完整word版,光的干涉习题答案

合集下载

光的干涉试题及答案

光的干涉试题及答案

光的干涉试题及答案一、选择题1. 光的干涉现象是指:A. 光波的叠加B. 光波的衍射C. 光波的反射D. 光波的折射答案:A2. 以下哪个条件是产生光的干涉的必要条件?A. 光波的频率相同B. 光波的振幅相同C. 光波的传播方向相同D. 光波的相位差恒定答案:D3. 杨氏双缝干涉实验中,干涉条纹的间距与以下哪个因素无关?A. 双缝间的距离B. 光的波长C. 屏幕与双缝的距离D. 观察者与屏幕的距离答案:D二、填空题1. 在光的干涉中,当两列波的相位差为0时,光强增强,这种现象称为________。

答案:相长干涉2. 光的干涉条纹的间距可以通过公式________计算得出。

答案:Δx = (λL) / d三、简答题1. 请简述光的干涉现象是如何产生的?答案:光的干涉现象是由两列或多列光波在空间某点相遇时,由于光波的相位差,导致光强在某些区域增强,在另一些区域减弱,从而形成明暗相间的干涉条纹。

2. 光的干涉实验中,如何改变干涉条纹的间距?答案:可以通过改变光源的波长、改变双缝间的距离或者改变屏幕与双缝之间的距离来改变干涉条纹的间距。

四、计算题1. 已知杨氏双缝干涉实验中,双缝间的距离d=0.5mm,屏幕与双缝之间的距离L=1.5m,光的波长λ=600nm,求干涉条纹的间距。

答案:Δx = (λL) / d = (600×10^-9 m × 1.5m) / (0.5×10^-3 m) = 1.8×10^-4 m2. 如果在上述实验中,将双缝间的距离增加到1.0mm,求新的干涉条纹间距。

答案:Δx = (λL) / d = (600×10^-9 m × 1.5m) / (1.0×10^-3 m) = 9.0×10^-4 m。

光的干涉(答案)

光的干涉(答案)

光的干涉(参考答案)一、选择题1. 【答案】AB【解析】A .肥皂膜因为自重会上面薄而下面厚,因表面张力的原因其截面应是一个圆滑的曲面而不是梯形,A 正确;B .薄膜干涉是等厚干涉,其原因为肥皂膜上的条纹是前后表面反射光形成的干涉条纹,B 正确;C .形成条纹的原因是前后表面的反射光叠加出现了振动加强点和振动减弱点,形成到破裂的过程上面越来越薄,下面越来越厚,因此出现加强点和减弱点的位置发生了变化,条纹宽度和间距发生变化,C 错误;D .将肥皂膜外金属环左侧的把柄向上转动90︒,由于重力,表面张力和粘滞力等的作用,肥皂膜的形状和厚度会重新分布,因此并不会跟着旋转90°;D 错误。

2. 【答案】D【解析】从薄膜的上下表面分别反射的两列光是相干光,其光程差为△x =2d ,即光程差为薄膜厚度的2倍,当光程差△x =nλ时此处表现为亮条纹,故相邻亮条纹之间的薄膜的厚度差为12λ,在图中相邻亮条纹(或暗条纹)之间的距离变大,则薄膜层的厚度之间变小,因条纹宽度逐渐变宽,则厚度不是均匀变小。

选项D 正确。

3. 【答案】D【解析】【分析】本题考查折射定律以及双缝干涉实验。

【详解】由双缝干涉条纹间距的公式Lx d λ∆=可知,当两种色光通过同一双缝干涉装置时,波长越长条纹间距越宽,由屏上亮条纹的位置可知12λλ>反射光经过三棱镜后分成两束色光,由图可知M 光的折射角大,又由折射定律可知,入射角相同时,折射率越大的色光折射角越大,由于12λλ>则12n n <所以N 是波长为λ1的光出射位置,故D 正确,ABC 错误。

故选D 。

4. 【答案】C【解析】解:因为路程差即(膜的厚度的两倍)是半波长的偶数倍,振动加强,为亮条纹,路程差是半波长的奇数倍,振动减弱,为暗条纹。

所以人从同侧看,可看到亮条纹时,同一高度膜的厚度相同,则彩色条纹水平排列,因竖直放置的肥皂薄膜受到重力的作用,下面厚,上面簿,形状视如凹透镜,因此,在薄膜上不同的地方,来自前后两个面的反射光所走的路程差不同,导致上疏下密,故C 正确,ABD 错误。

《光的干涉》答案

《光的干涉》答案

第6章 光的干涉一、选择题1(C),2(A),3(C),4(B),5(A),6(B),7(B),8(C),9(C),10(D) 二、填空题(1). 使两缝间距变小;使屏与双缝之间的距离变大. (2). N D (3). 0.75(4). λ3,33.1 (5). )2(L λ (6). 113(7). d 0 d 0-λ (8). r 12/r 22 (9). 2(n – 1)h (10).)(212N N L+λ三、计算题1. 在双缝干涉实验中,波长λ=550 nm 的单色平行光垂直入射到缝间距a =2×10-4 m 的双缝上,屏到双缝的距离D =2 m .求:(1) 中央明纹两侧的两条第10级明纹中心的间距;(2) 用一厚度为e =6.6×10-5 m 、折射率为n =1.58的玻璃片覆盖一缝后,零级明纹将移到原来的第几级明纹处?(1 nm = 10-9 m)解:(1) ∆x =20 D λ / a =0.11 m(2) 覆盖云玻璃后,零级明纹应满足 (n -1)e +r 1=r 2 设不盖玻璃片时,此点为第k 级明纹,则应有r 2-r 1=k λ 所以 (n -1)e = k λk =(n -1) e / λ=6.96≈7零级明纹移到原第7级明纹处2. 在双缝干涉实验中,单色光源S 0到两缝S 1和S 2的距离分别为l 1和l 2,并且l 1-l 2=3λ,λ为入射光的波长,双缝之间的距离为d ,双缝到屏幕的距离为D (D >>d ),如图.求:(1) 零级明纹到屏幕中央O 点的距离. (2) 相邻明条纹间的距离.解:(1) 如图,设P 0为零级明纹中心 则 D O P d r r /012≈- (l 2 +r 2) - (l 1 +r 1) = 0∴ r 2 – r 1 = l 1 – l 2 = 3λ∴ ()d D d r r D O P /3/120λ=-= (2) 在屏上距O 点为x 处, 光程差λδ3)/(-≈D dx 明纹条件 λδk ±= (k =1,2,....)()d D k x k /3λλ+±=屏在此处令k =0,即为(1)的结果.相邻明条纹间距d D x x x k k /1λ=-=+∆3. 在折射率n =1.50的玻璃上,镀上n '=1.35的透明介质薄膜.入射光波垂直于介质膜表面照射,观察反射光的干涉,发现对λ1=600 nm 的光波干涉相消,对λ2=700 nm 的光波干涉相长.且在600 nm 到700 nm 之间没有别的波长是最大限度相消或相长的情形.求所镀介质膜的厚度.(1 nm = 10-9 m)解:设介质薄膜的厚度为e ,上、下表面反射均为由光疏介质到光密介质,故不计附加程差。

17光的干涉习题解答

17光的干涉习题解答

第十七章 光的干涉一、 选择题1.在真空中波长为λ的单色光,在折射率为n 的均匀透明介质中从A 沿某一路径传播到B ,若A ,B 两点的相位差为3π,则路径AB 的长度为:( D )A 、 1、5λB 、 1、5n λC 、 3λD 、 1、5λ/n解: πλπϕ32==∆nd 所以 n d /5.1λ= 本题答案为D 。

2.在杨氏双缝实验中,若两缝之间的距离稍为加大,其她条件不变,则干涉条纹将 ( A )A 、 变密B 、 变稀C 、 不变D 、 消失解:条纹间距d D x /λ=∆,所以d 增大,x ∆变小。

干涉条纹将变密。

本题答案为A。

3.在空气中做双缝干涉实验,屏幕E上的P处就是明条纹。

若将缝S2盖住,并在S1、S2连线的垂直平分选择题3图面上放一平面反射镜M,其它条件不变(如图),则此时( B )A、 P处仍为明条纹B、 P处为暗条纹C、 P处位于明、暗条纹之间D、屏幕E上无干涉条纹解对于屏幕E上方的P点,从S1直接入射到屏幕E上与从出发S1经平面反射镜M反射后再入射到屏幕上的光相位差在均比原来增 ,因此原来就是明条纹的将变为暗条纹,而原来的暗条纹将变为明条纹。

故本题答案为B。

4.在薄膜干涉实验中,观察到反射光的等倾干涉条纹的中心就是亮斑,则此时透射光的等倾干涉条纹中心就是( B )A、亮斑B、暗斑C、可能就是亮斑,也可能就是暗斑 D 、 无法确定解:反射光与透射光的等倾干涉条纹互补。

本题答案为B 。

5.一束波长为λ的单色光由空气垂直入射到折射率为n 的透明薄膜上,透明薄膜放在空气中,要使反射光得到干涉加强,则薄膜最小的厚度为 ( B )A 、 λ/4B 、 λ/ (4n )C 、 λ/2D 、 λ/ (2n )6.在折射率为n '=1、60的玻璃表面上涂以折射率n =1、38的MgF 2透明薄膜,可以减少光的反射。

当波长为500、0nm 的单色光垂直入射时,为了实现最小反射,此透明薄膜的最小厚度为( C )A 、 5、0nmB 、 30、0nmC 、 90、6nmD 、 250、0nm解:增透膜 6.904/min ==n e λnm本题答案为C 。

(参考资料)光的干涉习题(附答案)

(参考资料)光的干涉习题(附答案)

光的干涉(附答案)一. 填空题1. 光强均为I 0的两束相干光相遇而发生干涉时,在相遇区域内有可能出现的最大光强是 4I 0 。

2. 在双峰干涉试验中,用折射率为n 的薄云母片覆盖其中的一条狭缝,这时屏幕上的第7级明纹恰好移到屏幕中央原零级明纹的位置,设入射光波长为λ,则云母片的厚度为 7λ/(n -1) 。

