除了计算球体的体积和表面积,我们还需要掌握解决球的相交问题的方法。
这类问题常常涉及到球的位置关系和交点的坐标。
例如,假设有两个球体A和B,球心分别为A(x₁, y₁, z₁)和B(x₂, y₂, z₂),半径分别为r₁和r₂。
我们需要判断这两个球体是否相交,并求出它们的交点坐标。
首先,我们可以计算两个球心之间的距离d。
根据勾股定理,我们有d² = (x₂ - x₁)² + (y₂ - y₁)² + (z₂ - z₁)²。
如果d > r₁ + r₂,那么两个球体不相交;如果d =r₁ + r₂,那么两个球体相切;如果d < r₁ + r₂,那么两个球体相交。
如果两个球体相交,我们可以进一步求解交点坐标。
新培优数学必修二课件第章球
体。
02 03
涉及球部分的计算
在组合体中,如果涉及到球体部分,需要利用球的体积和表面积公式进 行计算。同时,还需要注意组合体中其他几何体与球体之间的相对位置 和关系。
实际应用举例
例如,在计算由圆柱和半球组成的组合体的表面积时,需要分别计算圆 柱的侧面积、底面积和半球的表面积,并将它们相加得到组合体的总表 面积。
THANKS
感谢观看
利用坐标法解决空间几何中的球问题
空间直角坐标系
在三维空间中,建立直角坐标系 ,用坐标表示点的位置。
坐标运算
通过坐标的运算,可以求解两点 间的距离、点到平面的距离等问
题。
利用坐标表示球
在直角坐标系中,球心坐标和半 径可用来表示一个球,通过坐标 运算,可以求解球的相关问题。
利用综合法解决复杂空间几何中的球问题
表示方法
通常用球心O和半径r来表示一个 球,记作$S(O,r)$。
球的性质与定理
性质
球的表面是光滑的、连续的,没有棱 和角,任意两点在球面上都可以通过 大圆弧相连。
定理
球面上任意两点A、B与球心O所构成 的角AOB的度数是弧AB的长度与半径 r的比值的二倍,即$angle AOB = 2 times frac{弧AB}{r}$。
04
空间几何中的球问题解决 方法
利用向量法解决空间几何中的球问题
向量基本概念
向量是有大小和方向的量 ,在空间几何中可用来表 示点、线、面的位置关系 。
向量运算
包括向量的加法、减法、 数乘和向量积,这些运算 在空间几何中有广泛应用 。
利用向量表示球
球心坐标和半径可用来表 示一个球,通过向量的运 算,可以求解球的相关问 题。
应用举例
高中数学讲义微专题90 取球问题
微专题90 取球问题一、基础知识:在很多随机变量的题目中,常以“取球”作为故事背景,通过对“取球”提出不同的要求,来考察不同的模型,常见的模型及处理方式如下:1、独立重复试验模型:关键词“可放回的抽取”,即下一次的取球试验与上一次的相同。
2、超几何分布模型:关键词“不放回的抽取”3、与条件概率相关:此类问题通常包含一个抽球的规则,并一次次的抽取,要注意前一次的结果对后一步抽球的影响4、古典概型:要注意虽然题目中会说明“相同的”小球,但是为了能使用古典概型(保证基本事件为等可能事件),通常要将“相同的”小球视为“不同的”元素,在利用排列组合知识进行分子分母的计数。
5、数字问题:在小球上标注数字,所涉及的问题与数字相关(奇,偶,最大,最小等),在解决此类问题时,要将数字模型转化为“怎样取球”的问题,从而转化为前几个类型进行求解。
二、典型例题:例1:一袋中有6个黑球,4个白球(1)不放回地依次取出3个球,已知第一次取出的是白球,求第三次取到黑球的概率(2)有放回地依次取出3个球,已知第一次取出的是白球,求第三次取到黑球的概率(3)有放回的依次取出3个球,求取到白球个数X的分布列,期望和方差(1)思路:因为是不放回的取球,所以后面取球的情况受到前面的影响,要使用条件概率相关公式进行计算。
第一次已经取到白球,所以剩下6个黑球,3个白球;若第二次取到黑球,则第三次取到黑球的概率为6598⋅,若第二次取到白球,则第三次取到黑球的概率为3698⋅,从而能够得到第三次取到黑球的概率解:设事件A为“不放回取球,第一次取出白球时,第三次取到黑球”(2)思路:因为是有放回的取球,所以每次取球的结果互不影响,属于独立重复试验模型,所以第三次取球时依然是6个黑球,3个白球,取得黑球的概率为6 9解:设事件B为“有放回取球,第一次取出白球时,第三次取到黑球”(3)思路:本问依然属于独立重复试验模型,X的取值为0,1,2,3,则X符合二项分布,即23,5XB ⎛⎫⎪⎝⎭,所以可通过二项分布的概率计算公式求得概率,得到分布列 解:X 的取值为0,1,2,3,依题意可得:23,5XB ⎛⎫ ⎪⎝⎭例2:已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的3个红球和3个黑球,现从甲,乙两个盒内各任取2个球 (1)求取出的4个球中没有红球的概率 (2)求取出的4个球中恰有1个红球的概率(3)设ξ为取出的4个球中红球的个数,求ξ的分布列和数学期望思路:本题这三问的关键在于所取球中红球的个数,考虑红球个数来自于两个盒内拿出红球个数的总和,所以可将红球总数进行分配,从而得到每个盒中出红球的情况,进而计算出概率(1)设事件i A 为“甲盒中取出i 个红球”,事件j B 为“乙盒中取出j 个红球”则()()2213332246,i i j ji j C C C C P A P B C C --== 设事件A 为“4个球中没有红球”则()()()0202133300224633161510C C C C P A P A P B C C =⋅=⋅=⋅= (2)设事件B 为“4个球中恰有1个红球” (3)ξ可取的值为0,1,2,3ξ∴的分布列为:例3:甲、乙两袋中各装有大小相同的小球9个,其中甲袋中红色、黑色、白色小球的个数分别为2、3、4,乙袋中红色、黑色、白色小球的个数均为3,某人用左右手分别从甲、乙两袋中取球.(1)若左右手各取一球,求两只手中所取的球颜色不同的概率;(2)若左右手依次各取两球,称同一手中两球颜色相同的取法为成功取法,记成功取法次数为随机变量X,求X的分布列和数学期望.解:(1)设事件A为“两只手中所取的球颜色不同”,则A为“两只手中所取的球颜色相同”(2)X可取的值为0,1,2左手取球成功的概率222234129518C C CPC++==右手取球成功的概率22233322914C C CPC++==X∴的分布列为例4:袋中装有若干个质地均匀大小相同的红球和白球,白球数量是红球数量的两倍,每次从袋中摸出一个球,然后放回,若累计3次摸到红球则停止摸球,否则继续摸球直到第5次摸球后结束(1)求摸球四次就停止的事件发生的概率(2)记摸到红球的次数为ξ,求随机变量ξ的分布列及其期望(1)思路:本题为有放回摸球,可理解为独立重复试验,如果摸球四次就停止,说明在这四次中一共摸到3次红球,且前三次有两次摸到红球,第四次又摸到红球。
高中数学-球专题讲义模型全解-简化学生版
