气-质联用仪的基本结构及工作原理

合集下载

气质联用仪的基本构成和工作原理

气质联用仪的基本构成和工作原理

气质联用仪的基本构成和工作原理气质联用(GC/MS)被广泛应用于复杂组分的分离与鉴定,其具有GC的高分辨率和质谱的高灵敏度,是生物样品中药物与代谢物定性定量的有效工具.质谱仪的基本部件有:离子源、滤质器、检测器三部分组成,它们被安放在真空总管道内。

接口:由GC出来的样品通过接口进入到质谱仪,接口是色质联用系统的关键。

接口作用:1、压力匹配——质谱离子源的真空度在10—3Pa,而GC色谱柱出口压力高达1 05Pa,接口的作用就是要使两者压力匹配.2、组分浓缩——从GC色谱柱流出的气体中有大量载气,接口的作用是排除载气,使被测物浓缩后进入离子源。

常见接口技术有:1、分子分离器连接(主要用于填充柱)扩散型—-扩散速率与物质分子量的平方成反比,与其分压成正比。

当色谱流出物经过分离器时,小分子的载气易从微孔中扩散出去,被真空泵抽除,而被测物分子量大,不易扩散则得到浓缩。

2、直接连接法(主要用于毛细管柱)在色谱柱和离子源之间用长约50cm,内径0.5mm的不锈钢毛细管连接,色谱流出物经过毛细管全部进入离子源,这种接口技术样品利用率高.3、开口分流连接该接口是放空一部分色谱流出物,让另一部分进入质谱仪,通过不断流入清洗氦气,将多余流出物带走。

此法样品利用率低。

离子源:离子源的作用是接受样品产生离子,常用的离子化方式有:1、电子轰击离子化(electron impact ionization,EI)EI是最常用的一种离子源,有机分子被一束电子流(能量一般为70eV)轰击,失去一个外层电子,形成带正电荷的分子离子(M+),M+进一步碎裂成各种碎片离子、中性离子或游离基,在电场作用下,正离子被加速、聚焦、进入质量分析器分析。

EI特点:⑴、电离效率高,能量分散小,结构简单,操作方便。

⑵、图谱具有特征性,化合物分子碎裂大,能提供较多信息,对化合物的鉴别和结构解析十分有利.⑶、所得分子离子峰不强,有时不能识别。

本法不适合于高分子量和热不稳定的化合物.2、化学离子化(chemicalionization,CI)将反应气(甲烷、异丁烷、氨气等)与样品按一定比例混合,然后进行电子轰击,甲烷分子先被电离,形成一次、二次离子,这些离子再与样品分子发生反应,形成比样品分子大一个质量数的(M+1) 离子,或称为准分子离子。

GCMS的主要构造及基本原理

GCMS的主要构造及基本原理

GC/MS的主要构造及基本原理&维护保养了解气相色谱质谱联用仪的主要构造及基本原理1.1 整体概述气相色谱质谱联用仪可以分成两大部分GC&MS.简单的说GC是把混合物分离成单一物质,而MS就是对着单一物质经行检测。

GC中主要包括气路系统,进样系统,温度控制系统,分离系统;MS中主要包括就是离子源,质量分析器,检测器。

下面这幅就是一台气相色谱质谱联用仪主要组成部件。

1.2.GC部分1.2.1 概述气相色谱仪是气相色谱法为基础而设计的仪器,气相色谱是以气相色谱柱为分离基础,样品进入进样器后载气传送,到达色谱柱的分离,分离后样品由柱中流出后到达检测器,然后排空。

气相色谱仪整体系统由以下方面组成:1).载气供输系统(A)2).进样系统(B)3).柱分离系统(C) 整个GC中最重要的一个4).控温系统(D)1.2.2.载气供输系统1.2.2.1 概述参考下图,我们能够大致了解下载气供输系统的构造.a -压缩气体, 纯度>99.999%(这一点绝对重要,如果不纯将影响到仪器维护以及日常测试中多个方面建), 常用的气体有He Ar N2 H2;b -减压阀, GC/MS输出压力0.5~0.7MPa;c -开关;d -气体纯化管, 可去除少量O2、CO2、CxHy、卤代烃等.在这一块维护保养中,我们也一直米人去动过它,上次整机维护的时候厂商说我们这个还能用也就米换,个人建议一年换一次纯化管为好。

1.2.2.2载气的选择在一个方法开发的时候,其中考虑的一个因素就是选择使用何种气体作为我们仪器运行的一个载气。

在选择在载气的时候我们一般考虑以下几个方面a.检测器下面列出了不同的检测器对载气的基本要求。

根据上表你就可以根据你所用仪器的一个检测器进行选择,在我们GC-MS中常用的也就H e,H2,N2b.柱效从图上我们可以看出N2和Ar变化最大, 在较高的流速下得到最高的HETP;He和H2曲线较平坦, 即使较高的流速也能得到较低的HETP;所以推荐使用He和H2;按照理论塔高度越低,理论塔板数越多越好所以一般我们选择HE,H2c.安全性主要考虑的还是氢气。

气相色谱-质谱联用(gc-ms)

气相色谱-质谱联用(gc-ms)

气相色谱-质谱联用(GC-MS)一‎、实验目的1. 了解质谱检测器的基本组‎成及功能原理,学习质谱检测器的调谐方法;‎2. 了解色谱工作站的基本功能,掌握利用气相色谱‎-质谱联用仪进行定性分析的基本操作。

‎二、实验原理气相色谱法(gas chromat‎o graphy, GC)是一种应用非常广泛的分离手‎段,它是以惰性气体作为流动相的柱色谱法,其分离原理‎是基于样品中的组分在两相间分配上的差异。

气相色谱法‎虽然可以将复杂混合物中的各个组分分离开,但其定性能‎力较差,通常只是利用组分的保留特性来定性,这在欲定‎性的组分完全未知或无法获得组分的标准样品时,对组分‎定性分析就十分困难了。

随着质谱(mass spec‎t rometry, MS)、红外光谱及核磁共振等定‎性分析手段的发展,目前主要采用在线的联用技术,即将‎色谱法与其它定性或结构分析手段直接联机,来解决色谱‎定性困难的问题。

