自动控制理论 第五章 频率特性3
长安大学:自动控制原理第五章 线性系统的频域分析
A () 1 0 T
() 0
() 90
V() A() sin ()
长安大学信息工程学院
自动控制理论
第五章
二、研究频率特性的意义 1、频率特性是控制系统在频域中的一种数学模型,是研究自 动控制系统的另一种工程方法。 2、根据系统的频率性能间接地揭示系统的动态特性和稳态特 性,可以简单迅速地判断某些环节或参数对系统性能的影响, 指出系统改进的方向。 3、频率特性可以由实验确定,这对于难以建立动态模型的系 统来说,很有用处。 三、频率特性的求取方法 1、已知系统的系统方程,输入正弦函数求其稳态解,取输 出稳态分量和输入正弦的复数比; 2、根椐传递函数来求取; 3、通过实验测得。
设
x c (t) ae jt ae jt b1es1t b2es2t ... b1esn t
A AG( j) ( s j ) | s j s 2 2 2j
( t 0)
对于稳定的系统, -s1,s2,…,sn 其有负实部
x c (t) ae jt ae jt
a G(s)
a G (s)
CHANG’AN UNIVERSITY
A AG( j) ( s j ) | s j s 2 2 2j
长安大学信息工程学院
自动控制理论
第五章
a
AG( j) 2j
AG( j) a 2j
G( j) | G( j) | e jG( j) | G( j) | e jG( j)
幅频特性 相频特性 实频特性 虚频特性
CHANG’AN UNIVERSITY
A() | G ( j) | U 2 () V 2 () 1 V() () G( j) tg U () U() A() cos()
自动控制理论-频率特性性能指标
力越强,鲁棒性越好。
改善动态性能ቤተ መጻሕፍቲ ባይዱ法
增加开环增益
提高系统对误差的敏感性,加 快响应速度,但可能导致系统
不稳定。
增加相位补偿环节
改善系统相位特性,提高稳定 性和阻尼比,但可能降低响应 速度。
采用串联校正网络
在系统中串联校正网络以改善 频率特性,提高动态性能指标 。
采用并联校正网络
在系统中并联校正网络以改善 幅相特性,提高抗干扰能力和
鲁棒稳定性分析
通过分析系统在不同频率 下的稳定性裕度,评估控 制系统的鲁棒稳定性。
鲁棒性能设计
根据系统性能指标和不确 定性范围,设计鲁棒控制 器以提高系统鲁棒性能。
灵敏度分析
通过灵敏度函数分析系统 对不同频率扰动的敏感程 度,指导鲁棒控制器的设 计。
PART 06
实验与案例分析
实验目的和原理介绍
调节时间
系统响应从初始状态 到达并保持在设定值 附近所需时间。
频率特性对动态性能影响
截止频率
01
影响系统响应速度和带宽,截止频率越高,系统响应速度越快,
带宽越宽。
相位裕度
02
影响系统稳定性和阻尼比,相位裕度越大,系统越稳定,阻尼
比越小。
幅值裕度
03
影响系统抗干扰能力和鲁棒性,幅值裕度越大,系统抗干扰能
不稳定系统频率特性分析
幅频特性
不稳定系统的幅频特性曲线可能在某些频率范围内出现峰值,表明系统对某些频率的信号具有放大作用。这可能 导致系统产生振荡或不稳定行为。
相频特性
不稳定系统的相频特性曲线可能出现较大的相位滞后,使得系统在特定频率下的输出与输入之间存在较大的相位 差。这可能导致系统无法及时响应输入信号的变化,从而影响系统的稳定性。
自动控制理论—典型环节的频率特性
G( j ) 1 jT G( j ) 1 T 2 2 j 2T
Sunday, November 11, 2018
8
纯微分环节的奈氏图
① 纯微分环节: G( j ) j
A( ) , , 0 ( ) 2 , 0 2
下半个圆对应于正频率部 分,而上半个圆对应于负 频率部分。 4
振荡环节的频率特性
K Kn 2 ⒋ 振荡环节的频率特性: G( s) 2 2 T s 2Ts 1 s 2 n s n 2
