§11.3旋转对称图形与中心对称图形

合集下载

11.3旋转对称图形和中心对称图形作业设计

11.3旋转对称图形和中心对称图形作业设计
进一步加深学生对旋转 对称图形和旋转角概念 的理解.感受旋转对称 图形在生活中的应用.
(A)
(B)
(C)
(D)
课后作业— A组
3.如图,如果四边形CDEF旋转后能与正方形ABCD 重合,那么图形所在的平面可以作旋转中心的点 共有几个?分别进行说明,此时它的旋转角是几 度?(练习册P62/3)
A D E
M B C F
A
D
E
进一步加深学 生对旋转对称图形 和中心对称图形概 念的理解.复习巩 固旋转中心和旋转 角的概念,培养思 维的完整性,学习 分类讨论的数学方 法.
B
A
C
D
F
E
M B C F
课后作业—B组
1.如图,4张扑克牌放在桌上,现将其中的 某一张在原地旋转,发现旋转后在桌上看到 的牌中的图形和原先的一模一样.请问旋转 的是哪一张牌?( 练习册P63/3)
可以作为旋转中心的点有3个,它们是 点C、点D和线段CD的中点M.
以点C为旋转中心时,图形围绕点C, 逆时针旋转能与正方形ABCD重合. 以点D为旋转中心时,图形围绕点D 顺时针旋转能与正方形ABCD重合. 以M为旋转中心时,图形围绕点M顺时针 或逆时针旋转能与正方形ABCD重合 .
B A
C
D
F E
60°
120° 120° 120°
60°
60°
60° 60° 60°
引导学生进 一步理解旋 转对称图形 和中心对称 图形的区别 与联系.
两种图形都是把一个图形绕着一个定点旋转一个角度后, 与初始图形重合. 中心对称图形是旋转对称图形的特例. 当旋转角为180 °时,这个图形是中心对称图形.

课堂练习—B组 2.下列电子显示屏上的数字哪些是 中心对称图形?(补充) 解:数字 是中心对称图形

核心考点01图形的旋转与中心对称 (解析版)

核心考点01图形的旋转与中心对称 (解析版)