专题一 墙角模型如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点与难点,也是高考考查的一个热点.考查学生的空间想象能力以及化归能力.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,解决这类问题的关键是抓住内接的特点,即球心到多面体的顶点的距离等于球的半径.并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用.球的内切问题主要是指球外切多面体与旋转体,解答时首先要找准切点,通过作截面来解决.如果外切的是多面体,则作截面时主要抓住多面体过球心的对角面来作.当球与多面体的各个面相切时,注意球心到各面的距离相等即球的半径,求球的半径时,可用球心与多面体的各顶点连接,球的半径为分成的小棱锥的高,用体积法来求球的半径.空间几何体的外接球与内切球十大模型1.墙角模型;2.对棱相等模型;3.汉堡模型;4.垂面模型;5.切瓜模型;6.斗笠模型;7.鳄鱼模型;8.已知球心或球半径模型;9.最值模型;10.内切球模型.【方法总结】墙角模型是三棱锥有一条侧棱垂直于底面且底面是直角三角形模型,用构造法(构造长方体)解决.外接球的直径等于长方体的体对角线长(在长方体的同一顶点的三条棱长分别为a,b,c,外接球的半径为R,则2R= a2+b2+c2.),秒杀公式:R2=a2+b2+c24.可求出球的半径从而解决问题.有以下四种类型:【例题选讲】例1.[例] (1)已知三棱锥A-BCD的四个顶点A,B,C,D都在球O的表面上,AC⊥平面BCD,BC⊥CD,且AC=3,BC=2,CD=5,则球O的表面积为( )A.12πB.7πC.9πD.8π(2)若三棱锥S−ABC的三条侧棱两两垂直,且SA=2,SB=SC=4,则该三棱锥的外接球半径为( ).A.3B.6C.36D.9(3)已知S,A,B,C,是球O表面上的点,SA⊥平面ABC,AB⊥BC,SA=AB=1,BC=2,则球O的表面积等于( ).A.4πB.3πC.2πD.π(4)在正三棱锥S-ABC中,M,N分别是棱SC,BC的中点,且AM⊥MN,若侧棱SA=23,则正三棱锥S-ABC外接球的表面积是________.(5)(2019全国Ⅰ)已知三棱锥P-ABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为2的正三角形,E,F分别是PA,AB的中点,∠CEF=90°,则球O的体积为( ).A.86πB.46πC.26πD.6π(6)已知二面角α-l-β的大小为π3,点P∈α,点P在β内的正投影为点A,过点A作AB⊥l,垂足为点B,点C∈l,BC=22,PA=23,点D∈β,且四边形ABCD满足∠BCD+∠DAB=π.若四面体PACD的四个顶点都在同一球面上,则该球的体积为________.【对点训练】1.点A,B,C,D均在同一球面上,且AB,AC,AD两两垂直,且AB=1,AC=2,AD=3,则该球的表面积为( )A.7πB.14πC.72πD.714π32.等腰△ABC中,AB=AC=5,BC=6,将△ABC沿BC边上的高AD折成直二面角B-AD-C,则三棱锥B-ACD的外接球的表面积为( )A.5πB.203πC.10πD.34π3.已知球O的球面上有四点A,B,C,D,DA⊥平面ABC,AB⊥BC,DA=AB=BC=2,则球O的体积等于________.4.已知四面体P-ABC四个顶点都在球O的球面上,若PB⊥平面ABC,AB⊥AC,且AC=1,AB=PB =2,则球O的表面积为________.5.三棱锥P-ABC中,△ABC为等边三角形,PA=PB=PC=3,PA⊥PB,三棱锥P-ABC的外接球的体积为( )A.272πB.2732π C.273π D.27π6.在空间直角坐标系Oxyz中,四面体ABCD各顶点的坐标分别为A(2,2,1),B(2,2,-1),C(0,2,1),D (0,0,1),则该四面体外接球的表面积是( )A.16πB.12πC.43πD.6π7.在平行四边形ABCD中,∠ABD=90°,且AB=1,BD=2,若将其沿BD折起使平面ABD⊥平面BCD,则三棱锥A-BDC的外接球的表面积为( D )A.2πB.8πC.16πD.4π8.在正三棱锥S-ABC中,点M是SC的中点,且AM⊥SB,底面边长AB=22,则正三棱锥S-ABC的外接球的表面积为( )A.6πB.12πC.32πD.36π9.在古代将四个面都为直角三角形的四面体称之为鳖臑,已知四面体A-BCD为鳖臑,AB⊥平面BCD,且AB=BC=36CD,若此四面体的体积为833,则其外接球的表面积为________.10.在长方体ABCD-A1B1C1D1中,底面ABCD是边长为32的正方形,AA1=3,E是线段A1B1上一点,若二面角A-BD-E的正切值为3,则三棱锥A-A1D1E外接球的表面积为________.专题二 对棱相等模型【方法总结】对棱相等模型是三棱锥的三组对棱长分别相等模型,用构造法(构造长方体)解决.外接球的直径等于长方体的体对角线长,即2R=a2+b2+c2(长方体的长、宽、高分别为a、b、c).秒杀公式:R2=x2+y2+z28(三棱锥的三组对棱长分别为x、y、z).可求出球的半径从而解决问题.【例题选讲】例2.[例] (1)正四面体的各条棱长都为2,则该正面体外接球的体积为________.(2)在三棱锥A-BCD中,AB=CD=2,AD=BC=3,AC=BD=4,则三棱锥A−BCD外接球的表面积为________.(4)在正四面体A-BCD中,E是棱AD的中点,P是棱AC上一动点,BP+PE的最小值为7,则该正四面体的外接球的体积是( )A.6πB.6πC.3632π D.3 2π(5)已知三棱锥A-BCD,三组对棱两两相等,且AB=CD=1,AD=BC=3,若三棱锥A-BCD的外接球表面积为9π2.则AC=________.【对点训练】1.已知正四面体ABCD的外接球的体积为86π,则这个四面体的表面积为________.2.表面积为83的正四面体的外接球的表面积为( )A.43πB.12πC.8πD.46π3.已知四面体ABCD满足AB=CD=6,AC=AD=BC=BD=2,则四面体ABCD的外接球的表面积是________.4.三棱锥中S-ABC,SA=BC=13,SB=AC=5,SC=AB=10.则三棱锥的外接球的表面积为______.5.已知一个四面体ABCD的每个顶点都在表面积为9π的球O的表面上,且AB=CD=a,AC=AD=BC =BD=5,则a=________.6.正四面体ABCD中,E是棱AD的中点,P是棱AC上一动点,BP+PE的最小值为14,则该正四面体的外接球表面积是( )A.12πB.32πC.8πD.24π专题三 汉堡模型【方法总结】汉堡模型是直棱柱的外接球、圆柱的外接球模型,用找球心法(多面体的外接球的球心是过多面体的两个面的外心且分别垂直这两个面的直线的交点.