2
讨论 0 1时的情况。当K=1时,频率特性为:
G( j ) 1 (1 T 2 2 ) j 2T
一、奈奎斯特图 ⒈ 比例环节: G( s) K ;
G( j ) K
P( ) K ;虚频特性: Q( ) 0 ; 实频特性 :
( ) 0 A( ) K ;相频特性: 幅频特性:
比例环节的极坐标图为 实轴上的K点。 K Re
Im
Sunday, November 11, 2018
0
时:A() 0, () 90 P() 0,Q() 0
3
Sunday, November 11, 2018
惯性环节的奈氏图
极坐标图是一个圆,对 称于实轴。证明如下:
K P ( ) 1 T 2 2 KT Q ( ) 1 T 2 2
1 2 2 p T
M p A( p ) 1 2 1 2
-2
0.2
Sunday, November 11, 2018
7
微分环节的频率特性
⒌ 微分环节的频率特性: 微分环节有三种:纯微分、一阶微分和二阶微分。传递函 数分别为: G( s) s
自动控制原理第五章
KT j 1 2T 2
0 : U(0) K
V (0) 0
1: T
:
U(1) K T2
U() 0
V(1) K T2
V() 0
●
●
K
●
0.707K
V(ω)
K/2 K
●
●
U(ω)
-K/2
●
10
3 由零、极点分布图绘制
1)在[s]上标出开环零极点;
G( j ) K K / T 1 jT j 1 / T
低频段 1
T
L( ) 20lg A( ) 20lg () arctgT 0
10
高频段
1
T
20lg A() 20lgT ( ) arctgT 900
转折频率 1
T
20lg A( ) 20lg 2 3.01 0db
( ) arctgT 450
15
20 0 -20 -40 -60 90 45 0 -45 -90
3) 振荡环节
1
G(s) (s / n )2 2 (s / n ) 1
n
1 T
0
4) 一阶微分 G(s) Ts 1 (T>0)
0 1
5) 二阶微分 G(s) (s / n )2 2 (s / n ) 1 (n 0, 0 1)
6) 纯滞后环节 G(s) e s
19
5-3-2 最小相位典型环节的频率特性
0.01
0.1
T
10
T
●
●
●
●
0.1
1/T1
10
T 0.1 () arctg0.1 5.70
T 1 ( ) arctg10 84.30
自动控制理论_哈尔滨工业大学_5 第5章线性系统的频率分析_(5.1.1) 5.1频率特性的概念
如果线性定常系统的输入r(t)和输出c(t)存在傅里叶变换, 频率特性也是输入信号的傅氏变换和输出信号的傅氏变换之比。
G(
j
)
C( R(
j) j)
其中 R( j) r(t)e jtdt C( j) c(t)e jtdt
经过傅氏反变换
c(t)
U1m
1
1 j
sin(t
1
1
j
)
上式表明: 对于正弦输入,其输入的稳态响应仍然是一个同 频率正弦信号。但幅值降低,相角滞后。
输入输出为正弦函数时,可以表示成复数形式,设输入为 Xej0,输出为Yejφ,则输出输入之复数比为:
Ye j Xe j0
Y X
e j
A()e j ()
后于输入的角
度为:
φ=
B A
360o
②该角度与ω有
关系 ,为φ(ω)
③该角度与初始
角度无关 。
二、频率特性的定义
例:如图所示电气网络的传递函数为
U2 (s) 1 Cs 1 1
U1(s) R 1 Cs RCs 1 s 1
若输入为正弦信号: u1 U1m sin t
其拉氏变换为:
1
2
G( j)R( j)e jtd
系统的单位脉冲响应为:
g (t )
1
2
G( j)e jt d
本节小结
1. 控制系统频率特性的基本概念。 2. 频率特性与传递函数的关系。