核心考点01图形的旋转与中心对称目录考点一:生活中的旋转现象考点二:旋转的性质考点三:旋转对称图形考点四:中心对称考点五:中心对称图形考点六:作图-旋转变换一.生活中的旋转现象(1)旋转的定义:在平面内,把一个图形绕着某一个点O 旋转一个角度的图形变换叫做旋转.点O 叫做旋转中心,转动的角叫做旋转角,如果图形上的点P 经过旋转变为点P ′,那么这两个点叫做对应点.(2)注意:①旋转是围绕一点旋转一定的角度的图形变换,因而旋转一定有旋转中心和旋转角,且旋转前后图形能够重合,这时判断旋转的关键.②旋转中心是点而不是线,旋转必须指出旋转方向. ③旋转的范围是平面内的旋转,否则有可能旋转成立体图形,因而要注意此点. .二.旋转的性质(1)旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.(2)旋转三要素:①旋转中心; ②旋转方向; ③旋转角度.注意:三要素中只要任意改变一个,图形就会不一样.三.旋转对称图形(1)旋转对称图形如果某一个图形围绕某一点旋转一定的角度(小于360°)后能与原图形重合,那么这个图形就叫做旋转对称图形.(2)常见的旋转对称图形有:线段,正多边形,平行四边形,圆等.考点考向四.中心对称(1)中心对称的定义把一个图形绕着某个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点..(2)中心对称的性质①关于中心对称的两个图形能够完全重合;②关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.五.中心对称图形(1)定义把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.注意:中心对称图形和中心对称不同,中心对称是两个图形之间的关系,而中心对称图形是指一个图形自身的特点,这点应注意区分,它们性质相同,应用方法相同.(2)常见的中心对称图形平行四边形、圆形、正方形、长方形等等.六.作图-旋转变换(1)旋转图形的作法:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.(2)旋转作图有自己独特的特点,决定图形位置的因素较多,旋转角度、旋转方向、旋转中心,任意不同,位置就不同,但得到的图形全等.一.生活中的旋转现象(共1小题)1.(2022春•泰州月考)下列图案中,可以由一个“基本图案”连续旋转45°得到的是( )A .B .C .D .【分析】因为45°×8=360°,整个图形应由8个基本图形组成.【解答】解:根据旋转的性质可知,可以由一个“基本图案”连续旋转45°,考点精讲即经过8次旋转得到的是B.故选:B.【点评】本题考查旋转的性质.旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①定点﹣旋转中心;②旋转方向;③旋转角度.二.旋转的性质(共11小题)2.(2022春•姑苏区校级月考)如图,在正方形网格中,△EFG绕某一点旋转某一角度得到△RPQ.则旋转中心可能是( )A.点A B.点B C.点C D.点D【分析】连接ER、FP、GQ,作FP的垂直平分线,作ER的垂直平分线,作GQ的垂直平分线,交点为旋转中心.【解答】解:如图,∵△EFG绕某一点旋转某一角度得到△RPQ,∴连接ER、FP、GQ,作FP的垂直平分线,作ER的垂直平分线,作GQ的垂直平分线,∴三条线段的垂直平分线正好都过C,即旋转中心是C.故选:C.【点评】本题考查了学生的理解能力和观察图形的能力,注意:旋转时,对应顶点到旋转中心的距离应相等且旋转角也相等,对称中心在连接对应点线段的垂直平分线上.3.(2022春•梁溪区校级期中)如图,将△AOB绕点O按逆时针方向旋转50°后得到△A'OB',若∠AOB=15°,则∠AOB'的度数是 35° .【分析】根据旋转的性质可知,旋转角等于60°,从而可以得到∠BOB′的度数,由∠AOB=15°可以得到∠AOB′的度数.【解答】解:∵△AOB绕点O按逆时针方向旋转50°后得到△A′OB′,∴∠BOB′=50°.∵∠AOB=15°,∴∠AOB′=∠BOB′﹣∠AOB=50°﹣15°=35°.故答案为:35°.【点评】本题考查旋转的性质,解题的关键明确旋转角是什么,对应边旋转前后的夹角是旋转角.4.(2022春•邗江区校级月考)如图,△ABC绕着顶点A逆时针旋转到△ADE,∠B=40°,∠E=60°,AB∥DE,求∠DAC的度数.【分析】根据旋转的性质得∠C=∠E=60°,∠D=∠B=40°,再根据平行线的性质的∠BAD=∠D=40°,从而得出答案.【解答】解:∵△ABC绕着顶点A逆时针旋转到△ADE,∴△ABC≌△ADE,∴∠C=∠E=60°,∠D=∠B=40°,∵∠B=40°,∴∠BAC=180°﹣40°﹣60°=80°,∵AB∥DE,∴∠BAD=∠D=40°,∴∠DAC=∠BAC﹣∠BAD=80°﹣40°=40°,∴∠DAC的度数为40°.【点评】本题主要考查了旋转的性质,平行线的性质,三角形内角和定理等知识,熟练掌握旋转的性质是解题的关键.5.(2022春•沭阳县月考)如图,在四边形ABCD中,AB∥CD,BC⊥CD,垂足为点C,E是AD的中点,连接BE并延长交CD的延长线于点F.(1)图中△EFD可以由△ EBA 绕着点 E 旋转 180 度后得到;(2)写出图中的一对全等三角形 △EBA≌△EFD ;(3)若AB=4,BC=5,CD=6.求△BCF的面积.【分析】(1)由已知条件可证明△EBA≌△EFD,所以△EFD可以由△EBA绕点E旋转180°后得到;(2)由(1)可得出答案;(3)由(1)可知△EBA≌△EFD,所以求△BCF的面积可转化为求梯形ABCD的面积,根据梯形的面积公式计算即可.【解答】解:(1)∵AB∥CD,∴∠ABE=∠F,∠A=∠FDE,∵E是AD的中点,∴AE=CE,在△EBA和△EFD中,,∴△EBA≌△EFD(AAS),∴△EFD可以由△EBA绕点E旋转180°后得到,故答案为:EBA,E,180°;(2)由(1)可知△EBA ≌△EFD ,故答案为:△EBA ≌△EFD ;(3)∵△EBA ≌△EFD ,∴S △BCF =S 梯形ABCD ==25.【点评】本题考查了全等三角形的判定、梯形的面积公式,旋转的性质,熟练掌握旋转的性质是解题的关键.6.(2022春•沭阳县月考)如图,点O 是等边三角形ABC 内的一点,∠BOC =150°,将△BOC 绕点C 按顺时针旋转得到△ADC ,连接OD ,OA .(Ⅰ)求∠ODC 的度数;(Ⅱ)若OB =2,OC =3,求AO 的长.【分析】(Ⅰ)根据旋转的性质得到三角形ODC 为等边三角形即可求解;(Ⅱ)在Rt △AOD 中,由勾股定理可求得AO 的长,再在直角△AOD 中利用三角函数的定义即可求解.【解答】解:(Ⅰ)由旋转的性质得,CD =CO ,∠ACD =∠BCO ,∵∠ACB =60°,∴∠DCO =60°,∴△OCD 为等边三角形,∴∠ODC =60°;(Ⅱ)由旋转的性质得,AD =OB =2,∵△OCD 为等边三角形,∴OD =OC =3,∵∠BOC =150°,∠ODC =60°,∴∠ADO =90°,在Rt △AOD 中,由勾股定理得:AO ==.【点评】本题主要考查了旋转的性质以及三角函数的定义,正确求得AO的长是解题的关键.7.(2022春•铜山区校级月考)如图,在△ABC中,∠BAC=120°,以BC为边向形外作等边三角形BCD,把△ABD绕着点D按顺时针方向旋转60°后得到△ECD,若AB=5,AC=3,求:(1)∠BAD的度数;(2)AD的长.【分析】(1)由旋转的性质可得AD=DE,BC=CD,AB=CE,∠ADE=∠BDC=60°,∠ABD=∠DCE,可证△ADE是等边三角形,可得∠DAE=60°,AD=AE,即可求解;(2)由等边三角形的性质可求AD=AE的长.【解答】解:(1)∵把△ABD绕着点D按顺时针方向旋转60°后得到△ECD,∴AD=DE,BC=CD,AB=CE,∠ADE=∠BDC=60°,∠ABD=∠DCE,∵∠BAC+∠BDC=180°,∴∠ABD+∠ACD=180°,∴∠ACD+∠DCE=180°,∴点A,点C,点E三点共线,又∵AD=DE,∠ADE=60°,∴△ADE是等边三角形,∴∠DAE=60°,AD=AE,∴∠BAD=60°;(2)∵AB=5=CE,AC=3,∴AE=AC+CE=8,∴AD=AE=8.【点评】本题考查了旋转的性质,全等三角形的性质,等边三角形的判定和性质,证明点A,点C,点E三点共线是解题的关键.8.(2022春•东海县期末)如图,用四根木条钉成矩形框ABCD,把边BC固定在地面上,向右推动矩形框,矩形框的形状会发生改变(四边形具有不稳定性).(1)通过操作观察可知,线段EB由AB旋转得到,所以EB=AB.同理可得FC=CD,EF= AD ;(2)进一步观察,我们还会发现EF∥AD,请证明这一结论;(3)已知BC=30cm,DC=80cm,若BE恰好经过原矩形DC边的中点H,求此时四边形BCFE的面积.【分析】(1)由推动矩形框时,矩形ABCD的各边的长度没有改变,可求解;(2)通过证明四边形BEFC是平行四边形,可得结论;(3)由勾股定理可求BH的长,由面积法可求CG的长,即可求解.【解答】(1)解:∵把边BC固定在地面上,向右边推动矩形框,矩形的形状会发生改变,∴矩形ABCD的各边的长度没有改变,∴AB=BE,EF=AD,CF=CD,故答案为:AD;(2)证明:∵四边形ABCD是矩形,∴AD∥BC,AB=CD,AD=BC,∵AB=BE,EF=AD,CF=CD,∴BE=CF,EF=BC,∴四边形BEFC是平行四边形,∴EF∥BC,∴EF∥AD;(3)解:如图,过点C作CG⊥BE于G,∵DC=AB=BE=80cm,点H是CD的中点,∴CH=DH=40cm,在Rt△BHC中,BH===50(cm),=×BC×CH=×BH×CG,∵S△BCH∴30×40=50×CG,∴CG=24,∴四边形BCFE的面积=BE×CG=80×24=1920(cm2).