气相色谱-质谱联用(GC-MS)是‎最早实现商品化的色谱联用仪器。

目前,小型台式GC-‎M S已成为很多实验室的常规配置。

1.‎质谱仪的基本结构和功能质谱系统一般由‎真空系统、进样系统、离子源、质量分析器、检测器和计‎算机控制与数据处理系统(工作站)等部分组成。

‎质谱仪的离子源、质量分析器和检测器必须在高真‎空状态下工作,以减少本底的干扰,避免发生不必要的分‎子-离子反应。

质谱仪的高真空系统一般由机械泵和扩散‎泵或涡轮分子泵串联组成。

机械泵作为前级泵将真空抽到‎10-1-10-2Pa,然后由扩散泵或涡轮分子泵将‎真空度降至质谱仪工作需要的真空度10-4-10-5‎P a。

虽然涡轮分子泵可在十几分钟内将真空度降至工作‎范围,但一般仍然需要继续平衡2小时左右,充分排除真‎空体系内存在的诸如水分、空气等杂质以保证仪器工作正‎常。

气相色谱-质谱联用仪的进样系统由接‎口和气相色谱组成。

接口的作用是使经气相色谱分离出的‎各组分依次进入质谱仪的离子源。

gc-ms的原理及应用

gc-ms的原理及应用
大多数离子,至少有机化合物形成的离子,均非常活泼并带有过剩的 能量。在没有其他化合物存在的情况下,(例如:在真空状态下),分子 离子断裂或“碎裂”成其他离子,游离基(不带电荷但带有不成对电子) 和中性分子。这些碎片的质量和丰度依赖于分子的性质,这正是质谱法具 有强有力的鉴定化合物能力的原因。
用70ev电子能量轰击的操作方式被称为标准电子电离(EI)。在这种 方式下,只有带正电荷的碎片离子才被检测。值得注意的是在这种方式下, 电力效率只有0.01%!
新疆农业科学农业质量标准与检测技术研究所
气质联用仪的基本原理
汇报人:刘河疆
LOGO
1. GC-MS 简介
GC-MS
这种重要的分析技术是由气项色谱(GC) 和质谱检测器(MS)两部分结合起来所组成 的。该技术利用气相色谱的分离能力让混合 物中的组分分离,并用质谱鉴定分离出来的 组分(定性分析)以及其精确的量(定量分 析)。气相和质谱控制、数据的记录、分析 都由电脑完成。气质连用具有非常高的灵敏 度(10-15克),并且可以分析范围非常广泛 ,例如农药残留、环保、兴奋剂等
现分析自动化
现分析工作的自动化。
LOGO
GC-MS 的基本构造
GC-MS联用仪器的基本组成部件
LOGO
质谱常用术语
2-甲基四氢呋喃
1.丰度 2.质荷比(M/Z) 3.基峰 4.分子离子 5.碎片离子 6.偶电子离子 7.奇电子离子
LOGO
质谱常用术语
1.丰度(相对丰度、绝对丰度) 2.质荷比(M/Z) 3.基峰:质谱图中最大的峰 4.分子离子:化合物的分子被电子轰击,失去一个电子而形 成的单电荷离子 5.碎片离子:离子碎裂产生的离子 6.偶电子离子:外壳层电子全部成对的离子 7.奇电子离子:外壳层含有一个未成对电子 8.同位素峰(见下页表) 9.氮规则:假若一个化合物不含有氮原子或含有偶数个氮原 子,则其分子离子的质量将是偶数;反之如果有一个化合物 含有奇数个氮原子,则其分子离子的质量将为奇数。 环加双键值:通式CXHYNZON 环加双键值=X-0.5Y+0.5Z+1

气相色谱质谱仪原理

气相色谱质谱仪原理

气相色谱质谱仪原理气相色谱质谱联用技术是一种分离和鉴定化合物的强有力工具,具有分离能力强、灵敏度高、准确性高和选择性好等特点。

该技术结合了气相色谱和质谱两种分析方法的优点,使检测物质的鉴定更加可靠和精确,广泛应用于化学、食品、环境、医药等领域。

气相色谱质谱联用仪的基本原理是将挥发性物质经气相色谱分离后,进入质谱进行鉴定。

气相色谱将分离物质送至介质内,根据化学性质、偏振度、电子亲和性等特性分离各种化合物。

质谱则是通过对物质分子中光电荷的激发与离子化、分离和检测,确定物质的质量和结构。

气相色谱分离的原理是物质在化学性质和强度相同的流体或介质中,根据分子间相互作用力的不同,分离成不同的成分。

在根据不同的含量进行分离物质时,气相色谱常用的分离口径为0.1~0.3毫米,分离介质为聚硅氧烷、氰化腈、聚酰亚胺等。

气相色谱的分离结果虽然相对准确,但是在区分化合物的同时也会引进杂质,降低检测的准确性。

因此在质谱分析中,必须通过整定电子能量和进样速率等参数,实现化学物质的离子化和碎裂,进而通过分析离子的种类、数量、分布等物理参数鉴定物质。

气相色谱质谱联用仪工作时,样品通过气化份离器上热丝的加热,挥发成气相,经过气相色谱柱分离后,被导入到质谱反应室。

在反应室中,电子轰击样品分子,将样品分子离解成离子和分子碎片离子,这些离子按照离子质量比例进入到万能离子分离器,离子分离器根据离子的质量比例,通过一组高压电场分离离子质量比例相近的离子,使其分离后到达检测器。

检测器通过电子增强,将离子形成强电信号,然后连续检测各组离子质量比例的强度信号,以制备质谱扫描图。

在质谱扫描图上,每个化合物都有独立的离子图谱,可以据此判断分子量和结构。

对于定量分析,可通过内标法、比对标准品法、外部标准物质法等进行定量分析。

气相色谱质谱联用技术在分离和鉴定化合物方面,具有高精度、高分辨率、高灵敏度和高特异性等显著优点。

通过该技术能够精确、快速地分析出样品中特定的成分,为许多行业提供了无可替代的分析手段。

气质联机讲义

气质联机讲义

内标法
������

面积百分率法(面积归一)
各组分浓度以面积百分率表示,该结果可以确认大概的 浓度,但有误差。
������

校正面积百分率法(校正面积归一)
用重量响应因子对峰面积进行修正,用该法测定的浓度 比前者准确,但前提是样品中所有组分都出峰,否则也 有误差存在。 这两种方法应用的必需条件是: 1.样品中所有组分都出峰;
使固定液均匀铺展,
掩盖某些活性点������
对于旧柱子,除去残留物
老化柱子的方法
分段老化法从较低温度开始,在不同温度段
(150,200,250,300度)分别停留一段时 间。注意不能长时间停留在高温下老化。 程序升温老化法一般从50-60度开始以10度 /min升温至300度(依柱的最高使用温度而 定)。 进样老化法老化一定要充足载气避免干烤柱子, 但也有不同载气的特殊老化法。