频率特性有明确的物理意义,可以方便地用实验方法测定, 并用于系统的分析和建模。
频率特性主要适用于线性定常系统。
自动控制理论第五章习题汇总
自动控制理论第五章习题汇总填空题1、系统的频率响应与正弦输入信号之间的关系称为频率响应2、在正弦输入信号的作用下,系统输入的稳态分量称为频率响应简答题:5-2、什么是最小相位系统及非最小相位系统?最小相位系统的主要特点是什么?答在s平面上,开环零、极点均为负实部的系统称为最小相位系统;反之,开环零点或极点中具有正实部的系统称为非最小相位系统。
最小相位系统的主要特点是:相位滞后最小,并且幅频特性与相频特性有惟一的确定关系。
如果知道最小相位系统的幅频特性,可惟一地确定系统的开环传递函数。
5-3、什么是系统的频率响应?什么是幅频特性?什么是相频特性?什么是频率特性?答对于稳定的线性系统,当输入信号为正弦信号时,系统的稳态输出仍为同频率的正弦信号,只是幅值和相位发生了改变,如图5-3所示,称这种过程为系统的频率响应。
图5-3称为系统的幅频特性,它是频率的函数;称为系统的相频特性,它是频率的函数:称为系统的频率特性。
稳定系统的频率特性可通过实验的方法确定。
计算题5-1、设某控制系统的开环传递函数为)()(s H s G =)10016()12.0(752+++s s s s 试绘制该系统的Bode 图,并确定剪切频率c ω的值。
解:Bode 图如下所示剪切频率为s rad c /75.0=ω。
5-2、某系统的结构图和Nyquist 图如图(a)和(b)所示,图中2)1(1)(+=s s s G 23)1()(+=s s s H 试判断闭环系统稳定性,并决定闭环特征方程正实部根的个数。
解:由系统方框图求得内环传递函数为:ss s s s s s H s G s G +++++=+23452474)1()()(1)( 内环的特征方程:04742345=++++s s s s s由Routh 稳定判据:1:0310:16:44:171:01234s s s s s由此可知,本系统开环传函在S 平面的右半部无开环极点,即P=0。
自动控制原理 第五章 频率特性
φ(ω)=90
o
ω
第二节 典型环节的频率特性
4.惯性环节
惯性环节的奈氏图
Im (1) 奈氏图 传递函数和频率特性 ω ∞ 0 ω=0 取特殊点: 绘制奈氏图近似方法 : -45 1 A( ω )=1 G(s)= =01 A(ω)=0.707 1 ω= Ts+1 G(j ω )= ,然后将它们平滑连接起来. T 根据幅频特性和相频特性求出特殊点 jωT+1 o (ω)=0 ω= 1 (ω)=-45o T A(ω)=0 =∞ 幅频特性和相频特性 可以证明:
(2)伯德图
L(ω)=20lg1=0
时滞环节的伯德图
L(ω)/dB
0
ω
φ(ω)=-τω
φ(ω)
0
-100 -200 -300 1 10
ω
第二节 典型环节的频率特性
8.非最小相位环节
开环传递函数中没有S右半平面上的极点和零点的环节, 称为最小相位环 节; 而开环传递函数中含有S右半平面上的极点或零点的环节, 则称为非最小 相位环节。
0
ω
第二节 典型环节的频率特性
6.振荡环节
传递函数和频率特性:
ωn2 G(s)= s +2
2
ωn2 G(jω)=
2
ζ ωns+ωn
ωn
2
-ω2+j2
ζ ωn ω
幅频特性和相频特性: ωn2 A(ω)= (ωn
2
-ω2)2+(2
ζ ωn ω)2 2ζωnω ωn2-ω2
= (1ω ω
2 n2
1 )2+( 2ζ ω 2 ) ωn
ω→∞
φ
第二节 典型环节的频率特性
自动控制原理第5章频率特性
自动控制原理第5章频率特性频率特性是指系统对输入信号频率的响应特点。
在自动控制系统设计中,了解和分析系统的频率特性是非常重要的,因为它可以帮助工程师评估系统的稳定性,性能和稳定裕度。