【点评】本题考查了旋转的性质,矩形的性质,平行四边形的判定和性质,勾股定理,相似三角形的判定和性质等知识,灵活运用这些性质解决问题是解题的关键.9.(2022•溧阳市模拟)已知:如图,将△ABC绕点C旋转一定角度得到△EDC,若∠ACE=2∠ACB.(1)求证:△ADC≌△ABC;(2)若AB=BC=5,AC=6,求四边形ABCD的面积.【分析】(1)根据旋转的性质得到∠ACB=∠DCE,BC=CD,根据全等三角形的判定定理即可得到结论;(2)根据全等三角形的性质得到AB=AD,推出四边形ABCD是菱形,根据菱形的性质得到AC⊥BD,设AC,BD交于O,根据勾股定理得到BO===4,求得BD=8,根据菱形的面积公式即可得到结论.【解答】(1)证明:∵将△ABC绕点C旋转一定角度得到△EDC,∴∠ACB=∠DCE,BC=CD,∵∠ACE=2∠ACB,∴∠ACE=2∠DCE,∴∠ACD=∠DCE=∠ACB,在△ADC与△ABC中,,∴△ADC≌△ABC(SAS);(2)解:由(1)知,△ADC≌△ABC,∴AB=AD,∵AB=BC,BC=CD,∴AB=BC=CD=AD,∴四边形ABCD是菱形,∴AC⊥BD,设AC,BD交于O,∴AO=AC=3,∴BO===4,∴BD=8,∴四边形ABCD的面积=AC•BD=6×8=24.【点评】本题考查了旋转的性质全等三角形的判定和性质,菱形的判定和性质,熟练掌握全等三角形的判定和性质是解题的关键.10.(2022春•滨海县月考)如图,点O是等边三角形ABC内的一点,∠BOC=150°,将△BOC绕点C按顺时针方向旋转一定的角度,得到△ADC,连接OD,OA.(1)求∠ODC的度数;(2)试判断AD与OD的位置关系,并说明理由;(3)若OB=2,OC=3,求AO的长(直接写出结果).【分析】(1)根据旋转的性质得到三角形ODC为等边三角形即可求解;(2)将△BOC绕点C按顺时针方向旋转一定的角度,得到△ADC,可知∠ADC=∠BOC=150°,即得∠ADO=∠ADC﹣∠ODC=90°,故AD⊥OD;(3)在Rt△AOD中,由勾股定理即可求得AO的长.【解答】解:(1)由旋转的性质得,CD=CO,∠ACD=∠BCO,∴∠ACD+∠ACO=∠BCO+∠ACO,即∠DCO=∠ACB,∵三角形ABC是等边三角形,∴∠ACB=60°,∴∠DCO=60°,∴△OCD为等边三角形,∴∠ODC=60°;(2)AD与OD的位置关系是:AD⊥OD,理由如下:由(1)知∠ODC=60°,∵将△BOC绕点C按顺时针方向旋转一定的角度,得到△ADC,∴∠ADC=∠BOC=150°,∴∠ADO=∠ADC﹣∠ODC=90°,∴AD⊥OD;(3)由旋转的性质得,AD=OB=2,∵△OCD为等边三角形,∴OD=OC=3,在Rt△AOD中,由勾股定理得:AO===.【点评】本题考查等边三角形中的旋转变换,涉及直角三角形判定、勾股定理等知识,解题的关键是掌握旋转的性质,旋转不改变图形的大小和形状.11.(2022春•相城区校级期末)如图,在△ABC中,∠BAC=50°,将△ABC绕点A按逆时针方向旋转后得△AB1C1.当B1B∥AC时,求∠BAC1的度数.【分析】先依据平行的性质可求得∠ABB1的度数,然后再由旋转的性质得到△AB1B为等腰三角形,∠B1AC1=50°,再求得∠BAB1的度数,最后依据∠BAC1=∠BAB1﹣∠C1AB1求解即可.【解答】解:∵B1B∥AC,∴∠ABB1=∠BAC=50°.∵由旋转的性质可知:∠B1AC1=∠BAC=50°,AB=AB1.∴∠ABB1=∠AB1B=50°.∴∠BAB1=80°∴∠BAC1=∠BAB1﹣∠C1AB1=80°﹣50°=30°.【点评】本题主要考查的是旋转的性质、平行线的判断,求得∠BAB1的度数是解题的关键.12.(2022春•南京期中)已知:如图,在△ABC中,∠BAC=120°,以BC为边向形外作等边三角形BCD,把△ABD绕着点D按顺时针方向旋转60°后得到△ECD,且A、C、E三点共线,若AB=3,AC=2,求∠BAD的度数与AD的长.【分析】由旋转的性质可得出∠ADE=60°、DA=DE,进而可得出△ADE为等边三角形以及∠DAE=60°,由点A、C、E在一条直线上可得出∠BAD=∠BAC﹣∠DAE=60°;由点A、C、E在一条直线上可得出AE=AC+CE,根据旋转的性质可得出CE=AB,结合AB=3、AC=2可得出AE的长度,再根据等边三角形的性质即可得出AD的长度.【解答】解:∵△ABD绕着点D按顺时针方向旋转60°后得到△ECD,∴∠ADE=60°,DA=DE,∴△ADE为等边三角形,∴∠DAE=60°.∵点A、C、E在一条直线上,∴∠BAD=∠BAC﹣∠DAE=120°﹣60°=60°.∵点A、C、E在一条直线上,∴AE=AC+CE.∵△ABD绕着点D按顺时针方向旋转60°后得到△ECD,∴CE=AB,∴AE=AC+AB=2+3=5.∵△ADE为等边三角形,∴AD=AE=5.【点评】本题考查了旋转的性质以及等边三角形的判定与性质,根据旋转的性质结合旋转角度为60°找出△ADE为等边三角形是解题的关键.三.旋转对称图形(共3小题)13.(2022春•东台市月考)正方形至少旋转 90 度才能与自身重合.【分析】正方形可以被其对角线平分成4个全等的部分,则旋转的角度即可确定.【解答】解:正方形可以被其对角线平分成4个全等的部分,则旋转至少360÷4=90度,能够与本身重合.故答案为:90.【点评】本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.注意基础概念的熟练掌握.14.(2022春•常州期末)如图,用六个全等的等边三角形可以拼成一个六边形,三角形的公共顶点为O,则该六边形绕点O至少旋转 60 °后能与原来的图形重合.【分析】根据旋转角及旋转对称图形的定义作答.【解答】解:∵360°÷6=60°,∴该六边形绕中心至少旋转60度后能和原来的图案互相重合.故答案为:60.【点评】本题考查了旋转角的定义及求法,对应点与旋转中心所连线段的夹角叫做旋转角.15.(2022春•洪泽区校级月考)等边三角形绕一点至少旋转 120 °与自身完全重合.【分析】等边三角形的中心到三个顶点的距离相等,相邻顶点与中心连线的夹角相等,求旋转角即可.【解答】解:因为等边三角形的中心到三个顶点的距离相等,相邻顶点与中心连线的夹角相等,所以,旋转角为360°÷3=120°,故至少旋转120度才能与自身重合.故答案为:120.【点评】本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.四.中心对称(共5小题)16.(2022春•张家港市校级月考)如图,菱形ABCD的对角线AC、BD交于点O,AC=4,BD=16,将△BOC绕着点C旋转180°得到△BOC,则点A与点B'之间的距离为( )A.6B.8C.10D.12【分析】根据菱形ABCD的对角线AC、BD交于点O,AC=4,BD=16,可得AC⊥BD,所以∠BOC=90°,根据△BOC绕着点C旋转180°得到△B′O′C,所以∠CO′B′=∠BOC=90°,AO′=6,OB′=8,再根据勾股定理即可求出点A与点B′之间的距离.【解答】解:∵菱形ABCD的对角线AC、BD交于点O,AC=4,BD=16,∴AC⊥BD,∴∠BOC=90°,∵△BOC绕着点C旋转180°得到△B′O′C,∴∠CO′B′=∠BOC=90°,∴O′C=OC=OA=AC=2,∴AO′=6,∵OB=OD=O′B′=BD=8,在Rt△AO′B′中,根据勾股定理,得:AB′===10.则点A与点B′之间的距离为10.故选:C.【点评】本题考查了中心对称、旋转的性质,菱形的性质,勾股定理等知识,解决本题的关键是掌握旋转的性质.17.(2022春•相城区校级期中)如图,菱形ABCD的对角线AC、BD交于点O,将△BOC绕着点C旋转180°得到△B'O'C,若AC=2,AB′=5,则菱形ABCD的边长是( )A.3B.4C.D.【分析】根据菱形的性质、旋转的性质,得到OA=OC=O'C=1、OB⊥OC、O'B'⊥O'C、BC=B′C,根据AB′=5,利用勾股定理计算O'B',再次利用勾股定理计算B'C即可.【解答】解:∵四边形ABCD是菱形,且△BOC绕着点C旋转180°得到△B'O'C,AC=2,∴OA=OC=O'C=1,OB⊥OC,BC=B′C,∴O'B'⊥O'C,O'A=AC+O'C=2+1=3,∵AB′=5,∴,∴,∴,即菱形ABCD的边长是,故选:D.【点评】本题考查了菱形的性质、旋转的性质以及勾股定理等知识,熟练掌握菱形的基本性质并灵活运用勾股定理是解题的关键.18.(2022春•涟水县校级月考)如图,在平面直角坐标系xOy中,△ABC经过中心对称变换得到△A′B′C′,那么对称中心的坐标为( )A.(0,0)B.(﹣1,0)C.(﹣1,﹣1)D.(0,﹣1)【分析】根据点A与点A'关于(﹣1,0)对称,点B与点B'关于(﹣1,0)对称,点C与点C′关于(﹣1,0)对称,得出△ABC与△A′B′C′关于点(﹣1,0)成中心对称.【解答】解:由图可知,点A与点A'关于(﹣1,0)对称,点B与点B'关于(﹣1,0)对称,点C与点C′关于(﹣1,0)对称,所以△ABC与△A′B′C′关于点(﹣1,0)成中心对称,故选:B.【点评】本题考查了坐标与图形变化﹣旋转,准确识图,观察出两三角形成中心对称,对称中心是(﹣1,0)是解题的关键.19.(2022春•江阴市校级月考)平面直角坐标系中,点P(3,﹣2)关于点Q(1,0)成中心对称的点的坐标是 (﹣1,2) .【分析】连接PQ并延长到点P′,使P′Q=PQ,设P′(x,y),则x<0,y>0.过P作PM⊥x轴于点M,过P′作PN⊥x轴于点N.利用AAS证明△QP′N≌△QPM,得出QN=QM,P′N=PM,即1﹣x=3﹣1,y=2,求出x=﹣1,y=2,进而得到P′的坐标.