真空系统
质谱仪的离子源、质量分析器和检测器必须在
高真空状态下工作,以减少本底的干扰,避免 发生不必要的离子-分子反应。所以质谱反应属 于单分子分解反应。 由机械真空泵(前极低真空泵),扩散泵或分子泵 (高真空泵)组成真空机组,抽取离子源和分析器 部分的真空。 只有在足够高的真空下,离子才能从离子源到 达接收器,真空度不够则灵敏度低。
延长灯丝寿命• 消除放电•
增加灵敏度
GC-MS空气泄漏征兆及常见来源
征兆:真空管压力或前级管道压力高于普通值:
本底高,空气特征(M/Z18,28,32,44)较 高;灵敏度低,M/Z502的相对丰度低。 常见来源:GC进样口;GC-隔垫;破损的毛细 管柱;GC-MS的接口处。
质谱仪器
离子源必须满足那些要求

气相色谱质谱联用仪详解课件

气相色谱质谱联用仪详解课件

03
质谱部分详解
质谱分析原理
质谱分析的定义
通过测量离子质荷比(m/z)来 鉴定化合物和确定其相对分子质 量的方法。
质谱分析的过程
样品分子在离子源中发生电离, 生成离子,离子经过质量分析器 分离后,被检测器检测并记录下 离子的信号强度,形成质谱图。
质谱仪器结构组成
进样系统
将待测样品引入离子源,常用 进样方式包括直接进样、气相
食品安全
GC-MS可用于检测食品中的农药 残留、添加剂、有毒有害物质等, 保障食品安全和消费者健康。
GC-MS可用于药物成分分析、 质量控制、代谢研究等,为新药 研发和临床用药提供支持。
04
石油化工
GC-MS可用于石油产品分析、工 艺过程监控、催化剂研究等,为 石油化工行业的生产和发展提供 技术支持。随着科学技术的不断 进步,GC-MS技术将在更多领域 得到应用和发展。
现状
目前,GC-MS技术已广泛应用于环境监测、食品安全、药物分析、石油化工等 领域。随着仪器性能的不断提升和分析方法的完善,GC-MS在更多领域展现出 了广阔的应用前景。
应用领域与前景展望
01
03
环境监测
02
药物分析
GC-MS可用于检测空气、水体、 土壤等环境中的污染物,为环 境保护和治理提供有力支持。
填充柱
01 由固体颗粒填充而成,具有较高的柱效和较低的成本,
但重现性较差。
毛细管柱
02 内壁涂层固定相,具有高效、高分辨率和高灵敏度等
特点,重现性好,但成本较高。
选择依据
03
根据待测组分性质、分离要求和分析条件等因素选择
合适的色谱柱。
检测器类型及性能比较
01
火焰离子化检测 器(FID)

气质联用仪在食品工业中的应用

气质联用仪在食品工业中的应用

食品农残检测是保障食品安全的重要手段,随着人们健康意识的提高,对于 食品农残的检测越来越受到。气质联用技术(GC-MS)是近年来发展迅速的一种 检测方法,具有高灵敏度、高分辨率和高质量分析等优点,在食品农残检测中发 挥了重要作用。
本次演示将对气质联用技术在食品农残检测中的应用研究进展进行综述。
研究现状
气质联用仪在槐花等分析中的应用包括以下几个方面:
1、样品制备在样品制备过程中,需要对槐花等样品进行萃取、浓缩、衍生 等预处理,以便于气质联用仪的分析。萃取剂的选择对于提取样品中的化合物
至关重要,需要根据化合物的性质选择合适的萃取剂。同时,为了提高气质 联用仪的检测灵敏度,还需要对样品进行浓缩和衍生。
研究方法
气质联用技术在食品农残检测中的应用方法主要包括以下步骤:
1、样品处理:将样品进行粉碎,加入适量的乙腈进行萃取,再通过液-液分 配和氮吹浓缩等步骤,得到目标化合物的富集样品。
2、仪器联用:将气相色谱与质谱联用,通过最佳的仪器参数设置,实现最 佳的分析效果。
3、数据分析:利用相应的数据处理软件对实验数据进行处理,得到目标化 合物的定性、定量分析结果。
优势与挑战 气质联用仪在食品工业中的应用具有以下优势: 1、高灵敏度和高分辨率:能够检测出痕量级的化合物,并准确定量;
2、强大的定性能力:可以提供化合物的结构信息,有助于确定化合物的身 份;
3、样品前处理相对简单:适用于多种不同类型的样品,对样品的前处理要 求相对较低。
3、样品前处理相对简单:适用 于多种不同类型的样品,对样品 的前处理要求相对较低。
2、气质联用仪的选择在选择气质联用仪时,需要根据分析样品的特性和要 求进行选择。一般来说,槐花等植物样品中含有多种化合物,因此需要选择具有 较高分辨率和灵敏度的气质联用仪,以便能够分离和分析出各种化合物。此外,

GC-MS气相色谱质谱联用仪

GC-MS气相色谱质谱联用仪

• 分子筛—氧气,氮气,氢气,二氧化碳,一氧化 碳,甲烷等。
• 氧化铝—丙烷或更大分子量的化合物 • 多孔性聚合物微球—乙烷,丁烷,二氧化碳等。 *毛细管柱有比填充柱更高的分离度。即使选择低 一些,通常也能实现足够的分离。 *一根毛细管柱能够完成多种分析,而填充柱则可 能需要多跟才能完成 *对毛细管柱和填充柱都适用的固定液有:甲基硅 烷,苯基甲基硅烷,聚乙二醇
四级杆质量分析器
为什么MS需要高真空
➢提供足够的平均自由程 ➢提供无碰撞的离子轨道 ➢减少离子-分子反应 ➢减少背景干扰 ➢延长灯丝寿命 ➢消除放电 ➢增加灵敏度
真空系统确保离子由离子源转移至检测器
GC-MS原理与结构
气相色谱分离样品的各个组分,起样品制备 的作用,接口把气相色谱流出的各个组分送入质 谱仪进行检测,质谱仪对接口引入的各个组分进 行分析,成为气相色谱的检测器。计算机系统控 制色谱仪、接口、质谱仪,进行数据采集和处理。
典型色谱图
峰出现的时间称为保留时间,可以用来对每个 组分进行定性,而峰的大小(峰高或峰面积)则是 组分含量大小的度量。
2.系统
一个气相色谱系统包括: • 可控而纯净的载气源,它能将样品带入GC系统 • 进样口,它同时还作为液体样品的气化室 • 色谱柱,实现随时间的分离 • 检测器,当组分通过时,检测器电信号的输出值
1.什么是GC-MS?
它一种结合气相色谱和质谱的特性,在试 样中鉴别不同物质的方法。
2.GC-MS的优点是什么?
气质联用的有效结合既充分利用色谱的分 离能力,又发挥了质谱的定性专长,优势互补, 结合谱库检索,可以得到较满意的分离机鉴定 结果。
3.GS-MS的基本流路图
GC基础知识
1.什么是GC?