3. S 1和S 2是两个波长均为λ的相干波源,相距3λ4,S 1的相位比S 2超前π2。

若两波单独传播时,在过S 1和S 2的直线上各点的强度相同,不随距离变化,且两波的强度都是I 0,那么在S 1、S 2连线上,S 1和S 2的外侧各点,合成波的强度分别是 4 I 0,0 。

3λ44. 用波长为λ的单色光垂直照射牛顿环装置,观察牛顿环,如图所示。

若使凸透镜慢慢向上垂直移动距离d ,移过视场中某固定观察点的条纹数等于 2d/λ 。

S 1 S 25.空气中两块玻璃形成的空气劈形膜,一端厚度为零,另一端厚度为0.005 cm,玻璃折射率为1.5,空气折射率近似为1。

如图所示,现用波长为600 nm的单色平行光,沿入射角为30°角的方向射到玻璃板的上表面,则在劈形膜上形成的干涉条纹数目为144 。

解:通过折射定律,求空气劈形膜上表面的入射角:n空气sin30o=n玻璃sini入,得到sini入=1/3根据劈尖干涉的特点,可以得到相邻明纹中心的高度差Δe:Δe=λ/2(1-2.25/9)0.5得到最终的干涉条纹数目:m=5*10-5*2(1-2.25/9)0.5/6*10-7≈1446.维纳光驻波实验装置示意如图。

MM为金属反射镜,NN为涂有极薄感光层的玻璃板。

MM与NN之间夹角φ=3.0×10-4 rad,波长为λ的平面单色光通过NN板垂直入射到MM金属反射镜上,则反射光与入射光在相遇区域形成光驻波,NN板的感光层上形成对应于波腹波节的条纹。

实验测得两个相邻的驻波波腹感光垫A、B的间距1.0 mm,则入射光的波长为 6.0×10-4mm 。

第五章 1光的干涉作业答案

第五章 1光的干涉作业答案

1光的干涉一、双缝干涉1.1801年,英国物理学家托马斯·杨在实验室里成功地观察到了光的干涉.2.双缝干涉实验(1)实验过程:激光束垂直射到两条狭缝S1和S2时,S1和S2相当于两个完全相同的光源,从S1和S2发出的光在挡板后面的空间叠加而发生干涉现象.(2)实验现象:在屏上得到明暗相间的条纹.(3)实验结论:光是一种波.3.出现明、暗条纹的条件光从两狭缝到屏上某点的路程差为半波长λ2的偶数倍(即波长λ的整数倍)时,这些点出现明条纹;当路程差为半波长λ2的奇数倍时,这些点出现暗条纹.二、薄膜干涉1.原理:以肥皂膜为例,单色光平行入射到肥皂泡液薄膜上,由液膜前后两个表面反射回来的两列光是相干光,它们相互叠加产生干涉,肥皂泡上就出现了明暗相间的条纹或区域.2.图样:以光照射肥皂泡为例,如果是单色光照射肥皂泡,肥皂泡上就会出现明暗相间的条纹或区域;如果是白光照射肥皂泡,液膜上就会出现彩色条纹.3.应用:检查平面的平整程度.原理:空气层的上下两个表面反射的两列光波发生干涉.1.判断下列说法的正误.(1)两只相同的手电筒射出的光在同一区域叠加后,看不到干涉图样的原因是干涉图样太细小看不清楚.(×)(2)屏上到双缝的路程差等于半波长的整数倍,此处为暗条纹.(×)(3)水面上的油膜呈现彩色条纹,是油膜表面反射光与入射光叠加的结果. (×)(4)观察薄膜干涉条纹时,应在入射光的另一侧.(×)2.如图1所示,在杨氏双缝干涉实验中,激光的波长为5.30×10-7 m,屏上P点距双缝S1和S2的路程差为7.95×10-7 m.则在这里出现的应是________(填“亮条纹”或“暗条纹”).图1答案暗条纹一、杨氏干涉实验1.杨氏双缝干涉实验(1)双缝干涉的装置示意图实验装置如图2所示,有光源、单缝、双缝和光屏.(2)单缝的作用:获得一个线光源,使光源有唯一的频率和振动情况.也可用激光直接照射双缝.(3)双缝的作用:将一束光分成两束频率相同且振动情况完全一致的相干光.2.光产生干涉的条件两束光的频率相同、相位差恒定、振动方向相同.杨氏双缝干涉实验是靠“一分为二”的方法获得两个相干光源的.3.干涉图样(1)单色光的干涉图样:干涉条纹是等间距的明暗相间的条纹.(2)白光的干涉图样:中央条纹是白色的,两侧干涉条纹是彩色条纹.例1 在双缝干涉实验中,以白光为光源,在屏幕上观察到了彩色干涉条纹,若在双缝中的一缝前放一红色滤光片(只能透过红光),另一缝前放一绿色滤光片(只能透过绿光),已知红光与绿光的频率、波长均不相等,这时( )A.只有红色和绿色的双缝干涉条纹,其他颜色的双缝干涉条纹消失B.红色和绿色的双缝干涉条纹消失,其他颜色的干涉条纹依然存在C.任何颜色的双缝干涉条纹都不存在,但屏上仍有光亮D.屏上无任何光亮答案 C解析 分别用绿色滤光片和红色滤光片挡住两条缝后,红光和绿光的频率不等,不能发生干涉,因此屏上不会出现干涉条纹,但仍有光亮.二、决定条纹间距的条件1.两相邻亮条纹(或暗条纹)间距离与光的波长有关,波长越长,条纹间距越大.白光的干涉条纹的中央是白色的,两侧是彩色的,这是因为:各种色光都能形成明暗相间的条纹,都在中央条纹处形成亮条纹,从而复合成白色条纹.两侧条纹间距与各色光的波长成正比,条纹不能完全重合,这样便形成了彩色干涉条纹.2.亮、暗条纹的判断如图3所示,设屏上的一点P 到双缝的距离分别为r 1和r 2,路程差Δr =r 2-r 1.(1)若满足路程差为波长的整数倍,即Δr =kλ(其中k =0,1,2,3…),则出现亮条纹.k =0时,PS 1=PS 2,此时P 点位于屏上的O 处,为亮条纹,此处的条纹叫中央亮条纹或零级亮条纹.k 为亮条纹的级次.(2)若满足路程差为半波长的奇数倍,即Δr =2k -12λ(其中k =1,2,3…),则出现暗条纹.k 为暗条纹的级次,从第1级暗条纹开始向两侧展开.例2 如图4所示是双缝干涉实验装置,使用波长为600 nm 的橙色光源照射单缝S ,在光屏中央P 处观察到亮条纹,在位于P 点上方的P 1点出现第一条亮条纹(即P 1到S 1、S 2的路程差为一个波长),现换用波长为400 nm 的紫色光源照射单缝,则( )A.P 和P 1仍为亮条纹B.P 为亮条纹,P 1为暗条纹C.P 为暗条纹,P 1为亮条纹D.P 、P 1均为暗条纹答案 B解析 从单缝S 射出的光波被S 1、S 2两缝分成两束相干光,由题意知屏中央P 点到S 1、S 2距离相等,即分别由S 1、S 2射出的光到P 点的路程差为零,因此中央是亮条纹,无论入射光是什么颜色的光、波长多大,P 点都是中央亮条纹.而分别由S 1、S 2射出的光到P 1点的路程差刚好是橙光的一个波长,即|P 1S 1-P 1S 2|=600 nm =λ橙.当换用波长为400nm 的紫光时,|P 1S 1-P 1S 2|=600 nm =32λ紫,则两列光波到达P 1点时振动情况完全相反,即分别由S 1、S 2射出的紫色光到达P 1点时相互削弱,因此,在P 1点出现暗条纹.综上所述,选项B 正确.三、薄膜干涉1.薄膜干涉中相干光的获得光照射到薄膜上,在薄膜的前、后两个面反射的光是由同一个实际的光源分解而成的,它们具有相同的频率,恒定的相位差.2.薄膜干涉的原理光照在厚度不同的薄膜上时,前、后两个面的反射光的路程差等于相应位置膜厚度的2倍,在某些位置,两列波叠加后相互加强,于是出现亮条纹;在另一些位置,叠加后相互削弱,于是出现暗条纹.3.薄膜干涉是经薄膜前、后表面反射的两束光叠加的结果出现亮条纹的位置,两束光的路程差Δr =kλ(k =0,1,2,3…),出现暗条纹的位置,两束光的路程差Δr =2k +12λ(k =0,1,2,3…).4.薄膜干涉的应用(1)检查平面平整度的原理光线经空气薄膜的上、下两面的反射,得到两束相干光,如果被检测平面是光滑平整的,得到的干涉条纹是等间距的.如果被检测平面某处凹下,则对应条纹提前出现,如果某处凸起,则对应条纹延后出现.(2)增透膜的原理在增透膜的前、后表面反射的两列光波形成相干波,当路程差为半波长的奇数倍时,两光波相互削弱,反射光的能量几乎等于零.例3 用单色光照射位于竖直平面内的肥皂液薄膜,所观察到的干涉条纹为( )答案 B解析 由于在光的干涉中亮、暗条纹的位置取决于两列光波相遇时通过的路程差,则在薄膜干涉中取决于入射点处薄膜的厚度.因肥皂液薄膜在重力作用下形成了一个上薄下厚的楔形膜,厚度相等的位置在同一条水平线上,故同一条干涉条纹必然是水平的,由此可知只有选项B 正确.1.由于薄膜干涉是经薄膜前、后表面反射的两束光叠加而形成的,所以观察时眼睛与光源应在膜的同一侧.2.在光的薄膜干涉中,前、后表面反射光的路程差由膜的厚度决定,所以薄膜干涉中同一亮条纹或同一暗条纹应出现在厚度相同的地方,因此又叫等厚干涉,每一条纹都是水平的.3.用单色光照射得到明暗相间的条纹,用白光照射得到彩色条纹.1.(双缝干涉实验)(2018·北京卷)用双缝干涉实验装置得到白光的干涉条纹,在光源与单缝之间加上红色滤光片后( )A.干涉条纹消失B.彩色条纹中的红色条纹消失C.中央条纹变成暗条纹D.中央条纹变成红色答案 D解析 在光源与单缝之间加上红色滤光片后,只透过红光,屏上出现红光(单色光)的干涉条纹,中央条纹变成红色.2.(亮、暗条纹的判断)在双缝干涉实验中,双缝到光屏上P 点的距离之差为0.6 μm ,若分别用频率为f 1=5.0×1014 Hz 和f 2=7.5×1014 Hz 的单色光垂直照射双缝,则P 点出现亮、暗条纹的情况是( )A.用单色光f 1和f 2分别照射时,均出现亮条纹B.用单色光f 1和f 2分别照射时,均出现暗条纹C.用单色光f 1照射时出现亮条纹,用单色光f 2照射时出现暗条纹D.用单色光f 1照射时出现暗条纹,用单色光f 2照射时出现亮条纹答案 C解析 单色光f 1的波长:λ1=c f 1=3×1085.0×1014 m =0.6×10-6 m =0.6 μm. 单色光f 2的波长:λ2=c f 2=3×1087.5×1014 m =0.4×10-6 m =0.4 μm. 因P 点到双缝的距离之差Δx =0.6 μm =λ1,所以用单色光f 1照射时P 点出现亮条纹.Δx =0.6 μm =32λ2, 所以用单色光f 2照射时P 点出现暗条纹,故选项C 正确.3.(多选)用红光做光的双缝干涉实验,如果将其中一条缝改用蓝光,下列说法正确的是( )A.在光屏上出现红蓝相间的干涉条纹B.只有相干光源发出的光才能在叠加时产生干涉现象,此时不产生干涉现象C.频率不同的两束光也能发生干涉现象,此时出现彩色条纹D.尽管亮、暗条纹都是光波相互叠加的结果,但此时红光与蓝光只叠加而不产生干涉现象答案 BD解析 频率相同、相位差恒定、振动方向相同是产生干涉现象的条件,红光和蓝光的频率不同,不能产生干涉现象,不会产生干涉条纹,A 、C 错误.4.(多选)用单色光做双缝干涉实验时( )A.屏上到双缝的路程差等于波长整数倍处出现亮条纹B.屏上到双缝的路程差等于半波长整数倍处,可能是亮条纹,也可能是暗条纹C.屏上的亮条纹一定是两列光波的波峰与波峰相遇的地方D.屏上的亮条纹是两列光波的波峰与波谷相遇的地方答案 AB解析在双缝干涉实验中,屏上到双缝的路程差等于波长整数倍处出现亮条纹,是振动加强处,不一定是两列光波的波峰与波峰相遇的地方,也可能是波谷与波谷相遇的地方,A选项正确,C选项错误;屏上到双缝的路程差等于半波长整数倍处,可能是半波长的奇数倍(暗条纹),也可能是半波长的偶数倍(亮条纹),B选项正确;两列光波的波峰与波谷相遇的地方,应是暗条纹,D选项错误.5.(多选)双缝干涉实验装置如图3所示,绿光通过单缝S后,投射到有双缝的挡板上,双缝S1和S2与单缝S的距离相等,光通过双缝后在与双缝平行的屏上形成干涉条纹.屏上O点距双缝S1和S2的距离相等,P点是O点上侧的第一条亮条纹,如果将入射的单色光换成红光或蓝光,已知红光波长大于绿光波长,绿光波长大于蓝光波长,则下列说法正确的是()A.O点是红光的亮条纹B.红光的同侧第一条亮条纹在P点的上方C.O点不是蓝光的亮条纹D.蓝光的同侧第一条亮条纹在P点的上方答案AB解析中央O点到S1、S2的路程差为零,所以换不同颜色的光时,O点始终为亮条纹,选项A正确,C错误;波长越长,条纹间距越宽,所以红光的同侧第一条亮条纹在P点上方,蓝光的同侧第一条亮条纹在P点下方,选项B 正确,D错误.6.(多选)下列现象中可以用薄膜干涉来解释的是()A.海市蜃楼B.水面上的油膜在阳光照射下呈彩色C.肥皂泡在阳光照射下呈现五颜六色D.荷叶上的水珠在阳光下晶莹透亮答案BC解析海市蜃楼是光在空气中发生折射形成的,故选项A错误;荷叶上的水珠在阳光下晶莹透亮是全反射的结果,故选项D错误;油膜在阳光照射下呈彩色、肥皂泡在阳光照射下呈现五颜六色都是薄膜干涉的结果,故选项B、C 正确.7.(多选)如图4所示,一束白光从左侧射入肥皂薄膜,下列说法中正确的是()A.人从右侧向左看,可以看到彩色条纹B.人从左侧向右看,可以看到彩色条纹C.彩色条纹水平排列D.彩色条纹竖直排列答案BC解析一束白光射到薄膜上,经前、后两个面反射回来的光相遇,产生干涉现象,从左侧向右看可看到彩色条纹,又由于薄膜同一水平线上的厚度相同,所以彩色条纹是水平排列的,故正确答案为B、C.8.如图所示是用干涉法检查某块厚玻璃板的上表面是否平整的装置,所用单色光是用普通光通过滤光片产生的,检查中所观察到的干涉条纹是由下列哪两个表面反射的光线叠加而成的()A.a的上表面和b的下表面B.a的上表面和b的上表面C.a 的下表面和b 的上表面D.a 的下表面和b 的下表面答案 C解析 干涉法的原理是利用单色光的薄膜干涉,这里的薄膜指的是标准样板与待测玻璃板之间的空气层.在空气层的上表面和下表面分别反射的光会发生干涉,观察干涉后形成的条纹是否为平行直线,可以判断厚玻璃板的上表面是否平整.因此选项C 正确.9在双缝干涉实验中,若双缝处的两束光的频率均为6×1014 Hz ,两光源S 1、S 2的振动情况恰好相反,光屏上的P 点到S 1与到S 2的路程差为3×10-6 m ,如图所示,则:(注意和同频同步结论刚好相反)(1)P 点是亮条纹还是暗条纹?(2)设O 为到S 1、S 2路程相等的点,则P 、O 间还有几条亮条纹,几条暗条纹?(不包括O 、P 两处的条纹) 答案 (1)暗条纹 (2)5条暗条纹,6条亮条纹解析 (1)由λ=c f得λ=5×10-7 m n =Δs λ=3×10-65×10-7=6 由于两光源的振动情况恰好相反,所以P 点为暗条纹.(2)O 点到S 1、S 2的路程差为0,也是暗条纹,OP 间还有5条暗条纹,6条亮条纹.。

