空间直角坐标系示例讲解材料
空间直角坐标系中点到直线距离公式
空间直角坐标系中点到直线距离公式全文共四篇示例,供读者参考第一篇示例:在空间直角坐标系中,点到直线的距离是一个常见的几何问题。
我们经常会遇到这样的情况:已知一个点和一条直线的方程,求点到直线的距离。
这个问题在实际中有着很多应用,比如在工程中的测量、地图绘制等领域。
在本文中,我们将介绍如何求解空间直角坐标系中点到直线的距离,并给出相关的公式。
我们来了解一下点到直线的距离是如何定义的。
点到直线的距离是指从空间中的一个点到一条直线的最短距离。
在二维空间中,我们可以通过点到直线的垂直距离来求解。
但是在三维空间中,点到直线的距离可能不再是垂直距离,而是一个斜线的距离。
为了解决这个问题,我们可以通过向量的方法来进行求解。
假设直线的方程为Ax + By + Cz + D = 0,点的坐标为(x0, y0,z0),我们要求点到直线的距离。
我们可以计算点到直线的法向量n = (A, B, C),然后我们可以得到点P(x, y, z)到直线的一个向量v = P0P = (x-x0, y-y0, z-z0)。
点P到直线的距离就是向量v在法向量n上的投影长度。
根据向量的内积的定义,我们可以得到向量v在法向量n上的投影长度为:d = |v·n| / |n|其中|v·n|表示向量v和向量n的点积,|n|表示法向量n的模长。
这个公式可以帮助我们求解空间直角坐标系中点到直线的距禿。
d = |(2, 1, -1)·(1, 1, 1)| / |(1, 1, 1)| = |2+1-1| / √(1+1+1) = 2 / √3 ≈ 1.155点P(2,1,-1)到直线x+y+z-3=0的距禿为约1.155。
在实际的应用中,我们可能会遇到更加复杂的情况。
直线的方程可能不是标准形式,或者点的坐标为变量而非常数等。
在这种情况下,我们需要根据具体的情况进行分析和求解。
我们还可以通过向量的方法来求解点到平面的距禿,或者求解点到点的距离等问题。
空间直角坐标系PPT课件
的效果。
二面投影
将三维图形分别投影到两个互 相垂直的平面上,得到两个二
维图形。
三面投影
将三维图形分别投影到三个互 相垂直的平面上,得到三个二
维图形。
05
空间直角坐标系与向量代数
向量的线性运算
向量的加法
向量加法满足交换律和结合律,即向量a+b=b+a, (a+b)+c=a+(b+c)。
描述向量场中某点处场量旋转程度的大小和方向,其方向垂直于该 点处的场量。
06
空间直角坐标系与微积分
微分学在空间直角坐标系中的应用
空间直角坐标系中的导数
导数描述了函数在某一点处的切线斜率,在空间直角坐标 系中,导数可以用来研究函数在三维空间中的变化趋势。
空间曲线在某点的切线方向
通过求导数,可以得到空间曲线在某一点的切线方向向量, 从而确定该点处曲线的变化趋势。
曲线和曲面的长度
通过使用一重积分,可以计算三维空间中曲线和曲面的长度。
重积分在空间直角坐标系中的应用
01
重积分在解决实际问题中的应用
重积分在解决实际问题中有着广泛的应用,例如计算物体的质量、质心、
转动惯量等。
02 03
重积分的物理意义
重积分的结果具有明确的物理意义,例如三重积分的结果表示三维空间 的体积,二重积分的结果表示二维平面的面积,一重积分的结果表示一 维线段的长度。
性质
空间直角坐标系具有方向性、正 交性和无限延展性,是描述空间 中点位置的数学工具。
坐标系的建立
01
02
03
确定原点
选择一个点作为原点,该 点是空间直角坐标系的起 点。
1.3.1空间直角坐标系 课件(共15张PPT)
e1 x
O e2
y
∠xOy=135°(或45),∠yOz=90°.