安捷伦气质联用仪(Agilent-GCMS)培训教材

安捷伦气质联用仪(Agilent-GCMS)培训教材
数据处理
对采集的数据进行预处理、峰识别、定量和定性分析等操作。
仪器维护与保养
日常维护
定期清洁仪器表面和检查进样针、色谱柱等部件的完好性。
定期保养
根据仪器使用情况,定期进行深度保养,如清洗进样口、更换色谱柱等。
04
GCMS实验操作流程
实验准备
仪器校准
确保气质联用仪经过专业校准,以保证实验结果的 准确性。
06
GCMS常见问题与解决方案
问题一:仪器启动故障
仪器无法正常启动
仪器启动时无任何反应,电源指示灯未亮起。
解决方案:检查仪器电源是否正常,电源线是否牢固连接。如问题仍未解决,联系 技术支持进行进一步检查。
问题二:样品导入失败
样品无法正常导入仪器
仪器显示样品导入失败,可能由于进样口堵塞或进样针问题。
07
培训总结与展望
培训收获与体会
掌握GCMS基本原理与操作
提高分析技能
通过培训,学员们深入了解了GCMS的工作 原理、仪器结构、操作流程以及维护保养 等方面的知识。
学员们通过实践操作,提高了对样品处理 、色谱图解析、谱图库检索以及定性定量 分析等方面的技能。
增强解决实际问题的能力
建立交流与合作平台
数据处理
对采集的数据进行适当的处理 ,如峰识别、峰面积计算等。
结果分析
根据实验目的和数据处理结果 ,进行深入的分析,得出结论 。
05
GCMS应用实例与解析
实例一:环境气体中挥发性有机物的检测
总结词
准确、高效、快速
详细描述
利用GCMS对环境气体中的挥发性有机物进行检测,如苯、甲苯、二甲苯等,具有准确度高、分离效果好、分析 速度快等优点,为环境监测和治理提供有力支持。

气相色谱-质谱联用原理和应用分解

气相色谱-质谱联用原理和应用分解

气相色谱-质谱联用测定农药多残留摘要:本文研究了气相色谱-质谱联用(GS-MS)仪检测农药残留的方法,辅助以样品前处理技术,对蔬菜、水果、食用油、土壤中的农药多残留的检测方法进行了研究,取得了比较理想的效果。

关键词:气相色谱-质谱联用仪;农药多残留;检测1引言当前人类环境持续恶化,世界各国在工业、民用、科技、商业和军事防御等领域都面临着严重的环境污染问题。

随着人们对环境污染、食品安全的关注,环境、食品中有机污染物检测方面的规范越来越严格,相应的检测技术也越来越先进。

在各种有机物检测技术中,色谱仪器与质谱仪器联用作为一种比较成熟的检测手段,既可发挥色谱法的高分离能力,又兼具质谱准确鉴定化合物结构的优点,即可定性又可定量,尤其适用于环境样品中微量、痕量有机污染物的分析检测工作。

1979 年美国环保局(EPA)将GC-MS(Gas Chromatography-Mass Spectrometry)联用技术列为检测饮用水、地表水中有机物的标准分析方法。

随着仪器的不断完善与发展,检测技术的成熟与推广,GC-MS 法应用范围越来越广。

除了在传统挥发油、脂肪油等的分析测定方面不断发展与普及外,在环境有机污染物检测、食品安全、农药残留、化妆品禁用成分研究等方面的应用也得到了广泛开展。

近年来,由于农药的大量使用引起的食品安全问题已被人们广泛的认识、关注和重视。

人们食用了受到农药严重污染的蔬菜水果,而造成人体急性中毒或者慢性中毒的事件屡有发生。

为保证食品的质量,世界卫生组织和世界各国制订了严格的限量标准,与此同时,许多国家也借此施行技术壁垒,使得农药残留问题不仅是影响人的身体健康,而且也严重影响到国家的对外贸易。

由于各类食品组成成分复杂,不同农药品种的理化性质存在较大差异,并且近年来高效、低毒、低残留农药品种不断涌现,给农药残留检测技术提出了更高的要求。

发展快速、可靠、灵敏和实用的农药残留分析技术无疑是控制农药残留、保证食品安全和避免国际间有关贸易争端的基础。

气质联用仪法(GC-MS)分析测定檀香籽油主成分

气质联用仪法(GC-MS)分析测定檀香籽油主成分

华南农业大学综合性实验报告实验项目名称:气质联用仪法(GC-MS)分析测定檀香籽油主成分实验项目性质:综合性实验所属课程名称:食品仪器分析综合实验I班级:13级食品质量与安全4班姓名:黄嘉源学号:2013305204041 实验试剂与仪器安捷伦7890A/5975C-GC/MSD、檀香籽油2 试验方法与原理2.1 仪器基本原理和应用范围质谱法可以进行有效的定性分析,但对复杂有机化合物的分析就显得无能为力;而色谱法对有机化合物是一种有效的分离分析方法,特别适合于进行有机化合物的定量分析,但定性分析则比较困难。

因此,这两者的有效结合必将为化学家及生物化学家提供一个进行复杂有机化合物高效的定性、定量分析工具。

像这种将两种或两种以上方法结合起来的技术称之为联用技术,将气相色谱仪和质谱仪联合起来使用的仪器叫做气-质联用仪。

气质联用仪是利用试样中各组份在气相和固定液两相间的分配系数不同,当汽化后的试样被载气带入色谱柱中运行时,组份就在其中的两相间进行反复多次分配,由于固定相对各组份的吸附或溶解能力不同,因此各组份在色谱柱中的运行速度就不同,经过一定的柱长后,便彼此分离,按顺序离开色谱柱进入检测器(质谱仪),产生的离子流讯号经放大后,在记录器上描绘出各组份的色谱峰。