【解答】解:如图,连接PQ并延长到点P′,使P′Q=PQ,设P′(x,y),则x<0,y>0.过P作PM⊥x轴于点M,过P′作PN⊥x轴于点N.在△QP′N与△QPM中,,∴△QP′N≌△QPM(AAS),∴QN=QM,P′N=PM,∴1﹣x=3﹣1,y=2,∴x=﹣1,y=2,∴P′(﹣1,2).故答案为(﹣1,2).【点评】本题考查了坐标与图形变化﹣旋转,全等三角形的判定与性质,准确作出点P(3,﹣2)关于点(1,0)对称的点P′是解题的关键.20.(2022春•铜山区校级月考)如图,AB⊥BC,AB=BC=2cm,弧OA与弧OC关于点O中心对称,则AB、BC、弧CO、弧OA所围成的面积是 2 cm2.【分析】由弧OA与弧OC关于点O中心对称,根据中心对称的定义,如果连接AC,则点O为AC的中点,则题中所求面积等于△BAC的面积.【解答】解:连接AC.∵与关于点O中心对称,∴点O为AC的中点,∴AB、BC、弧CO、弧OA所围成的面积=△BAC的面积==2cm2.故答案为:2.【点评】根据中心对称的性质,把所求的不规则图形转化为规则图形即△BAC的面积,是解决本题的关键.五.中心对称图形(共2小题)21.(2022春•南京期末)下列四个图形中,既是轴对称图形,又是中心对称图形的是( )A.B.C.D.【分析】根据中心对称图形与轴对称图形的概念进行判断即可.【解答】解:A.不是中心对称图形,是轴对称图形,故此选项不合题意;B.是中心对称图形,不是轴对称图形,故此选项不合题意;C.不是中心对称图形,是轴对称图形,故此选项不合题意;D.既是中心对称图形,也是轴对称图形,故此选项符合题意;故选:D.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与自身重合.22.(2022春•泰兴市期末)江苏省第二十届运动会将于今年8月28日在泰州举行,运动会会徽依据“江苏•泰州”首字母为原型进行设计.下列字母中,是中心对称图形的有( )个.A.1B.2C.3D.4【分析】根据中心对称图形的概念判断.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.【解答】解:“J”、“T”都不能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形,“S”、“Z”能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以是中心对称图形,故选:B.【点评】本题考查的是中心对称图形,中心对称图形是要寻找对称中心,旋转180度后与自身重合.六.作图-旋转变换(共6小题)23.(2022春•通州区期末)如图,在平面直角坐标系中,A(4,3),B(1,4),C(1,1),将△ABC绕点O逆时针旋转90°,得到△A'B'C'.(1)请在图中画出△A'B'C',并求出△A'B'C'的面积;(2)若△ABC内一点M(a,b),则在△A'B'C'内与M相对应的点M'的坐标是 (﹣b,a) .【分析】(1)根据旋转的性质找出对应点即可求解;再由面积公式求得△A'B'C'的面积;(2)由旋转的性质可得答案.【解答】解:(1)如图所示,△A'B'C'即为所求;∴△A'B'C'的面积=;(2)在△A'B'C'内与M相对应的点M'的坐标是(﹣b,a),故答案为:(﹣b,a).【点评】本题主要考查了作图﹣旋转变换,三角形的面积等知识,熟练掌握旋转的性质是解题的关键.24.(2022春•涟水县校级月考)按下列要求分别画出与四边形ABCD成中心对称的四边形:(1)以顶点A为对称中心的四边形AB1C1D1(2)以BC的中点O为对称中心的四边形A2B2C2D2【分析】(1)连接CA并延长至C1,使得AC1=CA,则就是点A的对称点(将各点与对称中心相连,并延长至相等长度,得该点的对称点);同理作出其它各点的对称点,连接成四边形即可;(2)方法同(1),连接AO并延长至A2,使AO=A2O,则A2就是点A的对称点(将各点与对称中心相连,并延长至相等长度,得该点的对称点);同理作出其它各点的对称点,连接成四边形即可.【解答】解:(1)连接CA并延长至C1,使得AC1=CA,则就是点A的对称点(将各点与对称中心相连,并延长至相等长度,得该点的对称点);同理作出其它各点的对称点,连接成四边形;如图,四边形AB1C1D1即为所求.(2)连接AO并延长至A2,使AO=A2O,则A2就是点A的对称点(将各点与对称中心相连,并延长至相等长度,得该点的对称点.);同理作出其它各点的对称点,连接成四边形,如图所示,四边形A2B2C2D2即为所求,【点评】本题考查了画中心对称图形,掌握中心对称的性质是解题的关键.25.(2022春•天宁区校级期中)正方形网格中(每个小正方形边长是1,小正方形的顶点叫做格点),△ABC 的顶点均在格点上,请在所给的直角坐标系中解答下列问题:(1)画出△ABC绕点B逆时旋转90°的△A1BC1.(2)画出△ABC关于点O的中心对称图形△A2B2C2.(3)△A1BC1可由△A2B2C2绕点M旋转得到,请写出点M的坐标.【分析】(1)将点A、C分别绕点B逆时针旋转90°得到其对应点,再首尾顺次连接即可;(2)分别作出三个顶点关于原点的对称点,再首尾顺次连接即可;(3)作C1C2、BB1中垂线,交点即为所求.【解答】解:(1)如图所示,△A1BC1即为所求.(2)如图所示,△A2B2C2即为所求.(3)如图所示,点M即为所求,其坐标为(0,﹣1).【点评】本题主要考查作图—旋转变换,解题的关键是掌握旋转变换的定义与性质.26.(2022春•阜宁县期中)方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,﹣1).(1)试作出△ABC以C为旋转中心,沿顺时针方向旋转90°后的图形△A1B1C;(2)以原点O为对称中心,再画出与△ABC关于原点O对称的△A2B2C2,并写出点C2的坐标 (﹣4,1) .【分析】(1)根据题意所述的旋转三要素,依此找到各点旋转后的对应点,顺次连接可得出△A1B1C;(2)根据中心对称点平分对应点连线,可找到各点的对应点,顺次连接可得△A2B2C2,结合直角坐标系可得出点C2的坐标.【解答】解:根据旋转中心为点C,旋转方向为顺时针,旋转角度为90°,所作图形如下:.(2)所作图形如下:结合图形可得点C2坐标为(﹣4,1).【点评】此题考查了旋转作图的知识,解答本题关键是仔细审题,找到旋转的三要素,另外要求我们掌握中心对称点平分对应点连线,难度一般.27.(2022春•锡山区期末)按要求作图,不要求写作法,但要保留作图痕迹.(1)如图1,在10×10的网格中,有一格点三角形ABC(说明:顶点都在网格线交点处的三角形叫做格点三角形).将△ABC绕点C旋转180°,得到△A′B′C,请直接画出旋转后的△A′B′C.(2)在图1中,作出AC边上的高BF,则BF的长为 .(3)如图2,已知四边形ABCD是平行四边形,E为BC上任意一点,请只用直尺(不带刻度)在边AD上找点F,使DF=BE.【分析】(1)利用旋转变换的性质分别作出A,B的对应点A′,B′;(2)利用面积法求出BF,可得结论,(3)连接AC,BD交于点O,连接EO,延长EO交AD于点F,点F即为所求.【解答】解:(1)如图,△A′B′C即为所求;=3×3﹣×2×3﹣×1×3﹣×1×1=4,(2)∵AC==,S△ABC∴×AC×BF=4,∴BF=.故答案为:.(3)如图2,点F即为所求.【点评】本题考查作图﹣旋转变换,平行四边形的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.28.(2022春•鼓楼区校级期中)(1)如图1,已知△ABC的顶点A、B、C在格点上,画出将△ABC绕点O 顺时针方向旋转90°后得到的△A1B1C1.(2)如图2,在平面直角坐标系中,将线段AB绕平面内一点P旋转得到线段A′B′,使得A′与点B重合,B′落在x轴负半轴上.请利用无刻度直尺与圆规作出旋转中心P.(不写作法,但要保留作图痕迹)【分析】(1)利用旋转变换的性质分别作出A,B,C的对应点A1,B1,C1即可;(2)作出线段AB,A′B′的垂直平分线的交点P即可.【解答】解:(1)如图1中,△A1B1C1即为所求;(2)如图2,点P即为旋转中心.【点评】本题考查作图﹣旋转变换,解题的关键是掌握旋转变换的性质,属于中考常考题型.一、单选题1.(2022春·江苏·八年级专题练习)如图所示的五个四边形全等,不能由四边形ABCD 经过平移或旋转得到的是( )A .B .C .D .【答案】A【分析】根据平移或者旋转的性质逐一分析即可.【详解】A.经过平移和旋转可得,符合题意;巩固提升B.经过旋转可得,不符合题意;C.经过平移可得,不符合题意;D.经过旋转可得,不符合题意;故选A.【点睛】本题考查了图形的平移和旋转,掌握平移和旋转的性质是解题的关键.2.(2022秋·江苏盐城·八年级校考期中)下列运动属于旋转的是()A.篮球的运动B.气球升空的运动C.钟表钟摆的摆动D.一个图形沿某直线对折的过程【答案】C【分析】根据旋转的定义进行判断即可.【详解】解:A.篮球的运动不一定是旋转,故A不符合题意;B.气球升空的运动属于平移,不属于旋转,故B不符合题意;C.钟表钟摆的摆动属于旋转,故C符合题意;D.一个图形沿某直线对折的过程是轴对称,不属于旋转,故D不符合题意.故选:C.【点睛】本题主要考查了旋转的定义,解题的关键是熟练掌握旋转的定义.3.(2023春·江苏·八年级专题练习)如图,△ABC绕点C旋转,点B转到点E的位置,则下列说法正确的是( )A.点B与点D是对应点B.∠BCD等于旋转角C.点A与点E是对应点D.△ABC≌△DEC【答案】D【分析】利用旋转的性质即可求解【详解】解:∵△ABC绕点C旋转,点B转到点E的位置,∴△ABC≌△DEC,点B与点E是对应点,点A与点D是对应点,∠ACD与∠BCE是旋转角,。

