A ROAD TRAFFIC SIMULATION TOOL
基于VISSIM交通仿真的道路安全性评价
基于VISSIM交通仿真的道路安全性评价万兵(青海省公路科研勘测设计院西宁810008)摘要随着高速公路的快速发展,车辆数量的逐年递增,交通事故时有发生,不仅造成财产损失,更重要的是造成人员伤亡,因此对于道路安全性评价愈发重要。
传统的评价方法计算复杂或是基于已建成的道路,缺乏实际可操作性。
本文以西宁至互助一级公路初步设计为依托工程,基于道路运行速度的安全性评价标准,提出了应用V I S S I M交通仿真软件的拟建道路线性设计。
通过该方法可以进行提前改建与重新设计,避免由于道路线型造成交通事故。
所述方法可以为今后拟建道路安全性评价提供了直观有效且科学的方法指导与理论基础。
关键词拟建道路道路安全交通仿真评价Researchon Safety Evaluation of Highway Basedon VISSI]? SimulationBing Wan(Qinghai Local Railway Construction Investement C o. $Ltd.,Xining810008$ China) Abstract Witli the rapid development of highway,the vehicle number was increasing year by year.Correspondingly,the t r a f f i c accidents happened occasionaiy,and not only lead to economic Therefore,i t i s i ncreasingly important to evaluate the t r a f f i c safety.The traditional evaluation methiods are a l l complex or based on the existed roads,and lack practical operability.Through a case of the preliminary design of theXining〜Huzhu highway,a safety evaluation method for the proposed highway was put forwa t r a f f i c simulation software a nd safety evaluation criteria of vehicle running speed.By the proposed methiod,the adverse linear conditions can berebuilt and redesigned in advancc,to avoid t r a f f i c accid type.This paper can provide effective method guidance a nd theoretical basis for the future Key words Propoedhighway;Highwaysafety;Traffic s imulation;Evaluation引言据调查统计,2009 -2015交通事故所造成的生命及财产损失等基本情况如1 -4图所示[1]。
基于交通仿真的道路安全评价方法.
基于交通仿真的道路安全评价方法(1.浙江省建德市交通局,杭州311600;2.上海璞辉交通咨询有限公司,上海200092)摘要:交通仿真技术已经渗透到交通工程领域的方方面面,鉴于此,本文根据国内外道路交通安全相关研究,选用等效最小安全距离和速度标准差的变化系数作为评价指标,提出了一种基于交通仿真的道路安全评价方法。
关键词:交通仿真;道路安全评价;等效最小安全距离;速度标准差变化系数The Method of Road Safety Evaluation Based on Traffic SimulationTANG Jian-feng1,CHEN Hong-xing2(1. JianDe Municipal Bureau of Transportation, Hangzhou 311600,China; 2. Shanghai PuHui Trans-consultant Institute, Shanghai 200092,China)Abstract: Traffic simulation technology has penetrated into every aspect of the field of traffic engineering, in view of this, according to domestic and international road safety research, choosing the minimum safety distance equation and the speed of the equivalent standard deviation coefficient of variation as an evaluation index, this paper proposed a road safety evaluation method which is based on the traffic Simulation.Key words: Traffic simulation; Road safety evaluation; MSDE; VC随着我国运输经济的飞速发展,道路交通的安全问题已经成为一个不得不面对的严重问题。
交通建模与仿真基本流程
交通建模与仿真基本流程Traffic modeling and simulation is a critical tool in urban planning and transportation system design. 交通建模与仿真是城市规划和交通系统设计中至关重要的工具。
With the increasing complexity of transportation systems and the need for efficient and sustainable solutions, the demand for accurate and reliable traffic modeling and simulation continues to grow. 交通系统的复杂性不断增加,对于高效和可持续解决方案的需求也在增加,因此对准确可靠的交通建模与仿真的需求也在不断增加。
A basic flow process for traffic modeling and simulation involves several key steps, including data collection, model development, validation, and simulation. 交通建模与仿真的基本流程包括数据收集、模型开发、验证和仿真等几个关键步骤。
Each step is essential to ensuring the accuracy and reliability of the simulation results. 每一步都对确保仿真结果的准确性和可靠性至关重要。
Data collection is the first and crucial step in the traffic modeling and simulation process. 数据收集是交通建模与仿真过程中的第一步,也是至关重要的一步。
交通信号灯仿真模型搭建图解
摘要现今,随着我国经济水平的不断提升,汽车已成为人们工作生活的重要工具,汽车数量的不断上升给现有城市交通带来不小的压力。
本文主要通过51单片机实现对交叉路口的红绿灯的控制,利用单片机的定时器计时产生中断,通过数码管刷新显示倒计时,为司机和行人提供活动参考,单片机根据当前的系统状态切换到下一个状态。
主干道和支干道是两个互斥的状态,详细介绍了系统的工作原理、工作流程,第三章介绍了系统的硬件设计以及器件选型,硬件包括电源部分,单片机控制模块设计部分,数码管显示部分,按键部分等。
第四章是对软件设计方面的介绍,包括对程序主流程的介绍,以及中断程序模块、数码管显示模块分析介绍,最后还有二极管之间连接电路图、二极管与LED显示器的连接电路图、整体交通灯电路图,总结了系统还存在的可扩展性和不足之处。
第五章用Proteus仿真软件实现了主干道每次放行15秒,支干道每次放行10秒;每次绿灯变红之前,黄灯先亮3秒,此时另一干道上的红灯并闪烁,并且主、支干道交替进行,以及仿真图片。
实践表明,该系统能够安全有效的实现交通秩序的控制和疏解。
【关键词】单片机80C51交通控制LED Proteus仿真ABSTRACTToday, as China's economy continues to improve, the car has become an important tool in people's life and work, the number of cars rising to the existing city traffic is not a small pressure.This paper mainly through the control of 51 single-chip realization of the intersection traffic lights, the use of single-chip timer interrupt timer refresh, digital display countdown, providing reference for drivers and pedestrians, SCM to the next state according to the current state switching system. The main roads and branch roads are two mutually exclusive States, introduced the working principle, working process of the system, the third chapter introduces the hardware design and device selection, the hardware includes the power supply part, MCU control module design, digital display, key parts etc.. The fourth chapter is the design of software is introduced, including the main program flow is introduced, and the interrupt program module, digital tube display module analysis, and finally the diode connected between the diode and the circuit, LED display circuit, the overall traffic light circuit, summarizes the system has expansibility and shortcomings place. The fifth chapter uses the Proteus simulation software allowed 15 seconds for each trunk, branch trunk release each 10 seconds; before each green red, yellow light on for 3 seconds, then the other roads and flashing red light, and the main trunk road, alternately, and the simulation. Practice shows that, the system can effectively control the flow of traffic safety and ease.【Key words】MCU 80C51 Traffic control LED Proteus simulation目录摘要............................................................................................................................................. - 0 - ABSTRACT .................................................................................................................................... - 1 - 目录............................................................................................................................................. - 2 - 前言.. (1)第一章研究背景和意义 (2)第二章单片机控制的交通灯的设计方案 (4)第一节系统工作原理和方案 (4)第二节本课题主要内容 (6)第三章交通灯的硬件设计 (8)第一节电源模块设计 (8)第二节单片机控制模块设计 (9)一、方案选择 (9)二、复位电路 (10)三、晶振电路 (11)第三节LED显示模块 (12)一、LED数码管介绍 (12)二、LED数码管显示原理 (13)第四节按键设置模块 (13)第四章交通灯的软件设计 (15)第一节主函数流程 (15)第二节中断程序模块 (16)第三节数码管显示模块 (19)第四节交通灯电路 (19)第五节倒计时显示器电路 (20)第六节交通灯设计总电路图 (20)第五章Proteus仿真 (22)第一节Proteus软件介绍 (22)第二节Proteus仿真分析 (22)第六章调试心得 (31)结论 (32)致谢 (33)前言交叉路口的交通控制系统保证了车辆的安全,对于路口交通的控制管理,科学的管理和控制是一个重要而又影响深远的研究课题。
交通仿真软件vissim
交通仿真软件vissim篇一:VISSIM交通仿真软件简介VISSIM交通仿真软件简介VISSIMVISSIM是由德国PTV公司开发的微观交通仿真系统为模拟工具。
VISSIM 是一种微观、基于时间间隔和驾驶行为的仿真建模工具,用以建模和分析各种交通条件下(车道设置、交通构成、交通信号、公交站点等),城市交通和公共交通的运行状况,是评价交通工程设计和城市规划方案的有效工具。
VISSIM 由交通仿真器和信号状态产生器两部分组成,它们之间通过接口交换检测器数据和信号状态信息。
VISSIM 既可以在线生成可视化的交通运行状况,也可以离线输出各种统计数据,如:行程时间、排队长度等。
自1992年进入市场以来,VISSIM 已经成为模拟软件的标准,其投入的深入研发力量和世界范围内的大批用户保证了VISSIM 在同类软件中处于领先地位。
公司简介德国PTV集团最初成立于1979年,总部设在德国的卡尔斯鲁厄尔市(Karlsruhe)。
经过20多年的发展,已经在美国、法国、瑞士、荷兰、比利时、澳大利亚、新加坡、阿联酋、中国等地设立了分公司。
其软件和技术在世界上被广泛应用,截至到2022年6月,全球的用户达到1300个,其中欧洲用户达到700个,北美、南美用户达到350个,亚洲用户达到250个。
截至到2006年3月,中国使用PTV Vision软件系列的用户超过了80个。
辟途威交通科技(上海)有限公司成立于2022年2月,是德国PTV 集团在世界范围内投资的第20家独资子公司。
该公司是PTV总部在中国成立的第一家子公司,旨在为中国的用户提供更加便捷、全面、本土化的技术支持以及培训等方面的服务,同时通过和用户进行项目合作,来支持用户掌握PTV公司提供的软件的使用。
辟途威交通科技(上海)有限公司在中国的业务范围主要包括:1 PTV 软件开发和销售2 软件培训和技术支持3 交通运输规划咨询 4 交通工程咨询 5 智能交通系统(ITS)咨询篇二:本科毕业论文:基于VISSIM的交叉口交通仿真研究海南大学毕业论文(设计)题目:基于VISSIM的交叉口交通仿真研究学号: 20220504姓名:黄生锐年级:2022级学院:机电工程学院系别:汽车工程系专业:交通运输(汽车运用方向)指导教师:朱春侠完成日期:2022年 5 月 1 日摘要阐述了微观交通仿真软件VISSIM的理论基础,基于其模型对海口市海甸岛甸昆路口进行的交通仿真。
基于vissim仿真软件的干道协调优化设计
第57卷 第10期Vol. 57 No. 102019年10月October 2019农业装备与车辆工程AGRICULTURAL EQUIPMENT & VEHICLE ENGINEERINGdoi:10.3969/j.issn.1673-3142.2019.10.028基于VISSIM仿真软件的干道协调优化设计严凌,耿良凤(200093 上海市 上海理工大学 管理学院)[摘要]针对城市干道各个交叉口进口的不同放行方式,利用交互式协调控制模型进行交通信号协调配时设计,使得道路获得更为精确的最佳信号配时设计,通过图解法,获得绿波通行。
以上海市周家嘴路为例,运用VISSIM仿真软件对道路交通流进行仿真,使得道路车流的行程延误和系统总延误得到改善。
[关键词] 交互式协调;绿波交通;信号配时;交通仿真[中图分类号] U491.5+4 [文献标识码] B [文章编号] 1673-3142(2019)10-0115-03Optimization Design of Main Road Coordination Based on VISSIM Simulation SoftwareYan Ling, Geng Liangfeng(Business School, University of Shanghai for Science and Technology, Shanghai 200093, China)[Abstract] According to the different releasing modes of the entrances of the urban trunk roads, the interactive coordination controlling model is used to design the traffic signal coordination time, so that the road can obtain more accurate and optimal signal timing, the green wave passage through the graphic method is obtained. Taking Shanghai Zhoujiazui Road as an example, the VISSIM simulation software is used to simulate the road traffic flow, which improves the delay of the traffic flow at the intersection. [Key words] interactive coordination; green wave traffic; signal timing; traffic simulation.0 引言随着信号控制技术的发展,城市主干道协调控制是最先应用的范围。
Vissim仿真软件模型参数标定与应用
V issim 仿真系统对路段交通流模拟时,主要考 虑车辆、道路、驾驶行为、环境、交通管制措施等影 响因素[1],使用者可根据需要自行变动模型参数。在 实际应用中发现许多使用者通常采用系统默认的参 数值,并未根据实际需要作出修订。对于车辆尺寸、 道路宽度等物化设备及设施的基本参数,国内外差 异不甚明显,并且此类参数的调整使用者也容易判 别;但对于涉及驾驶人行为的部分参数,因国内外 驾驶习惯及行驶规则差异等影响,参数的不同对仿 真结果的影响相当显著。实验中发现,采用影响驾 驶行为的不同参数的仿真结果与系统默认值对比, 单车道车辆单位时间内车辆通过数、车道占有率、 车流密度等相差可达35% ~45%。
Abstr act:Traffic simulation technique provides a critical tool for traffic engineering studies. Although the software features vary across different simulation packages, the fundamental simulation mechanism of those packages remains the same. Taking Vissim, a well-known traffic simulation software tool, as an example, this paper briefly in- troduces the basic structure of the simulation system, and analyzes the parameters related to link traffic simulation. An emphasis was placed on analyzing vehicle-following model related parameters that signifi- cantly influence the simulation results of different scenarios. A com- parison of standard parameter values with the simulation results leads to a relatively reasonable range of parameter values under normal con- ditions. Finally, based on a simulation scenario for a two-lane street segment, the importance of adjusting the experimental parameters was validated through variations of traffic characteristics resulted from dif- ferent parameter values used in the simulation.