本章主要介绍频率特性的相关概念和分析方法,包括频率响应函数、频率幅频特性、相频特性、对数坐标图等。
1.频率响应函数频率响应函数是描述系统在不同频率下的输出和输入之间的关系的函数。
在连续时间系统中,频率响应函数可以表示为H(jω),其中j是虚数单位,ω是频率。
频率响应函数通常是复数形式,它包含了系统的振幅和相位信息。
2.频率幅频特性频率幅频特性是频率响应函数的模的图形表示,通常用于表示系统的增益特性。
频率幅频特性通常用对数坐标图绘制,以便更好地显示系统在不同频率下的增益特性。
对数坐标图上,增益通常以分贝(dB)为单位表示。
3.相频特性相频特性是频率响应函数的相角的图形表示,通常用于表示系统的相位特性。
相频特性可以让我们了解系统对输入信号的相位延迟或提前情况。
在相频特性图上,频率通常是以对数坐标表示的。
4. Bode图Bode图是频率幅频特性和相频特性的综合图形表示。
它将频率幅频特性和相频特性分别绘制在纵轴和横轴上,因此可以直观地了解系统在不同频率下的增益和相位特性。
5.系统的稳定性分析频率特性可以帮助工程师判断系统的稳定性。
在Bode图上,当系统的相位角趋近于-180度,且增益在此处为0dB时,系统即将变得不稳定。
对于闭环控制系统,我们希望系统在特定频率范围内保持稳定,以便实现良好的控制性能。
6.频率特性的设计频率特性的设计是自动控制系统设计中的一个重要任务。
工程师需要根据系统对不同频率下的增益和相位的要求,设计出合适的控制器。
常见的设计方法包括校正器设计、分频补偿、频率域设计等。
总结:本章重点介绍了自动控制系统的频率特性,包括频率响应函数、频率幅频特性、相频特性和Bode图。
频率特性的分析和设计对于掌握自动控制系统的稳定性、性能和稳定裕度非常重要。
自动控制理论第五章
因为 G(j)G(j)ej() G(j)G(j)ej()
所以 C (t)AG (j)S(in t)
2019/11/13
第五章 频率响应
3
自动控制理论
图5-1
例:
E E 1 2((ss))1R 1 C ,E 1(Ss)S2A 2
20lg1 jT 20lg 1 1 jT
arg(1 jT) arg( 1 ) 1 jT
3. 积分、微分因子
1 1)积分因子 j
( j)1
L()20 lg
2019/11/13
图5-10
第五章 频率响应
10
自动控制理论
()90
2)微分因子 j
()20 lg
() a G 1 ( r j) g a G 2 r ( j) g a G n r ( j) g
例5-2 G(S)H(S)10 (10.1S) S(10.5S)
解 (1)幅频特性 10(1 j )
G( j)
j(1
10
j)
2
2019/11/13
2019/11/13
图5-2
第五章 频率响应
4
自动控制理论
e2(t)
A S
1T22
i(n tarcTta) n
G(j) 1TA22 ()tg1T
图5-3
2019/11/13
第五章 频率响应
5
自动控制理论
二、由传递函数确定系统的频率响应
例5-1 G (s) S 1 2 (4 S 0 S 1 ) 1 3 (S 2 1 j( 3 S )0 S ( 1 )2 j3 ) 试绘制系统的幅频和相频特性曲线。
自动控制理论第五章频率分析法1.详解
5.从低频段第一个转折频率开始做斜直线,该直线
的斜率等于过A点直线的斜率加这个环节的斜率(惯
性环节加-20,振荡环节加-40,一阶微分环节加+20 的斜率),这样过每一个转折频率都要进行斜率的 加减。 6.高频段最后的斜线的斜率应等于-20(n-m) dB/ 十倍频程。 7.若系统中有振荡环节,当<0.4时,需对L()进 行修正。
④
G(j)曲线与负实轴交点坐标,是一个关键点,
高频段,即ωT>>1时
L( ) 20lg( 2T 2 ) 40lg(T )
当ω增加10倍
L( ) 40lg10Tω 40 40lgTω