旋转对称图形与中心对称图形

旋转对称图形与中心对称图形

初二数学讲义第三讲 旋转对称图形与中心对称图形一、主要知识点1.把—个图形绕旋转中心旋转一定(小于周角)角度后,所得图形能够与自身重合,这种图形称为旋转对称图形。

2.中心对称图形是绕某一中心点旋转180°后能与自身重合的旋转对称图形,这个中心点叫做对称中心;3.中心对称图形是旋转对称图形的特例。

4.中心对称的特征:如果两个图形成中心对称,那么对称中心在对应点的连线上且平分这条线段.两个图形的对应角相等,对应线段平行且相等,两个图形的形状和大小都一样。

5.中心对称与中心对称图形:中心对称与中心对称图形是两个不同的概念,它们既有区别又有联系。

区别:(1)中心对称是指两个图形的关系,中心对称图形是指一个具有某种性质的图形。

(2)成中心对称的两个图形的对称点分别在两个图形上,中心对称图形的对称点在一个图形上。

联系:若把中心对称图形的两部分看成两个图形,则它们成中心对称,若把中心对称的两个图形看成—个整体,则成为中心对称图形。

6.常见的中心对称图形有:①线段;②相交直线;③平行四边形;④矩形;⑤菱形;⑥正方形;⑦圆。

既是轴对称图形,又是中心对称图形的有:①线段;②相交直线;④矩形;⑤菱形;⑥正方形;⑦圆。

二、例题与练习例1.下列旋转对称图形中绕哪一个点旋转多少度与自身重合?答:例2.如图所示,该图按顺时针绕旋转中心旋转,可与自身重合的度数是 ( ) (A )60°; (B )180°; (C )120°; (D )320°。

答:(1)(3) (4) (5)例3.如图,△ABC 为等边三角形,D 为△ABC 内一点,△ABD 经过旋转后到达△ACE 的位置。

(1)旋转中心是点 ;(2)旋转角度是 ;(3)△ADE 是 三角形。

例4、如图,已知△ABC 和点O ,画出△A ’B ’C ’,使△A ’B ’C ’和△ABC 关于点O 成中心对称。

解:(1)连结 并延长 到 ,使 = ,于是得到点 的对称点 ;(2)同样画出点 和点 的对称点 和 ; (3)顺次连结 、 、 。

轴对称图形中心对称图形的定义及性质

轴对称图形中心对称图形的定义及性质

轴对称图形、中心对称图形的基本概念轴对称图形的定义如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形。

轴对称图形的性质1)如果沿某条直线对折,对折的两部分是完全重合的,那么就称这样的图形为轴对称图形,这条直线叫做这个图形的对称轴。

(对于一个图形来说)(2)把一格图形沿着某一条直线翻折过去,如果它能够与另一个图形重合,那么就说这两个图形成轴对称。

这条直线就是对称轴。

两个图形中的对应点(即两个图形重合时互相重合的点)叫做对称点。

(对于两个图形来说)(3)轴对称图形(或关于某条直线对称的两个图形)的对应线段相等,对应角相等。

中心对称的定义:把一个图形绕着某一点旋转180°,如果它能与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称(central symmetry),这个点叫做对称中心,这两个图形的对应点叫做关于中心的对称点。

中心对称的性质:①于中心对称的两个图形是全等形。

②关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。

③关于中心对称的两个图形,对应线段平行(或者在同一直线上)且相等。

识别一个图形是否是中心对称图形就是看是否存在一点,使图形绕着这个点旋转180°后能与原图形重合。

中心对称是指两个图形绕某一个点旋转180°后,能够完全重合,这两个图形关于该点对称,该点称为对称中心.二者相辅相成,两图形成中心对称,必有对称中点,而点只有能使两个图形旋转180°后完全重合才称为对称中点。

既是轴对称图形又是中心对称图形的有:直线,线段,两条相交直线,矩形,菱形,正方形,圆等.只是轴对称图形的有:射线,角等腰三角形,等边三角形,等腰梯形等.只是中心对称图形的有:平行四边形等.既不是轴对称图形又不是中心对称图形有:不等边三角形,非等腰梯形等.。