交叉口的vissim仿真与优化本科毕业
摘要随着经济的快速发展和城市化进程的不断加快,城市交通量急剧增加,引发了一系列严重的交通问题和社会问题。
作为交通网络重要组成部分的交叉口,往往是交通拥堵、交通事故、交通延误等交通问题的多发地带,成为整个交通网络的瓶颈。
近年来,淄博市张店区交通问题日益凸显,整个城市的交通设施、管控水平急需进一步组织优化。
因此,本文结合张店交通实际,深入研究平面信号交叉口的交通组织优化方法,具有重要的现实意义和实用价值。
本文首先运用交通流理论分析了交叉口处的交通流运行特性,揭示了交叉口交通问题的成因和根源,为解决此类问题找到了切入点和依据。
接着从优化原则、放行方法、渠化设计和信号优化控制等几个方面,详细探讨了平面信号交叉口交通组织优化理论和方法,指出了各种优化措施的实施方法、适用条件和注意事项。
最后,利用本文所研究的优化理论对张店南京路与新村路交叉口进行优化设计,并运用VISSIM仿真软件进行仿真实验。
仿真结果表明,根据本文研究的交叉口交通组织优化理论为解决交叉口交通问题提供了方法和依据,提出的优化方案具有很强有效性和可行性。
关键词:平面信号交叉口,交通组织优化,放行方法,渠化,信号控制AbstractWith rapid development of economy and the accelerating process of urbanization, the urban traffic flow has been increased sharply, which brings a series of traffic problems and social problems. As an important component of traffic network, the intersectionwith signals is always regarded as the frequent issues area of traffic jams, traffic accidents and traffic delays etc.,meanwhile, it will be the bottleneck for the entire transport network. Recently, the traffic problems in ZiboCity zhangdian district have been emerged up, simultaneously, the transportation facilities and managements in this city need further optimization urgently. Therefore, there is a deep research on optimization methods of traffic organization for intersections with signals in Zibo City zhangdian district in this paper. It will have important significance and practical value in future.Firstly, the characteristics of traffic flow in intersection is analyzed in traffic flow theory in this paper, and the causes of traffic problems occurred in intersection are also revealed to solve such problems. Secondly, the theory and methods of traffic organization optimization for intersection with signals are discussed in detail through optimization principles, discharging method, channelization design, signal optimization control and so on. The suitable conditions, implementing methods, and cautions for optimization methods of traffic organization have been put forward. Finally, Zhangdian NanJing Road and New Village Road intersection is designed in this paper with the simulation experiments by software VISSIM. The simulation results show that, the optimization theory of traffic organization in intersection with signals provides ways and basis to solve the traffic problems. It has been proved feasible and effective.Keywords: intersection with signals, traffic organizing optimization, discharging method, channelization, signal control摘要 (1)ABSTRACT (2)第一章引言 (5)1.1研究背景及意义 (5)1.2国内外研究现状 (5)1.2.1 国外研究现状 (5)1.2.2 国内研究现状 (6)1.3本论文的研究内容及技术思路 (7)1.3.1 研究内容 (7)1.3.2 本研究的技术路线 (8)第二章交叉口通行能力和服务水平 (9)2.1道路通行能力 (9)2.1.1 基本通行能力 (9)2.1.2 实际通行能力 (10)2.1.3平面交叉口的通行能力 (12)2.2服务水平 (14)2.2.1 道路服务水平 (14)2.2.2 交叉口服务水平 (16)第三章平面交叉口的优化理论及方法 (17)3.1平面交叉口优化设计的主要原则 (17)3.2平面交叉口交通流运行特性 (18)3.2.2 平面交叉口机动车流特点 (20)3.3平面交叉口渠化设计 (26)3.3.1交通渠化的概述 (26)3.3.2 渠化设计的措施 (26)3.3.3交叉口渠化设计流程 (27)3.4交叉口信号控制和相位设计 (28)3.4.1 信号相位、阶段、基本参数 (28)3.4.2信号控制方式的选择 (29)第四章交叉口优化方案评价指标 (31)4.1服务水平(效益指标) (31)4.1.1 饱和流率损失时间 (31)4.1.2 饱和度 (32)4.1.3 延误 (32)4.1.4 排队长度 (34)4.2安全指标 (35)4.2.1 人车分离度 (35)4.2.2 交叉口冲突数 (36)4.2.3 交叉口安全度 (36)4.3小结 (37)第五章实例分析 (39)5.1.1 交叉口附近交通、土地使用情况 (39)5.1.2 交叉口道路基本情况 (39)5.1.3 交叉口的设施情况 (40)5.1.4 交叉口的信号配时 (42)5.2交通调查 (43)5.2.1 交通量调查方案 (43)5.2.2 延误调查方案 (43)5.3交叉口交通数据分析与仿真 (44)5.3.1 交叉口交通量 (44)5.3.2交叉口的延误调查及服务水平 (46)5.4交叉口优化方案及评价 (49)5.4.1 交叉口的优化方案 (49)5.4.2 优化设计方案的评价 (49)5.5结论 (51)结论 (52)参考文献 (53)致谢 (55)第一章引言1.1 研究背景及意义随着我国国民经济的迅速发展,城市化速度不断加快,机动车数量不断增加,城市交通量快速增长,现阶段的城市交通问题是社会经济发展的必然结果:交通延误增加、事故频发、行车时间增加、环境污染加重、经济发展受到限制。
simulation modeling practice and theory
simulation modeling practice and theorySimulation modeling is a powerful tool used in various fields to study complex systems and predict their behavior under different conditions. It involves creating a computer-based model of a system or process and then simulating its behavior over time to gain insights into its operation.Simulation modeling practice involves the practical application of simulation techniques to real-world problems. This involves identifying the problem, collecting data, building a simulation model, validating the model, and using it to analyze the problem and identify potential solutions. Simulation modeling practice requires a deep understanding of the system being modeled, as well as knowledge of simulation software and statistical analysis techniques.Simulation modeling theory, on the other hand, involves the development of mathematical and statistical models that can be used to simulate the behavior of a system. This involves understanding the underlying principles of the system and developing mathematical equations that can be used to model its behavior. Simulation modeling theory also involves the development of statistical methods for analyzing the data generated by simulation models and validating their accuracy. Both simulation modeling practice and theory are important for understanding complex systems and predicting their behavior. Simulation modeling practice allows us to apply simulation techniques to real-world problems and develop practical solutions, while simulation modeling theory provides the foundation for developing accurate and reliable simulation models. Together, these two approaches help us to better understand and manage complex systems in fields such as engineering, economics, and healthcare.。
恶劣天气环境下的交通流数值模拟
恶劣天气环境下的交通流数值模拟祝会兵【摘要】Based on the NaSch model of traffic flow, a modified cellular automaton traffic model is proposed. The model is attempted to reflect the characteristics of discreetness found in vehicle drivers under rain or snow weather condition. In the modeling process, the special driving condition of wet, slippery road and poor visibility are taken into account. The fundamental diagrams of traffic flow are obtained based on the numerical simulation, in which different percentage of discreet drivers is sampled. It is found that the percentile value of discreet drivers has effect on the traffic flow. By presenting the spatial-temporal profiles, the nonlinear properties of traffic flow in the inclement weather condition are analyzed thoroughly. It can be noted that traffic jams occur more frequently in rainy or snowy weather. It is in agreement with the actual traffic characteristics, so the presented model can also partly describe the microscopic characteristics of traffic flow in the inclement environment. The results demonstrate that the driver behavior has significant effect on the occurrence of traffic congestion.%基于 NaSch 模型提出了一个改进的元胞自动机交通流模型,旨在反映雨雪天气时道路湿滑能见度差的情况下司机驾驶车辆更加谨慎的特点。
Traffic Simulation
Safety Modeling
Developing safety predictions is
desirable. Ignored by most models at present. Difficult to predict human error. Difficult to add more vulnerable users of the road.
19 Apr 2005Fra bibliotekCS521 - Traffic Simulation
Various Explicit Numerical Methods
Lax-Friedrichs method Upwind method
MacCormack method
Lax-Wendroff method
~ ~ ~ V0 v ~ 2 ~ ( v) v ( fint ) v 2 ( D) t x v
CS521 - Traffic Simulation
Derivation of the Macroscopic Equations 1D continuity ( V ) equation (The 0 number of vehicles t x
Traffic Simulation
Josh Gilkerson Wei Li David Owen
19 Apr 2005 CS521 - Traffic Simulation
Uses
Short term forecasting to determine actions
following an incident that changes the roadway. Anticipatory guidance for Advanced Traveler Information Systems (ATIS) to help drivers make better decisions. Determination of how to spend money on improving infrastructure. Planning for closures/construction.