一般情况下只作出一个面的垂线,然后设出球心用算术方法或代数方法即可解决问题.有时也作出两条垂线,交点即为球心.)解决.以直三棱柱为例,模型如下图,由对称性可知球心O 的位置是△ABC 的外心O 1与△A 1B 1C 1的外心O 2连线的中点,算出小圆O 1的半径AO 1=r ,OO 1=h 2,∴R 2=r 2+h 24.【例题选讲】例3.[例] (1)(2013辽宁)已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上.若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为( ).A.3172 B.210 C.132 D.310(2)设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积为( ).A.πa 2 B.73πa 2 C.113πa 2 D.37πa 2(3)(2009全国Ⅰ)直三棱柱ABC -A 1B 1C 1的各顶点都在同一球面上,若AB =AC =AA 1=2,∠BAC =120°,则此球的表面积等于( ).A.10π B.20πC.30πD.40π(4)已知圆柱的高为2,底面半径为3,若该圆柱的两个底面的圆周都在同一个球面上,则这个球的表面积等于( )A.4πB.16π3C.32π3D.16π(5)若一个圆柱的表面积为12π,则该圆柱的外接球的表面积的最小值为( )A.(125-12)πB.123πC.(123+3)πD.16π【对点训练】一直三棱柱的每条棱长都是2,且每个顶点都在球O 的表面上,则球O 的表面积为( )A.28π3B.22π3C.43π3D.7π2.一个正六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,底面周长为3,则这个球的体积为________.3.已知正三棱柱ABC -A 1B 1C 1中,底面积为334,一个侧面的周长为63,则正三棱柱ABC -A 1B 1C 1外接球的表面积为( )A.4πB.8πC.16πD.32π4.已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =1,∠BAC =60°,AA 1=2,则该三棱柱的外接球的体积为( )A.40π3B.4030π27 C.32030π27 D.20π5.已知矩形ABCD中,AB=2AD=2,E,F分别为AB,CD的中点,将四边形AEFD沿EF折起,使二面角A-EF-C的大小为120°,则过A,B,C,D,E,F六点的球的表面积为( )A.6πB.5πC.4πD.3π6.已知直三棱柱ABC-A1B1C1的6个顶点都在球O的表面上,若AB=AC=1,AA1=23,∠BAC= 2π3,则球O的体积为( )A.32π3B.3πC.4π3D.8π7.有一个圆锥与一个圆柱的底面半径相等,此圆锥的母线与底面所成角为60°,若此圆柱的外接球的表面积是圆锥的侧面积的4倍,则此圆柱的高是其底面半径的( )A.2倍B.2倍C.22倍D.3倍8.正四棱柱ABCD-A1B1C1D1中,AB=2,二面角A1-BD-C1的大小为π3,则该正四棱柱外接球的表面积为( )A.12πB.14πC.16πD.18π9.正四棱柱ABCD-A1B1C1D1中,AB=2,AA1=2,设四棱柱的外接球的球心为O,动点P在正方形ABCD的边上,射线OP交球O的表面点M,现点P从点A出发,沿着A→B→C→D→A运动一次,则点M经过的路径长为________.10.已知圆柱的上底面圆周经过正三棱锥P-ABC的三条侧棱的中点,下底面圆心为此三棱锥底面中心O.若三棱锥P-ABC的高为该圆柱外接球半径的2倍,则该三棱锥的外接球与圆柱外接球的半径的比值为____ ____.专题四 垂面模型【方法总结】垂面模型是有一条侧棱垂直底面的棱锥模型,可补为直棱柱内接于球,由对称性可知球心O的位置是△CBD的外心O1与△AB2D2的外心O2连线的中点,算出小圆O1的半径AO1=r,OO1=h2,∴R2=r2+h24.【例题选讲】例4.[例] (1)已知在三棱锥S-ABC中,SA⊥平面ABC,且∠ACB=30°,AC=2AB=23,SA=1.则该三棱锥的外接球的体积为( )A.13813πB.13πC.136πD.13136π(2)三棱锥P-ABC中,平面PAC⊥平面ABC,AB⊥AC,PA=PC=AC=2,AB=4,则三棱锥P-ABC的外接球的表面积为( )A.23πB.234πC.64πD.643π(3)在三棱锥S-ABC中,侧棱SA⊥底面ABC,AB=5,BC=8,∠ABC=60°,SA=25,则该三棱锥的外接球的表面积为( )A.643πB.2563πC.4363πD.2048327π(4)在三棱锥P-ABC中,已知PA⊥底面ABC,∠BAC=120˚,PA=AB=AC=2,若该三棱锥的顶点都在同一个球面上,则该球的表面积为( )A.103πB.18πC.20πD.93π(5)在三棱锥P-ABC中,PA⊥平面ABC,∠BAC=120°,AC=2,AB=1,设D为BC中点,且直线PD与平面ABC所成角的余弦值为55,则该三棱锥外接球的表面积为________.【对点训练】1.三棱锥S-ABC中,SA⊥底面ABC,若SA=AB=BC=AC=3,则该三棱锥外接球的表面积为( )A.18πB.21π2C.21πD.42π2.四面体ABCD的四个顶点都在球O的表面上,AB⊥平面BCD,△BCD是边长为3的等边三角形,若AB=2,则球O的表面积为( )A.4πB.12πC.16πD.32π3.已知三棱锥S-ABC的所有顶点都在球O的球面上,SA⊥平面ABC,SA=23,AB=1,AC=2,∠BAC=60°,则球O的表面积为( )A.4πB.12πC.16πD.64π4.在三棱锥P-ABC中,已知PA⊥底面ABC,∠BAC=60°,PA=2,AB=AC=3,若该三棱锥的顶点都在同一个球面上,则该球的表面积为( )A.4π3B.82π3 C.8π D.12π5.在三棱锥A-BCD中,AC=CD=2,AB=AD=BD=BC=1,若三棱锥的所有顶点,都在同一球面上,则球的表面积是________.6.如图,在△ABC中,AB=BC=6,∠ABC=90°,点D为AC的中点,将△ABD沿BD折起到△PBD的位置,使PC=PD,连接PC,得到三棱锥P-BCD,若该三棱锥的所有顶点都在同一球面上,则该球的表面积是( )A.7πB.5πC.3πD.π7.已知点P,A,B,C,D是球O表面上的点,PA⊥平面ABCD,四边形ABCD是边长为23的正方形.若PA=26,则△OAB的面积为( ).A.3B.22C.33D.638.三棱锥P-ABC中,AB=BC=15,AC=6,PC⊥平面ABC,PC=2,则该三棱锥的外接球表面积为________.9.