气质联用仪的工作过程是高纯载气由高压钢瓶中流出,经减压阀降压到所需压力后,通过净化干燥管使载气净化,再经稳压阀和转子流量计后,以稳定的压力、恒定的速度流经气化室与气化的样品混合,将样品气体带入色谱柱中进行分离。

分离后的各组分随着载气先后流入检测器(质谱仪),然后载气放空。

检测器将物质的浓度或质量的变化转变为一定的电信号,经放大后在记录仪上记录下来,就得到色谱流出曲线。

根据色谱流出曲线上得到的每个峰的保留时间,可以进行定性分析,根据峰面积或峰高的大小,可以进行定量分析。

2.2 定性分析原理将待测物质的谱图与谱库中的谱图对比定性。

2.3 定量分析原理相对定量方法(峰面积归一法):由气质联用仪得到的总离子色谱图或质量色谱图,其色谱峰面积与相应组分含量成正比,可对某一组分进行相对定量。

气质联用仪的电离方式相关知识-概述说明以及解释

气质联用仪的电离方式相关知识-概述说明以及解释

气质联用仪的电离方式相关知识-概述说明以及解释1.引言1.1 概述概述气质联用仪是一种广泛应用于化学分析领域的仪器,它能够对复杂样品中的化合物进行快速、高效的分析和检测。

而气质联用仪的核心技术之一就是电离方式,它能够将样品中的化合物转化为离子,使其能够被质谱仪所检测和分析。

电离方式是气质联用仪中最关键的环节之一,不同的电离方式适用于不同的样品类型和分析需求。

常用的电离方式包括电子轰击电离(EI),化学电离(CI),电喷雾电离(ESI),大气压化学电离(APCI)等。

电子轰击电离(EI)是最常用的电离方式之一,它通过在样品分子中加入高能电子来产生离子。

在此过程中,样品分子中的电子被电子轰击并释放出,形成带有正电荷的分子离子。

EI电离方式适用于低极性和中极性化合物的分析,具有高分辨率和高灵敏度的特点。

化学电离(CI)是另一种常用的电离方式,它采用化学反应来产生离子。

在CI电离过程中,样品分子与化学反应气体(通常为甲烷或乙烷)发生碰撞,形成带有正电荷的分子离子。

CI电离方式适用于对易挥发的化合物、烷类化合物和环境样品的分析。

电喷雾电离(ESI)是常用于液相色谱-质谱联用仪中的电离方式,它通过在溶液中注入高电压来产生离子。

在电喷雾电离过程中,样品溶液通过毛细管被雾化成细小的液滴,并在高电压的作用下产生离子。

ESI电离方式适用于对极性和高分子量化合物的分析,具有高灵敏度和较好的质谱特性。

大气压化学电离(APCI)是一种在大气压下进行的电离方式,它通过在气态流体中加载高能电子,使样品分子发生电离。

在APCI电离过程中,样品分子与电离源中产生的高能电子和反应气体(通常为氮气)发生碰撞,生成带有正电荷的分子离子。

APCI电离方式适用于对高沸点、烷类化合物和生物大分子的分析。

了解不同的电离方式对于选择合适的电离方式进行样品分析至关重要。

根据样品类型、目标分析物的特性以及实验需求,科学家可以灵活选择适应于自己研究的电离方式,以提高分析的效率和准确性。

气质联用技术在水质检测中的应用研究

气质联用技术在水质检测中的应用研究

气质联用技术在水质检测中的应用研究随着工农业生产和城市化进程加快,水污染问题日益严峻。

如何科学有效地检测水质成为了保护水源地和保障公众饮用水安全的重要任务。

气质联用技术是一种现代分析技术,具有高灵敏度、高分辨率、高准确性和高通量等优点,在水质检测中有广泛的应用前景。

本文将从气质联用技术的基本原理、在水质检测中的应用,以及未来的发展趋势等方面进行阐述。

一、气质联用技术的基本原理气质联用技术(Gas chromatography-Mass spectrometry,GC-MS)是一种混合技术,它通过气相色谱仪和质谱仪的联用,将样品分离、检测和定性分析结合在一起。

气相色谱是一种根据物质在固定相上的不同极性、亲和力、扩散速率等因素进行分离的技术;而质谱则是通过测量物质分子在高速电子轰击下的碎片离子谱,识别化合物的组成和结构。

气质联用技术的分离原理是基于样品分子在气相色谱柱中的分布系数差异,即与移动相(惰性气体)的亲和力不同而发生分离。

分离后的化合物进入质谱,经电子轰击后形成碎片离子谱,利用电荷量比、质量数、质子化作用、分子内碳同位素比等信息对样品进行鉴定。

由于气相色谱和质谱各自具有的优点,气质联用技术能够对复杂混合样品进行高通量、高分辨率的分析和定性研究。

1.挥发性有机物的检测挥发性有机物是水污染的主要源之一,包括溶剂、燃料、塑料等化学品。

利用气相色谱-质谱联用技术可以精确分析挥发性有机物的种类和含量,有效地监测水源地和饮用水中的有机污染物质。

鱼塘水中的环氧乙烷、氯仿、四氯化碳等化合物可以通过气质联用技术精准检测和定量,保障水源地和养殖产业的健康发展。

2.药物残留的检测药物残留的检测是近年来的热点问题,药品污染不仅会影响到水生态环境,还会对人类健康产生潜在危害。

通过气相色谱-质谱联用技术可以有效检测和定量药物类物质的残留量,为监测环境中的药品污染提供了可靠的技术手段。

镇静剂、抗生素、消炎药等药品在环境和饮用水中的检测可以通过气质联用技术实现。

气质联用仪的基本构成和工作原理

气质联用仪的基本构成和工作原理

气质联用仪得基本构成与工作原理气质联用(GC/MS)被广泛应用于复杂组分得分离与鉴定,其具有GC得高分辨率与质谱得高灵敏度,就是生物样品中药物与代谢物定性定量得有效工具.质谱仪得基本部件有:离子源、滤质器、检测器三部分组成,它们被安放在真空总管道内。