《中心对称图形》旋转中心对称图形

《中心对称图形》旋转中心对称图形
图形。
特点
中心对称图形有一个特点,就是 围绕一个点旋转180度后,能够与 原来的图形重合。这个点通常被 称为“对称中心”。
实例
常见的中心对称图形有圆形、矩形 、菱形等。
中心对称图形的性质
旋转性质
对于中心对称图形,如果我们 将其围绕对称中心旋转180度, 那么它所对应的点也会旋转180
度。
对称性质
中心对称图形的两个部分是关 于对称中心对称的,也就是说 ,如果我们将图形的两部分沿 着对称中心对折,它们会重合
04
中心对称图形和旋转中心对 称图形的实例
中心对称图形的实例

圆是一种典型的中心对称图形,圆的直径是它的对称轴,圆心是 它的对称中心。
蝴蝶
蝴蝶的身体结构呈现出中心对称的特性,当它停在花朵上时,翅 膀上的花纹左右对称,给人以美的享受。
雪花
雪花是一种美丽的晶体,其结构呈现出中心对称的特性,即从中 心向各个方向扩展的形状都是相同的。
中心对称图形与旋转中心对称图形的区别
中心对称图形是对称中心两侧的图形 关于对称中心进行对称,而旋转中心 对称图形是图形围绕某一点旋转180
度后与原图形重合。
中心对称图形是一种静态的对称形式 ,而旋转中心对称图形是一种动态的
对称形式。
中心对称图形强调的是两侧图形的对 称性,而旋转中心对称图形强调的是
THANK YOU.
图形的旋转和重合。
中心对称图形与旋转中心对称图形的转化
旋转中心对称图形可以通过将中心对称图形绕其对称中心旋转180度得 到。
中心对称图形可以通过平移和翻转得到旋转中心对称图形。
在某些情况下,可以将中心对称图形转化为旋转中心对称图形,例如将 一个平行四边形绕其对角线的交点旋转180度后可以得到一个菱形,这 个菱形就是一个旋转中心对称图形。

轴对称图形与中心对称图形的认识

轴对称图形与中心对称图形的认识

中心对称图形练习题及解析
• 总结词:中心对称图形是可以通过旋转180度与自身重合的图 形。识别和区分中心对称图形有助于提高学生对几何图形的认 识。
中心对称图形练习题及解析
详细描述
1. 准备一些常见的中心对称图形,如圆形、正 方形、菱形等。
2. 让学生观察每个图形的特点,并尝试旋转图 形,观察是否能通过旋转180度与自身重合。
直线
被称为对称轴。
轴对称图形的性质
01
02
03
性质1
轴对称图形的两部分是全 等的。
性质2
轴对称图形的对应线段相 等,对应角相等。
性质3
轴对称图形的对称点所连 线段被对称轴垂直平分。
轴对称图形的分类
分类1:线段 定义:一条线段关于它的中垂线对称的图形叫做线段。
特点:线段的两个端点关于这条中垂线对称。
工程设计
在桥梁、车辆、船舶等工程设计中 ,轴对称性能够提高结构的稳定性 和安全性。
中心对称图形在生活中的应用
旋转对称
许多自然现象和物体表现出旋转 对称性,如地球的自转、雪花等

艺术品
中心对称在艺术品中也有广泛应 用,如旋转对称的雕塑、图案等

工业设计
在工业设计中,中心对称性可用 于提高产品的美观度和使用体验
中心对称图形练习题及解析
3. 让学生识别出哪些图形是中心对称的,并分析它们的对称 中心。
示例:在上述练习中,学生可以通过旋转圆形、正方形、菱 形等图形,观察它们是否可以通过旋转180度与自身重合, 从而识别出哪些是中心对称图形。同时,学生还可以进一步 分析每个图形的对称中心。
THANK YOU

轴对称图形与中心对称图形的艺术价值

§11.3旋转对称图形和中心对称图形

§11.3旋转对称图形和中心对称图形

§11.3旋转对称图形和中心对称图形§11.3旋转对称图形与中心对称图形教学目标:1.在探究旋转对称图形和中心对称图形的概念过程中,感受从一般到特殊的研究问题方法.2.理解旋转对称图形和中心对称图形的区别和联系.3.感受旋转对称图形和中心对称图形在生活中的应用,体会数学的价值.教学重点和难点:探究旋转对称图形和中心对称图形的概念形成过程.教学过程:这些图形有什么特征?二、新知探索师:我们把具有这个特征的图形叫做旋转对称图形.问:你能说出什么是旋转对称图形吗?师生共同总结:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角(旋转角能与初始图形重合.答:一个图形绕着任意一点旋转360 o后都能与初始图形重合.答:电风试着归纳它们的共同特征,为旋转对称图形概念的引入做好铺垫.引导师:在这些旋转图形中,有些图形的旋转角是最特殊的,它是周角的一半,我们把具有这个特征的图形叫做中心对称图形.问:你能说出什么是中心对称图形吗?师生共同总结:如果把一个图形绕着一个定点旋转180o 后,与初始图形重合,那么这个图形叫做中心对称图形,这个点叫做对称中心.着中心旋转180度与初始图形重合;图(5)的图形绕着中心O旋转180度与初始图形重合;答:旋转对称图形是等边三角形、正方形、圆、正五边形、角概念的理解.这个探究过程中要给学生充分的时间去考虑,让学生用规范的数学语言表达.通过探究在一思考:下列图形是不是旋转对称图形和中心对称图形?归纳:请比较旋转对称图形和中心对称图形的异同.练习:课本P102 第2、3题三、拓展应用1.在一次游戏当中,小明将下面图(1)的四张扑克牌中的一张正六边形;中心对称图形是正方形、圆、正六边形.答:都是指一个图形,中心对称图形是旋转对称图形的特例.般中发现特殊性,从而引入中心对称图形的相关概念.通过这个问题的思考与讨论,加深学生对旋转对称图形和中心对称图形的感性认识.这里也可以试旋转180o后,得到图(2),小亮看完,很快知道小明旋转了哪一张扑克,你知道为什么吗?图(1)图(2) 2.如图是由两个等边三角形拼成的图形.(1)这个图形是不是旋转对称图形?是不是中心对称图形?若答:旋转了“J”这张牌,因为它是中心对称图形.答:(1)是旋转对称图形,也是中心对称图形,对称中心是O.(2) 旋转中心的点一共有3个,分别是点O、A、C.着让学生说一说旋转角是多少.引导学生进一步理解旋转对称图形和中心对称图形的区别与联系.是指出对称中心.(2)若三角形ACD旋转后能与三角形ABC 重合.那么图形所在的平面上可以作为旋转中心的点一共有几个?请指出.四、课堂练习A组 1.一个四叶风车,它的旋转角是多少度?每叶最少旋转多少度可以与其它叶重合?1.它的旋转角是90 o、180 o、270 o,每个叶片最少旋转90 o可以与其它叶片重合.指导学生观察叶片上OA绕着点O旋转到OB时的夹角即为最小的旋转角.加深学生对旋转对称图形和旋转角概念的理解.强调旋转对称图形的旋转角要小于360o.2.如图,哪些是旋转对称图形,哪些是中心对称图形?2.图形(1)是旋转对称图形,也是中心对称图形.它的旋转中心是直线AB、CD加深学生对旋转对称图形和中心对称图形的交点O图形(2)是旋转对称图形,也是中心对称图形.它的旋转中心是对角线的交点O图形(3)是旋转对称图形,也是中心对称图形.它的旋转中心是对角线的交点O概念的理解.(4)图形(4)是旋转对称图形,但不是中心对称图形.它的旋转中心是点OOB组1.画出一个旋转角为120°的旋转对称图形,它是否为中心对称图形?1.等边三角形是旋转角为120°的旋转对称图形,它不是中心对称图形旋转角为120 o的旋转对称图形不一定是中心对称图形,什么收获?思想方法:从一般到特殊的研究问题的方法.形2.中心对称图形3.它们的区别与联系,中心对称图形是旋转对称图形的特例.知识点,培养学生归纳反思的能力.课后作业试题解答设计意图A组1.下图是不是一个旋转对称图形?如果是,请说出最小的旋转角的大小.答:这个图形是旋转对称图形,最小的旋转角是120 .进一步加深学生对旋转对称图形和旋转角概念的理解.感受旋转对称图形在生活中的应用.2.下列各图是选自历届世博会徽中的图案,其中是中心对称图形的是()A、B、C、D、2.答案(D)进一步加深学生对中心对称图形概念的理解.感受中心对称图形的美.3.如图,如果四边形CDEF旋转后能与正方形ABCD重合,那么图形所在的平面MFEBDAC可以作为旋转中心的点有3进一步加深学生对旋转对称图形和中心对称图形概念1.如图,4张扑克牌放在桌上,现将其中的某一张在原地旋转180︒,发现旋转后在桌上看到的牌中的图形和原先的一模一样.请问旋转的是哪一张牌?1.旋转的是第一张牌,其它三张牌中间的图形不是中心对称图形,所以旋转后在桌上看到的牌中的图形不能和原先的一模一样.生进一步理解旋转对称图形和中心对称图形的区别与联系.感受旋转对称图形在生活中的应用.2.画一个旋转角是0︒9的旋转对称图形.2.正方形是旋转角为90°的旋转对称图形,它是中心对称图形,正八边形也是旋转角为90°的旋转对引导学生进一步理解旋转对称图形和中心对称图形的区别与联系.21。