中国古代数学经典《九章算术》系统地总结了战国、秦、汉时期的数学成就,书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的三棱锥称之为鳖臑,如图为一个阳马与一个鳖臑的组合体,已知PA⊥平面ABCE,四边形ABCD为正方形,AD=5,ED=3,若鳖臑P-ADE的外接球的体积为92π,则阳马P-ABCD的外接球的表面积为________.10.在四棱锥P-ABCD中,PA⊥平面ABCD,AP=2,点M是矩形ABCD内(含边界)的动点,且AB= 1,AD=3,直线PM与平面ABCD所成的角为π4.记点M的轨迹长度为α,则tanα=________.;当三棱锥P-ABM的体积最小时,三棱锥P-ABM的外接球的表面积为________.专题五 切瓜模型【方法总结】切瓜模型是有一侧面垂直底面的棱锥型,常见的是两个互相垂直的面都是特殊三角形且平面ABC⊥平面BCD,如类型Ⅰ,△ABC与△BCD都是直角三角形,类型Ⅱ,△ABC是等边三角形,△BCD是直角三角形,类型Ⅲ,△ABC与△BCD都是等边三角形,解决方法是分别过△ABC与△BCD的外心作该三角形所在平面的垂线,交点O即为球心.类型Ⅳ,△ABC与△BCD都一般三角形,解决方法是过△BCD的外心O1作该三角形所在平面的垂线,用代数方法即可解决问题.设三棱锥A-BCD的高为h,外接球的半径为R,球心为O.△BCD的外心为O1,O1到BD的距离为d,O与O1的距离为m,则R2=r2+m2,R2=d2+(h-m)2,解得R.可用秒杀公式:R2=r21+r22-l24(其中r1、r2为两个面的外接圆的半径,l为两个面的交线的长)【例题选讲】例5.[例] (1)已知在三棱锥P-ABC中,V PABC=433,∠APC=π4,∠BPC=π3,PA⊥AC,PB⊥BC,且平面PAC⊥平面PBC,那么三棱锥P-ABC外接球的体积为________.(2)如图,已知平面四边形ABCD满足AB=AD=2,∠A=60˚,∠C=90˚,将△ABD沿对角线BD翻折,使平面ABD⊥平面CBD,则四面体ABCD外接球的体积为________.(3)已知三棱锥A-BCD中,△ABD与△BCD是边长为2的等边三角形且二面角A-BD-C为直二面角,则三棱锥A-BCD的外接球的表面积为( )A.10π3B.5πC.6πD.20π3(4)已知ΔABC是以BC为斜边的直角三角形,P为平面ABC外一点,且平面PBC⊥平面ABC,BC=3,PB=22,PC=5,则三棱锥P-ABC外接球的表面积为________.(5)已知等腰直角三角形ABC中,AB=AC=2,D,E分别为AB,AC的中点,沿DE将△ABC折成直二面角(如图),则四棱锥A-DECB的外接球的表面积为________.【对点训练】1.把边长为3的正方ABCD沿对角线AC对折,使得平面ABC⊥平面ADC,则三棱锥D-ABC的外接球的表面积为( )A.32πB.27πC.18πD.9π2.在三棱锥A-BCD中,△ACD与△BCD都是边长为4的正三角形,且平面ACD⊥平面BCD,则该三棱锥外接球的表面积为________.3.已知如图所示的三棱锥D-ABC的四个顶点均在球O的球面上,△ABC和△DBC所在的平面互相垂直,AB=3,AC=3,BC=CD=BD=23,则球O的表面积为( )A.4πB.12πC.16πD.36π4.在三棱锥A-BCD中,平面ABC⊥平面BCD,ΔABC是边长为2的正三角形,若∠BDC=π4,三棱锥的各个顶点均在球O上,则球O的表面积为( ).A.52π3B.3πC.4πD.28π35.已知空间四边形ABCD,∠BAC=23π,AB=AC=23,BD=4,CD=25,且平面ABC⊥平面BCD,则该几何体的外接球的表面积为( )A.24πB.48πC.64πD.96π6.如图,已知四棱锥P-ABCD的底面为矩形,平面PAD⊥平面ABCD,AD=22,PA=PD=AB=2,则四棱锥P-ABCD的外接球的表面积为( )A.2πB.4πC.8πD.12π7.在四棱锥A-BCDE中,ΔABC是边长为6的正三角形,BCDE是正方形,平面ABC⊥平面BCDE,则该四棱锥的外接球的体积为( )A.2121πB.84πC.721πD.2821π8.已知空间四边形ABCD,∠BAC=2π3,AB=AC=23,BD=CD=6,且平面ABC⊥平面BCD,则空间四边形ABCD的外接球的表面积为( )A.60πB.36πC.24πD.12π9.在三棱锥P-ABC中,AB=AC=4,∠BAC=120°,PB=PC=43,平面PBC⊥平面ABC,则三棱锥P-ABC外接球的表面积为________.10.在三棱锥P-ABC中,平面PAB⊥平面ABC,AP=25,AB=6,∠ACB=π3,且直线PA与平面ABC所成角的正切值为2,则该三棱锥的外接球的表面积为( )A.13πB.52πC.52π3D.5213π3 10.答案 B 解析 如图,过点P作PE⊥AB于E,D为AB的中点,设ΔABC的外心是O1,半径是r,连接O1B,O1E,O1D,由正弦定理得2r=ABsin∠ACB=43,则O1B=r=23,D为AB的中点,BD=AD=12AB=3,O1D⊥AB,所以O1D=O1B2-BD2=3,因为平面PAB⊥平面ABC,PE⊥AB于E,平面PAB∩平面ABC=AB,则PE⊥平面ABC,所以直线PA与平面ABC所成的角是∠PAE,则tan∠PAE=PEAE=2,即PE =2AE,因为AP=PE2+AE2=25,所以PE=2AE=4,则DE=1,故O1E=2,设三棱锥P-ABC外接球球心是O,连接OO1,OB,OP,过O作OH⊥PE于H,则OO1⊥平面ABC,于是OO1⎳PE,从而O1OHE是矩形,所以外接球半径R满足R2=OO21+O1B2=OH2+(PE-HE)2=O1E2+(PE-OO1)2,解得R=13.所以外接球的表面积为4πR2=52π.专题六 斗笠模型【方法总结】圆锥、顶点在底面的射影是底面外心的棱锥.秒杀公式:R=h2+r22h(其中h为几何体的高,r为几何体的底面半径或底面外接圆的圆心)【例题选讲】例6.[例] (1)一个圆锥恰有三条母线两两夹角为60°,若该圆锥的侧面积为33π,则该圆锥外接球的表面积为________.(2)(2020·全国Ⅰ)已知A,B,C为球O的球面上的三个点,⊙O1为△ABC的外接圆.若⊙O1的面积为4π,AB=BC=AC=OO1,则球O的表面积为( )A.64πB.48πC.36πD.32π(3)在三棱锥P-ABC中,PA=PB=PC=26,AC=AB=4,且AC⊥AB,则该三棱锥外接球的表面积为________.(4)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为( )A.81π4B.16πC.9πD.27π4(5)如图所示,在正四棱锥P-ABCD中,底面ABCD是边长为4的正方形,E,F分别是AB,CD的中点,cos∠PEF=22,若A,B,C,D,P在同一球面上,则此球的体积为________.