(完整版)光的干涉练习题及答案

(完整版)光的干涉练习题及答案

一、选择题1、严格地讲,空气折射率大于1,因此在牛顿环实验中,若将玻璃夹层中的空气逐渐抽去而成为真空时,干涉环将:( )A.变大;B.缩小;C.不变;D.消失。

【答案】:A2、在迈克耳逊干涉仪的一条光路中,放入一折射率n ,厚度为h 的透明介质板,放入后,两光束的光程差改变量为:( )A.h n )1(2-;B.nh 2;C.nh ;D.h n )1(-。

【答案】:A3、用劈尖干涉检测工件(下板)的表面,当波长为λ的单色光垂直入射时,观察到干涉条纹如图。

图中每一条纹弯曲部分的顶点恰与左边相邻的直线部分的连线相切。

由图可见工件表面: ( )A.一凹陷的槽,深为λ/4;B.有一凹陷的槽,深为λ/2;C.有一凸起的埂,深为λ/4;D.有一凸起的埂,深为λ。

【答案】:B4、牛顿环实验装置是用一平凸透镜放在一平板玻璃上,接触点为C ,中间夹层是空气,用平行单色光从上向下照射,并从下向上观察,看到许多明暗相间的同心圆环,这些圆环的特点是:( )A.C 是明的,圆环是等距离的;B.C 是明的,圆环是不等距离的;C.C 是暗的,圆环是等距离的;D.C 是暗的,圆环是不等距离的。

【答案】:B5、若将牛顿环玻璃夹层中的空气换成水时,干涉环将: ( )A .变大;B .缩小;C .不变;D .消失。

【答案】:B6、若把牛顿环装置(都是用折射率为1.52的玻璃制成的)由空气搬入折射率为1.33的水中,则干涉条纹 ( )A .中心暗斑变成亮斑;B .变疏;C .变密;D .间距不变。

【答案】:C7、两个不同的光源发出的两个白光光束,在空间相遇是不会产生干涉图样的,这是由于( )A.白光是由许多不同波长的光组成;B.两个光束的光强不一样;C.两个光源是独立的不相干光源;D.两个不同光源所发出的光,频率不会恰好相等。

【答案】:C8、在双缝干涉实验中,若单色光源S 到两缝S 1、S 2距离相等,则观察屏上中央明条纹位于O 处。

第五章 光的干涉 习题答案

第五章 光的干涉 习题答案

第五章 光的干涉5-1 波长为589.3nm 的钠光照射在一双缝上,在距双缝200cm 的观察屏上测量20个条纹共宽3cm ,试计算双缝之间的距离。

解:由题意,条纹间距为:cm e 15.0203==∴双缝间距为:m e D d 391079.015.0103.589200--⨯≈⨯⨯==λ5-2 在杨氏干涉实验中,两小孔的距离为1.5mm ,观察屏离小孔的垂直距离为1m ,若所用光源发出波长1λ=650nm 和2λ=532nm 的两种光波,试求两光波分别形成的条纹间距以及两组条纹的第8级亮纹之间的距离。

解:对于1λ=650nm 的光波,条纹间距为:m d D e 339111043.0105.1106501---⨯≈⨯⨯⨯==λ 对于2λ=532nm 的光波,条纹间距为:m d D e 339221035.0105.1105321---⨯≈⨯⨯⨯==λ ∴两组条纹的第8级条纹之间的距离为: m e e x 3211064.0)(8-⨯=-=∆5-3 一个长40mm 的充以空气的气室置于杨氏装置中的一个小孔前,在观察屏上观察到稳定的干涉条纹系,继后抽去气室中的空气,注入某种气体,发现条纹系移动了30个条纹。