即高频渐近线是一条斜率为-40dB/dec的直线。当 1 ω ωn T
L( ) 40lg T 40lg1 0(dB)
1 2
振荡环节再分析
L(ω)dB
20lg
1 2 1 2
2 k n G (s ) 2 S 2 S 2 n n (0< <0.707) 0< <0.5
20 lg 1 2
= 0.5
0.5< <1 ω
20lgk
0dB
ωr ωn
[-40]
2 1 2 ωr= n
1. 将开环传递函数化为各典型环节传递函数相乘的形 式,并将分子分母中各因式常数项系数化为1。转化为 开环对数幅频特性;
2.确定出系统开环增益K,并计算 20lg K 。
3.确定各有关环节的转折频率,并把有关的转折频率 标注在半对数坐标的横轴上。 4.在半对数坐标上确定=1(1/s)且纵坐标等于20lgK dB的 点A。过A点做一直线,使其斜率等于-20νdB/dec。当ν=0, ν=1, ν=2时,斜率分别是(0,-20,-40)dB/dec。
自动控制理论—频率特性的基本概念
幅值 1A( )1Fra bibliotek262
1.56
4
2.00
6
2.51
8
3.16
10
5.62
15
10.0
20
增益 0
Saturday, March 02, 2019
18
使用对数坐标图的优点:
可以展宽频带;频率是以10倍频表示的,因此可以清楚的 表示出低频、中频和高频段的幅频和相频特性。 可以将乘法运算转化为加法运算。 所有的典型环节的频率特性都可以用分段直线(渐进线) 近似表示。 对实验所得的频率特性用对数坐标表示,并用分段直线近 似的方法,可以很容易的写出它的频率特性表达式。
k1 k k kc1 k 2 ... n c2 s p1 s p2 s pn s j s j
5
拉氏反变换为:
c(t ) k1e p1t k2e p2t ... kne pnt kc1e jt kc2e jt
若系统稳定,则极点都在s左半平面。当 t ,即稳态时:
C ( s) 则: N ( s ) R( s ) N ( s) Rm ( s p1 )(s p2 )...(s pn ) ( s p1 )(s p2 )...(s pn ) ( s j )(s j )
Saturday, March 02, 2019
Saturday, March 02, 2019
12
频率响应法的优点之一在于它可以通过实验量测来获得, 而不必推导系统的传递函数。
事实上,当传递函数的解析式难以用推导方法求得时,常 用的方法是利用对该系统频率特性测试曲线的拟合来得出传递 函数模型。 此外,在验证推导出的传递函数的正确性时,也往往用它 所对应的频率特性同测试结果相比较来判断。 频率响应法的优点之二在于它可以用图来表示,这在控制 系统的分析和设计中有非常重要的作用。
自动控制理论 5-3 频域:极坐标图1
G(j∞) = 0 ∠ - 90 o
不难看出,随着频率ω=0→∞变化,惯性环节的幅值逐步衰 不难看出,随着频率 变化, 变化 最终趋于0。相位移的绝对值越来越大, 减,最终趋于 。相位移的绝对值越来越大,但最终不会大于 90°,其极坐标图为一个半圆。 ° 其极坐标图为一个半圆。
5
设: G ( j ω ) = U (ω ) + jV (ω ) 实部 1
21
例4
已知一控制系统的开环传递函数为
K (1 + 0.5s )(1 + s ) G (s )H (s ) = (1 + 10s )(s 1)
P212
试绘制该系统的乃氏图。 解: 该系统的频率特性为
K (1 + 0.5 jω )(1 + jω ) K 1 + (0.5ω ) j (ω ) G ( jω ) = = l 2 (1 + 10 jω )( jω 1) 1 + (10ω )
1
ω → 0
ω →∞
Re
ω
1 ( jωT1 + 1)( jωT2 + 1)
Im
Im
1
ω →∞