路面不平度的数值模拟与测量
AbstractWith the rapid development of economy,the demand for transportation,as one of the lifeblood of the economy,is gradually increasing.The characteristics of the current traffic conditions are:large traffic flow,vehicle weight and speed and so on.In this situation,the "vehicle-Road"system of road pavement quality and design is particularly important.Road roughness as one of the important indicators of the evaluation of the road,the people,car,the road has an impact."Vehicle road system"is the process of interaction, pavement roughness will cause the vehicle to irregular vibration,and the vehicle and the road is a system,the vibration led directly to the pavement structure of the vibration,the vibration caused by road unevenness will directly lead to fatigue failure of the vehicle structure or components and road structure.Exists the difference results in the simulation of road roughness,using different simulation methods finally,figure from the same grade of road simulation comparison,the inverse Fourier transform method is used to simulate the results and the measured road roughness value error is relatively small,can be seen as the actual measurement value.In the road surface roughness measuring,the quarter vehicle model and acceleration sensor based,the establishment of the measurement of pavement roughness mathematical model and measured a pavement and calculation way surface roughness and road grade,through model can solve fast pavement statistic data and requires corrective maintenance sections,timely maintenance can improve vehicle driving safety and driving comfort and reduce damage of pavement and vehicle.The main contents of this paper are as follows:(1)The research status of road roughness at home and abroad is analyzed,and the purpose and significance of the research are also analyzed;(2)The road surface roughness is reviewed,and the instrument and measurement method, evaluation index,analysis method and system dynamics of"vehicle and road"are introduced;(3)Several simulation methods of road roughness are introduced,and the results obtained by different methods are analyzed and compared;(4)The1/4vehicle model and the acceleration sensor are established,and the mathematical model of road roughness is obtained by Laplace transform;(5)The road surface is measured,the acceleration value of the road surface is obtained, and the grade of the road surface is calculated by the mathematical model and its analysis. Key Words:Road Roughness;Numerical Simulation;Acceleration Sensor;1/4Vehicle Model;Pavement Classification目录摘要 (I)Abstract (II)1绪论 (1)1.1研究的目的和意义 (1)1.1.1路面不平度概述 (1)1.1.2研究的意义 (3)1.1.3研究目的 (5)1.2国内外路面不平度研究现状 (5)1.2.1路面不平度的测量方法 (5)1.2.2路面不平度的评价指标 (11)1.2.3路面不平度的分析方法 (13)1.2.4车辆-路面系统研究 (14)1.3本文研究内容与技术路线 (16)1.3.1研究内容 (16)1.3.2技术路线 (17)1.4本章小结 (17)2路面不平度的模拟 (19)2.1随机不平度的功率谱 (19)2.1.1空间频率功率谱函数 (19)2.1.2时间频率功率谱密度 (22)2.2路面不平度的模拟方法 (22)2.3实例模拟与分析 (26)2.4本章小结 (30)3路面不平度的测量 (31)3.1测量路面车辆模型建立 (31)3.1.1车辆模型 (31)3.1.2加速度传感器 (32)3.2测量路面不平度模型建立 (33)3.3测量路面等级计算方法 (34)3.4本章小结 (36)4路面不平度的模拟与测量实例验证 (37)4.1测量仪器及车辆参数介绍 (37)4.1.1加速度传感器 (37)4.1.2测量车辆及参数 (38)4.2实测路面情况介绍 (39)4.3测量结果分析 (40)4.3.1测量前准备 (41)4.3.2结果分析 (41)4.4小结 (44)5总结与展望 (45)5.1总结 (45)5.2展望 (45)致谢 (47)参考文献 (48)攻读学位期间的研究成果 (52)1绪论1.1研究的目的和意义1.1.1路面不平度概述对于研究路面不平度模拟和实地测量时,了解其概念的准确性与完整性及其研究的对象和领域是必不可少的重要环节之一。
智能网联车辆流量优化对交通安全的改善
96 集成电路应用 第 38 卷 第 1 期(总第 328 期)2021 年 1 月Applications创新应用摘要:为了进一步的提高网络的系统数据分析综合性,必须要根据实际情况改善汽车的开发方向,优化道路交通模拟系统建设,实行高标准的数据处理。
针对智能网联车辆交通流优化,分析交通安全的改善措施,提出合理化建议。
关键词:智能网联车,交通流优化,系统数据分析。
中图分类号:TM75 文章编号:1674-2583(2021)01-0096-02DOI:10.19339/j.issn.1674-2583.2021.01.047中文引用格式:张宇飞,张森,段佳冬.智能网联车辆流量优化对交通安全的改善[J].集成电路应用, 2021, 38(01): 96-97.起,才能够勉强控制基础车流量。
(2)人为因素。
随着车辆的不断增多,驾驶人对整个道路交通运行的作用十分重要,尤其是在疲劳驾驶这方面。
根据相关的实践研究表明,驾驶员在桥梁、隧道或者恶劣的天气下出现疲劳驾驶的概率会增加。
且由于不同驾驶行为所占用的车道容量不同,传统的基础数据已经无法对人的行为进行预测,针对性的方案制定也会出现偏差。
除此之外,路面的行人由于交通意识薄弱,也经常性出现相关的闯红灯等情况,直接导致检测出现一定的偏差,难以实现高标准下数据测定的不合理性。
对此,必须要在模型设计中将该项因素考虑在内,制定部分可行性措施。
2 智能网联车辆交通流量现状在智能网联车辆交通流发展过程中,汽车行驶常常会出现较多的不确定性因素,交通事故发生概率大,无论是对于汽车行驶人员还是乘坐人员都存在较大的安全隐患。
一旦发生交通事故,容易造成路面交通瘫痪,这对常规汽车来说,很难杜绝和避免。
随着智能通信技术的发展,智能网联车辆可利用互联网技术实现对车内驾驶人员的信息的提前预告和警示,预先了解该地区的路面状况,优化交通运行路线,降低行驶风险,间接性地改善区域性交0 引言随着信息技术的不断进步,传统的汽车领域面临着较大的挑战和机遇,大多数的汽车厂商纷纷开始转型,智能化汽愈加受到人们的重视。
【word】道路交叉口冲突仿真分析
道路交叉口冲突仿真分析第19卷第5期2009年5月中国China安全Safety科学ScienceJournalV o1.19No.5Mav2009道路交叉口冲突仿真分析嗣恩李克平教授孙剑讲师董升济大学道路与交通工程教育部重点实验室,上海200092)学科分类与代码:620.2030中图分类号:X913.4文献标识码:A基金项目:国家自然科学基金资助(50808140):国家科技支撑计划项目(2006BAJ18B07).【摘要】针对基于事故的安全评价在数量,周期,均值,随机性等方面以及基于现场冲突观测识别在主观性,可靠性,成本,指标全面性等方面存在的问题,提出基于冲突仿真的交叉口安全预评价分析方法:研究利用安全间接分析(SSAM)模型分析冲突的基本原理和冲突时间(qTC),遭遇时间(PET)等分析指标的计算方法;以及利用VISSIM仿真软件进行冲突仿真分析应注意的策略.以邢台市某道路交叉口安全改善方案为例,进行改善前后冲突仿真的比较分析.研究结果表明,改善后在通行效率显着提升的同时,交叉,追尾,车道变换冲突的数量均显着减少,Trc值有所增加,说明改善后安全程度有所提升.笔者提出的方法和案例应用为道路交叉口改善措施的安全预评价提供了一种分析途径和有益借鉴.【关键词】道路交叉13;冲突仿真;交通安全;预评价;安全问接分析模型(SSAM) TrafficConflictSimulationAnalysisforUrbanRoadIntersection ZHOUSi—enLIKe-ping,Prof.SUNJian,LecturerDONGSheng (KeyLaboratoryofRoad&TrafficEngineering,MinistryofEducation, Ton~iUniversity,Shanghai200092,China)Abstract:Aimedatthetypicalproblemsintheaspectsofnumber,cycle,meanv alueandrandomness ofintersectionaccidentssafetyassessmentandtheonesintheaspectsofsubjec tivity,reliability,costsand indexcompletenessofsitesurveyrecognitionoftrafficconflict,apre—assess mentmethodbasedontrafficconflictsimulationisputforward.Basictheoriesoftrafficconflicttechniques byusingSSAM(SurrogateSafetyAssessmentMode1),calculationmethodofTI’C(TimetoConflict),an dPET(PositionEncroach—mentTime)arestudied,andsimulationstrategiesduringtheprocessofsafetya nalysisarealsoresearchedbyutilizingVISSIMsoftware.Intheend,withtheimprovedintersectionofXi ngtaicityinHebeiProvinceasanexample,acomparativeanalysisofconflictsimulationresultsbetweenb eforeandafterimprovementiscarriedout.Theresultshowsthatthenumberofcrossingconflict,rear—end conflictandlane—changeconflictdecreasessharply,andcorrespondingTFCV alueincreasesinsomeex tentwiththeimprovingofoperationefficiency,whichindicatesthatthereisanenhancementofsafetyaft ertheintersectionbeingim—proved.Themethodandcasestudyprovidesausefulapproachandisbeneficia lforevaluatingthesafetyefft0fcountermeasures.Keywords:roadintersection;conflictsimulation;trafficsafety;pre—assess ment;surrogatesafetyassessmentmodel(SSAM)$文章编号:1003—3033(2009)05—0032—06;收稿日期:2009一O1—1l;修稿日期:2009—04—30周第5期周嗣恩等:道路交叉口冲突仿真分析?33?0引言道路交叉口交通安全评价的方法通常有两种,其一是直接评价,其二是间接评价.直接评价以交通事故的统计为基础,采用事故次数,事故率,事故严重程度和经济损失等单一指标或多项综合指标进行评价,方法简单,国内外应用较广.由于交通事故具有数量少,周期长,回归至均值,事故发生的随机性,数据获取困难等特点』.安全措施改善效果的显现需要较长时间,交通安全的风险周期较长,于是数量多,周期短,可以观测的交通安全问接评价技术便应运而生,具有代表性的是瑞典克列斯特?海顿的交通冲突技术研究J,该研究确定了严重冲突的界定标准为TA(Timetoaccident)≤1.5S,并提出了早期的人工观测方法.Hayward等也提出了与TA类似的概念TI’C,其中TYC是一系列连续的值, 而TA是TYC中的某一个阈值,用于区分严重冲突与非严重冲突.我国的一些学者也提出用交通冲突数与当量交通量的相应关系作为衡量交叉口交通安全的指标, 采用概率论,模糊数学等方法,对交通冲突技术进行了研究_4J.虽然交通冲突技术广泛用于交通安全分析,但该方法还面临以下问题与挑战:1)交通冲突间接评价方法得到了一定的研究,应用与推广,但实际上仍然是一种事后的被动分析技术,没有与交通仿真技术实现有机融合以达到主动安全分析效果.2)人工观测冲突的主观性很强,不同的观测人员对冲突的感知和识别能力各不相同,导致观测结果往往因人而异.同时这种方法很难获得较全面的冲突相关信息,如冲突速度,相对冲突速度,冲突位置等.3)视频观测的代价较高,遮挡,相机抖动现象克服不易,数据处理的工作量大.4)交叉,追尾,车道变换冲突形成的机理不同,需要驾驶人采取操作的剧烈程度也不同,都采用1.5s作为严重冲突临界值的区分度水平值得研究. 针对上述问题,利用VISSIM仿真软件,整合安全间接分析模型(SurrogateSafetyAssessmentModel, SSAM),提出了基于冲突仿真的交叉lZl安全预评价分析方法.研究了利用安全间接分析模型分析冲突的基本原理和冲突时间(TimetoConflict,1Trc),遭遇时间(PositionEncroachmentTime,PET)等分析指标的计算方法,以及利用VISSIM仿真软件进行冲突仿真分析应注意的仿真策略.最后以邢台市某道路交叉口安全改善方案为例,进行改善前后冲突仿真的比较分析.例证主动交通安全分析方法的可行性.冲突点是交通事故的潜在发生点,冲突数量的减少,冲突速度的降低客观上有利于交通安全,文章以此理念为出发点,作为安全分析的考虑准则,而冲突数量,冲突速度与交通事故的量化关系,将在下一步研究中继续进行.1道路交叉口冲突分析技术原理1.1冲突概念与分类交通冲突是指可观测的情况下,两个或两个以上的道路使用者在时间上和空问上相互逼近,如果不采取相应的措施,将会有碰撞危险的现象J.根据冲突的形成过程特点及机理,可将其分为基于点的冲突和基于线的冲突两种类型:前者的冲突位置是一个固定的点,如交叉冲突;后者冲突的位置不固定,随着车辆速度,行驶方向的变化,逐渐实现合流,同时冲突点前移成线(见图1),如追尾冲突和车道变换冲突.图1冲突点与冲突线示意图1.2SSAM冲突分析模型SSAM(安全间接分析模型)是由美国Turner—FairbankHighwayResearchCenter提出的一种基于网格的冲突识别分析模型.主要的分析指标有TYC,PET,最大速度(maxS),相对速度(DeltaS),最34?中国安全科学ChinaSafetyScienceJournal第19卷2009年大加速度等(maxD).其中TFC是指距离冲突发生的时问.PET是指前车通过某个位置与后车通过同一位置时的时间差,maxS是指整个冲突过程中两辆车的速度的最大值,DeltaS是指驾驶人采取避险措施瞬间两辆车的相对速度,maxD是指冲突过程中后车的最大加(减)速度.以左转车(A)与对向直行车(B)之间的交叉冲突(冲突点)为例进行模型原理以及各指标计算的简要阐述,如图2所示.t3tBIt2t(I15一●一I_田A兰一,?口DIs1=vTTctA.tlI2I,图2SSAM冲突模型示意图1)SSAM建立12.5mX12.5m的网格区域,把由仿真软件输出的包含车辆速度,加速度等信息的轨迹曲线投影到网格区域,建立网格的目的是减少车辆轨迹比对的工作量.2)车辆的轨迹坐标是根据其速度的大小和方向而定的,t,t,t,t等为随着仿真步长而增加的连续的仿真时刻,其坐标分别为(Y),(Y),速度,加速度分别为,,0n(i=1,2,3,…),其中,t.为A车或B车采取措施避让危险的时刻, 那么DeltaS=ll一Il:(1)maxS=max{i,},i=1,2,3, (2)f’~ax[n],i=1,2,3,…B是前车【max[0],i=1,2,3,…A是前车(3)对A车,由设定的TT℃临界值,计算车辆不采取措施保持速度行驶在1Trc临界值的时间里行驶的距离DIS=vAXTrCcritical.因为时间段很短,车辆实际行驶的距离可近似表述为DIS=√( 一A2)+(Y一Y),女口果DIS2<DISl,习么令DISI=DISI—DIS2,DIS2=~/(一位)+(Y一),直到DIS2≥DIS1,假设在.s段满足要求.