(6)在三棱锥P-ABC中,PA=PB=PC=2,AB=AC=1,BC=3,则该三棱锥外接球的体积为( )A.4π3B.823πC.43πD.323π【对点训练】1.已知圆锥的顶点为P,母线PA与底面所成的角为30°,底面圆心O到PA的距离为1,则该圆锥外接球的表面积为________.2.在三棱锥P-ABC中,PA=PB=PC=3,侧棱PA与底面ABC所成的角为60°,则该三棱锥外接球的体积为( )A.πB.π3C.4πD.4π33.在三棱锥P-ABC中,PA=PB=PC=6,AC=AB=2,且AC⊥AB,则该三棱锥外接球的表面积为( )A.4πB.8πC.16πD.9π4.已知体积为3的正三棱锥P -ABC 的外接球的球心为O ,若满足OA +OB +OC =0 ,则此三棱锥外接球的半径是( )A.2 B.2C.32D.345.已知正四棱锥P -ABCD 的各顶点都在同一球面上,底面正方形的边长为2,若该正四棱锥的体积为2,则此球的体积为( )A.124π3B.625π81C.500π81D.256π96.已知圆锥的顶点为S ,母线SA ,SB 互相垂直,SA 与圆锥底面所成角为30°,若ΔSAB 的面积为8,则该圆锥外接球的表面积是________.7.已知圆台O 1O 2上底面圆O 1的半径为2,下底面圆O 2的半径为22,圆台的外接球的球心为O ,且球心在圆台的轴O 1O 2上,满足|O 1O |=3|OO 2|,则圆台O 1O 2的外接球的表面积为________.8.在六棱锥P -ABCDEF 中,底面是边长为2的正六边形,PA =2且与底面垂直,则该六棱锥外接球的体积等于________.9.在三棱锥P -ABC 中,PA =PB =PC =2,AB =2,BC =10,∠APC =π2,则三棱锥P -ABC 的外接球的表面积为________.10.在三棱锥P -ABC 中,PA =PB =PC =92,AB =8,AC =6.顶点P 在平面ABC 内的射影为H ,若AH =λAB +μAC 且μ+2λ=1,则三棱锥P -ABC 的外接球的体积为________.专题七 鳄鱼模型【方法总结】鳄鱼模型即普通三棱锥模型,用找球心法可以解决.如果已知其中两个面的二面角,则可用秒杀公式:R2= m2+n2-2mn cosαsin2α+l24(其中l=|AB|)解决.【例题选讲】例7.[例] (1)在三棱锥A-BCD中,ΔABD和ΔCBD均为边长为2的等边三角形,且二面角A-BD-C的平面角为60°,则三棱锥的外接球的表面积为________.(2)在等腰直角ΔABC中,AB=2,∠BAC=90°,AD为斜边BC的高,将ΔABC沿AD折叠,使二面角B-AD-C为60°,则三棱锥A-BCD的外接球的表面积为________.(3)在四面体ABCD中,AB=AD=2,∠BAD=60°,∠BCD=90°,二面角A-BD-C的大小为150°,则四面体ABCD外接球的半径为________.(3)在三棱锥S-ABC中,AB⊥BC,AB=BC=2,SA=SC=2,二面角S-AC-B的余弦值是-33,若S,A,B,C都在同一球面上,则该球的表面积是( )A.4πB.6πC.8πD.9π(4)已知三棱锥P-ABC中,AB⊥BC,AB=22,BC=3,PA=PB=32,且二面角P-AB-C的大小为150°,则三棱锥P-ABC外接球的表面积为( )A.100πB.108πC.110πD.111π(5)在三棱锥P-ABC中,AB⊥BC,三角形PAC为等边三角形,二面角P-AC-B的余弦值为-63,当三棱锥P-ABC的体积最大值为13时,三棱锥P-ABC的外接球的表面积为________.(6)在体积为233的四棱锥P-ABCD中,底面ABCD为边长为2的正方形,ΔPAB为等边三角形,二面角P-AB-C为锐角,则四棱锥P-ABCD外接球的半径为( )A.213B.2C.3D.32【对点训练】1.在三棱锥S-ABC中,SB=SC=AB=BC=AC=2,二面角S-BC-A的大小为60°,则三棱锥S-ABC外接球的表面积是( )A.14π3B.16π3C.40π9D.52π92.已知三棱锥A -BCD ,BC =6,且ΔABC 、ΔBCD 均为等边三角形,二面角A -BC -D 的平面角为60°,则三棱锥外接球的表面积是________.3.已知边长为6的菱形ABCD 中,∠BAD =120°,沿对角线AC 折成二面角B -AC -D 的大小为θ的四面体且cos θ=13,则四面体ABCD 的外接球的表面积为________.4.在三棱锥P -ABC 中,顶点P 在底面ABC 的投影G 是ΔABC 的外心,PB =BC =2,且面PBC 与底面ABC 所成的二面角的大小为60°,则三棱锥P -ABC 的外接球的表面积为________.5.直角三角形ABC ,∠ABC =π2,AC +BC =2,将ΔABC 绕AB 边旋转至ΔABC 位置,若二面角C -AB -C 的大小为2π3,则四面体C -ABC 的外接球的表面积的最小值为( )A.6π B.3π C.32π D.2π6.已知空间四边形ABCD 中,AB =BD =AD =2,BC =1,CD =3,若二面角A -BD -C 的取值范围为π4,2π3 ,则该几何体的外接球表面积的取值范围为________.7.在三棱锥S -ABC 中,底面ΔABC 是边长为3的等边三角形,SA =3,SB =23,二面角S -AB -C 的大小为60°,则此三棱锥的外接球的表面积为________.8.在四面体ABCD 中,BC =CD =BD =AB =2,∠ABC =90°,二面角A -BC -D 的平面角为150°,则四面体ABCD 外接球的表面积为( )A.313πB.1243πC.31πD.124π9.在三棱锥A -BCD 中,AB =BC =CD =DA =7,BD =23,二面角A -BD -C 是钝角.若三棱锥A -BCD 的体积为2.则三棱锥A -BCD 的外接球的表面积是( )A.12πB.373πC.13πD.534π10.在平面五边形ABCDE 中,∠A =60°,AB =AE =63,BC ⊥CD ,DE ⊥CD ,且BC =DE =6.将五边形ABCDE 沿对角线BE 折起,使平面ABE 与平面BCDE 所成的二面角为120°,则沿对角线BE 折起后所得几何体的外接球的表面积是________.专题八 已知球心或球半径模型【例题选讲】例8.[例] (1)(2017·全国Ⅰ)已知三棱锥S-ABC的所有顶点都在球O的球面上,SC是球O的直径.若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S-ABC的体积为9,则球O的表面积为________.(2)已知三棱锥A-BCD的所有顶点都在球O的球面上,AB为球O的直径,若该三棱锥的体积为3,BC= 3,BD=3,∠CBD=90˚,则球O的体积为________.