已知照射光波波长为656.28nm ,空气折射率为1.000276,试求注入气体的折射率n g 。

解:气室充入空气和充气体前后,光程的变化为: D n g )000276.1(-=∆δ 而这一光程变化对应于30个波长: λδ30=∆∴λ30)1(=-D n g000768.1000276.110401028.6563039=+⨯⨯⨯=--g n5-4 在菲涅耳双面镜干涉实验中,光波长为600nm ,光源和观察屏到双面镜交线的距离分别为0.6m 和1.8m ,双面镜夹角为10-3rad ,求:(1)观察屏上的条纹间距;(2)屏上最多能看到多少亮条纹?解:如图所示,S 1S 2的距离为:αsin 2l d =∴条纹间距为:αλλsin 2)(l q l d D e +== ∵α角很小∴mmm l q l e 2.1102.1106.0210600)8.16.0(2)(339=⨯=⨯⨯⨯⨯+=+≈---αλ屏上能产生条纹的范围,如图阴影所示mmmq qtg y 6.3108.12223=⨯⨯=≈=-αα∴最多能看到的亮条纹数为:32.16.3===e y n5-5 在如图所示的洛埃镜实验中,光源S 1到观察屏的距离为2m ,光源到洛埃镜面的垂直距离为2.5mm 。

光的干涉练习题及答案

光的干涉练习题及答案

光的干涉练习题及答案三、分析题1、在双缝干涉实验中,在下列情况下,干涉条纹将如何变化?试说明理由。

(1) 入射光由红光换为紫光;(2) 屏与双缝的间距D 不断增大;(3) 在下面一条缝后放一块云母片。

【答案】:双缝干涉条纹相邻明条纹(或暗条纹)的间距为 λdD x =∆ (2分) (1) 红光变紫光波长λ减小,其他条件不变时,条纹变窄(或密或向屏中央集中)(3分)(2) D 不断增大时,x ∆增大,条纹变稀(或变宽)(3分)(3) 在下面一条缝后放一块云母片,通过它的光线的光程增大(2分),干涉条纹向下平移(2分)。

2、杨氏双缝干涉实验条件作如下变化,干涉条纹将如何变化?试说明理由。

(1)加大双缝间距d ;(2)把整套装置浸入水中;(3)在两缝后分别放红色和绿色的滤光片。

【答案】:根据:条纹宽度λdD x =∆(2分) (1)d 变大,其他条件不变,则x ∆变小,所以条纹变窄(或密或向屏中央集中)(2分)。

d 增大到一定程度,条纹过于细密而无法分辨,拥挤在一起成为一条明亮带。

(2分)(2)装置没入水中后的条纹宽度为λdD n x 1=∆,因为1>n (2分) 所以x ∆变小,条纹变窄(或密或向屏中央集中)。

(2分)(3)使通过两缝的光频率不同,不满足相干条件(2分),干涉条纹消失(2分)。

3、如图所示,A ,B 两块平板玻璃构成空气劈尖,分析在下列情况中劈尖干涉条纹将如何变化?(1) A 沿垂直于B 的方向向上平移[见图(a)];(2) A 绕棱边逆时针转动[见图(b)]。

【答案】:相邻明纹或暗纹介质膜厚度差n d 2λ=∆(2分),相邻明纹或暗纹间距θλn l 2=(2分)。

(1)上表面A 向上平移时,棱边明暗交替变化,相同厚度的空气薄模向棱边处移动,条纹间距不变。

(4分)(2) A 绕棱边逆时针转动时,棱边明暗不变,各级条纹向棱边方向移动,条纹变密。

(4分)4、在玻璃(5.1=n )上镀上25.1=n 的介质薄膜,波长 nm 500=λ的光从空气中垂直照射到此薄膜上,要使其为高反膜和增透膜求膜的厚度。

第一章光的干涉习题与答案解析

第一章光的干涉习题与答案解析

λdr y 0=∆第一章 光的干涉●1.波长为nm 500的绿光投射在间距d 为cm 022.0的双缝上,在距离cm 180处的光屏上形成干涉条纹,求两个亮条纹之间的距离.若改用波长为nm 700的红光投射到此双缝上,两个亮条纹之间的距离又为多少算出这两种光第2级亮纹位置的距离.解:由条纹间距公式λd r y y y j j 01=-=∆+ 得:cm 328.0818.0146.1cm146.1573.02cm818.0409.02cm573.010700022.0180cm 409.010500022.018021222202221022172027101=-=-=∆=⨯===⨯===⨯⨯==∆=⨯⨯==∆--y y y drj y d rj y d r y d r y j λλλλ●2.在杨氏实验装置中,光源波长为nm 640,两狭缝间距为mm 4.0,光屏离狭缝的距离为cm 50.试求:(1)光屏上第1亮条纹和中央亮条纹之间的距离;(2)若p 点离中央亮条纹为mm 1.0,问两束光在p 点的相位差是多少(3)求p 点的光强度和中央点的强度之比.式: 解:(1)由公得λd r y 0=∆ =cm 100.8104.64.05025--⨯=⨯⨯(2)由课本第20页图1-2的几何关系可知52100.01sin tan 0.040.810cm 50y r r d d dr θθ--≈≈===⨯521522()0.8106.4104r r πππϕλ--∆=-=⨯⨯=⨯(3) 由公式2222121212cos 4cos 2I A A A A A ϕϕ∆=++∆= 得8536.042224cos 18cos 0cos 421cos 2cos42cos 422202212212020=+=+==︒⋅=∆∆==πππϕϕA A A A I I pp●3. 把折射率为的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置为中央亮条纹,试求插入的玻璃片的厚度.已知光波长为6×10-7m.解:未加玻璃片时,1S 、2S 到P 点的光程差,由公式2rϕπλ∆∆=可知为 Δr =215252r r λπλπ-=⨯⨯=现在1S 发出的光束途中插入玻璃片时,P 点的光程差为()210022r r h nh λλϕππ'--+=∆=⨯=⎡⎤⎣⎦所以玻璃片的厚度为421510610cm 10.5r r h n λλ--====⨯-4. 波长为500nm 的单色平行光射在间距为的双狭缝上.通过其中一个缝的能量为另一个的2倍,在离狭缝50cm 的光屏上形成干涉图样.求干涉条纹间距和条纹的可见度.解:6050050010 1.250.2r y d λ-∆==⨯⨯=mm122I I = 22122A A =12A A =()()122122/0.94270.941/A A V A A ∴===≈+5. 波长为700nm 的光源与菲涅耳双镜的相交棱之间距离为20cm ,棱到光屏间的距离L 为180cm,若所得干涉条纹中相邻亮条纹的间隔为1mm ,求双镜平面之间的夹角θ。

(完整版)6光的干涉习题详解

(完整版)6光的干涉习题详解

练习六:第0页共7页 练习六 光的干涉 (全册74页第21页)习题六一、选择题1.如图所示,在杨氏双缝干涉实验中,设屏到双缝的距离D =2.0m ,用波长λ=500nm 的单色光垂直入射,若双缝间距d 以0.2mm ⋅s -1的速率对称地增大(但仍满足d << D ),则在屏上距中心点x =5cm 处,每秒钟扫过的干涉亮纹的条数为 [ ] (A )1条; (B )2条; (C )5条; (D )10条。

答案:D解:缝宽为d 时,双缝至屏上x 处的光程差为dx Dδ=。

所以当d 增大时,光程差改变,引起干涉条纹移动。

若干涉条纹移动N 条,则对应的光程差改变为N δδδλ'∆=-=,依题意,经1s ,光程差的改变量为:()λδN Dxd D x d =-+=2.0 由此可解出N =10。

2.在双缝干涉实验中,若单色光源S 到两缝S 1、S 2距离相等,则观察屏上中央明纹中心位于图中O 处,现将光源S 向下移动到示意图中的S ' 位置,则 [ ](A )中央明条纹向下移动,且条纹间距不变; (B )中央明条纹向上移动,且条纹间距增大; (C )中央明条纹向下移动,且条纹间距增大; (D )中央明条纹向上移动,且条纹间距不变。

答案:D解:条纹间距与参数d 、D 和λ有关,而与光源的竖直位置无关。

但光源下移时,在原O 点处两光程差不再为0,而且光程差为0处必在O 点上方,即中央明纹向上移动。

3.如图所示,波长为λ的平行单色光垂直入射在折射率为n 2的薄膜上,经上下两个表面反射的两束光发生干涉。

若薄膜厚度为e ,而且n 1 > n 2 > n 3,则两束反射光在相遇点的位相差为 [ ](A )24/n e πλ; (B )22/n e πλ; (C )24/n e ππλ+; (D )24/n e ππλ-+。

答案:A解:三层介质折射率连续变化,故上下两光之间无附加程差。

光的干涉习题答案

光的干涉习题答案

光学干涉测量技术
利用光的干涉现象测量长度、角 度、表面粗糙度等物理量,具有 高精度和高灵敏度。
光学干涉滤镜
利用光的干涉现象制作出的滤镜, 可以实现对特定波长的光进行过 滤或增强。
光学干涉仪
利用光的干涉现象测量光学元件 的表面形貌、折射率等参数,广 泛应用于光学研究和制造领域。
02 光的干涉原理
光的波动理论
光的干涉习题答案
目录
• 光的干涉现象 • 光的干涉原理 • 光的干涉实验 • 光的干涉习题解析 • 光的干涉理论的发展
01 光的干涉现象
光的干涉现象定义
1 2
光的干涉现象
当两束或多束相干光波在空间某一点叠加时,由 于光波的相互加强或减弱,形成明暗相间的干涉 条纹的现象。
相干光波
频率相同、振动方向相同、相位差恒定的光波。
题目:一束单色光垂直入射到一对相互平行的狭缝上, 光通过狭缝后形成的光斑可看作是什么图形?
解析:根据光的干涉原理,当单色光垂直入射到一对相 互平行的狭缝上,光通过狭缝后形成的光斑是圆形干涉 图样。
进阶习题解析
题目
如何通过双缝干涉实验验证光的波动性?
答案
通过观察干涉条纹的形状和分布,可以证明光具有波动性 。
光的波动理论。
20世纪初,爱因斯坦提出光的 量子理论,解释了光的干涉现象
的微观机制。
光的干涉理论在现代物理学中的应用
光的干涉理论在光学、 量子力学和凝聚态物 理学等领域有广泛应 用。
在量子力学中,光的 干涉被用于研究量子 纠缠和量子计算等前 沿领域。
在光学中,光的干涉 被用于制造高精度光 学仪器和检测技术。
光的干涉理论的前沿研究
01
目前,光的干涉理论的前沿研究主要集中在量子光 学和量子信息领域。