用同样的方法对B车的行驶轨迹进行处理,假定在Q:段满足要求.3)比较5,与Q:有没有重合的区域,若没有重合,则不记录冲突;若有重合,记录A,B车行驶至冲突点的时刻t,t,并计算以,行驶到冲突点的时刻t,1,那么A,B两车的实际1]rC=min{t—t1,1一t1},PET=ItA—tBI.2基于VISSIM软件与SSAM的冲突仿真分析2.1冲突仿真分析方法的可行性Turner—FairbankHighwayResearchCenter曾选取典型的交叉口为案例,将事故数据与仿真得到的严重冲突数量进行了对比分析,发现两者有很强的相关性.并选用VISSIM,AIMSUM,PARAMICS, TEXAS等仿真软件对SSAM的灵敏性进行分析,表明各仿真软件都有一定的优越性,但VISSIM在严重冲突识别的真实性,驾驶人的行为选择以避让冲突等方面存在着较大的优势.‘笔者也曾利用VISSIM仿真软件结合SSAM模型对基于安全的微观仿真的校正进行了系统研究, 提出了实验设计初选参数与多目标遗传算法寻优相融合的两阶段参数校正核心技术,并以杭州市文一路一教工路交叉口为案例进行应用研究,取得了较为理想的效果.故此次研究选取VISSIM软件进行安全方面的冲突仿真分析.2.2冲突仿真思路对于给定的交通设计方案,首先确定校核的目标,并对渠化设计,信号控制策略等进行核查.其次,利用VISSIM仿真软件进行建模,校准,验证,使其能够尽可能真实地反应交通流的运行状况,尤其要注意从安全分析角度出发,对转弯,变道,红灯停车与启动等状况下的驾驶人行为参数,优先控制参数,信号控制参数进行校准,输出包含车辆速度,加速度等信息的轨迹曲线,利用SSAM模型,设定TI’C ∈[0,1.5]S,PET∈[0,5]S,运算分析得到1Trc, PET,maxS,DeltaS,maxD等指标,验证现状摄像观测以及冲突仿真得到的冲突数量,分布情况,若误差在允许范围内,可以进行方案的评价,否则利用非集计指标与空间分布情况校核VISSIM的控制参数或者SSAM的阈值设定.分析流程示意图如图3所示.第5期周嗣恩等:道路交叉El冲突仿真分析?35?1I方案校核目标方案核查SSAM模型闽值设定l6分析识别..........j1...一检验78l堡型堕/\,/误差,一,受夕是图3冲突仿真流程2.3冲突分析角度的VISSIM建模VISSIM仿真软件采用的仿真模型基于时间步长和驾驶人行为,系统核心仿真模型——车辆跟踪模型采用德国Karlsruhe大学Wiedeman教授的”心理一物理跟车模型”,模型建立在驾驶人反应行为之上,可对影响行驶环境的各种因素进行建模表达. 通常应用VISSIM进行仿真主要是运行情况方面的分析,通过参数的标定与校核能够较为精确地反映方案的实际运行情况.用其进行安全方面的冲突分析,建模流程存在着一定的差异,驾驶行为的微小变化会引起较大的差异.笔者曾提出了核心技术——两阶段参数校正分析方法,即通过正交试验与均匀实验相结合的思路, 初选主要校核参数;通过”理想点”方法处理多目标问题,并用遗传算法对初选参数进行寻优设计.值得注意的是步骤1~步骤5(见图3)与传统的VISSIM仿真流程相同,经做过的交叉口仿真分析表明,校准后的模型也能够较为精确地反应真实情况, 但在SSAM模型识别后,要结合实际调查获得的冲突数量再次进行误差的验证,若误差不可接受,需要从非集计指标,冲突空间位置角度判定误差的原因,进行阈值的修订或对VISSIM仿真模型的l3个跟驰参数,l0个车道变换参数以及8个驾驶人行为相关参数等可控参数进行再次校正并重新识别.2.4典型案例分析根据冲突仿真思路(见图3)以及冲突分析角度的注意事项,选取邢台市中兴路和新华路干路相交大型交叉口为例进行分析,案例的详细介绍参见文献[10].改善前为传统的两相位控制,考虑到直行机动车与对向左转机动车冲突严重,增设了专用左转相位,并对右转车进行了停车让行控制.通过对现状设计方案的运行情况校准以及冲突指标的校准,发现改善后的运行效率明显提升.文章重在对方案进行冲突仿真,以比较方案的改善效果,从而验证方法的可行性.运行3600s输出轨迹文件,设定SSAM模型的阈值,1Trc∈[0,1.5]s,PET∈[0,5]s,得到主要结论如下所述.2.4.1冲突类型分析从交叉,追尾,车道变换的分类人手,统计各仿真指标(见下表).改善前后冲突类型特征数量(起/小时)Trc平均值(s)相对速度(m/s)冲突加速度(m/s)最大速度:m/s)冲突类型—一—一—’,.—一前后日U后刚后日U后丑U后交叉34l0.06018.382(】.950.340.2313.9o14.48追尾26347O.891.273.985.1O一1.12—2.497.526.58车道变换84l30.270.573.794.27—2.94—3.868.82l1.111)渠化前后追尾冲突的数量较多,所占比例较大,分别为69%,77%.2)渠化后冲突数量明显减少,交叉,追尾,车道变换冲突分别减少了97%,82%,84%.追尾和车道变换的平均Trc分别增加了43%,111%,相对速度有所增加,但仍在对人体造成严重伤害的30km/h范围内,说明通行能力提高后车辆运行状况改善,安全性能有一定的提升.3)冲突形成机理不同,Trc亦有所不同,交叉冲突通常发生在左转弯车辆与对向直行车之间的冲突,速度高,相对速度较大,Trc值往往偏小;而交叉口追尾冲突车辆之间的速度,相对速度通常不高, TFC值偏大.上表所示的数据反映了这一现象,故都采用1.5s作为严重冲突分类指标的区分度不是很高,对交叉冲突,追尾冲突,车道变换冲突分别设置严重冲突的临界值将更具有普遍意义.2.4.2冲突严重程度的空间位置分析1)1.0—1.5S的追尾冲突数量较多,渠化前后分别占冲突总数的50.8%,83.0%,主要分布在交叉口停车线与红灯期间最大排队长度处之间(见图4,图5).我国交叉口运行的实际中,尤其是红灯排队期间,车辆的跟驰距离较近,经常是后车保险36?中国安全科学ChinaSafetyScienceJournal第19卷2009往杠贴近前车保险杠,车辆间的冲突较为严重.美国一些州的事故统计中,也发现此段区域发生的追尾事故较多.2)渠化前转弯交通的冲突数量较多,TI’C值较小(见图4),主要原因是交叉口流量较大,而信号配时方案为传统的两相位信号控制,转弯车辆穿越或合流的可接受问隙数值较小,数量较少,同时驾驶人的让行意识不强;渠化方案给左转弯车辆分配了专用的相位,冲突数量得到了有效的控制(见图5).图4渠化前冲突位置分布3)渠化前展宽过渡段的冲突数量也占有一定的比例(见图4),主要原因是交叉口流量较大,红灯期间车辆排队长度较长,延伸到展宽过渡段的上游,形成短车道,导致转弯车辆变道的冲突较多.渠化后,增加了进口道的数量,优化了信号配时,使整个交叉口的通行能=c-可.n=尊器器譬信号周期时刻(s)~冲突时间(TTc)—一冲突类J~.(ConflictType)——一相对速度(Dcltas)一减速度(DR)冲突类型1.追尾;2.交叉;3.车道变换图6渠化后仿真结果非集计分析1)相对速度(Deltas)越大,后车驾驶人需要采取的=75.42km/h,不利于交通安全,从冲突角度单纯用冲驾驶行为越剧烈.交叉冲突的相对速度较大,TIZ较小.突数量来衡量交叉口的安全是存在问题的.2)渠化后交叉冲突只有1起,Trc为0,是北进2.4.4减少交叉口冲突数量与严重程度的建议口左转与南进口直行之间的冲突(图5右上角附由上述分析,在进行交叉口设计时,应遵循”避图),发生在南北左转相位绿灯刚刚启亮时刻,绿灯免交叉冲突(相对速度较大),最大程度地减少追尾间隔时间存在问题,导致车辆在清尾时间内不能完和变道冲突”的思路.从冲突形成过程角度分析,全驶离而在绿灯起亮后发生碰撞.交通冲突与驾驶人的让行意识,遵章行驶密切相关,该指标反应出:交叉冲突数量较小,有利于交通安所以减少交叉口交通冲突,保障安全的最有效途径全,但同时TTC值也较小,相对速度较大为20.95×3.6是驾驶人安全行车意识的提高,这需要时间的磨合.一\眦j越幽/(∈III删莨㈣∞∞∞0o㈣㈣舢肿22ll5O..._50505O503322ll00副耍一垦富是第5期周嗣恩等:道路交叉口冲突仿真分析?37?当前阶段有必要辅以必要的工程设计方法来实现减少冲突的目的.1)相位,相序设计通过增设行人过街安全岛,并辅以相应的相位,相序设计,促使冲突车流按照各自的通行时间和空间路权有序行驶,减少或避免冲突¨.2)绿灯间隔时间的设置绿灯间隔时问的设置要切实保障最后通过停车线的时间能够顺利通过交叉口,而在实际中,驾驶人可能是加速尽快通过交叉口而非等候一个周期再通过,因此,可以考虑取消黄闪时间而改为全红时问. 3)转弯车辆的考虑考虑到当前阶段驾驶人的让行意识较差,在设计时应明确分配通行权.对左转车辆,可衡量交通量的大小而增设信号相位来达到减少冲突的目的; 对右转车辆,有必要实行严格的停车让行标志控制来减少合流冲突的数量和严重程度.对于不受信号控制的交叉口车辆流向,要进行优先控制策略的设置,见图7示意说明.例如:右转弯车辆,设置两组优先控制规则,组合1实现右转车让行直行车的目的,组合2用来实现直行车B对已进入直行车道车辆C的让行行为.囡篆羹;团篆羹骑嚣L兰J车头时距=OsLIJ乍三L时距=3s 图7优先控制策略示意图4)短车道的设置当车辆的排队空间受到某些因素限制时,短车道效应就会产生.如果临界排队长度小于实际排队空间,那么短车道现象就会出现.一方面降低了交叉口通行能力,另一方面增加了队尾冲突的数量,图4展宽过渡段的冲突主要就是由此产生的.设计时考虑交通量的大小而设定恰当的车道排队空间或利用信号配时方案来防止短车道的出现.3结论笔者解析交叉口冲突的识别过程,介绍冲突仿真的基本思路,选取典型案例应用基于仿真的方法,从冲突类型与冲突严重程度角度出发,研究及实证中有以下用冲突仿真方法评价交叉口改善方案的有效性,主要结论:1)与传统的人工观测,视频观测方法相比,基于仿真的冲突分析方法可以系统地识别冲突时间,冲突速度,遭遇时间等多维交通冲突状态参数,但SSAM模型对仿真模型的要求较高,控制策略的设置不当会导致结果失真.2)基于冲突仿真的分析方法可以对设计方案进行预评价,是一种主动分析方法.可在方案实施前对方案的冲突数量,TYC,PET,相对冲突速度等进行预估,从而可以从安全角度考虑调整优化方案.3)交叉冲突,追尾冲突,车道变换冲突的形成机理不同,均采用1.5s作为严重冲突临界值的区分度不大,建议分别设置不同的临界值,具体数值的设定需要进一步深入的研究.4)笔者提供了一种利用冲突仿真分析安全状况的途径,进一步的研究是结合冲突类型与严重程度的分析结果,界定不同冲突类型的TrFc临界值,并考虑行人,非机动车与机动车间的冲突,选用合理恰当的评价方法,进行综合评价.参考文献朱彤,白玉,杨晓光.平面交叉口交通冲突安全评价失效分析及改进方法研究[J].中国安全科学,2008,18(2):157—161王海星,申金升.基于TCT的平面交叉口安全评价方法研究[J].中国安全科学,2005,15(5):101—104可列斯特?海顿[瑞典].交通冲突技术EM].张苏译.成都:西南交通大学出版社,1994.9:1—20景春光,王殿海.典型交叉口混合交通冲突分析与处理方法[J].土木工程,2004,37(6):97—100周家祥,许鹏,柴干.基于交通冲突的交叉口安全模糊综合评价[J].交通与计算机,2008,26(2):123—130王海星,肖贵平,聂磊.基于交通量的平面信号控制交叉口交通冲突模拟研究I-J].中国安全科学,2004,14(3):20—22DouglasGettman,LiliPu,TarekSayed,etc..SurrogateSafetyAssessmentM odelandV alidation[M].SiemensEnergy&Automation,lnc.BusinessUnitIntelligentTransportationSystems,2 008.1:14—21Amundsen,F.andHyden,C.TheSwedishtrafficconflicttechnique[A].Proce edingsofFirstWorkshoponTrafficConflicts[C].Oslo:InstituteofTransportEconomics,1977:1—5 MichaelF.Trentacoste.SurrogateSafetyMeasuresfromTrafficSimulation Models[M].U.S.DepartmentofTransporta—tionFederalAdministrationResearch,Development,andTechnology,2003. 1:79—96杨晓光.城市道路交通设计指南[M].北京:人民交通出版社,2003.6:216—223ARRB.TrafficSignals:CapacityandTimingAnalysis[M].AustraliaRoadan dTrafficBureau,2001:110~ll3刀n[[[[[[[[[[[。
交通软件英语作文
交通软件英语作文Traffic software plays a vital role in managing and optimizing transportation systems. It integrates various technologies and algorithms to monitor, control, and improve traffic flow. This essay will delve into the importance, functionalities, and impacts of traffic software.Firstly, traffic software enables efficient traffic control and management. It can collect real-time data from sensors, cameras, and various sources to analyze traffic patterns and congestion. By using advanced algorithms,traffic software can optimize traffic signal timings, adjust lane flows, and implement adaptive traffic control systems. These measures help to reduce congestion, alleviate bottlenecks, and enhance overall traffic efficiency.Moreover, traffic software facilitates better transportation planning and decision-making. By analyzinghistorical data, traffic software can identify traffic patterns, peak hours, and major congested areas. This information empowers urban planners and transportation authorities to make informed decisions regarding road expansions, infrastructure developments, and public transportation systems. Additionally, traffic software can simulate different scenarios and propose optimized solutions, minimizing the time and cost associated with trial and error.Furthermore, traffic software contributes to enhanced road safety. It can detect accidents, traffic violations, and hazards in real-time. This enables prompt response from emergency services and traffic management centers. Furthermore, traffic software can optimize signal timings and introduce measures such as red light violation detection and speed control systems. These proactive measures help in reducing accidents, ensuring pedestrian safety, and maintaining overall road discipline.In addition to these functionalities, traffic software has positive social, economic, and environmental impacts. By reducing congestion and travel times, it enhances the productivity of commuters and businesses. It also reducesfuel consumption and emissions, leading to improved air quality and a greener environment. Furthermore, traffic software promotes the use of public transportation by providing accurate information about routes, schedules, and occupancy, thus encouraging people to choose more sustainable modes of transportation.However, there are certain challenges associated with traffic software. One of the primary issues is the need for accurate and reliable data collection. Traffic software heavily relies on data, and any inaccuracies or inconsistencies can compromise its effectiveness. Therefore, ensuring a robust data collection infrastructure and data quality control mechanisms are paramount.Another challenge is the integration and interoperability of various traffic management systems. As different cities and countries may have their own transportationinfrastructure and protocols, achieving seamless integration of traffic software can be complex. Establishing standards and protocols for data exchange and system compatibility is crucial for effective implementation.In conclusion, traffic software is a critical tool for improving traffic control, management, and planning. It enables efficient traffic flow, enhances road safety, and provides valuable data for transportation decision-making. With its numerous benefits, traffic software plays a pivotal role in creating smarter, safer, and more sustainable transportation systems.。