(3)(2012全国Ⅰ)已知三棱锥S-ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC 为球O的直径,且SC=2,则此棱锥的体积为( )A.26B.36C.23D.22(4)(2020·新高考全国Ⅰ)已知直四棱柱ABCD-A1B1C1D1的棱长均为2,∠BAD=60°.以D1为球心,5为半径的球面与侧面BCC1B1的交线长为________.(5)三棱锥S-ABC的底面各棱长均为3,其外接球半径为2,则三棱锥S-ABC的体积最大时,点S到平面ABC的距离为( )A.2+3B.2-3C.3D.2【对点训练】1.已知三棱锥P-ABC的所有顶点都在球O的球面上,△ABC满足AB=22,∠ACB=90°,PA为球O 的直径且PA=4,则点P到底面ABC的距离为( )A.2B.22C.3D.232.已知矩形ABCD的顶点都在球心为O,半径为R的球面上,AB=6,BC=23,且四棱锥O-ABCD 的体积为83,则R等于( )A.4B.23C.479D.133.已知三棱锥P-ABC的四个顶点均在某球面上,PC为该球的直径,△ABC是边长为4的等边三角形,三棱锥P-ABC的体积为163,则此三棱锥的外接球的表面积为( )A.16π3B.40π3C.64π3D.80π34.已知三棱锥A-SBC的体积为233,各顶点均在以PA为直径球面上,AB=AC=2,BC=2,则这个球的表面积为_____________.5.(2017·全国Ⅲ)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为________.6.(2020·全国Ⅰ)已知A,B,C为球O的球面上的三个点,⊙O1为△ABC的外接圆,若⊙O1的面积为4π,AB=BC=AC=OO1,则球O的表面积为( )A.64πB.48πC.36πD.32π7.(2020·全国Ⅱ)已知△ABC是面积为934的等边三角形,且其顶点都在球O的球面上.若球O的表面积为16π,则O到平面ABC的距离为( )A.3B.32C.1D.328.如图,半径为R的球的两个内接圆锥有公共的底面,若两个圆锥的体积之和为球的体积的38,则这两个圆锥高之差的绝对值为( )A.R2B.2R3C.4R3D.R9.如图,已知正方体ABCD-A1B1C1D1的棱长为2,长为2的线段MN的一个端点M在棱DD1上运动,点N在正方体的底面ABCD内运动,则MN的中点P的轨迹的面积是( )A.4πB.πC.2πD.π210.在三棱锥A-BCD中,底面为Rt△,且BC⊥CD,斜边BD上的高为1,三棱锥A-BCD的外接球的直径是AB,若该外接球的表面积为16π,则三棱锥A-BCD的体积的最大值为________.专题九 最值模型【方法总结】最值问题的解法有两种方法:一种是几何法,即在运动变化过程中得到最值,从而转化为定值问题求解.另一种是代数方法,即建立目标函数,从而求目标函数的最值.【例题选讲】例9.[例] (1)已知三棱锥P-ABC的顶点P,A,B,C在球O的球面上,△ABC是边长为3的等边三角形,如果球O的表面积为36π,那么P到平面ABC距离的最大值为________.(2)在四面体ABCD中,AB=1,BC=CD=3,AC=2,当四面体ABCD的体积最大时,其外接球的表面积为( )A.2πB.3πC.6πD.8π(3)已知四棱锥S-ABCD的所有顶点在同一球面上,底面ABCD是正方形且球心O在此平面内,当四棱锥的体积取得最大值时,其表面积等于16+163,则球O的体积等于( )A.42π3 B.162π3 C.322π3 D.642π3(4)三棱锥A-BCD内接于半径为5的球O中,AB=CD=4,则三棱锥A-BCD的体积的最大值为( )A.43B.83C.163D.323(5)已知正四棱柱的顶点在同一个球面上,且球的表面积为12π,当正四棱柱的体积最大时,正四棱柱的高为_ _______.【对点训练】1.三棱锥P-ABC的四个顶点都在体积为500π3的球的表面上,底面ABC所在的小圆面积为16π,则该三棱锥的高的最大值为( )A.4B.6C.8D.102.(2015·全国Ⅱ)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点.若三棱锥O-ABC体积的最大值为36,则球O的表面积为( )A.36πB.64πC.144πD.256π3.已知点A,B,C,D均在球O上,AB=BC=6,AC=23.若三棱锥D-ABC体积的最大值为3,则球O的表面积为________.4.在三棱锥A-BCD中,AB=1,BC=2,CD=AC=3,当三棱锥A-BCD的体积最大时,其外接球的表面积为________.5.已知三棱锥D-ABC的所有顶点都在球O的球面上,AB=BC=2,AC=22,若三棱锥D-ABC体积的最大值为2,则球O的表面积为( )A.8πB.9πC.25π3D.121π96.三棱锥A-BCD的一条棱长为a,其余棱长均为2,当三棱锥A-BCD的体积最大时,它的外接球的表面积为( )A.21π4B.20π3C.5π4D.5π37.已知三棱锥O-ABC的顶点A,B,C都在半径为2的球面上,O是球心,∠AOB=120°,当△AOC与△BOC的面积之和最大时,三棱锥O-ABC的体积为( )A.32B.233C.23D.138.(2018·全国Ⅲ)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且其面积为93,则三棱锥D-ABC体积的最大值为( )A.123B.183C.243D.5439.已知球的直径SC=4,A,B是该球球面上的两点,∠ASC=∠BSC=30˚,则棱锥S-ABC的体积最大为( )A.2B.83C.3D.2310.四棱锥P-ABCD的底面为矩形,矩形的四个顶点A,B,C,D在球O的同一个大圆上,且球的表面积为16π,点P在球面上,则四棱锥P-ABCD体积的最大值为( )A.8B.83C.16D.16311.(2016·全国Ⅲ)在封闭的直三棱柱ABC-A1B1C1内有一个体积为V的球.若AB⊥BC,AB=6,BC =8,AA1=3,则V的最大值是( )A.4πB.9π2C.6πD.32π312.已知半径为1的球O中内接一个圆柱,当圆柱的侧面积最大时,球的体积与圆柱的体积的比值为___.13.如图,在矩形ABCD中,已知AB=2AD=2a,E是AB的中点,将△ADE沿直线DE翻折成△A1DE,连接A1C.若当三棱锥A1-CDE的体积取得最大值时,三棱锥A1-CDE外接球的体积为82π3,则a=( )A.2B.2C.22D.414.已知三棱锥S-ABC的顶点都在球O的球面上,且该三棱锥的体积为23,SA⊥平面ABC,SA=4,∠ABC=120°,则球O的体积的最小值为________.专题十 内切球模型【方法总结】以三棱锥P -ABC 为例,求其内切球的半径.