第一章--光的干涉--习题及答案

第一章--光的干涉--习题及答案

λdr y 0=∆第一章 光的干涉●1.波长为nm 500的绿光投射在间距d 为cm 022.0的双缝上,在距离cm 180处的光屏上形成干涉条纹,求两个亮条纹之间的距离.若改用波长为nm 700的红光投射到此双缝上,两个亮条纹之间的距离又为多少?算出这两种光第2级亮纹位置的距离.解:由条纹间距公式λd r y y y j j 01=-=∆+得:●2.在杨氏实验装置中,光源波长为nm 640,两狭缝间距为mm 4.0,光屏离狭缝的距离为cm 50.试求:<1>光屏上第1亮条纹和中央亮条纹之间的距离;〔2〕若p 点离中央亮条纹为mm 1.0,问两束光在p 点的相位差是多少?〔3〕求p 点的光强度和中央点的强度之比.解:〔1〕由公式: 得λd r y 0=∆=cm100.8104.64.05025--⨯=⨯⨯〔2〕由课本第20页图1-2的几何关系可知(3)由公式2222121212cos 4cos 2I A A A A A ϕϕ∆=++∆=得●3. 把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置为中央亮条纹,试求插入的玻璃片的厚度.已知光波长为6×10-7m .解:未加玻璃片时,1S 、2S 到P 点的光程差,由公式2rϕπλ∆∆=可知为 Δr =215252r r λπλπ-=⨯⨯=现在1S 发出的光束途中插入玻璃片时,P 点的光程差为所以玻璃片的厚度为4. 波长为500nm 的单色平行光射在间距为0.2mm 的双狭缝上.通过其中一个缝的能量为另一个的2倍,在离狭缝50cm 的光屏上形成干涉图样.求干涉条纹间距和条纹的可见度.解:6050050010 1.250.2r y d λ-∆==⨯⨯=mm5. 波长为700nm 的光源与菲涅耳双镜的相交棱之间距离为20cm ,棱到光屏间的距离L为180cm ,若所得干涉条纹中相邻亮条纹的间隔为1mm ,求双镜平面之间的夹角θ.解:64()(2001800)70010sin 3510222001r L r y λθθ--++⨯⨯====⨯∆⨯⨯弧度12'≈6. 在题1.6图所示的劳埃德镜实验中,光源S 到观察屏的距离为1.5m ,到劳埃德镜面的垂直距离为2mm .劳埃德镜长40cm ,置于光源和屏之间的中央.<1>若光波波长λ=500nm ,问条纹间距是多少?<2>确定屏上可以看见条纹的区域大小,此区域内共有几条条纹?<提示::产生干涉的区域P 1P 2可由图中的几何关系求得.>解:〔1P 点位置为1y ()01212d r r ⨯'-〔3〕劳埃镜干涉存在半波损失现象 N ∴暗yy =∆N 亮=N 暗1- 2.311121110.1875y y =-=-=-=∆条亮纹●7. 试求能产生红光<λ=700nm>的二级反射干涉条纹的肥皂膜厚度.已知肥皂膜折射率为1.33,且平行光与法向成30°角入射.解:根据题意●8. 透镜表面通常镀一层如MgF 2〔n=1.38〕一类的透明物质薄膜,目的是利用干涉来降低玻璃表面的反射.为了使透镜在可见光谱的中心波长〔550nm 〕处产生极小的反射,则镀层必须有多厚?解:可以认为光是沿垂直方向入射的.即︒==021i i由于上下表面的反射都由光密介质反射到光疏介质,所以无额外光程差.因此光程差nh i nh 2cos 22==δ2mmP 2P 1 P 0题1.6图如果光程差等于半波长的奇数倍即公式2)12(λ+=∆j r ,则满足反射相消的条件因此有2)12(2λ+=j nh所以),1,20(4)12( =+=j n j h λ当0=j 时厚度最小cm10nm 64.9938.1455045-min ≈=⨯==nh λ●9. 在两块玻璃片之间一边放一条厚纸,另一边相互压紧.玻璃片l 长10cm,纸厚为0.05mm,从60°的反射角进行观察,问在玻璃片单位长度内看到的干涉条纹数目是多少?设单色光源波长为500nm.解:由课本49页公式〔1-35〕可知斜面上每一条纹的宽度所对应的空气尖劈的厚度的变化量为1221221sin 2i n n h h h j j -=-=∆+λ如果认为玻璃片的厚度可以忽略不记的情况下,则上式中︒===60,1122i n n .而厚度h 所对应的斜面上包含的条纹数为故玻璃片上单位长度的条纹数为1010100==='l N N 条/厘米●10. 在上题装置中,沿垂直于玻璃片表面的方向看去,看到相邻两条暗纹间距为1.4mm.—已知玻璃片长17.9cm,纸厚0.036mm,求光波的波长.解:依题意,相对于空气劈的入射角220,cos 1.sin i i θ==L d==θtan 0.12=n 11. 波长为400760nm 的可见光正射在一块厚度为1.2×10-6m,折射率为1.5玻璃片上,试问从玻璃片反射的光中哪些波长的光最强.解:依题意,反射光最强即为增反膜的相长干涉,则有:故1242+=j d n λ当0=j 时,nm 7200102.15.14432=⨯⨯⨯==-d n λ 当1=j 时,nm24003102.15.143=⨯⨯⨯=-λ 当2=j 时,nm14405102.15.143=⨯⨯⨯=-λ当3=j 时,nm10707102.15.143=⨯⨯⨯=-λ当4=j 时,nm8009102.15.143=⨯⨯⨯=-λ 当5=j 时,nm5.65411102.15.143=⨯⨯⨯=-λ 当6=j 时,nm8.55313102.15.143=⨯⨯⨯=-λ 当7=j 时,nm48015102.15.143=⨯⨯⨯=-λ 当8=j 时,nm5.42317102.15.143=⨯⨯⨯=-λ 当9=j 时,nm37819102.15.143=⨯⨯⨯=-λ所以,在nm 760~390的可见光中,从玻璃片上反射最强的光波波长为12. 迈克耳孙干涉仪的反射镜M 2移动0.25mm 时,看到条纹移过的数目为909个,设光为垂直入射,求所用光源的波长.解:根据课本59页公式可知,迈克耳孙干涉仪移动每一条条纹相当h 的变化为:现因 02=i , 故2λ=∆h909=N 所对应的h 为故13. 迈克耳孙干涉仪平面镜的面积为4×4cm 2,观察到该镜上有20个条纹.当入射光的波长为589nm 时,两镜面之间的夹角为多大?解: 因为2cm 44⨯=S所以40mm cm 4==L所以mm 22040===∆N L L又因为θλ2=∆L所以()73.301025.1471022589266''=⨯=⨯⨯=∆=-rad Lλθ14. 调节一台迈克耳孙干涉仪,使其用波长为500nm 的扩展光源照明时会出现同心圆环条纹.若要使圆环中心处相继出现1000条圆环条纹,则必须将移动一臂多远的距离?若中心是亮的,试计算第一暗环的角半径.〔提示:圆环是等倾干涉图样.计算第一暗环角半径是可利用θ≈sin θ与cos θ≈1-θ2/2的关系.〕解:〔1〕因为光程差δ每改变一个波长λ的距离,就有一亮条A 纹移过.所以λδN =∆又因为对于迈克耳孙干涉仪光程差的改变量d ∆=∆2δ〔Δd 为反射镜移动的距离〕所以d N ∆==∆2λδ所以0.25mm nm 10255002100024=⨯=⨯==∆λN d〔2〕因为迈克耳孙干涉仪无附加光程差并且021==i i 0.121==n n它形成等倾干涉圆环条纹,假设反射面的相位不予考虑 所以光程差12222cos 2l l d i d -===δ即两臂长度差的2倍若中心是亮的,对中央亮纹有: λj d =2〔1〕对第一暗纹有:()212cos 22λ-=j i d 〔2〕〔2〕-〔1〕得:()2cos 122λ=-i d所以︒====1.8rad 032.01000122di λ这就是等倾干涉条纹的第一暗环的角半径,可见2i 是相当小的.15. 用单色光观察牛顿环,测得某一亮环的直径为3mm,在它外边第5个亮环的直径为4.6mm,所用平凸透镜的凸面曲率半径为1.03m,求此单色光的波长.解:对于亮环,有Rj r j 2)12(λ+=〔 ,3,2,1,0=j 〕所以λR j r j )21(2+=λR j r j )215(25++=+所以590.3nm mm 10903.51030540.36.4545422225225=⨯=⨯⨯-=⨯⨯-=-=-++R d d Rr r jj j j λ16. 在反射光中观察某单色光所形成的牛顿环.其第2级亮环与第3级亮环间距为1mm,求第19和20级亮环之间的距离.解:对于亮环,有Rj r j 2)12(λ+=〔 ,3,2,1,0=j 〕所以R r λ)211(1+=Rr λ)212(2+=又根据题意可知两边平方得所以1541-=R λ故RR r r λλ⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+=-211921201920 17 牛顿环可有两个曲率半径很大的平凸透镜之间的空气产生〔图〕.平凸透镜A 和B 的曲率半径分别为AR 和BR ,在波长为600nm 的单射光垂直照射下观察到第10个暗环半径4ABrmm=.若另有曲率半径为CR 的平凸透镜C 〔图中未画出〕,并且B 、C 组合和A 、C组合产生的第10个暗环半径分别为4.5BC r mm=和5AC r mm=,试计算AR 、BR 和CR .解:22r h R =22211()22211,()211()2AB AB AB ABA B A B A BBC BC B CAC AC A Cr r r h h h R R R R r h R R r h R R ∴=+=+=+=+=+同理又对于暗环:2(21)22h j λλδ=-=+即2h jλ=∴21110()ABA Br R R λ=+ <1>21110()BC B Cr R R λ=+ <2>21110()AC A B r R R λ=+ <3>18 菲涅尔双棱镜实验装置尺寸如下:缝到棱镜的距离为5cm ,棱镜到屏的距离为95cm ,棱镜角为'17932α=构成棱镜玻璃材料的折射率'1.5n =,采用的是单色光.当厚度均匀的肥皂膜横过双冷静的一半部分放置,该系统中心部分附近的条纹相对原先有0.8mm 的位移.若肥皂膜的折射率为 1.35n =, 试计算肥皂膜厚度的最小值为多少? 解:如图所示:光源和双棱镜系统的性质相当于相干光源1s 和2s ,它们是虚光源.由近似条件'(1)n Aθ≈-和1()2d lθ≈得'22(1)d l l n Aθ==- <1>按双棱镜的几何关系得2A απ+=所以'142A πα-== <2>肥皂膜插入前,相长干涉的条件为0dy j r λ= <3>由于肥皂膜的插入,相长干涉的条件为'(1)d y n t j r λ+-= <4>由<3>和 <4>得'''00()2(1)()(1)(1)d y y l n A y y t r n r n ---==--代入数据得74.9410t m -=⨯19 将焦距为50cm 的会聚透镜中央部分C 切去〔见题图〕,余下的A 、B 两部分仍旧粘起来,C 的宽度为1cm .在对称轴线上距透镜25cm 处置一点光源,发出波长为692nm 的红宝石激光,在对称轴线上透镜的另一侧50cm 处置一光屏,平面垂直于轴线.试求:S S<a><b>题1.18图<1>干涉条纹的间距是多少?<2>光屏上呈现的干涉图样是怎样的?解:<1>透镜由A、B两部分粘合而成,这两部分的主轴都不在该光学系统的中心轴线上,A部分的主轴在中心线上0.5cm处,B部分的主轴在中心线下0.5cm处,由于单色点光源P经凸透镜A和B所成的像是对称的,故仅需考虑P经B的成像位置即可.由111''s s f-=得'50s cm=-由因为''y sy sβ==所以''1s yy cms==即所成的虚像在B的主轴下方1cm处,也就是在光学系统对称轴下方0.5cm处,同理,单色光源经A所成的虚像在光学系统对称轴上方0.5cm处,两虚像构成相干光源,它们之间的距离为1cm,所以36.9210y r cmdλ-∆==⨯<2>光屏上呈现的干涉条纹是一簇双曲线.20将焦距为5cm的薄透镜L沿直线方向剖开〔见题图〕分成两部分A和B,并将A部分沿主轴右移至2.5cm处,这种类型的装置称为梅斯林对切透镜.若将波长为632.8nm的点光源P置于主轴上离透镜L B距离为10cm处,试分析:<1> 成像情况如何?<2>若在L B右边10.5cm处置一光屏,则在光屏上观察到的干涉图样如何?解:〔1〕如图〔b〕所示,该情况可以看作由两个挡掉一半的透镜L A和L B构成,其对称轴为PO,但是主轴和光心却发生了平移.对于透镜L A,其光心移到O A处,而主轴上移0.01cm到O A F A;对于透镜L B,其光心移到O B处,而主轴下移0.01cm到O B F B.点光源P恰恰在透镜的对称轴上二倍焦距处.由于物距和透镜L A、L B的焦距都不变,故通过L A 、L B成像的像距也不变.根据物像公式将p=-10cm和'f=5cm代入上式,得'p=5cm'yyβ=='pp=-1故'y=-0.01 cm由于P点位于透镜L A的光轴下方0.01 cm,按透镜的成像规律可知,实像P A应在透镜L A 主轴上方0.01 cm处;同理,P点位于透镜L B主轴上方0.01 cm处, 实像P B应在主轴下方0.01 cm处.两像点的距离为上方0.01 cm处.P A P B=d=2|'y|+hC题1.19图=0.04cm<2>由于实像P A 和P B 构成了一对相干光源,而且相干光束在观察屏的区域上是相互交叠的,故两束光叠加后将发生光的干涉现象,屏上呈现干涉花样.按杨氏干涉规律,两相邻亮条纹的间距公式为将数据代入得y ∆=1.582mm21 如图所示,A 为平凸透镜,B 为平玻璃板,C 为金属柱,D 为框架,A 、B 间有空隙,图中绘出的是接触的情况,而A 固结在框架的边缘上.温度变化时,C 发生伸缩,而假设A 、B 、D 都不发生伸缩.以波长632.8nm 的激光垂直照射.试问: <1>在反射光中观察时,看到牛顿环条纹移向中央,这表示金属柱C 的长度在增加还是减小?<2>若观察到有10个亮条纹移向中央而消失,试问C 的长度变化了对少毫米?解:〔1〕因为:在反射光中观察牛顿环的亮条纹,与干涉级j 随着厚度h 的增加而增大,即随着薄膜厚度的增加,任意一个指定的j 级条纹将缩小其半径,所以各条纹逐渐收缩而在中心处消失, 膜厚h 增加就相当于金属的长度在缩短.所以,看到牛顿环条纹移向中央时,表明C 的长度在减少.〔2〕由2/)(2/λλj N h ∆==∆ 得3164h nm ∆=.D题 1.21。