旋转对称图形与中心对称图形zhjy

旋转对称图形与中心对称图形zhjy

旋转对称图形与中心对称图形【知识要点】1.旋转对称图形:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转中心。

旋转的较多叫做旋转角。

2.中心对称图形:如果把一个图形绕着一个定点旋转后,与初始图形重合,那么这个图形叫做中心对称图形,这个点叫做对称中心。

3.中心对称图形是特殊旋转图形,它的旋转角只能是,而选择对称图形的旋转角在之间均可。

4.旋转对称图形和中心对称图形研究的是一个图形,是指一个图形的两个部分之间的关系。

【典型例题】1. 旋转对称图形【例1】如图所示,下列图形中是旋转对称图形的是( )。

() () () () 图【分析】本题考查的是旋转对称图形的识别。

在分析时,注意所给图形是否存在一点,将该图形绕该点旋转一定角度后,旋转后的图形能否与原图形重合,分析这四个选项中只有、选项所示图形能与绕起中心旋转后的图形重合。

【解答】选()、()。

【例2】下列四幅图形都是旋转对称图形,其中一个与其他三个不同的是( )(A ) (B ) (C (D )【分析】既然以上四个图形都是旋转对称图形,并从中找出不同的一个,那么我们只能从旋转角度上去寻找,、、可以绕一点旋转后能与自身重合。

而可以围绕一点旋转也能与其自身重合,因此可见旋转角度不同。

【解答】选()。

2. 中心对称图形【例3】线段、角、三角形平行四边形、长方形、正方形、圆是中心对称图形吗?如果是,那么对称中心在哪里? 【分析】中心对称图形的对一个图形而言的,是指一个图形的两个部分之间的关系,中心对称图形的对称点在一个图形上。

如果能找到一个点,经过旋转后能与原图形重合,那么这个图形就是中心对称图形。

【解答】角、三角形不是中心对称图形,线段、平行四边形、长方形、正方形、圆都是中心对称图形。

线段的中心是它的对称中心,平行四边形、长方形、正方形的对角线的交点是它的对称中心,圆的圆心是它的对称中心。

【例4】如图所示的风车叶片中,是中心对称图形的有( )图()个 ()个 ()个 ()【分析】旋转对称图形与中心对称图形容易混淆。

轴对称图形和中心对称图形

轴对称图形和中心对称图形

轴对称图形在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形(axial symmetric figure),这条直线叫做对称轴(axis of symmetric),并且对称轴用点画线表示;这时,我们也说这个图形关于这条直线对称。

比如圆、正方形、等腰三角形、等边三角形、等腰梯形等。

例如等腰三角形、正方形、等边三角形、等腰梯形和圆和正多边形都是轴对轴对称图形2 示例称图形.圆有无数条对称轴,都是经过圆心的直线。

要特别注意的是线段,它有两条对称轴,一条是这条线段所在的直线,另一条是这条线段的中垂线。

大写字母A、B、C、D、E、H等等性质编辑1.对称轴是一条直线。

2.在轴对称图形中,对称轴两侧的对应点到对称轴两侧的距离相等。

3.在轴对称图形中,沿对称轴将它对折,左右两边完全重合。

4.如果两个图形关于某条直线对称,那么这条直线就是对称轴且对称轴垂直平分对称点所连线段。

5.图形对称。

定理定理1:关于某条直线对称的两个图形是全等形。

定理2:如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线。

定理3:两个图形关于某条直线对称,如果对称轴和某两条对称线段的延长线相交,那么交点在对称轴上。

定理3的逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。

生活作用1、为了美观。

比如天安门,对称就显的美观漂亮。

2、保持平衡。

比如飞机的两翼。

3、特殊工作的需要。

比如五角星,剪纸。

对称方法编辑方法1、找出所给图形的关键点。

2、找出图形关键点到对称轴的距离。

3、找关键点的对称点。

4、按照所给图形的顺序连接各点。

画法1、找出图形的一对对称点。

2、连接对称点。

3、过这条线段的中点作这条线段的垂线。

区别区分这两个概念要注意:轴对称图形一定要沿某直线折叠后直线两旁的部分互相重合,关键抓两点:一是沿某直线折叠,二是两部分互相重合;中心对称图形是图形绕某一点旋转180°后与原来的图形重合,关键也是抓两点:一是绕某一点旋转,二是与原图形重合。

轴对称图形和中心对称图形

轴对称图形和中心对称图形

轴对称图形和中心对称图形The latest revision on November 22, 2020轴对称图形在平面内,如果一个图形沿一条直线,直线两旁的部分能够完全,这样的图形叫做图形(axial symmetric figure),这条直线叫做(axis of symmetric),并且对称轴用点画线表示;这时,我们也说这个图形关于这条直线对称。

比如圆、正方形、等腰三角形、等边三角形、等腰梯形等。

例如、、、和和都是轴对轴对称图形2 示例称图形.圆有无数条对称轴,都是经过圆心的直线。

要特别注意的是线段,它有两条对称轴,一条是这条线段所在的直线,另一条是这条线段的中。

大写字母A、B、C、D、E、H等等性质1.对称轴是一条直线。

2.在轴对称图形中,对称轴两侧的到对称轴两侧的距离相等。

3.在轴对称图形中,沿对称轴将它对折,左右两边完全重合。

4.如果两个图形关于某条直线对称,那么这条直线就是对称轴且对称轴垂直平分对称点所连线段。

5.图形对称。

定理定理1:关于某条直线对称的两个图形是。

定理2:如果两个图形关于某条直线对称,那么对称轴是对应点连线的。

定理3:两个图形关于某条直线对称,如果对称轴和某两条对称的延长线相交,那么交点在对称轴上。

定理3的:如果两个图形的连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。

生活作用1、为了美观。

比如,对称就显的美观漂亮。

2、保持平衡。

比如的两翼。

3、特殊工作的需要。

比如五角星,剪纸。

对称方法方法1、找出所给图形的关键点。

2、找出图形关键点到的距离。

3、找关键点的对称点。

4、按照所给图形的顺序连接各点。

画法1、找出图形的一对对称点。

2、连接对称点。

3、过这条线段的中点作这条线段的垂线。

区别区分这两个概念要注意:轴对称图形一定要沿某直线折叠后直线两旁的部分互相重合,关键抓两点:一是沿某直线折叠,二是两部分互相重合;是图形绕某一点旋转180°后与原来的图形重合,关键也是抓两点:一是绕某一点旋转,二是与原图形重合。