自动化集装箱码头道路交通组织仿真技术
自动化集装箱码头道路交通组织仿真技术王㊀坚1㊀冯雪平1㊀吴㊀磊21㊀太仓港口投资发展有限公司2㊀华设设计集团股份有限公司㊀㊀摘㊀要:自动化集装箱码头道路规划和交通组织是码头设计中的重要环节,科学规划码头道路㊁优化交通组织以减少集卡等待和周转时间尤为重要㊂采用Witness软件对某平行布置集装箱码头路网结构进行仿真建模,分析高峰期码头路网的通过能力,比选出一种较优的路网结构,可为该类码头的路网交通设计提供参考㊂㊀㊀关键词:道路交通模型;交通组织;仿真模型Simulation Technology of Road Traffic Organization of Automated Container TerminalWang Jian1㊀Feng Xueping1㊀Wu Lei21㊀Taicang Port Investment and Development Co.,Ltd2㊀Huashe Design Group Co.,Ltd.㊀㊀Abstract:Automated container terminal road planning and traffic organization are important links in the terminal design.It is particularly important to scientifically plan the terminal road and optimize the traffic organization to reduce the waiting and turnover time of the collection trucks.For a parallel layout container terminal,Witness software is used to simu-late the terminal network structure,the passing ability of the terminal network in peak hours is analyzed,and a better road network structure is selected,which can provide reference for the road network traffic design of such terminals.㊀㊀Key words:road traffic model;traffic organization;simulation model1㊀引言自动化集装箱码头道路规划和交通组织是码头设计中的重要一环,直接影响码头装卸能力,是实现码头自动化建设的关键㊂近年来,港区集卡交通流量急剧增加,码头堆场集卡等待和道路拥堵情况日益严重,加之土地成本大幅上升,如何科学规划码头道路㊁优化交通组织以减少集卡等待和周转时间尤为重要㊂针对自动化或半自动化码头的路网交通问题,应用仿真建模技术进行深入分析㊂秦天保利用Flexsim仿真软件对某集装箱码头进行仿真建模,对港口高峰期港口交通流进行实验,验证了码头堆场道路规划的通过能力[1]㊂张清波等采用Witness软件对国内某集装箱码头2种自动化改造方案进行仿真研究,得出较为适合自动化码头改造的装卸工艺,但是未从路网布置和交通组织的角度进行自动化改造的进一步分析[2]㊂梅蕾等从集装箱码头的道路交通特性㊁堆场交通影响因素㊁港区堆场交通优化等方面探讨了集装箱码头道路交通的优化问题[3]㊂管政霖研究了堆场垂直布置的自动化码头采用的装卸工艺和路网交通问题,并通过仿真建模的方法定量分析了码头平面布置和装卸工艺对路网交通的影响[4]㊂针对太仓四期平行布置集装箱码头,采用Witness软件对2种码头路网结构进行仿真建模,并对高峰期码头路网的通过能力进行实验,通过分析仿真结果,选出较优的路网结构㊂2㊀港区路网结构和交通组织2.1㊀码头布局及装卸工艺太仓四期集装箱码头岸线总长度1292m,共建设4个50000DWT(水工结构设计为100000 DWT)集装箱泊位㊂码头配置11台双箱单小车岸边集装箱起重机(以下简称岸桥),用于满足10万t 级集装箱船的作业要求㊂根据港区对相邻码头路网㊁岸桥轨道衔接和统一管理的需要,以及内㊁外集卡装卸量大,需要更高的外集卡装卸能力和外集卡停靠位的情况,码头采用平行岸边布置㊂码头总体划分为4块堆场,堆场纵深约510m,长度约300m,每块堆场前期布置6条自动化53港口装卸㊀2022年第2期(总第263期)博看网 . All Rights Reserved.轨道式龙门起重机(以下简称ARMG)作业线,水平运输采用集卡㊂ARMG 主要有无悬臂式㊁单悬臂式和双悬臂式3种机型㊂无悬臂ARMG 适用于堆场端部设置交换区,水平运输设备不进入堆场;单悬臂ARMG 适合水水中转比例高的自动化码头㊂考虑到本码头外集卡装卸作业量大,远期存在人工集卡和无人集卡同时作业现象,交通组织复杂,内㊁外集卡必须进行分道,因此本方案采用堆场两侧装卸箱作业的双悬臂ARMG㊂2.2㊀码头路网结构码头的路网结构主要包括闸口㊁码头主干道㊁堆场内装卸道㊁引桥以及泊位前沿道路5个部分㊂其中码头主干道㊁引桥和堆场场内装卸道的通过能力和交通流是研究的重点㊂该港区自动化集装箱码头平面布局及交通路网见图1㊂1.泊位前沿㊀2.5#引桥㊀ 3.纬一路㊀ 4.堆场内装卸道㊀ 5.经五路㊀ 6.纬二路㊀7.纬三路㊀8.闸口图1㊀港区布置及路网结构图码头内主干道呈 三横五纵 的布置形式㊂考虑到纬二路主要承载外集卡交通流,纬一路承担部分内集卡通行需求,纬三路仅作为辅助道路,所以纬一路至纬三路道路初步设计宽度分别为20m㊁25m㊁16m,纬二路为双向6车道;纵向从左至右经一路至经五路的道路宽度分别20m㊁25m㊁25m㊁25m㊁20m㊂其中经一路和经五路是双向4车道,经二路至经四路是双向6车道㊂堆场内装卸道为单向4车道,设计宽度20m,其中靠近两侧的是装卸道,中间2车道作为超车道㊂堆场箱区的行车道长度约300m,最多可以同时容纳10辆集卡进行等待或者作业㊂泊位前沿和堆场连接处布置5座引桥,其中1#㊁2#㊁4#㊁5#引桥设计宽度为16m,可以布置双向共4条集装箱车道㊂3#引桥考虑重件和ARMG 通行引桥宽度设计为24m,可布置双向6条集装箱车道㊂闸口车道数根据‘海港总体设计规范“计算按照10道设置,其中进口车道为6道㊁出口车道数为4道㊂2.3㊀港区交通组织集卡在经㊁纬路等主干道上的可以双向行驶,但在堆场内道路上只允许单向行驶㊂双悬臂式ARMG 的装卸工艺将内㊁外集卡分流到箱区的海侧和岸侧进行堆场装卸作业㊂这使得港内集卡和集疏运集卡的港内作业流向各形成一个闭合的小循环,实现集疏运集卡和港内集卡在港作业行驶路线的最短(见图2)㊂港区运营时,ARMG 与人工集卡存在较多的作业交叉点,十字路口处ARMG 与大量集卡频繁交替穿行,特别是外部集卡在港区内穿行更容易存在一定的交通问题和安全隐患㊂图2㊀方案一堆场交通组织图因此,提出一种新的交通组织的方案,即取消堆场经二和经四路,仅保留3条纵向路,将4块堆场合并为2块(见图3)㊂方案二和方案一的区别在于减少作业交叉点和十字路口的数量,一定程度上避免交通堵塞,但同时也可能增加集卡行驶距离和堆场滞留时间,需要增加集卡配置的数量,才能达到和原方案相同的传输效率㊂因此需要通过仿真分析验证2种方案的优劣性㊂图3㊀方案二堆场交通组织图3㊀港区交通流仿真建模3.1㊀道路交通模型构建集装箱码头的主要目的是完成港区集装箱装卸和水平运输任务,将港内㊁外的集装箱通过港内装卸63Port Operation㊀2022.No.2(Serial No.263)博看网 . All Rights Reserved.设备进行相互流转,是一个典型物流系统㊂因此码头道路交通模型建立需要以集装箱装卸和运输的物流过程为目的㊂模型的构成主要包括路段㊁交叉路口㊁车辆模型3个部分㊂(1)港区道路是路网交通模型的重要组成部分,根据离散动态事件的建模思想,将以路段作为基本单元进行建模㊂路段由长度㊁最高限速㊁车辆容量㊁装卸点等属性变量描述㊂集卡在某一路段行驶时,速度㊁装载量㊁行驶方向的属性保持不变,并且每个单元可以根据实际交通情况灵活地调整规则㊂(2)交叉路口是各种交通冲突最集中的地方,其交通状况的好坏对整个港区路网交通起着至关重要的作用㊂考虑到交通能力和避免交叉路口产生车辆冲突,交叉路口模块的交通规则设置为:先到达交叉路口的车辆在有可插间隙的情况下优先通行,否则主干道上的直行车辆优先通行,转弯车辆次之,堆场内装卸道上的车辆最后通行;至多允许等同于车道数量的集卡同时进行转弯作业㊂(3)车辆模型可以定义集卡起㊁制动时间㊁空载和满载行驶速度以及车辆间安全距离等属性变量㊂根据港口所分配的集装箱装卸位置,利用码头路网到达指定堆场箱区,最终完成集疏运或者装卸船作业㊂车辆主要分为完成船舶装卸任务的码头内部集卡和进行集疏运作业的外部集卡㊂3.2㊀仿真模型主要组成自动化集装箱交通路网模型主要基于离散动态的建模思想,结合集装箱水平运输的物流过程与集卡港区路网行驶规则,采用模块化的方法,完成整个模型的搭建㊂仿真模型主要由船舶计划模块㊁集卡调度模块㊁闸口模块㊁码头路网模块㊁堆场模块㊁统计模块和公共变量模块组成㊂根据模块间所实现的功能不同,将其分为功能类㊁统计类和辅助类3种类型(见表1)㊂表1㊀交通路网模型组成模块模块类型模块名称功能描述功能类船舶计划模块集卡调度模块闸口模块进港闸口模块出港闸口模块码头路网模块堆场模块场桥装卸模块堆场存储模块船舶计划产生内㊁外集卡产生和车辆调度集卡信息核检验㊁作业任务分配港区集卡通行道路堆场陆侧集装箱装卸㊁进出口集装箱堆存与提取统计类统计模块实验数据统计㊁处理及输出辅助类公共变量模块模块间的信息存储和传递3.3㊀仿真模型结构确定仿真模型总体布局,仿真模型见图4㊂3.4㊀仿真条件及主要参数3.4.1㊀道路交通规则以及限制速度十字路口根据车道数量只允许至多等同于车道数量的车同时进行转弯作业,先到达十字路口的车辆先通过㊂车辆按不同作业目的在堆场同步行驶㊂根据‘海港总体设计规范“(JTS165-2013)中的规定以及结合本工程实际情况,暂定主干道车辆最大速度为30km/h,十字交叉路口最大通过速度为5km/h,码头前沿和箱区内道路上最大速度为7.2km/h㊂3.4.2㊀仿真时长及港区吞吐量本次仿真模拟港区作业高峰期2昼夜48h,泊位全部到达5万t级的大型船舶,11台岸桥满负荷工作㊂在历史数据和预测数据的基础上,高峰期每艘船舶集装箱装卸量设定为2500TEU,其中进口空箱250TEU,占比10%;进口重箱1000TEU,占比40%;出口空箱187TEU,占比7.5%;出口重箱1063TEU,占比42.5%㊂码头陆侧每日平均集装箱吞吐量2000TEU,其中陆侧进口空箱200TEU,占比10%;陆侧进口重箱800TEU,占比40%;陆侧出口空箱200TEU,占比10%;陆侧出口重箱800TEU,占比40%㊂考虑高峰期堆场集装箱容量和船舶集装箱装卸需求,陆侧高峰期进出口集卡频次和集装箱进出口量按照年平均量的4倍计算㊂3.4.3㊀堆场规则本次仿真方案综合考虑内集卡装卸船作业和外集卡进出港区作业㊂自动化堆场采用双悬臂ARMG,悬臂两侧分别进行内集卡和外集卡集装箱装卸作业㊂3.4.4㊀码头及堆场初始状态码头初始状态为船舶已停在各自泊位等待装卸船作业,待装卸船的集装箱已经在相应垛位或贝位,73港口装卸㊀2022年第2期(总第263期)博看网 . All Rights Reserved.图4㊀仿真模型图垛位在堆场的位置具有随机性㊂堆场的初始状态为随机生成堆场容量30%的集装箱,集装箱的位置随机,用以满足船舶装卸作业和陆侧集卡装卸集装箱需求㊂4㊀仿真结果分析4.1㊀系统作业效率和集卡堆场滞留时间2种交通布局不同集卡配比下的集卡堆场滞留时间见表2㊂可以看出,相同的集卡配置下,方案一的内㊁外集卡的作业效率和堆场滞留时间明显优于方案二㊂仅当方案一中集卡配置数量为1ʒ6时,集卡配置数量过多会造成集卡等待作业和道路拥堵,出现滞留时间过长的情况㊂系统作业效率与内集卡堆场滞留时间和集卡配置数量成正相关,但对外集卡堆场滞留时间基本无影响㊂方案一中当集卡配置数量从1ʒ4增加到1ʒ5时,系统作业效率和增加明显;当集卡配置数量增加到1ʒ6时,集卡滞留时间明显增加,但系统作业效率没有明显提升,因此推荐配比为1ʒ5㊂针对方案二,集卡配置为1ʒ6时集卡堆场滞留时间在可接受的范围内,且作业效率最高,故方案二最佳配比为1ʒ6㊂表2㊀系统作业效率和集卡堆场滞留时间仿真方案交通组织集卡配比系统作业效率内集卡滞留时间/min 外集卡滞留时间/min 均值最大值均值最大值方案一1ʒ439.57% 6.0616.138.0021.661ʒ541.42%7.2021.877.9822.441ʒ641.73%8.82194.008.0421.91方案二1ʒ435.85%8.0618.2311.6726.751ʒ538.91%8.7820.9711.6825.941ʒ640.15%10.0441.8111.6725.854.2㊀堆场主干道交通能力在方案一集卡配比1ʒ5和方案二集卡配比1ʒ6的基础上,2种交通组织的堆场主干道交通能力见表3㊂由于道路数据较多,只列出主干道经一路和经三路各路段平均车流量数据㊂表3㊀各路段平均车流量/(veh ㊃h -1)道路名称路段一路段二路段三路段四路段五路段六路段七方案一经一路54.2355.0555.9353.7948.6643.550.4经三路103.66112.41121.27121.60112.54103.36118.30方案二经一路98.43102.45106.59101.9889.2976.5286.95经三路207.87209.7211.75201.66179.65157.63181.87(下转第60页)83博看网 . All Rights Reserved.5㊀自动化拆装箱工艺特点分析自动化拆装箱工艺主要有以下优点: (1)成本优势大,一方面减少了66%的作业人员数量;另一方面提高了物流效率,缩短了车辆等待时间,节省了运力,降低了运费㊂(2)有效减少货损,自动化拆装箱设备可以做到轻拿轻放,有效减少货损,提高拆装箱作业质量㊂(3)解决用工问题,自动化改造能够提升冷链仓库的智能化和自动化水平,减轻装卸操作岗位的工作强度,减少相关岗位的人员配置需求,从而帮助冷链仓库解决招工难问题㊂(4)降低安全风险,自动化拆装箱工艺省去人工装卸环节,避免装卸工人与货物直接接触,使得在疫情期间工作环境更加安全,大大降低了安全风险㊂6㊀结语本项目针对冷库运作中的拆装箱环节进行流程分析,发现目前工艺中存在作业效率低㊁雇佣成本高和安全风险高的问题,提出了新的自动化拆装箱工艺方案㊂该方案能提高集装箱拆装箱的智能化程度㊁速度与精准度,降低人工作业强度,最大化避免作业人员与冷库产品密切接触,减少感染细菌病毒的风险,有效提高作业环境安全性和生产效率㊂参考文献[1]㊀王伟.天津港集装箱码头智能化发展途径探索与实践[J].集装箱化,2020,31(6):1-5.[2]㊀吴剑新.福州集装箱装箱操作的分析研究[J].广东技术师范学院学报,2015,36(5):21-24.[3]㊀司癸卯,李辉,吕奎,等.集装箱自装卸运输车的双CPU无线遥控系统设计[J].中国工程机械学报,2016,14(3):249-253.[4]㊀李营,杨传民,王东爱,等.码垛机器人多箱抓取末端执行器设计与实现[J].包装工程,2017,38(23):152-156.[5]㊀范广东.港口冷库配套冷藏集装箱堆场的设计[J].冷藏技术,2021,44(1):28-31.汤文扬:300271,天津市滨海新区津港路99号收稿日期:2022-02-24DOI:10.3963/j.issn.1000-8969.2022.02.020(上接第38页)㊀㊀因为在方案二中取消了经二路和经四路,因此方案二中各路段的平均车流量都约为方案一的2倍,其中经三路的平均车流量达到了211.75veh/h,平均每分钟通过3.5辆,存在一定的排队等待和拥堵的可能性㊂4.3㊀栈桥交通能力该码头前沿通过栈桥与堆场连接,内集卡通过栈桥到前沿泊位㊂从表4中可以看出,受到经路交通流的影响,2个方案中2#㊁3#㊁4#引桥的峰值和均值车流量也约是1#㊁5#引桥的2倍㊂但2个方案各引桥的平均车流几乎相同,说明2种交通组织的方案对栈桥交通无明显影响㊂表4㊀各引桥车流量/(veh㊃h-1)1#引桥2#引桥3#引桥4#引桥5#引桥方案一63.31116.53119.30133.2867.13方案二62.64113.09114.60128.9864.78㊀㊀通过对系统作业效率和集卡堆场滞留时间㊁堆场主干道交通能力以及栈桥交通能力的分析可以得出:当内集卡配置为1ʒ5时方案一的交通组织形式更加适合码头布局和装卸工艺㊂5㊀结语通过研究2种堆场平行岸线布置的自动化码头的交通组织形式,并采用仿真建模的方法对其进行定量分析,得到一种较为适合当前码头的交通组织形式和集卡配置数量,可为类似码头的路网交通设计提供参考㊂参考文献[1]㊀秦天保,张旑.应用3D虚拟现实仿真辅助集装箱码头堆场闸口规划[J].上海海事大学学报.2009,30(1),63-68.[2]㊀张清波,匡家喜,张雨婷.传统集装箱码头向自动化码头改造仿真分析[J].水运工程.2017,528(5),138-142.[3]㊀梅蕾.关于集装箱港区道路交通优化的思考[J].中国工程咨询.2015,177(6),43-45.[4]㊀管政霖.自动化集装箱码头陆域集疏运装卸工艺与交通问题研究[D].武汉:武汉理工大学,2018.吴磊:210014,南京市秦淮区紫云大道9号收稿日期:2021-11-21DOI:10.3963/j.issn.1000-8969.2022.02.01306博看网 . All Rights Reserved.。
应用交通仿真软件PARAMICS 验证交通分配模型
[收稿日期]2003-01-10[作者简介]胡明伟(1972-),男,湖南衡阳人,博士研究生,主要从事高性能微观交通仿真、智能运输系统评价方法和交通管理与信息系统研究。
应用交通仿真软件PARAMICS 验证交通分配模型胡明伟,史其信(清华大学交通研究所,北京 100084)[摘 要]为了考察交通分配模型能够在多大程度上反映现实的交通状况,需要对交通分配模型进行验证,本文阐述了利用微观交通仿软件PARAMICS 对交通分配模型进行验证的研究思路。
通过建模工具M odeller 提供的图形界面,研究者不但能够非常直观地观察交通分配模型的效果,而且可以利用其分析工具Analyser 对结果全面分析。
因此PARAMICS 是一个验证交通分配模型性能优良的平台。