T1T2 T1 + T2
ω →0
Re
ω
19
j ( j T1
1 1)( j T2 1)
Im
Re
20
结论: 结论:
型系统(N=0):极坐标图起始于正实轴 1.0 型系统 上的有限点,终止于原点。 型系统(N=1):由于存在一个积分环 2.I 型系统 节,所以低频时,极坐标图是一条渐近于和虚轴平 行的直线。当ω=∞时,幅值为零,曲线收敛于原 点并且与某坐标轴相切。 3 .II 型系统 型系统(N=2):低频处,极坐标图是 一条渐近于负实轴的直线 。在ω=∞处幅值为零, 且曲线相切于某坐标轴。
自动控制原理课件第5章频率特性法.ppt
2021年5月13日
EXIT
第5章第7页
5.1.1 频率响应
频率响应是时间响应的特例,是控制系统对正 弦输入信号的稳态正弦响应。即一个稳定的线性定常 系统,在正弦信号的作用下,稳态时输出仍是一个与 输入同频率的正弦信号,且稳态输出的幅值与相位是 输入正弦信号频率的函数。
下面用用一个简单的实例来说明频率响应的概 念:
因此,在求已知传递函数系统的正弦稳态响应时,可以避开时域法 需要求拉氏变换及反变换的繁琐计算,直接利用频率特性的物理意义简 化求解过程。
2021年5月13日
EXIT
第5章第25页
对于上例所举的一阶电路,
其幅频特性和相频特性的表达
式分别为:
1
ui(t)
A(ω)= 1+T 2ω2
(ω)= -arctanTω
2021年5月13日
EXIT
第5章第8页
示例:
如图所示一阶RC网络,ui(t)与uo(t)分别为输入与输出信 号,其传递函数为
R
G(s)= U 0(s)= 1
ui(t)
Ui(s) Ts+1
i(t) C u0(t)
RC网络
其中T=RC,为电路的时间常数,单位为s。
2021年5月13日
EXIT
第5章第9页
R i(t)
C u0(t)
RC网络
G( j) 1 jT 1
G(s)=
U 0(s)= 1 Ui(s) Ts+1
系统的输出分为两部分,第一部分为瞬态分量,对应 特征根;第二部分为稳态分量,它取决于输入信号的形 式。对于一个稳定系统,系统所有的特征根的实部均为 负,瞬态分量必将随时间趋于无穷大而衰减到零。因此, 系统响应正弦信号的稳态分量必为同频率的正弦信号。
《自动控制理论》参考答案第五章
第五章一、单项选择题1-5:D 、B 、D 、A 、B 6-10:B 、D 、C 、A 、C 11-13:D 、A 、B二、分析计算题5-1解 (a)依图:⎪⎪⎪⎩⎪⎪⎪⎨⎧+==+=++=++=2121111212111111221)1(11)()(R R C R R T C R RR R K s T s K sCR sC R R R s U s U r c ττ ωωτωωωωω11121212121)1()()()(jT j K C R R j R R C R R j R j U j U j G r c a ++=+++==(b)依图:⎩⎨⎧+==++=+++=C R R T CR s T s sCR R sCR s U s U r c )(1111)()(2122222212ττ ωωτωωωωω2221211)(11)()()(jT j C R R j C R j j U j U j G r c b ++=+++==5-2解 系统闭环传递函数为: 21)(+=Φs s 图5-76 系统结构图 频率特性:2244221)(ωωωωω+-++=+=Φj j j 幅频特性: 241)(ωω+=Φj相频特性: )2arctan()(ωωϕ-= 系统误差传递函数: ,21)(11)(++=+=Φs s s G s e则 )2arctan(arctan )(,41)(22ωωωϕωωω-=++=Φj j e e(1)当t t r 2sin )(=时,2=ω,r m =1则 ,35.081)(2==Φ=ωωj 