光的干涉习题参考答案

光的干涉习题参考答案

第13章 光的干涉习题参考答案13-3 某单色光从空气射入水中,其频率、波速、波长是否变化?怎样变化? 解: υ不变,为波源的振动频率;nn 空λλ=变小;υλn u =变小.13-4 什么是光程? 在不同的均匀媒质中,若单色光通过的光程相等时,其几何路程是否相同?其所需时间是否相同?在光程差与位相差的关系式∆λπϕ∆2= 中,光波的波长要用真空中波长,为什么?解:nr =∆.不同媒质若光程相等,则其几何路程定不相同;其所需时间相同,为Ct ∆=∆. 因为∆中已经将光在介质中的路程折算为光在真空中所走的路程。

13-5 用劈尖干涉来检测工件表面的平整度,当波长为λ的单色光垂直入射时,观察到的干涉条纹如题12-5图所示,每一条纹的弯曲部分的顶点恰与左邻的直线部分的连线相切.试说明工件缺陷是凸还是凹?并估算该缺陷的程度.解: 工件缺陷是凹的.故各级等厚线(在缺陷附近的)向棱边方向弯曲.按题意,每一条纹弯曲部分的顶点恰与左邻的直线部分连线相切,说明弯曲部分相当于条纹向棱边移动了一条,故相应的空气隙厚度差为2λ=∆e ,这也是工件缺陷的程度.题13-5图 题13-6图13-6 如题13-6图,牛顿环的平凸透镜可以上下移动,若以单色光垂直照射,看见条纹向中心收缩,问透镜是向上还是向下移动?解: 条纹向中心收缩,透镜应向上移动.因相应条纹的膜厚k e 位置向中心移动. 13-7 在杨氏双缝实验中,双缝间距d =0.20mm ,缝屏间距D =1.0m ,试求: (1)若第二级明条纹离屏中心的距离为6.0mm ,计算此单色光的波长; (2)相邻两明条纹间的距离.解: (1)由λk dDx =明知,λ22.01010.63⨯⨯=, ∴ 3106.0-⨯=λmm oA 6000=(2) 3106.02.010133=⨯⨯⨯==∆-λd D x mm 13-8 在双缝装置中,用一很薄的云母片(n=1.58)覆盖其中的一条缝,结果使屏幕上的第七级明条纹恰好移到屏幕中央原零级明纹的位置.若入射光的波长为5500oA ,求此云母片的厚度.解: 设云母片厚度为e ,则由云母片引起的光程差为 按题意 λδ7=∴ 610106.6158.1105500717--⨯=-⨯⨯=-=n e λm 6.6=m μ 13-9 洛埃镜干涉装置如题13-9图所示,镜长30cm ,狭缝光源S 在离镜左边20cm 的平面内,与镜面的垂直距离为2.0mm ,光源波长=λ7.2×10-7m ,试求位于镜右边缘的屏幕上第一条明条纹到镜边缘的距离. 题13-9图解: 镜面反射光有半波损失,且反射光可视为虚光源S '发出.所以由S 与S '发出的两光束到达屏幕上距镜边缘为x 处的光程差为 第一明纹处,对应λδ=∴25105.44.0250102.72--⨯=⨯⨯⨯==d Dx λmm 13-10 一平面单色光波垂直照射在厚度均匀的薄油膜上,油膜覆盖在玻璃板上.油的折射率为1.30,玻璃的折射率为1.50,若单色光的波长可由光源连续可调,可观察到5000 oA 与7000 oA 这两个波长的单色光在反射中消失.试求油膜层的厚度.解: 油膜上、下两表面反射光的光程差为ne 2,由反射相消条件有λλ)21(2)12(2+=+=k k k ne ),2,1,0(⋅⋅⋅=k ① 当50001=λoA 时,有2500)21(21111+=+=λλk k ne ②当70002=λoA 时,有3500)21(22222+=+=λλk k ne ③因12λλ>,所以12k k <;又因为1λ与2λ之间不存在3λ满足33)21(2λ+=k ne 式即不存在 132k k k <<的情形,所以2k 、1k 应为连续整数,即 112-=k k ④ 由②、③、④式可得:得 31=k 可由②式求得油膜的厚度为13-11 白光垂直照射到空气中一厚度为3800 oA 的肥皂膜上,设肥皂膜的折射率为1.33,试问该膜的正面呈现什么颜色?背面呈现什么颜色? 解: 由反射干涉相长公式有 得 122021612380033.14124-=-⨯⨯=-=k k k ne λ 2=k , 67392=λoA (红色)3=k , 40433=λ oA (紫色) 所以肥皂膜正面呈现紫红色.由透射干涉相长公式 λk ne =2),2,1(⋅⋅⋅=k 所以 kk ne 101082==λ 当2=k 时, λ =5054oA (绿色) 故背面呈现绿色.13-12 在折射率1n =1.52的镜头表面涂有一层折射率2n =1.38的Mg 2F 增透膜,如果此膜适用于波长λ=5500 oA 的光,问膜的厚度应取何值?解: 设光垂直入射增透膜,欲透射增强,则膜上、下两表面反射光应满足干涉相消条件,即。

(完整版)光的干涉练习题及答案

(完整版)光的干涉练习题及答案

(完整版)光的干涉练习题及答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN一、选择题1、严格地讲,空气折射率大于1,因此在牛顿环实验中,若将玻璃夹层中的空气逐渐抽去而成为真空时,干涉环将:( )A.变大;B.缩小;C.不变;D.消失。