[关键词]交通分配;微观交通仿真;验证[中图分类号]U495 [文献标识码]A [文章编号]1002-1205(2003)02-0001-03V alidation of T raffic Assignment Models U sing T raffic Simulation Softw are PARAMICSHU Ming 2w ei ,SHI Q i 2xin(Institute of Transportation Engineering ,Tsinghua University ,Beijing ,10084,P.R.China ) [Abstract ]Validation of traffic assignment m odels is required to examine whether these m odels con form to real traffic.Microscopic traffic simulation s oftware ,PARAMICS ,was used as a tool to validate traffic as 2signment m odels in this study.It was found that not only the effects of the m odels can be visualized through the G UI of M odeller ,but als o their results can be analyzed through the Analyser com prehensively.Thus ,PA 2RAMICS can serve as an excellent platform for validating traffic assignment m odels.[K ey w ord ]traffic assignment ;microscopic traffic simulation ;validation 交通分配是将OD 交通量按照一定的规则符合实际地分配到道路网中的各条道路上,并求出各条道路的交通流量。
(交通运输)VTS模拟器中交通流模型的研究
(交通运输)VTS模拟器中交通流模型的研究毕业论文VTS模拟器中交通流模型的研究学生姓名:陈浩指导教师:许志远专业名称:航海技术所在学院:航海与船舶工程学院2013 年 6 月目录摘要 (I)Abstract (II)第1章VTS的概述 (3)1.1 VTS的定义 (3)1.2 我国VTS的发展 (3)1.3 VTS的作用及模拟器的组成 (3)第二章海上船舶交通流数据的统计 (5)2.1交通流的统计方法 (5)2.2 船舶交通数据选择 (5)2.3数据处理 (6)第三章VTS交通流模型 (8)3.1 流体模型 (8)3.2 船舶领域模型 (9)3.3 船舶运动模型 (12)致谢 (15)参考文献 (16)英文翻译(原文) (17)英文翻译(译文) (24)摘要根据国际航标协会(IALA)的定义:“VTS是由主管机关实施的,用于提高船舶交通安全和效率及保护环境的服务。
在VTS覆盖的范围内,这种服务应能与交通相互作用并对交通形式变化作出反应。
”目前我国VTS人员培训中模拟器练习环节主要采用仿真的VTS模拟器进行。
采用真实系统进行培训虽贴近实际,但由于设备昂贵且培训时会造成误操作从而影响正常的船舶管理,特别是某些应急操作很难在真实的系统中体现;采用VTS模拟器进行培训能克服采用真实设备进行培训的不足,还能节约成本并可设置各种练习场景反复多次练习VTS模拟器中,交通流的设置是VTS 值班人员进行人机交互的重要辅助手段,交通流的逼真度对VTS值班人员的设备操作和应急处理的能力有很大的影响,因此逼真的交通流是VTS模拟器研究的重要内容。
交通流理论为使人们更好地理解交通特性及其本质,采用分析的方法来阐述交通现象及其机理,并将其运用到交通实践中去,以使道路交通设计和营运管理等工作发挥最大功效.在海上交通工程研究中,交通流的概念特指交通流或船舶流.本文主要AIS即船载自动识别系统,来进行交通观测,对VTS模拟器中的数据流进行分析。
MULTISIM使用介绍
您现在的位置是:仿真平台>仿真软件使用Multisim 2001 使用简介Multisim是Interactive Image Technologies (Electronics Workbench)公司推出的以Windows为基础的仿真工具,适用于板级的模拟/数字电路板的设计工作。
它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。
为适应不同的应用场合,Multisim推出了许多版本,用户可以根据自己的需要加以选择。
在本书中将以教育版为演示软件,结合教学的实际需要,简要地介绍该软件的概况和使用方法,并给出几个应用实例(样例文件见光盘)。
第一节Multisim概貌软件以图形界面为主,采用菜单、工具栏和热键相结合的方式,具有一般Windows应用软件的界面风格,用户可以根据自己的习惯和熟悉程度自如使用。
一、Multisim的主窗口界面。
启动Multisim 2001后,将出现如图1所示的界面。
界面由多个区域构成:菜单栏,各种工具栏,电路输入窗口,状态条,列表框等。
通过对各部分的操作可以实现电路图的输入、编辑,并根据需要对电路进行相应的观测和分析。
用户可以通过菜单或工具栏改变主窗口的视图内容。
二、菜单栏菜单栏位于界面的上方,通过菜单可以对Multisim的所有功能进行操作。
不难看出菜单中有一些与大多数Windows平台上的应用软件一致的功能选项,如File,Edit,View,Options,Help。
此外,还有一些EDA软件专用的选项,如Place,Simulation,Transfer以及Tool等。
1. FileFile菜单中包含了对文件和项目的基本操作以及打印等命令。
2. EditEdit命令提供了类似于图形编辑软件的基本编辑功能,用于对电路图进行编辑。
3.View通过View菜单可以决定使用软件时的视图,对一些工具栏和窗口进行控制。
4.Place通过Place命令输入电路图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
MULTI-AGENT COORDINATION AND ANTICIPATION MODEL TO DESIGNA ROAD TRAFFIC SIMULATION TOOLArnaud Doniec Stéphane EspiéRenéMandiau Sylvain Piechowiak LAMIH,University of Valenciennes,Le Mont-Houy,59313Valenciennes Cedex,France INRETS,2avenue du Général Malleret-Joinville,94114Arcueil Cedex,FranceAbstractThe use of a multi-agent approach in the design of a traffic simulation tool is innovative since most of actual tools are still based on mathematical approach.In this paper we present a multi-agent approachto simulate in a realistic way the traffic phenomenon at junction.We use a multi-agent coordinationapproach which is improved by an anticipation algorithm based on constraints processing.The resultingtool is validated by comparison between simulatedflow and realflow measured at a real junction.1IntroductionThe use of a multi-agent approach allows to build complex softwares in various domains.Simulation tools are a perfect illustration of such a software.Applying the multi-agent paradigm helps to simulate complex and dynamic phenomena which are hardly expressible with a classical formalism like differential equations for instance.In this paper,we focus on the traffic simulation issue which consists of reproducing in a realistic way the traffic phenomenon currently observed in reality.More precisely,we are interested in the development of microscopic traffic simulation tool which is able to reproduce the moves of a set of vehicles over a network with a limited capacity and a road infrastructure(traffic sign,road mark,etc).In this context,one of the hardest problems is the road intersection management.This article deals with a multi-agent model which is able to simulate in a realistic way the crossing of an intersection by a set of vehicles.Thefirst section gives a brief review of current traffic simulation tools and presents ARCHISIM:the traffic simulation tool developed at INRETS(French National Institute for Transport And Safety Research).The second section tackles the coordination techniques that have been integrated in ARCHISIM in order to simulate traffic in intersection.In particular,we outline an anticipation framework based on constraints processing and used to improve the multi-agent coordination.The last section deals with its validation.This one is based on a comparison between actual and simulatedflows on a real crossroad.2A review of existing traffic simulation toolsMost of traffic simulation tools are based on a mathematical approach which consists of reproducing vehicles streams from car-following laws.These laws are differential equations,obtained empirically by regression using data collected at currently operating road section[15].For the specific case of road junction,these tools simplify in a drastic way what happens inside the intersection.The usual approach of these tools uses a centralized scheduler running over the trafficflow of each arm of the crossroad.This scheduling process lets enter into the intersection only the vehicles whose trajectories are not in conflict.The simulated vehicles which reach the crossroad are stocked in a queue(one per axis)and the scheduler searches a gap to insert the head of each queue.This is done with respects of two constraints:the time between two consecutive vehicles must be sufficient to allow the crossing of a conflicting vehicles streamthe different moves(inside the intersection)have to be limited in order to reduce the number of con-flictsMoreover each tool uses its own internal rules to limit the occupancy of the inner space of the intersection. In AIMSUN[1]for example,users can configure a specific parameter called"yellow box"and thus define a minimal speed that the vehicles inside the crossroad have to practice so that other vehicles can enter.Such tools are sometimes sufficient for superficial traffic studies,but are not acceptable when the ques-tion is to mimic actual behavior.Indeed,no more than two vehicles are present inside the intersection at the same time which is not realistic at all.Moreover these tools allow neither a good accuracy of trafficflow (and jam...)for high density traffic,nor the simulation of a surrounding traffic for a driving simulator.In opposition to this"mathematical approach",the"behavioral approach"produces an emerging traffic by managing interactions between various actors of the road situations(car drivers,pedestrians,road opera-tor,...).The resulting traffic is therefore the sum of all actors’individual actions.ARCHISIM is a behavioral traffic simulation tool developed by INRETS[9].The computing model of ARCHISIM follows a multi-agent architecture.Each simulated driver is an autonomous software agent which evolves in a virtual environment and interacts with the other agents of the simulation performing its goals according to its skills and the current situation.At each simulation step,an agent receives a set of information describing the surrounding situation in the environment.Thanks to these informations,each agent takes its own decision which results in a longitudinal and lateral acceleration for the next time step.The novelty of ARCHISIM lies in the ability for a driving simulator to take part in the traffic simula-tion.In other words,ARCHISIM is able to generate a surrounding realistic traffic for a human driver in a simulator.The agents interact with the driving simulator like with any other vehicles of the simulation.The traffic model of ARCHISIM has been validated for highway situation[8],[4].Then,efforts have been undertaken to extend the traffic model of ARCHISIM into intersections management.A specific co-ordination mechanism has been proposed in[3]and we improve this mechanism by adding an anticipation mechanism.We describe this work in the next sections.3Multi-agent coordination applied to traffic simulation3.1An overview of coordination in MASWhen crossing an intersection a real driver has to solve its conflicts with other vehicles.In our simula-tion context,this driving task can be expressed as a multi-agent coordination issue:all agents reaching a crossroad have to coordinate their actions in order to avoid accidents and deadlocks.Coordination concerns all local processes that