45)22arctan()2(-=-=j ϕ4.1862arctan )2(,79.085)(2====Φ=j j e e ϕωω)452sin(35.0)2sin()2(-=-Φ=t t j r c m ss ϕ )4.182sin(79.0)2sin()2(+=-Φ=t t j r e e e m ss ϕ (2) 当 )452cos(2)30sin()(︒--︒+=t t t r 时: ⎩⎨⎧====2,21,12211m m r r ωω5.26)21arctan()1(45.055)1(-=-===Φj j ϕ 4.18)31arctan()1(63.0510)1(====Φj j e e ϕ)]2(452cos[)2()]1(30sin[)1()(j t j r j t j r t c m m s ϕϕ+-⋅Φ-++⋅Φ=)902cos(7.0)4.3sin(4.0--+=t t)]2(452cos[)2()]1(30sin[)1()(j t j r j t j r t e e e m e e m s ϕϕ+-⋅Φ-++⋅Φ=)6.262cos(58.1)4.48sin(63.0--+=t t5-4解 ()()()12G j K j K e j ==-+ωωπω=→∞00,()G j ω→∞∞=,()G j 0ϕωπ()=-2幅频特性如图解5-4(a)。
自动控制理论课后习题详细解答答案(夏德钤翁贻方版)第五章
第五章5-1 已知单位反馈系统的开环传递函数,试绘制其开环频率特性的极坐标图(1)解:幅频特性:相频特性:列表取点并计算。
0.5 1.0 1.5 2.0 5.010.01.790.7070.370.2240.0390.0095-116.6-135-146.3-153.4-168.7-174.2系统的极坐标图如下:(2)解:幅频特性:相频特性:列表取点并计算。
00.20.50.8 1.0 2.0 5.010.910.630.4140.3170.1720.01950-15.6-71.6-96.7-108.4-139.4-162.96系统的极坐标图如下:(3)解:幅频特性:相频特性:列表取点并计算。
0.20.30.51254.55 2.74 1.270.3170.0540.0039-105.6-137.6-161-198.4-229.4-253系统的极坐标图如下:(4)解:幅频特性:相频特性:列表取点并计算。
0.20.250.30.50.60.8122.7513.87.86 2.520.530.650.317-195.6-220.6-227.6-251.6-261.6-276.7-288.4系统的极坐标图如下:5-2 试绘制上题中各系统的开环对数频率特性(伯德图)。
(1)解:系统为Ⅰ型,伯德图起始斜率为-20dB/dec,在处与=20=0相交。
环节的交接频率,斜率下降20dB/dec,变为-40dB/de c。
系统的伯德图如图所示:(2)解:伯德图起始为0dB线,的交接频率,斜率下降20dB/dec,变为-20dB/de c。
的交接频率,斜率下降20dB/dec,变为-40dB/de c。
系统的伯德图如图所示。
(3)解:系统为Ⅰ型,伯德图起始斜率为-20dB/dec,其延长线在=1处与=20=0相交。
的交接频率,斜率下降20dB/dec,变为-40dB/de c。
的交接频率,斜率下降20dB/dec,变为-60dB/de c。
自动控制原理 频率特性
• 频率特性的概念:
A sin ωt
Φ ( jω )
A Φ ( jω ) sin(ωt + ∠Φ ( jω ))
Φ ( jω )
sin t
Φ ( j1) sin(t + ∠Φ ( j1))
Φ ( jω )
3 sin 2t
3 Φ ( j 2) sin(2t + ∠Φ ( j 2))
第五章频率特性
奈魁斯特判据
• 奈氏曲线如何判断稳定性