【答案】:A2、在迈克耳逊干涉仪的一条光路中,放入一折射率n ,厚度为h 的透明介质板,放入后,两光束的光程差改变量为:( )A.h n )1(2-;B.nh 2;C.nh ;D.h n )1(-。

【答案】:A3、用劈尖干涉检测工件(下板)的表面,当波长为λ的单色光垂直入射时,观察到干涉条纹如图。

图中每一条纹弯曲部分的顶点恰与左边相邻的直线部分的连线相切。

由图可见工件表面: ( )A.一凹陷的槽,深为λ/4;B.有一凹陷的槽,深为λ/2;C.有一凸起的埂,深为λ/4;D.有一凸起的埂,深为λ。

【答案】:B4、牛顿环实验装置是用一平凸透镜放在一平板玻璃上,接触点为C ,中间夹层是空气,用平行单色光从上向下照射,并从下向上观察,看到许多明暗相间的同心圆环,这些圆环的特点是:( )是明的,圆环是等距离的; 是明的,圆环是不等距离的;是暗的,圆环是等距离的; 是暗的,圆环是不等距离的。

【答案】:B5、若将牛顿环玻璃夹层中的空气换成水时,干涉环将: ( )A .变大;B .缩小;C .不变;D .消失。

【答案】:B6、若把牛顿环装置(都是用折射率为的玻璃制成的)由空气搬入折射率为的水中,则干涉条纹 ( )A .中心暗斑变成亮斑;B .变疏;C .变密;D .间距不变。

【答案】:C7、两个不同的光源发出的两个白光光束,在空间相遇是不会产生干涉图样的,这是由于( )A.白光是由许多不同波长的光组成;B.两个光束的光强不一样;C.两个光源是独立的不相干光源;D.两个不同光源所发出的光,频率不会恰好相等。

【答案】:C8、在双缝干涉实验中,若单色光源S 到两缝S 1、S 2距离相等,则观察屏上中央明条纹位于O处。

第 9 章 光的干涉.习题答案

第 9 章 光的干涉.习题答案

第9章 光的干涉 习题9.1 在杨氏实验中,若对实验装置做如下调节,干涉条纹将如何变化?(1)入射光的波长变大;(2)用一折射率为n 、厚度为t 的透明介质片覆盖其中一条狭缝(n >1);(3)双缝之间的距离逐渐变大;(4)将整个装置置于折射率为n >1的透明介质中。

解 杨氏实验的干涉条纹有如下特点:对一定波长的单色光来说,相邻明条纹(或暗条纹)的间距相等,均为/y l d λΔ=,式中l 为双缝到屏幕的距离,d 为双缝的间距,因此有(1)入射光的波长变大,相邻条纹间距变大。

(2)用一个折射率为n 、厚度为t 的透明介质片覆盖其中一条狭缝(n >1),由该狭缝发出的光的光程将增加(-1)n t ,中央明纹中心的位置将向覆盖介质片的方向移动,移动条数为(-1)/n t λ,因为相邻条纹明对应的光程差之差为λ。

原来中央明纹中心的位置将变成(-1)/n t λ级明纹的中心。

(3)双缝之间的距离逐渐变大,相邻条纹间距变小。

(4)将整个装置置于折射率为n >1的透明介质中,因由双缝S 1、S 2发出的光到达任意点P 处的光程差为 21()n r r δ=−=lyd n =λk ± (1) 式(1)中y 为点P 相对点O 的坐标,k 级明条纹中心的位置是,0,1,2,l y k k ndλ=±=" (2) 因而相邻明条纹(或暗条纹)的间距相等,所以均为 nd l y λ=Δ 可以看出,将整个装置置于折射率为n >1的透明介质中,条纹间距会变小。

9.2 由汞弧灯发出的光,通过一个绿色滤光片后,照射到相距为0.50mm 的双缝上,在距双缝 2.5m 的屏幕上观测其干涉条纹。

若测得相邻两明条纹中心的距离为 2.72mm ,求入射光的波长。

解 因对一定波长的单色光来说,相邻明条纹(或暗条纹)的间距相等为2.72mm y Δ=。

已知双缝到屏幕的距离l=2.5m ,双缝d=0.50mm ,根据双缝干涉条纹间距公式可得入射光的波长为42.720.5 5.4410(mm)544nm 2500y d l λ−Δ⋅×===×=9.3 两列相干光束的振幅比分别为E 01/E 02=1,1/3,3,6,1/6。

光的干涉习题答案

光的干涉习题答案

学号 班级 姓名 成绩第十六章 光的干涉(一)一、选择题1、波长mm 4108.4-⨯=λ的单色平行光垂直照射在相距mm a 4.02=的双缝上,缝后m D 1=的幕上出现干涉条纹。

则幕上相邻明纹间距离是[ B ]。

A .0.6mm ;B .1.2 mm ;C .1.8 mm ;D . 2.4 mm 。

2、在杨氏双缝实验中,若用一片透明云母片将双缝装置中上面一条缝挡住,干涉条纹发生的变化是[ C ]。

A.条纹的间距变大;B.明纹宽度减小;C.整个条纹向上移动;D.整个条纹向下移动。

3、双缝干涉实验中,入射光波长为λ,用玻璃薄片遮住其中一条缝,已知薄片中光程比相同厚度的空气大2.5λ,则屏上原0级明纹处[ B ]。

A .仍为明条纹;B .变为暗条纹;C .形成彩色条纹;D .无法确定。

4、在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是[ B ]。

A .使屏靠近双缝; B .使两缝的间距变小; C .把两个缝的宽度稍微调窄; D .改用波长较小的单色光源。

5、在双缝干涉实验中,单色光源S 到两缝S 1、S 2距离相等,则中央明纹位于图中O 处,现将光源S 向下移动到S ’的位置,则[ B ]。

A .中央明纹向下移动,条纹间距不变;B .中央明纹向上移动,条纹间距不变;C .中央明纹向下移动,条纹间距增大;D .中央明纹向上移动,条纹间距增大。

二、填空题1、某种波长为λ的单色光在折射率为n 的媒质中由A 点传到B 点,相位改变为π,问光程改变了2λ , 光从A 点到B 点的几何路程是 2nλ 。

2、从两相干光源s 1和s 2发出的相干光,在与s 1和s 2等距离d 的P 点相遇。

若s 2位于真空中,s 1位于折射率为n 的介质中,P 点位于界面上,计算s 1和s 2到P 点的光程差 d-nd 。

3、光强均为I 0的两束相干光相遇而发生干涉时,在相遇区域内有可能出现的最大光强是04I ;最小光强是 0 。

光的干涉习题答案

光的干涉习题答案

j
j
j

1

2
2!j
j4
4!
略去高次项,有:1
(1

2!j2 )


4h
即: 2
j 2h
(这里应取 号)
500 107 10 104
j
2h
2 0.25

3.2 102 0.032 (rad ) 1.8
依②题意(同上)有:22hh
光的干涉习题答案
作业:
教材 p88:2,3;p89:6,9; p90;14,15
练习题 1、当牛顿环干涉仪中透镜与玻璃之间充以某种液体
介质时,第十条明纹的直径由0.0140m变为 0.0127m。求液体的折射率。 2、牛顿环装置放在n=1.33的透明液体中,(玻璃 的折射率大于1.33),R=300cm,=650nm,求 (1)从中心向外数第十个明环处液体的厚度h10。 (2)第十个明环的半径。 3、用铯(Cs)原子制成的铯原子钟能产生中心频 率等于9300 MHz、频宽为50 Hz的狭窄谱线.求 谱线宽度△λ和相干长度.
h

h j 1

h j

(
j
1)

1 2
2

j 1
n2 n2 sin2 i
2
1
1

22

n2 n2 sin2 i
2
1
1


2 n2 n2 sin2 i
2
1
1
若认为薄膜玻璃片的厚度可以略去不计的情况下,
n n 1 , 又因 i i' 60o ,则
1

第三单元 光的干涉答案)

第三单元 光的干涉答案)

一、选择题1-5 DC(AB)CC 6-10 ADA(AA)B 11-15 CCBDC 16-20 BAAAD 21-25 CDDCB 二、填空题 1.1.5 2.4109-⨯ 3.Dld 3 4. 600nm, 0.244mm 5. 1.4 6.1mm7. 相等 减小 增加8.油膜前后两个表面反射的光 10.变小 11.nn 2,4λλ12:(1)4000条;(2)0.5mm ;(3)5510m -⨯。

13.上凸 14.ndD λ三、计算题1、杨氏双缝的间距为mm 2.0,距离屏幕为m 1,求:(1)若第一级明纹距离为2.5mm ,求入射光波长。

(2)若入射光的波长为6000A,求相邻两明纹的间距。

解:(1)由L x k d λ=,有:xd k L λ=,将0.2mm d =,1m L =,1 2.5mm x =,1k =代入,有:3372.5100.210 5.0101mλ---⨯⨯⨯==⨯;即波长为:500nm λ=;(2)若入射光的波长为 A 6000,相邻两明纹的间距:73161030.210D x mm d λ--⨯⨯∆===⨯。

2、 用白光照射杨氏双缝,已知d =1.0mm ,D=1.0 m ,设屏无限大。

求: (1)λ=500 nm 的光的第四级明纹位置及明纹间距;(2) λ=600 nm 的光理论上在屏上可呈现的最大级数;(3) λ1=500 nm 和λ2=600nm 的光在屏上什么位置开始发生重叠?解:(1) 明条纹中心位置 D x kd λ=± (0,1,2,k = ),相邻明条纹的间距为λ∆dDx =,将k =4,λ=500 nm ,d =1.0mm ,D=1.0 m 代入,得mm x 2±=,mm x 5.0=∆.(2)从两缝发出的光到达屏幕上某点的形成干涉明纹的光程差应满足λθk d =sin ,90=θ时,可算出理论上的最大级次1666≈=λdk 条。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章 光的干涉5-1 波长为589.3nm 的钠光照射在一双缝上,在距双缝200cm 的观察屏上测量20个条纹共宽3cm ,试计算双缝之间的距离。

解:由题意,条纹间距为:cm e15.0203==∴双缝间距为:m e D d 391079.015.0103.589200--⨯≈⨯⨯==λ5-2 在杨氏干涉实验中,两小孔的距离为1.5mm ,观察屏离小孔的垂直距离为1m ,若所用光源发出波长1λ=650nm 和2λ=532nm 的两种光波,试求两光波分别形成的条纹间距以及两组条纹的第8级亮纹之间的距离。