allow to achieve a global state of the system.Many definitions exist in literature,each of them highlights a particular point of view.For Jennings,coordination is the process which allows an agent to reason about its own actions and the actions of other agents in order to ensure that the global system correctly behaves[11].In this manner,coordination can be used to satisfy and guarantee some criteria of consistency without any global process.Malone defines coordination as all extra activities which are required to have interactions between agents[17].Originally,first works on multi-agent coordination have investigated the coordination from a cooperative viewpoint.They made the assumption that all agents were motivated to achieve a common goal.We can quote for instance Lesser and Corkill’s works whose model was based on exchanged messages describing aims,priorities and preference of the agents[14].The coordination has also been expressed as a planning problem[10].Each agent can formalize in a plan its actions and interactions in the future.In this context, the coordination enables the laying down of a multi-agent plan describing the global behavior of the system, relying on all individual plans.The coordination mechanism has therefore to identify andfind:the possible link between actions,the sequential and parallel executions of actions,the potential conflicts which can occur.Coordination can be also assimilated to search process performed in the distributed problems solving ([20],[7]).In this specific context,coordination refers to internal reasoning of agents,mechanisms of partial solutions exchanges,etc.More recently,this background of cooperative agents has been discussed and coordination has been considered from a competitive way.The idea is that each agent has individual motivation,acts to achieve its own goal and interacts with other agents to ensure some global properties of the system.In[19],for example,Shoham et al.obtain coordination between agents having antagonist aims by introducing social laws.Their application deals with robots which have to move in an unknown environment.Since theirmotivations are individual and their behavior not necessarily cooperative,conflicts can appear.To avoid such a situation,the authors introduce rules which allow to restrict possible actions for agents in conflict.Crossing an intersection is a driving task which differs from one country to another.In the south of Europe,this task is mostly competitive especially for latin drivers.In the northern countries,the crossing is less competitive and more cooperative.The coordination mechanism has to beflexible in order to reproduce the large variety of drivers’behavior.3.2Multi-agent coordination in the ARCHISIM toolThe coordination mechanism used in ARCHISIM is based on the modeling of conflicts inside the inter-section.This modeling applies a breaking down of the complex interactions between agents in elementary situations involving two agents.An actual driver perceives a complex crossroad as a succession of elementary intersections of type T or X.A roundabout for example is a succession of T intersections.The interactions between drivers in an elementary intersection are regulated by priority relations defined in the Highway Code.Such a priority relation can be expressed by the predicate.In a X intersection,four interactions are possible and can be illustrated by the following conjunction:1.:no conflict exists between the agents and2.:comes from a minor road or has a sign and consequently has no priorityover3.:this situation is the dual of the previous situation4.:and both have the priority,thefigure1is an illustration of such a situationFigure1:An elementary interaction between two agents at a crossroad The coordination mechanism has the following dynamics.An agent near an intersection searches all vehicles with which it is conflict.For each of them,the agent assesses the priority relation it has.Each priority relation is used as a local rule which indicates to the agent if it has to accelerate or slow down. When multiple priority relations are involved in its current situation,the agent chooses the behavior which induces the lower speed.Thefigure2is a synthesis of the coordination mechanism.For a more complete description of this coordination mechanism,the reader can refer to[3].3.3Priority evaluationIn order to obtain a valid overall trafficflow,the behavior of agents inside the intersection has to be as realistic as possible.The individual practices differ from one country to another.For example the Highway Code is barely respected by latin drivers and some psychology studies show that in other countries drivers tend to develop their own informal rules[2].To take these features of the driving task into account,the agents have the possibility to alter the rules of the Highway Code with more informal rules during the second step of the coordination algorithm.For example,the following priorities can be considered by an agent:Figure2:Steps of the coordination algorithmpriority relating to speed:a driver arriving at an intersection and having priority(from the Highway Code point of view)tends to lose his priority if he perceives a vehicle approaching with a high speedpriority relating to impatience:a driver stopped for a long time tends to consider he has priority on the other vehiclesThe introduction of such abilities improves the local behavior of agents and consequently,by emergence, improves the global traffic obtained.In specific conditions such practices can lead to deadlocks inside the intersection.Indeed,the non-respect of several rules promotes the occupancy of the inner center of the crossroad but increases the risk of having a deadlock(figure3).Figure3:Example of deadlocks during a simulationWe claim that if agents have opportunistic behavior they also need anticipation abilities in order to avoid undesired situations like deadlocks.4Anticipation mechanism4.1Anticipation in artificial intelligenceAnticipation is a general concept and many definitions exist.Rosen’s one is usually the most used in liter-ature:An anticipatory system is a system containing a predictive model of itself and/or of its environment that allows it to change current state at an instant in accord with the model predictions pertaining to a later instant[18].In thefield of multi-agent system,anticipation is used to construct adaptive and complex behavior like in video game for instance[13].In[5],the author proposes a multi-agent architecture for a special kind of anticipation:preventive anticipation which consists of using prediction of the future in order to prevent some undesired situations.The set of possible states of the system is divided in two parts:the desired andprocedure anticipate(in:ActionsList,UndesiredStatesList,out:ActionsList)beginpropagation()for each docomputeEffects()updateRelation(,)propagation()undesiredStateSearch(,)if thenendendendFigure4:Procedure anticipateundesired states.In this context,anticipation is viewed as a process trying to keep the system in a desired state.4.2A framework for preventive anticipation based on constraints processingWe introduce a formal framework for preventive anticipation by using constraint processing techniques[12]. Our approach is based on the creation by each agent of a mental representation of environment and more especially of the different relations and interactions which exist between the agents of the environment[6].A mental representation of an agent is a triplet in which:is the subset of all agents perceived by,where each is a binary relation expressing an interaction between two agents of,defining the domain of each agent in.The nature of the domain can diversify from an application to another.A domain can be for example spatial or temporal.Based on this representation,each agent tries to predict the future state of the system,in other words it tries to determine how the actions of the agent will make the system evolve.In our framework of anticipation, we consider that each action has direct and indirect effects.A direct effect of an action is modeled by adding or deleting a relation in the set.Indirect effects are computed by using propagation techniques over direct effects.The aim of the anticipation algorithm is to scan a list of actions and to eliminate the actions which induce an undesired state.Undesired states are expressed as a domain list which is a parameter of the algorithm.Thefirst step of the procedure anticipate starts by making afirst propagation over.This is performed by an external