两步:
1)右半平面开环极点数 2)逆时针绕临界点圈数
-1
相位余(裕)量和幅值余量
1 h
-1
如何判断稳定性? 如何利用频率特性分析确定系统临界参数 如何计算系统相位余量和幅值余量 如何从开环频率绘制闭环频率特性 如何从开环频率特性确定传递函数(最小相 位系统) • 频率特性曲线与表达式间的关系 • • • • •
第六章 控制系统校正
• • • • 为何要校正? 校正的方式? 串联超前校正的原理及步骤 串联滞后校正的原理及步骤
频率特性几何表示方法:
开环和闭环频率特性的绘制方法
2)极坐标系:幅相曲线 3)对数坐标下:对数幅频特性和对数相频特性=波特图
开环和闭环频率特性主要作用:
幅相曲线
G ( jω ) ∠G ( jω )
对数频率特性==波特图
闭环频率特性 输入=>输出频率特性
奈魁斯特判据
• 奈氏曲线如何判断稳定性 • 幅相曲线如何判断稳定性 • 波特图如何判断稳定性
7)系统结构如图,当输入为2sint时,测得稳态输出为: 4sin(t-450),计算系统单位阶跃作用下超调
ωn2 s(s + 2ξωn )
自动控制理论—频率特性的基本概念20页PPT
41、俯仰终宇宙,不乐复何如。 42、夏日长抱饥,寒夜无被眠。 43、不戚戚于贫贱,不汲汲于富贵。 44、欲言无予和,挥杯劝孤影。 45、盛年不重来,一日难再晨。及时 当勉励 ,岁月 不待人 。
56、书不仅是生活,而且是现在、过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛敢地 走到底 ,决不 回头。 ——左
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
L()与()的一一对应性质
最小相位系统,L()与()有严格对应关系
• 若L()的斜率恒为常数,()也为恒值相位角
• 若L()在某一段频带宽度内的斜率不是常数, 则在某一角频率下()的大小除了决定于该角频 率下L()的斜率主值之外,还要受到该频率段之 外的各转折频率的影响。近者影响大,远者影响 小。
2.由开环频率特性确定系统的稳态性能
低频段斜率确定系统的无差度
积分环节的个数即无差度对应 低频段的斜率
低频段高度确定系统开环增益的大小
0型系统
I型系统
II型系统
2.动态性能分析
稳定性:Lg>0 γc >0
要求: c 一般不要小于 30 Lg 一般不要小于 6 dB
相角裕量与实域指标的关系:
若穿越斜率c=-1 且 h>5 则:
γc >0 且系统动态特性好
若穿越斜率c=-2
则:
系统或者不稳定
或稳定但平稳性较差
若穿越斜率c=-1 但 h<5 则:
系统动态差
高频衰减率 h : L()在高频段的斜率
表示了系统的抗干扰的能力
例:已知系统的开环 对数频率特性如图, 试作系统分析
中频段 闭环系统稳定 临界稳定 不稳定
越接近,稳定性变差,会出现谐振峰值
高频段
闭环频率特性曲线高频段Lc(ω )→ L0(ω) φc(ω) → φ0(ω)
§5.6
开环频率特性分析Leabharlann 1.频率特性的两个基本性质
频域描述与时域描述的反比性质
若 阶跃响应为
由于
的频带宽α 倍,时间响应就 加快 α倍 频域描述与时域描述成反比
定性:γc越大, Mp 越小 定量:二阶系统
开环截止频率ωc与实域指标的关系:
定性:ωc越大,ts越小
定量:二阶系统
高阶系统
闭环频带宽度ωb
闭环频率特性的幅值由1 衰减至0.707时的频率称为 闭环系统的频带宽度b
中频段穿越斜率 c 和中频段宽度 h
• 中频段: 0dB线上下约15dB范围内的频率段 • 中频段穿越斜率c: c 所在频率段L()的斜率 • 中频段宽度 h: c 所在频段两端转折频率之比
解: (1) 稳态分析
0型系统,有差跟踪 阶跃信号
(2) 动态分析
系统稳定,阶跃响应有振荡