接口:由GC出来得样品通过接口进入到质谱仪,接口就是色质联用系统得关键。

接口作用:1、压力匹配-—质谱离子源得真空度在10—3Pa,而GC色谱柱出口压力高达105 Pa,接口得作用就就是要使两者压力匹配。

2、组分浓缩——从GC色谱柱流出得气体中有大量载气,接口得作用就是排除载气,使被测物浓缩后进入离子源.常见接口技术有:1、分子分离器连接(主要用于填充柱)扩散型——扩散速率与物质分子量得平方成反比,与其分压成正比。

当色谱流出物经过分离器时,小分子得载气易从微孔中扩散出去,被真空泵抽除,而被测物分子量大,不易扩散则得到浓缩。

2、直接连接法(主要用于毛细管柱)在色谱柱与离子源之间用长约50cm,内径0.5mm得不锈钢毛细管连接,色谱流出物经过毛细管全部进入离子源,这种接口技术样品利用率高。

3、开口分流连接该接口就是放空一部分色谱流出物,让另一部分进入质谱仪,通过不断流入清洗氦气,将多余流出物带走.此法样品利用率低。

离子源:离子源得作用就是接受样品产生离子,常用得离子化方式有:1、电子轰击离子化(electron impact ionization,EI)EI就是最常用得一种离子源,有机分子被一束电子流(能量一般为70eV)轰击,失去一个外层电子,形成带正电荷得分子离子(M+),M+进一步碎裂成各种碎片离子、中性离子或游离基,在电场作用下,正离子被加速、聚焦、进入质量分析器分析。

EI特点:⑴、电离效率高,能量分散小,结构简单,操作方便.⑵、图谱具有特征性,化合物分子碎裂大,能提供较多信息,对化合物得鉴别与结构解析十分有利。

⑶、所得分子离子峰不强,有时不能识别。

气相色谱质谱联用在食品检验中的应用

气相色谱质谱联用在食品检验中的应用

气相色谱质谱联用在食品检验中的应用作者:杜娟来源:《中国食品》2024年第14期食品检验是确保食品不含有害化学物质和生物污染物的重要手段,检测内容包括食品中的农药残留、食品添加剂、有害化学物质,以及食品中自然存在的有害成分等。

气相色谱质谱联用技术(GC-MS)因其高效、精准的特性,成为检测食品中复杂成分的理想选择,在食品安全监管中发挥着重要作用。

本文主要探讨了气相色谱质谱联用技术在食品检验中的具体应用,并归纳了应用过程中的几点注意事项。

一、氣相色谱质谱联用技术概述(一)基本原理气相色谱质谱联用技术的气相色谱部分借助色谱柱及固定相的化学性质分离样品中的各挥发性组分。

这些组分在载气(如氦、氮等)的带动下,依据其与固定相的相互作用程度以不同速率通过色谱柱,实现时间上的分离。

随后,色谱柱出口的组分会被引入到质谱仪中,电离化合物使其生成带电的离子,离子在电磁场作用下会根据其质荷比被加速并分离,生成一个质谱图。

该图记录了不同质荷比的离子的相对丰度,提供了化合物的分子质量及其结构信息。

常用的电离方法包括电子撞击和化学电离。

电子撞击法是利用高能电子束轰击样品分子,使其电离断裂成多个片段,从而为化合物的结构分析提供参考;化学电离法则是引入一个反应离子源,使样品分子在较为温和的条件下电离,从而获得分子整体的质荷比信息。

(二)优势分析气相色谱质谱联用技术具有分离能力强、灵敏度高、结构信息丰富和多组分分析等优势。

气相色谱柱采用了特殊涂层的毛细管,这种涂层可根据不同化学性质优化分离过程。

每种化合物在通过色谱柱时,由于其独有的沸点和极性差异,与固定相的相互作用程度会有所不同,因此在柱中的迁移速度也会存在差异。

这使得复杂的样品混合物被有效地分离为单一组分,进而为后续的质谱分析提供清晰的目标物质。

通过调整色谱柱的长度、直径、温度,以及载气的流速等参数,可对分离过程进行优化调整,以确保气相色谱在处理极为复杂的样品混合物时依然能保持高效的分离性能,减少样品间的交叉污染和峰的重叠。

气质联用仪讲义

气质联用仪讲义

GC-MS-QP2010仪的使用及样品成分的定性分析一,实验目的:1,学习掌握GCMS-QP2010S仪器的使用操作2,了解GCMS-QP2010S仪器的结构3,学习混合酯样品成分的定性分析二,实验原理:经加速进入磁场中,其动能与加速电压及电荷z 有关,即z e U = 1/2 m ν2其中z为电荷数,e为元电荷(e=1.60×10-19C),U为加速电压,m为离子的质量,ν为离子被加速后的运动速度。

质谱法具有灵敏度高、定性能力强等特点,但进样要纯,才能发挥其特长,另一方面,进行定量分析又较复杂;气相色谱法具有分离效率高、定量分析简便的特点,但定性能力却较差。

因此这两种方法若能联用,可以相互取长补短。

气相色谱仪是质谱法的理想的“进样器”。

气相色谱分离和质谱分析过程都是在气态条件下进行的,气相色谱分离的组分足够质谱检测。

试样经色谱分离后以纯物质形式进入质谱仪,避免了对样品和质谱仪器的污染,极大的提高了对混合物的分离、定性和定量分析效率。

质谱仪是气相色谱法的理想的“检测器”。

质谱仪作为检测器,检测的是离子质量,获得化合物的谱图,既是一种通用型的检测器,又是有选择性的检测器,能检出几乎全部化合物,灵敏度又很高。

色谱-质谱联用技术既发挥了色谱法的高分离能力,又发挥了质谱法的高鉴别能力。

这种技术适用于作多组分混合物中未知组分的定性鉴定;可以判断化合物的分子结构;可以准确地测定未知组分的相对分子质量;可以修正色谱分析的错误判断;可以鉴定出部分分离甚至未分离开的色谱峰等等三,仪器与试剂:1,仪器,岛津GCMS-QP2010S;2,试剂,混合酯四,实验步骤:1,查看He气体钢瓶的分压,保持0.5 MPa -0.9MPa, 2,按顺序把GC电源、MS电源、电脑电源、显示器电源打开。