propagation function.Classic algorithm like AC-3[16]can be used and adapted in accordance with the application.Then for each action of the list,direct effects are evaluated.This is also performed by an external function which can not be expressed in a generic manner since it depends on the application.In our traffic simulation example,this external function determines the direct effects with cinematic calculus on current position and speed of vehicles.Direct effects of an action are used to update the representation.Based on this update,undesired states are searched.If an undesired state is found,the current action is removed from the list.The function undesiredStateSearch scans the list and verifies that the undesired state it holds are not present in the mental representation.function undesiredStateSearch(in:,UndesiredStatesList)beginfor each dodomainSearch(,)if thenreturn(true)endendreturn(false)endFigure5:Procedure undesiredStateSearch5Implementation and validation5.1Use of anticipation to avoid deadlocksHere we present the use of our formal framework to avoid deadlocks when simulating traffic at junction in the ARCHISIM tool.To explain our model,we consider an agent located at the entrance of a crossroad (figure6).The set can be built with the agents present inside the intersection and perceived by.The domain associated to each agent of is temporal and expresses the next time step.For example,if an agent has in its mental representation,this means that has inferred that will be blocked during the interval to.The set is composed with blocking relation.Three types are considered:“is physically blocked by from the point of view of agent”“anticipates that will be physically blocked by”“has priority over from the point of view of agent”1Let us illustrate how the algorithm works on the example of thefigure6.Three vehicles,,are stopped and blocked by.The direction of each vehicle are the following:comes from the north and wants to turn left,comes from the east and wants to turn left,comes from the east and wants to turn left,comes from the west and wants to turn left,comes from the south and wants to go straight on.The agent computes at the instant the following representation:The application of the anticipation algorithm gives the following reasoning:Figure6:Mental representations of two agents in a crossroad1.propagation:As the coordination algorithm only deals with longitudinal ac-celeration,two actions are possible for:and.If chooses the action,its position on the road changes and consequently its distance with is reduced.The blocking relation between and becomes effective:this is expressed in the mental representation by the replacement of the rela-tion by.In the same way,the priority relationbecomes a blocking relation:.The set is therefore updated as below:3.propagation:0 51015 20 25 30350 100 200 300 400500 600 700 800N u m b e r o f d e a d l o c k s Flow (vh/h)with anticipation without anticipationFigure 7:Variation of the number of deadlocks in accordance with the simulated flow4.undesired states search:From this data,we have generated a traffic demand which has been used in ARCHISIM to generate simulated vehicles two hundred meters before the intersection.Virtual sensor has been used to measure the flow of vehicles.Simulations were carried out according to two experimental conditions.In the first experiment,only the coordination mechanism [3](reference behaviour)is used,whereas the anticipation algorithm (anticipatory behaviour)is added in the second one.The figures 8to 11draw the comparison between the simulated flows obtained with or without anticipa-tion and the real flow measured.For all graphs,the time is expressed as five minutes’period.The figures 8and 9relate to the principal axis.The figures 10and 11describe the flows of the secondary axis.600 650700750800 850 9009501000 10 20 3040 50 60F l o w (v h /h )Time (min)real flow simulated flow (reference behavior)simulated flow (anticipatory behavior)Figure 8:Simulated flow (North-South axis)500 550600650700 750 800850900 10 20 3040 50 60F l o w (v h /h )Time (min)real flow simulated flow (reference behavior)simulated flow (anticipatory behavior)Figure 9:Simulated flow (South-North axis)300 350400450500550600 10 20 3040 50 60F l o w (v h /h )Time (min)real flow simulated flow (reference behavior)simulated flow (anticipatory behavior)Figure 10:Simulated flow (East-West axis)In all cases the best results are obtained by using anticipatory agents.To qualify more precisely these0 10203040 50 607080 10 20 3040 50 60F l o w (v h /h )Time (min)real flow simulated flow (reference behavior)simulated flow (anticipatory behavior)Figure 11:Simulated flow (West-East axis)results,we use a well known indicator in traffic simulation:RMSE.It corresponds to the root mean square error between the real flow and the flow simulated and is expressed by the following formula:The values obtained are,for three out of the four axis,lower than 0,1what corresponds to an error lower than 10%(table 1).In the literature,a good simulation of traffic often offers an error rate lower than 15%.The results of the curve of the figure 11are not very representative since the simulated flows are weak and not very significant.Flow (vh/h)reference behaviourMin North/South0,049000,03680East/West0,066000,320[3]Alexis Champion,Stéphane Espié,RenéMandiau,and Christophe Kolski.A game-based,multi-agentcoordination mechanism-application to road traffic and driving simulations.In Summer Computer Simulation Conference,pages644–649,Montréal,Québec,Canada,july2003.[4]Alexis Champion,Ming-Yu Zhang,Jean-Michel Auberlet,and Stéphane Espié.Behavioural simula-tion:towards high-density network traffic studies.In Proceedings of the Third International Confer-ence on Traffic and Transportation Studies(ICTTS2002),pages988–995,july2002.[5]Paul Davidsson.Anticipatory Behavior in Adaptive Learning Systems,chapter:A Framework forPreventive State Anticipation.Springer,2003.[6]Arnaud Doniec,RenéMandiau,Stéphane Espié,and Sylvain Piechowiak.Dealing with multi-agentcoordination by anticipation:Application to the traffic simulation at junctions.In Proceedings of the Third European Workshop on Multi-Agent Systems(EUMAS’05),Brussels,Belgium,december2005.[7]Arnaud Doniec,Sylvain Piechowiak,and RenéMandiau.A DisCSP solving algorithm based on ses-sions.In Recent Adavances in Artificial Intelligence:Proceedings of the18th International Florida Artificial Intelligence Research Society Conference(FLAIRS’05),pages666–670,Clearwater,USA, may2005.[8]Sameh El Hadouaj,Alexis Drogoul,and Stéphane Espié.How to combine reactivity and anticipation:the case of confli cts resolution in a simulated road traffic.In Multi-Agent-Based Simulation,Second International Workshop,pages82–96,Boston,USA,july2000.Springer.[9]Stéphane Espié.Archisim,multi-actor parallel architecture for traffic simulation.In Proceedings ofthe Second World Congress on Intelligent Transport Systems,volume IV,Yokohama,Japan,november 1995.[10]Mickael munication and interaction in multi-agent planning.In Proceedings ofthe3th National Conference on Artificial Intelligence(AAAI’83),pages125–129,Washington,USA, august1983.[11]Nicholas R.Jennings.Coordination techniques for distributed artificial intelligence.In Foundations ofDistributed Artificial Intelligence,pages187–210.Wiley,1996.[12]Vipin Kumar.Algorithms for constraint-satisfaction problems:A survey.Ai Magazine,13(1):32–44,1992.[13]John ird.It knows what you’re going to do:Adding anticipation to a quakebot.In Proceedingsof Autonomous Agent’01,pages385–392,Montreal,Canada,2001.[14]Victor R.Lesser and Daniel D.Corkill.Functionally accurate,cooperative distributed systems.InIEEE Transactions on Systems,Man and Cybernetics,pages81–96,1981.[15]Edward Lieberman and Ajay K.Rathi.Trafficflow theory,expansion of the Transportation ResearchBoard(TRB)Special Report165,chapter10-Traffic simulation,pages10–110–25.Oak Ridge National Laboratory,1997.[16]Alan K.Mackworth.Consistency in networks of relations.Artificial Intelligence,8:99–118,1977.[17]Thomas W.Malone.Modeling coordination in organizations and markets.Management Sciences,33(10):1317–1332,1987.[18]Robert Rosen.Anticipatory Systems-Philosophical,Mathematical and Methodological Foundations.Pergamon Press,1985.[19]Yoav Shoham and Moshe Tennenholtz.On social laws for artificial agent societies:Off-line design.Journal of Artificial Intelligence,1-2(73):231–252,1995.[20]Makoto Yokoo.Distributed Constraint Satisfaction:Foundations of Cooperation in Multi-agent Sys-tems.Springer Verlag,2001.。