方法:等体积法,三棱锥P -ABC 体积等于内切球球心与四个面构成的四个三棱锥的体积之和;第一步:先求出四个表面的面积和整个锥体体积;第二步:设内切球的半径为r ,球心为O ,建立等式:V P -ABC =V O -ABC +V O -PAB +V O -PAC +V O -PBC ⇒V P -ABC =13S △ABC ·r +13S △PAB ·r +13S △PAC ·r +13S △PBC ·r =13(S △ABC +S △PAB +S △PAC +S △PBC )·r ;第三步:解出r =3V P -ABC S O -ABC +S O -PAB +S O -PAC +S O -PBC =3V S 表.秒杀公式(万能公式):r =3V S 表【例题选讲】例10.[例] (1)已知一个三棱锥的所有棱长均为2,则该三棱锥的内切球的体积为________.(2)(2020·全国Ⅲ)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为________.(3)阿基米德(公元前287年~公元前212年)是古希腊伟大的哲学家、数学家和物理学家,他和高斯、牛顿并列被称为世界三大数学家.据说,他自己觉得最为满意的一个数学发现就是“圆柱内切球体的体积是圆柱体积的三分之二,并且球的表面积也是圆柱表面积的三分之二”.他特别喜欢这个结论.要求后人在他的墓碑上刻着一个圆柱容器里放了一个球,如图,该球顶天立地,四周碰边.若表面积为54π的圆柱的底面直径与高都等于球的直径,则该球的体积为( )A.4πB.16πC.36πD.64π3(4)已知三棱锥P -ABC 的三条侧棱PA ,PB ,PC 两两互相垂直,且PA =PB =PC =2,则三棱锥P -ABC 的外接球与内切球的半径比为________.(5)正四面体的外接球和内切球上各有一个动点P 、Q ,若线段PQ 长度的最大值为436,则这个四面体的棱长为________.【对点训练】1.若一个正四面体的表面积为S 1,其内切球的表面积为S 2,则S 1S 2=________.2.已知一个平放的各棱长为4的三棱锥内有一个小球O (重量忽略不计),现从该三棱锥顶端向内注水,小球慢慢上浮,当注入的水的体积是该三棱锥体积的78时,小球与该三棱锥各侧面均相切(与水面也相切),则小球的表面积等于( )A.7π6 B.4π3 C.2π3 D.π23.已知四棱锥P -ABCD 的底面ABCD 是边长为6的正方形,且PA =PB =PC =PD ,若一个半径为1的球与此四棱锥所有面都相切,则该四棱锥的高是( )A.6 B.5C.92D.944.将半径为3,圆心角为2π3的扇形围成一个圆锥,则该圆锥的内切球的表面积为( )A.π B.2π C.3π D.4π。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微专题90 取球问题一、基础知识:在很多随机变量的题目中,常以“取球”作为故事背景,通过对“取球”提出不同的要求,来考察不同的模型,常见的模型及处理方式如下:1、独立重复试验模型:关键词“可放回的抽取”,即下一次的取球试验与上一次的相同。
2、超几何分布模型:关键词“不放回的抽取”3、与条件概率相关:此类问题通常包含一个抽球的规则,并一次次的抽取,要注意前一次的结果对后一步抽球的影响4、古典概型:要注意虽然题目中会说明“相同的”小球,但是为了能使用古典概型(保证基本事件为等可能事件),通常要将“相同的”小球视为“不同的”元素,在利用排列组合知识进行分子分母的计数。
5、数字问题:在小球上标注数字,所涉及的问题与数字相关(奇,偶,最大,最小等),在解决此类问题时,要将数字模型转化为“怎样取球”的问题,从而转化为前几个类型进行求解。
二、典型例题:例1:一袋中有6个黑球,4个白球(1)不放回地依次取出3个球,已知第一次取出的是白球,求第三次取到黑球的概率 (2)有放回地依次取出3个球,已知第一次取出的是白球,求第三次取到黑球的概率 (3)有放回的依次取出3个球,求取到白球个数X 的分布列,期望和方差(1)思路:因为是不放回的取球,所以后面取球的情况受到前面的影响,要使用条件概率相关公式进行计算。
第一次已经取到白球,所以剩下6个黑球,3个白球;若第二次取到黑球,则第三次取到黑球的概率为6598⋅,若第二次取到白球,则第三次取到黑球的概率为3698⋅,从而能够得到第三次取到黑球的概率解:设事件A 为“不放回取球,第一次取出白球时,第三次取到黑球”()65364829898723P A ∴=⋅+⋅== (2)思路:因为是有放回的取球,所以每次取球的结果互不影响,属于独立重复试验模型,所以第三次取球时依然是6个黑球,3个白球,取得黑球的概率为69解:设事件B 为“有放回取球,第一次取出白球时,第三次取到黑球”()23P B ∴=(3)思路:本问依然属于独立重复试验模型,X 的取值为0,1,2,3,则X 符合二项分布,即23,5XB ⎛⎫⎪⎝⎭,所以可通过二项分布的概率计算公式求得概率,得到分布列 解:X 的取值为0,1,2,3,依题意可得:23,5XB ⎛⎫ ⎪⎝⎭()30332705125P X C ⎛⎫∴=== ⎪⎝⎭ ()2133254155125P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭ ()12233236255125P X C ⎛⎫⎛⎫=== ⎪⎪⎝⎭⎝⎭ ()3332835125P X C ⎛⎫=== ⎪⎝⎭23,5XB ⎛⎫⎪⎝⎭26355EX ∴=⋅= 231835525DX =⋅⋅=例2:已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的3个红球和3个黑球,现从甲,乙两个盒内各任取2个球 (1)求取出的4个球中没有红球的概率 (2)求取出的4个球中恰有1个红球的概率(3)设ξ为取出的4个球中红球的个数,求ξ的分布列和数学期望思路:本题这三问的关键在于所取球中红球的个数,考虑红球个数来自于两个盒内拿出红球个数的总和,所以可将红球总数进行分配,从而得到每个盒中出红球的情况,进而计算出概率(1)设事件i A 为“甲盒中取出i 个红球”,事件j B 为“乙盒中取出j 个红球”则()()2213332246,i i j ji j C C C C P A P B C C --== 设事件A 为“4个球中没有红球”则()()()0202133300224633161510C C C C P A P A P B C C =⋅=⋅=⋅=(2)设事件B 为“4个球中恰有1个红球”()()()0211110213331333011022224646393326156155C C C C C C C C P B P A B P A B C C C C ∴=+=⋅+⋅=⋅+⋅= (3)ξ可取的值为0,1,2,3()()1010P P A ξ∴===()()215P P B ξ=== ()()()0220111113331333021122224646225C C C C C C C C P P A B P A B C C C C ξ==+=⋅+⋅= ()()11021333122246331361510C C C C P P A B C C ξ===⋅=⋅=ξ∴的分布列为:01231055102E ξ∴=⨯+⨯+⨯+⨯=例3:甲、乙两袋中各装有大小相同的小球9个,其中甲袋中红色、黑色、白色小球的个数分别为2、3、4,乙袋中红色、黑色、白色小球的个数均为3,某人用左右手分别从甲、乙两袋中取球.