3,双击桌面的GCMS Real Time Analysis图标,连线过程中会出现一短、一长两声鸣响,表示连接GC、MS成功。

GCMS实验报告

GCMS实验报告

1. 掌握gc-ms工作的基本原理。

2. 了解gc-ms仪的基本构造,熟悉软件的使用。

3. 了解运用gc-ms仪分析样品的基本过程,掌握利用质谱标准图库检索进行色谱峰定性的方法。

二、基本原理1. 气相色谱气相色谱的流动相为惰性气体,气-固色谱法中以表面积大且具有一定活性的吸附剂作为固定相。

当组分的混合样品进入色谱柱后,由于吸附剂对每个组分的吸附力不同,经过一定时间后,各组分在色谱柱中的运行速度也就不同。

吸附力弱的组分容易被解吸下来,最先离开色谱柱进入检测器,而吸附力最强的组分最不容易被解吸下来,因此最后离开色谱柱。

如此,各组分得以在色谱柱中彼此分离,顺序进入检测器中被检测、记录下来。

2. 质谱质谱分析法是通过对被测样品离子的质荷比的测定来进行分析的一种分析方法。

被分析的样品首先要离子化,然后利用不同离子在电场或磁场的运动行为的不同,把离子按质荷比(m/z)分开而得到质谱,通过样品的质谱和相关信息,可以得到样品的定性定量结果。

3. 气质联用(gc-ms)气质联用的有效结合既充分利用色谱的分离能力,又发挥了质谱的定性专长,优势互补,结合谱库检索,可以得到较满意的分离机鉴定结果。

三、实验仪器岛津gc-ms(qp2010) db-5柱子(弱极性)1. 开机:顺序(确认每步操作完成后,在执行下一步):开氦气瓶、开gc电源、开ms电源、开计算机。

2. 进入系统及检查系统配置:①②双击gcms real time,连机(正常时,机器有鸣叫声)进入主菜单窗口;单击左侧system configuration,设定系统配置,无误后退出。