11.3旋转对称图形与中心对称图形

11.3旋转对称图形与中心对称图形

11.3旋转对称图形与中心对称图形班级学号姓名知识点归纳:(1)在平面内,把一个图形绕着______________后,与___________________图形重合,这种图形叫做_______________________.这个定点叫做_____________. 旋转的角度叫做_______________________.(旋转角______________________). (2)如果把一个图形绕着____________________后,与___________________图形重合,这种图形叫做__________________________.这个点叫做___________. 即:中心对称图形是特殊的旋转对称图形,旋转角是_________度的旋转对称图形是中心对称图形.注意:旋转对称图形与中心对称图形都是指一个图形内部因素之间的关系.预习下列图形旋转一定角度后能与自身重合吗?分别指出相应的旋转角度是多少?旋转度数:______________________________________________________旋转度数:______________________________________________________旋转度数:______________________________________________________旋转度数:______________________________________________________上述图形中是中心对称图形的请打 “√ ”号练习1、观察下列图形,其中不是旋转对称图形的有( )(1) (2)(3)C(4)X2、如下图,它们绕哪一个点至少旋转多少度能与自身重合?(右图考虑颜色)3、请尝试设计一个至少旋转720后能与自身重合的图形。

练习1、下列图形不是旋转图形的是()A、线段B、等腰三角形C、等边三角形D、圆2、四边形ABCD是旋转对称图形,点_______是旋转中心,•旋转了_____度后能与自身重合,则AD=_____,DC=_____,AO=_____,BO=_____.3、三叶电风扇叶片是一个旋转对称图形,其最小旋转角度的度数是()A.60B.120C.180D.2404、下列图不是旋转对称图形的是_______。

旋转对称图形与中心对称图形

旋转对称图形与中心对称图形


按照某个方向转动一个角度,这样的运动叫做

这个 叫做

1、什么叫做图形的旋转?
就叫做

就叫做

旋转
°后和原来的图形重和。

绕着一个 旋转一个 x后,与初始图形重合,这种图形叫做

1、什么叫做旋转对称图形?

以下哪些是旋转对称图形?
这个 叫做ຫໍສະໝຸດ 。把绕着一个 旋转一个 x后,与初始图形重合,这种图形叫做
就叫做

转动的 就叫做

旋转
这几个图形都是什么图形?
这些图形都是 旋转对称图形,而且都在绕着 旋转对称中心 旋转 180 °后和原来的图形重和。
1.
2.


书本P102页 思考:
以下哪些是旋转对称图形? 哪些是中心对称图形?
正三角形 旋转
正方形 中心
正五边形 旋转
正六边形 中心
等腰梯形 旋转
2 、什么叫做旋转对称中心?
这个 定点 叫做 旋转对称中心 。
3、什么叫做中心对称图形?
如果把一个图形绕着一个定点旋转180°后,与初 始图形重合,那么这个图形叫做中心对称图形 。
这个点叫做 对称中心
这些都是什么图形? 与
正三角形
正方形
正五边形
正六边形
等腰梯形
(旋转角x满足 °<x< °)
在 内,将一个图形上的

以下哪些是旋转对称图形?
2、什么叫做旋转中心?
1、什么叫做旋转对称图形?
( 转动的
) 就叫做
旋转。
旋转
3、什么叫做中心对称图形?
以下哪些是旋转对称图形?

中心对称图形知识点汇总

中心对称图形知识点汇总

中心对称图形知识点汇总中心对称图形是指一个图形可以通过某个点进行旋转180度后,仍然与原来的图形完全重合。

在数学中,中心对称图形是一种常见的几何概念,它具有一些独特的性质和特征。

本文将对中心对称图形的知识点进行汇总,帮助读者更好地理解和应用这一概念。

1.中心对称轴:中心对称图形的中心轴是指通过中心点的一条无限延伸的直线。

该轴将图形分成两个完全对称的部分。

中心对称轴是图形中心点的轨迹,在旋转过程中保持不变。

2.中心对称图形的性质:–对称性:中心对称图形具有对称性,即将图形绕中心点旋转180度后,仍然与原始图形完全重合。

–线段对称:对于中心对称图形上的任意一条线段,它的中点必然在中心对称轴上。

–角度对称:对于中心对称图形上的任意一个角度,它的顶点必然在中心对称轴上。

3.构造中心对称图形的方法:–折叠法:将一个图形折叠在中心对称轴上,使得两个部分完全重合,即可得到一个中心对称图形。

–旋转法:将一个图形绕中心点旋转180度,若旋转后与原始图形完全重合,则得到一个中心对称图形。

4.中心对称图形的例子:–正方形:正方形具有四个中心对称轴,它们分别是两条对角线和两条垂直平分线。

–五角星:五角星具有五个中心对称轴,分别是五条对角线和五条垂直平分线。

–圆形:圆形具有无数条中心对称轴,它们都通过圆心。

5.应用中心对称图形的领域:–几何学:中心对称图形是几何学中重要的概念之一,可以用于判断和构造图形的对称性。

–艺术设计:中心对称图形可以应用于艺术设计中,创造对称美感的作品。

–建筑设计:中心对称图形常常被应用于建筑设计中,用于创造具有均衡和和谐感的空间。

中心对称图形是数学和几何学中的重要概念,它具有独特的性质和特征。

通过了解中心对称图形的知识点,我们可以更好地理解和应用这一概念。

无论是在几何学中判断图形的对称性,还是在艺术和建筑设计中追求对称美感,中心对称图形都有着重要的应用价值。

希望本文对读者理解中心对称图形有所帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线段 圆 平行四边形 正方形 正六边形 中心对称图形是:____________________________________。
议一议 (1)在一次游戏当中,小明将下面左图的四张扑克牌 中的一张旋转180O后,得到右图,小亮看完很快知 道小明旋转了哪一张扑克,你知道为什么吗?
看一看
在26个英文大写正体字母中,哪些字母是中心对 称图形? A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 1、在26个英文大写正体字母中,哪些字母是中心 对称图形? A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(1) (2) (3) (4) (5) (6) (7) 旋转对称图形是:____________________; (1) (2) (3) (4) (6) 中心对称图形是:___________________。
线段 圆 平行四边形正三角形正方形 正五边形 正六边形 旋转对称图形是:____________________________________;
今天我的收获是……
些特征?
把一个图形绕着一个定点旋转一个角度后,与初始图 形重合,这种图形叫做旋转对称图形,这个定点叫做 旋转对称中心,旋转的角度叫做旋转角。
旋转角0 360 。

如果把一个图形绕着一个定点旋转180°后,与初始 图形重合,那么这个图形叫做中心对称图形,这个点 叫做对称中心。
旋转角 180 。
旋转对称图形与中心对称图形的区别与联系: 中心对称图形是旋转对称图形的一个特例。 一定 中心对称图形_________是旋转对称图形; (填“一定”、“不一定”或“一 不一定 旋转对称图形_________是中心对称图形。 定不”)

下面哪些图形是旋转对称图形, 哪些是中心对称图形?
相关文档
最新文档