(1)若左右手各取一球,求两只手中所取的球颜色不同的概率;(2)若左右手依次各取两球,称同一手中两球颜色相同的取法为成功取法,记成功取法次数为随机变量X ,求X 的分布列和数学期望.解:(1)设事件A 为“两只手中所取的球颜色不同”,则A 为“两只手中所取的球颜色相同”()()2333432119999993P A P A ⎛⎫=-=-⋅+⋅+⋅= ⎪⎝⎭(2)X 可取的值为0,1,2左手取球成功的概率222234129518C C C P C ++== 右手取球成功的概率22233322914C C C P C ++==()511301118424P X ⎛⎫⎛⎫∴==-⋅-= ⎪ ⎪⎝⎭⎝⎭()5151711118418418P X ⎛⎫⎛⎫==-⋅+⋅-= ⎪ ⎪⎝⎭⎝⎭ ()515218472P X ==⋅=X ∴的分布列为01224187236EX ∴=⨯+⨯+⨯= 例4:袋中装有若干个质地均匀大小相同的红球和白球,白球数量是红球数量的两倍,每次从袋中摸出一个球,然后放回,若累计3次摸到红球则停止摸球,否则继续摸球直到第5次摸球后结束(1)求摸球四次就停止的事件发生的概率(2)记摸到红球的次数为ξ,求随机变量ξ的分布列及其期望(1)思路:本题为有放回摸球,可理解为独立重复试验,如果摸球四次就停止,说明在这四次中一共摸到3次红球,且前三次有两次摸到红球,第四次又摸到红球。
通过红白球数量关系可知一次摸球中摸到红球的概率为13,然后可按照分析列式并求出概率。
解:设事件A 为“摸球四次即停止摸球“解:依题意可得:在一次摸球中,摸到红球的概率为13()223214339P A C ⎛⎫⎛⎫∴== ⎪ ⎪⎝⎭⎝⎭(2)思路:可知ξ可取的值为0,1,2,3,当0,1,2ξ=时,摸球是通过完成5次后停止,所以可利用独立重复试验模型计算概率;当3ξ=时,按照规则有可能摸球提前结束,所以要按摸球的次数(3次,4次,5次)分类讨论后再汇总 解:ξ可取的值为0,1,2,3()523203243P ξ⎛⎫∴=== ⎪⎝⎭ ()4151280133243P C ξ⎛⎫⎛⎫=== ⎪⎪⎝⎭⎝⎭ ()23251280233243P C ξ⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭()32222234112112151173333333324381P C C ξ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==++== ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ ξ∴的分布列为:01232432432438181E ξ∴=⨯+⨯+⨯+⨯=例5:某商场在店庆日进行抽奖促销活动,当日在该店消费的顾客可参加抽奖.抽奖箱中有大小完全相同的4个小球,分别标有字“生”“意”“兴”“隆”.顾客从中任意取出1个球,记下上面的字后放回箱中,再从中任取1个球,重复以上操作,最多取4次,并规定若取出“隆”字球,则停止取球.获奖规则如下:依次取到标有“生”“意”“兴”“隆”字的球为一等奖;不分顺序取到标有“生”“意”“兴”“隆”字的球,为二等奖;取到的4个球中有标有“生”“意”“兴”三个字的球为三等奖.(1)求分别获得一、二、三等奖的概率; (2)设摸球次数为ξ,求ξ的分布列和数学期望. 解:(1)设i A 为“获得i 等奖”()1111114444256P A =⨯⨯⨯=()()3231111514444256P A A =⨯⨯⨯⋅-=()1233411119444464P A C A =⋅⨯⨯⨯⋅= (2)摸球次数ξ可取的值为1,2,3,4()114P ξ∴==()31324416P ξ==⋅= ()3319344464P ξ==⋅⋅= ()33327444464P ξ==⋅⋅=ξ∴的分布列为:123441664644E ξ∴=⨯+⨯+⨯+⨯=例6:学校游园活动有这样一个游戏项目:甲箱子里装有3个白球,2个黑球;乙箱子里面装有1个白球,2个黑球;这些球除了颜色外完全相同,每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖(每次游戏后将球放回原箱) (1)求在一次游戏中 ① 摸出3个白球的概率 ② 获奖的概率(2)求在三次游戏中获奖次数X 的分布列与期望(1)思路:本题的结果实质上是一个“拼球”的过程,即两个箱子各自拿球,然后统计白球的个数。
则①:若摸出3个白球,则情况为甲2乙1。
②:若获奖,则白球个数不少于2个,可分成白球有3个或有2个两种情况,分别求出概率再求和即可 解:设i A 为“甲箱子里取出i 个白球”,j B 为“乙箱子里取出j 个白球” ① 设事件A 为“摸出3个白球”()()21131221215315C C C P A P A B C C ⋅∴==⋅= ② 设事件B 为“获奖”(即白球不少于2个)()()()()1111223212321120212222535317510C C C C C C P B P A B P A B P A B C C C C ⋅∴=++=⋅+⋅+= (2)思路:三次游戏可视为独立重复试验,所以获奖次数X 服从二项分布,由(1)可得73,10XB ⎛⎫⎪⎝⎭,从而可利用公式计算概率,列出分布列 解:X 可取的值为0,1,2,3,依题意可得:73,10XB ⎛⎫ ⎪⎝⎭()3033270101000P X C ⎛⎫∴=== ⎪⎝⎭ ()21373189110101000P X C ⎛⎫⎛⎫=== ⎪⎪⎝⎭⎝⎭()22373441210101000P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭ ()33373433101000P X C ⎛⎫=== ⎪⎝⎭X ∴的分布列为:73,10XB ⎛⎫⎪⎝⎭72131010EX ∴=⋅= 例7:一个袋子中装有6个红球和4个白球,假设袋子中的每一个球被摸到可能性是相等的。
(1)从袋子中任意摸出3个球,求摸出的球均为白球的概率;(2)一次从袋子中任意摸出3个球,若其中红球的个数多于白球的个数,则称“摸球成功”(每次操作完成后将球放回),某人连续摸了3次,记“摸球成功”的次数为ξ,求ξ的分布列和数学期望。