解:对于1λ=650nm 的光波,条纹间距为:m d D e 339111043.0105.1106501---⨯≈⨯⨯⨯==λ 对于2λ=532nm 的光波,条纹间距为:m d D e 339221035.0105.1105321---⨯≈⨯⨯⨯==λ∴两组条纹的第8级条纹之间的距离为: m e e x 3211064.0)(8-⨯=-=∆5-3 一个长40mm 的充以空气的气室置于杨氏装置中的一个小孔前,在观察屏上观察到稳定的干涉条纹系,继后抽去气室中的空气,注入某种气体,发现条纹系移动了30个条纹。

已知照射光波波长为656.28nm ,空气折射率为1.000276,试求注入气体的折射率n g 。

解:气室充入空气和充气体前后,光程的变化为: D n g )000276.1(-=∆δ而这一光程变化对应于30个波长:λδ30=∆∴λ30)1(=-D n g000768.1000276.110401028.6563039=+⨯⨯⨯=--g n5-4 在菲涅耳双面镜干涉实验中,光波长为600nm ,光源和观察屏到双面镜交线的距离分别为0.6m 和1.8m ,双面镜夹角为10-3rad ,求:(1)观察屏上的条纹间距;(2)屏上最多能看到多少亮条纹?解:如图所示,S 1S 2的距离为:αsin 2l d=∴条纹间距为:αλλsin 2)(l q l d D e +== ∵α角很小∴mmm l q l e 2.1102.1106.0210600)8.16.0(2)(339=⨯=⨯⨯⨯⨯+=+≈---αλ屏上能产生条纹的范围,如图阴影所示mmmq qtg y 6.3108.12223=⨯⨯=≈=-αα∴最多能看到的亮条纹数为:32.16.3===e y n5-5 在如图所示的洛埃镜实验中,光源S 1到观察屏的距离为2m ,光源到洛埃镜面的垂直距离为2.5mm 。

洛埃镜长40cm ,置于光源和屏的中央。

若光波波长为500nm ,条纹间距为多少?在屏上可看见几条条纹?解:在洛埃镜实验中,S 1和S 1在平面镜中的像S 2可看作是产生干涉的两个光源。

条纹间距为:mm d D e 2.01025.210500239=⨯⨯⨯⨯==--λ由图可知,屏上发生干涉的区域在P 1P 2范围内mm mm mmmm OB O S BP tg BP P P 67.112005.2800101001≈⨯===θ mm mmmmmm OA O S AP tg AP P P 75.38005.21200102002=⨯===θ 由于经平面镜反射的光波有π的相位差,所以S 1和S 2可看作位相相反的相干光源。

若P 0点在干涉区内,它应该有一条暗条纹通过,并且P 1 P 0内包含的暗条纹数目:4.82.067.1011===e P P N P 2 P 0内包含的暗条纹数目为:8.182.075.3022===e P P N ∴P 1 P 2区域内可看见10个暗条纹,9个亮条纹5-6 用λ=0.5nm 的绿光照射肥皂泡膜,若沿着与肥皂泡膜平面成30°角的方向观察,看到膜最亮。

假设此时干涉级次最低,并已知肥皂水的折射率为1.33,求此时膜的厚度。

当垂直观察时,应改用多大波长ayI OEq d2M M 1SDS 21S Ad DS 21S BOP 01P P 2θ11θθ22θE的光照射才能看到膜最亮?解:在观察膜最亮时,应满足干涉加强的条件:λλθm n n h =+-=∆2sin 212202 m =0,1,2,3,……按题意,m =1,︒=301θ∴肥皂膜厚度:m n n m h 7122021024.1sin 2)21(-⨯≈--=θλ若垂直观察时看到膜最亮,设m =1,应有:22λ=nh∴nm nh 6604≈=λ5-7 在如图所示的干涉装置中,若照明光波的波长λ=640nm ,平板厚度h =2mm ,折射率n =1.6,其下表面涂上某种高折射率介质(6.1>Hn ),问(1)反射光方向观察到的干涉圆环的中心是亮斑还是暗斑?(2)由中心向外计算,第10个亮斑的半径是多少?(3)第10个亮环处的条纹间距是多少?设望远镜物镜的焦距为25cm 。

解:(1)平板的折射率介于上下介质的折射率之间,故环中心(021==θθ)对应的光程差为:mm nh 4.626.122=⨯⨯==∆ 干涉级次为:10000106404.660=⨯=∆=-λm ∴环中心是一亮斑。

(2)当中心是亮斑时,由中心向外计算,第10个亮环的角半径是:rad h nN 0716.0210640106.1610≈⨯⨯⨯==-λθ∴半径为:mm mm f r 9.172500716.01010=⨯==θ(3)第十个亮环处条纹的角间距为:rad mmmmh n 361010575.320716.02106406.12--⨯≈⨯⨯⨯⨯==∆θλθ∴间距为:mm f e 894.010575.32503≈⨯⨯=∆=-θ5-8 如图,单色光源S 照射平行平板G ,经反射后通过透镜L 在其焦平面E 上产生等倾干涉条纹,光源不直接照射透镜,光波长λ=600nm ,板厚d =2mm ,折射率n =1.5,为了在给定系统下看到干涉环,照射在板上的谱线最大允许宽度是多少?解:设干涉环中心的干涉级次为0m ,则:λλ0022m nd =+=∆∴21100002120+=+=λndm将m 改写成:ε+=10m m ,则1m 是最靠近中心的亮条纹的干涉级次,100001=m为了能看到干涉环,最大允许谱线宽度λ∆应满足:λλλ)1()(11+=∆+m m∴最大允许的谱线宽度为:nm m 06.01==∆λλ5-9 如图,G 1是待检物体,G 2是一标定长度的标准物,T 是放在两物体上的透明玻璃板。

假设在波长λ=550nm 的单色光垂直照射下,玻璃板和物体之间的锲形空气层产生间距为1.8mm 的条纹,两物体之间的距离为80mm ,问两物体的长度之差为多少? 解:当垂直入射时,条纹间隔为:αλsin 2n e=∵在该题中是空气层的楔角,且α角很小∴αλ2≈e ∴rad e 3610153.08.12105502--⨯=⨯⨯==λα ∴两物体的长度之差为:mm mm R Rtg h 331024.1210153.080--⨯=⨯⨯=≈=∆αα5-10 如图所示的尖劈形薄膜,右端厚度d 为0.0417mm ,折射率n =1.5,波长为0.589μm 的光以30°角入射到表面上,求在这个面上产生的条纹数。

若以两块玻璃片形成的空气劈尖代替,产生多少条纹? 解:经劈尖上下两表面反射的光发生干涉,其光程差近似为:θ'=∆cos 2nh其中θ'是在上表面的折射角,h 表示平均厚度。

由折射定理:33.030sin sin =︒='nθ 计算得:943.0cos ='θ在上表面产生的条纹数,即在劈尖最右端的暗纹或亮纹级数。

此时h =d =0.0417mm产生暗纹条件:λλθ)21(2cos 2+=+'m nd m =0,1,2,3,…… ∴20010589.0943.0100417.05.12cos 263=⨯⨯⨯⨯⨯='=--λθnd m 劈尖棱线处是暗条纹,因此表面上有201条暗条纹,200条亮条纹 当用两块玻璃片形成的空气劈尖代替时,866.030cos cos =︒='θdGSfLE在劈尖最右端的暗纹级数为:6.12210589.0866.0100417.012cos 263=⨯⨯⨯⨯⨯='=--λθnd m 因此表面上有123条暗条纹,122条亮条纹5-11 集成光学中的楔形薄膜耦合器如图所示。

楔形端从A 到B 厚度逐渐减小到零。

为测定薄膜的厚度,用波长λ=632.8nm 的He -Ne 激光垂直照明,观察到楔形端共出现11条暗纹,且A 处对应一条暗纹。

已知薄膜对632.8nm 激光的折射率为2.21,求薄膜的厚度。

解:薄膜的折射率大于玻璃,因此入射光在楔形薄膜上表面反射有相位突变。

产生暗条纹满足条件:λλ)21(22+=+=∆m nh m =0,1,2,3,…… 在薄膜B 处,h =0,2λ=∆,所以B 处对应一暗纹。

∴第11条暗纹在薄膜A 处 ∴λλ)2111(22+=+nh ∴A 处薄膜的厚度为:mm n h 0014.021.22108.632102106≈⨯⨯⨯==-λ5-12 如图,在一块平面玻璃板上,放置一曲率半径R 很大的平凸镜,以观察牛顿环条纹。

(1)证明条纹间隔e 满足:NR eλ21=,式中N 是由中心向外计算的条纹数;(2)若分别测得相距k 个条纹的两个环的半径为N r 和k N r +,证明:λk r r R Nk N 22-=+证明:(1)透镜凸表面和玻璃板平面间的空气层中心O 的厚度为零,可知牛顿环中心为一暗斑。

设由中心向外计算,第N 个暗环的半径为N r ,则由图中几何关系可知:22222)(h Rh h R R r N -=--=∵h R>> ∴Rh r N22= 又∵N 个条纹对应的空气层厚度差为: 2λNh =∴λNR r N=2对上式微分,得:dN R dr r N λ=2当1=dN 时,e dr = ∴条纹间距为:NR r R e N λλ212==玻璃衬底(2)由上面推得得结果: λNR r N =2 λR k N r k N )(2+=+∴λR N k N r r N kN )(22-+=-+∴ λk r r R Nk N 22-=+5-13 在观察牛顿环时,用1λ=580nm 的第五个亮环与用2λ的第七个亮环重合,求波长2λ为多少? 解:设由中心向外计算,第N 个亮环的半径为N r ,则:Rh r N 22=亮环满足的光程差条件为:λλN h =+22 ∴λ)21(-=N h ∴λR N r N)21(2-=由题意,用1λ=580nm 的第五个亮环与用2λ的第七个亮环重合∴21)217()215(λλR R -=- ∴nm 54.40113912==λλ5-14 曲率半径为R 1的凸透镜和曲率半径为R 2的凹透镜相接触如图所示。

相关文档
最新文档