3. 启动真空泵:①点击左侧vacuum control图标,出现真空系统屏幕,单机advanced>>后,出现完整显示内容;②③④ vent valve的灯呈绿色(即关闭)时,启动机械泵(rotary pum);低压真空度<3+e002pa时,单击auto startup启动真空控制;启动完成后,抽真空30min,可进行调谐。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概述
(二)质谱法的特点 质谱法是利用带电粒子在磁场或电场中的运动规 律,按其质荷比(m/z,质量和电荷的比)实现分离 分析,测定离子质量及其强度分布。
主要特点是能给出化合物的分子量、元素组成、 经验式及分子结构信息,具有定性专属性强、灵 敏度高、检测快速的优势。
概述
质谱检测的是离子质量,能够提供待测化合物特 征离子的单同位素质量。低分辨质谱法给出的是 整数质量,高分辨质谱法给出的是精确质量。 例如下面三个化合物的相对分子质量其整数值相 同,但精确质量不同: 十三烷基苯 C19H32 260.3331 苯基十一烷基酮 C18 H28 O 260.296 7 萘苯并噻吩 C18H12S 260.1486
一、质谱的发展
1911年: 世界第一台质谱装置(J.J. Thomson)
40年代: 用于同位素测定和无机元素分析
50年代:开始有机物分析(分析石油) 60年代:出现GC-MS联用仪, 开始成为有机物分析的重要仪器
70年代:计算机引入
80年代:新的质谱技术出现:快原子轰击电离子源,基质辅 助激光解吸电离源,电喷雾电离源,大气压化学电离源;LC-
概述
(3)联用的优势还体现在可获 得更多信息。单独使用气相色 谱只获得保留时间、强度两维 信息,单独使用质谱也只获得 质荷比和强度两维信息,而气 相色谱-质谱联用可得到质量、 保留时间、强度三维信息,意 味着增强了解决问题的能力。 化合物的质谱特征加上气相色谱保留时间双重定性信息,和 单一定性分析方法比较,显然专属性更强。质谱特征相似的 同分异构体,靠质谱图难以区分,而有色谱保留时间就不难 鉴别了。
概述
二氯甲烷的谱图中有两组明显的同位素离子峰簇, 其质荷比分别为m/z 49、51和84、86、88,强度 比分别是3:1和9:6:1,显示前者是含一个氯的离子, 后者是含两个氯的离子,完全符合氯35Cl的天然同 位素37Cl丰度比的分布规律。 丙酮的质谱图中m/z 58和m/z 59丰度比(100: 3.3),以及甲苯的质谱图中m/z 92和m/z 93丰度 比(100:6.6)可以给出碳原子的个数,分别是3个 和6个C原子,由此也可以推算得到化合物的元素 组成。
概述
(4)气相色谱-质谱联用技术的发展促进了分析技术的计算 机化,计算机化不仅改善并提高了仪器的性能,还极大地 提高了工作效率。从控制仪器运行,数据采集和处理,定 性、定量分析,谱库检索以及打印报告输出,计算机的介 入使仪器可以全自动昼夜运行,从而缩短了各种新方法开 发的时间和样品运行时间,实现了高通量、高效率分析的 目标。 现代GC/MS的分离度和分析速度、灵敏度、专属性和通 用性,至今仍是其它联用技术难以达到的。 在食品安全的有害物质残留分析中,GC/MS方法被作为 最终确证方法之一。因此只要待测成分适于用GC分离, GC/MS就成为联用技术中首选的分析方法。
五、有机质谱中的各种离子
1.分子离子M+ 2.准分子离子 如 MH+ 3.碎片离子 4.重排离子 5.母离子与子离子 6.亚稳离子 7.奇电子离子和偶电子离子 8.多电荷离子 9.同位素离子
根据质谱解析原理,可从质谱图获得组分 的分子量和分子结构信息
(1)分子离子峰
分子失去一个电子而生成的正离子称为分子离子或母离子,相应的质 谱峰称为分子离子峰或母峰。分子离子标记为. M+ ,是一个自由基离 子,其中“+”表示有机物分子M 失去一个电子而电离,“·”表示失去 一个电子后剩下未配对的电子。 分子离子峰是除同位素峰外,质量数最大的质谱峰,位于质谱图的高 质荷比端。分子离子质量对应于中性分子的质量,因此可用其确定相 对分子质量。几乎所有的有机化合物都可以产生可以辩认的分子离子 峰,其稳定性决定于分子结构。芳香族、共轭烯烃及环状化合物的分 子离子峰强,而相对分子质量大的烃、脂肪醇、醚、胺等则分子离子 峰弱。 分子离子峰的丰度与有机化合物结构的稳定性和离子化需要的总能量 有关。在实际观察中,一些熔点低、不易分解、容易升华的化合物都 能出现较强的分子离子峰,分子中含有较多羟基、胺基和多支链的化 合物,分子离子峰较弱或观察不到。
MS联用仪,感应耦合等离子体质谱仪,富立叶变换质谱仪等
近几十年来,质谱各种“软电离”技术的发展成功实现生物 大分子准确分子量测定以及多肽和蛋白质中氨基酸序列的测 定。
二、质谱的基本特点
质谱仪是一个用来测量单个分子质量的仪器 (Thompson).但实际上质谱仪提供的是分子 的质量与电荷比(m/z or m/e)
(2)准分子离子峰
准分子离子是指分子获得一个质子或失去 一个质子,记为[M+H]+、[M-H]+。其相应的 质谱峰称为准分子离子峰。准分子离子不 含未配对的电子,结构比较稳定,常由软 电离技术产生。
(3)碎片离子峰
在离子源中,当提供分子电离的能量超过分子解离所需的 能量时,原子之间的一些键还会进一步断裂,产生质量数 较低的碎片,称为碎片离子。碎片离子在质谱图上相应的 峰称为碎片离子峰。广义的碎片离子指分子离子碎裂而产 生的一切离子,而狭义的碎片离子仅指由简单碎裂而产生 的离子。 分子的碎裂过程与其结构有密切关系,研究质谱图中相对 强度最大的,即最大丰度的离子碎裂过程,通过对各种碎 片离子峰高的分析,有可能获得整个分子结构的信息。
概述
采用高分辨质谱法测定离子的精确质量,可以获得分子离 子或碎片离子的元素组成、经验式。 低分辨质谱法测得的仅是整数质量,但依据得同位素离子 的丰度比,也可推测元素组成和经验式。 此外,质谱法不同的离子化方式提供的质谱图和化合物的 性质、分子量、结构密切相关,不同的质量分析技术和扫 描方式提供了极好的选择性,增强了定性的专属性。有选 择地只检测所需要的目标化合物的特征离子,而不检测不 需要的质量离子,不仅能排除基质和杂质峰的干扰,还极 大地提高检测灵敏度。
1、进样 样品通过汽化引入离子化室;
2、离子化 样品分子电离生成离子,聚成离子束
3、分离 利用电磁场作用对离子束按不同质荷 比进行分离
4、检测 分离后离子信号的接收、检测、处理
四、质谱术语
质荷比:mass to charge ratio (m/z ) 分辨率:resolution (50%peak height,10% valley method) 原子质量单位:atom mass unit (amu, Da) 准分子离子:pseudo molecular ion (M+H+,M+Na+) 母离子:parent ion,precursor ion 子离子:daughter ion,product ion 棒状图:centroid 轮廓图:continnium 同位素:isotope (12C:13C=100:1.1, 35Cl:37Cl=3:1, 79Br:81Br=1:1) 质量标尺:mass scale
概述
经常采用的标样确认法,对简单的混合物或纯化合物虽然 适用,但事先必须知道分析的是什么类型化合物,这对于 未知样品的定性分析要求是互相矛盾的,何况还存在不同 化合物共流出的问题。因此仅用保留时间指认色谱峰进行 化合物定性是有局限的,即定性的不专一。 此外,气相色谱需要多种检测器来解决不同化合物响应值 的差别问题。对复杂混合物的定性、定量分析,需要不同 检测器多次进样,既耗时联用技术的特点
(1)气相色谱作为进样系统,将待测样品进行分离后直接 导入质谱进行检测,既满足了质谱分析对样品单一性的要 求,还省去了样品制备、转移的烦琐过程,不仅避免了样 品受污染,对于质谱进样量还能有效控制,也减少了质谱 仪器的污染,极大地提高了对混合物的分离、定性、定量 分析效率。 (2)质谱作为检测器,检测的是离子质量,获得化合物的 质谱图,解决了气相色谱定性的局限性,既是一种通用型 检测器,又是有选择性的检测器。
概述
可以在几分钟内对几十甚至上百组分的混合物进 行有效的分离。
一个油品混合物的气相色谱分析结果,几十个组分, 色谱分离仅用了4 min
概述
如果用气相色谱法能够分析的所有化合物,它们的保留时间都 不相同,那么气相色谱的定性方法将是最简单、直观而且可能 是最好的定性分析方法,遗憾的是它被明显的缺点所限制,因 为不可能在一根色谱柱上分离所有化合物
质谱法是一强有力的分析技术。它可用于未知 化合物的鉴定、定量分析、分子结构及化学特 性的确定等方面
所需化合物的量非常低:10-12g, 或10-15 mol
三、质谱的基本原理
以离子源产生气相离子,按照 离子的质荷比(m/z)大小对离子 进行分离,利用质量分析器测 定,从而对样品进行定性和定 量分析。
第一章
质谱概述
质谱法是将被测物质离子化,按离子的质荷 比分离,测量各种离子峰的强度而实现分析 目的的一种方法。 质谱法的主要作用: (1)准确测定物质的分子量 (2)根据碎片特征进行化合物的结构分析 分析时,首先将分子离子化,然后利用离子 在电场或磁场中运动的性质,把离子按质核 比大小排列成谱,此即为质谱。
概述
以上三个化合物的EI质谱反应了不同化合物各自的特征,定 性的专一性很好。 但质谱法的不同离子化方式和质量分离技术也有其局限性。 比如有些化合物在EI电离方式下,不产生分子离子峰,一些 结构异构体的EI质谱图非常相似,依据EI质谱定性比较困难。 需要通过其它电离技术获得分子量信息,或采用MS/MS技术 获得结构信息,或采用分离、修饰等其它方法辅助。 此外,质谱法无论使用何种离子化方式和质量分离技术,对 未知化合物进行结构鉴定,都希望样品纯度越高越好,因为 杂质形成的本底对样品质谱图产生干扰,不利于质谱图的解 析。所以混合物事先分离成单一成分,获得纯化合物,再进 行质谱测定,更能充分发挥质谱鉴定专属性的特长。 气相色谱法对混合物能进行有效的分离,可提供纯度高的样 品,正好满足了质谱鉴定的要求。
低分辨电子电离(electron ionization,E1)质谱图,可以看出 三种化合物具有各自的质谱特征。 在三个化合物的质谱图中,高质 量端的质荷比分别为m/z 58、92、 84的峰,是三种化合物的分子离子 峰,由此可确定化合物的分子量;谱 图中的最强峰(称基峰)分别为m/z 43(C2H3O)+、m/z 91 (C7H7)+、m/z 49(CH2Cl)+,是单分子分解产生的主 要碎片离子,可得到化合物结构信息。
相关文档
最新文档