在空间直角坐标系中,让右手拇指指向x轴 的正方向,食指指向y轴的正方向,如果中 指指向z轴的正方向,则称这个坐标系为右 手直角坐标系,本书建立的坐标系都是右 手直角坐标系。
3
学习新知
在空间直角坐标系Oxyz中(如图), i, j, k 为坐标向量,对空
间任意一点A,对应一个向量OA,且点A的位置由向量OA 唯一
确定,由空间向量基本定理,存在唯一的有序实数组(x,y,z),
使 OA xi yj zk
在单位正交基底{i, j, k}
此时向量OA的坐标恰是点A 在直角坐标系Oxyz中的坐标 A(x,y,z),其中x叫做点A的横 坐标,y叫做点P的纵坐标,z 叫做点A的竖坐标.
14
能力训练
如图所示,已知三棱锥P-ABC 中,PA=PC, ∠APC=∠ACB=90°,且∠BAC=30°,且平面PAC⊥平 面ABC,建立适当的坐标系,写出每一个顶点的坐标.
解:分别取AC、AB的中点为H、D, 连接PH,HD,∵PA=PC,∴PH⊥AC 又平面PAC⊥平面ABC,交线为AC, PH在平面 PAC内,∴PH⊥平面ABC. 又 BC⊥AC,∴HD⊥AC.
唯一的实数组使.p xa yb zc
单位正交基底:如果空间的一个基底的三个基向量互相垂 直,且长都为1,则这个基底叫做单位正交基底,
常用{ i, j, k }表示
计算单位正交基之间的数量积i j, i k, j k, i i, j j, k k.
2
学习新知 空间直角坐标系:在空间选定一点O和一个单位正交基
1.3.1空间直角坐标系
复习引入
共线向量定理: 对空间任意两个向量a、(b b 0),a / /b的
空间直角坐标系ppt课件
追问 你认为如何画空间直角坐标系才能满足直观图的要求?
问题3 在平面直角坐标系中,每一个点都可以用一对有序实数(坐标)表
示.空间直角坐标系中的每一个点是否也有类似的表示呢?
通过空间单位正交基 Ԧ, Ԧ, 建立空间直角坐标系,Ԧ, Ԧ, 为坐标向量.
对空间任意一点,对应一个向量,且点的位置由向量唯一确定,由空间向量基本
反过来,终点的坐标(, , )也就是向量的坐标.因为 = ,所以终点的坐标
(, , )就是向量的坐标.这样就建立了向量的坐标与点的坐标之间的联系.
问题4 在空间直角坐标系 中,对空间任意一点 ,或任意一个向量 ,
你能借助几何直观确定它们的坐标(, , )吗?
1,1,
②棱C1C中点的坐标为__________;
2
1
1
,0,
2
③正方形AA1B1B对角线的交点的坐标为__________.
2
1
1
1
A
D
B
C
(2)已知正四棱锥P-ABCD的底面边长为4,侧棱长为10,试建立适当的空间直角坐
标系,写出各顶点的坐标.
追问1 类比平面向量的坐标表示,空间直角坐标系中的每一个向量
是否也能用坐标表示?
如图,作 = .由空间向量基本定理,存在唯一的有序实数组(, , ),
使 = Ԧ + Ԧ + .①
因此,空间直角坐标系中的向量与有序实数组( , , )具有一一对
(3)与点关于平面对称的点.
谁不存在谁变号
延伸探究 试写出例1中点A分别关于平面、轴、坐标原点的对称点.
高中数学《空间直角坐标系》
空间直角坐标系1.空间直角坐标系定义: 如图,以A 为原点,分别 以OD,O,A,OB 的方向为正方向, 建立三条数轴 x 轴.y 轴.z 轴。
这时建立了一个空间直角坐标系Oxyz. 1)叫做坐标原点 2)x 轴,y 轴,z 轴叫做坐标轴. 3)过每两个坐标轴的平面叫做坐标面。
2.右手表示法: 令右手大拇指、食指和中指相互垂直时,可能形成的位置。
大拇指指向为x 轴正方向,食指指向为y 轴正向,中指指向则为z 轴正向,这样也可以决定三轴间的相位置。
用右手握住z 轴,当右手的四个手指从x 轴正向以°90的角度转向y 轴的正向时,大拇指的指向就是 z 轴的正向1.坐标轴上的点与坐标平面上的点的坐标的特点:x 轴上的点的坐标的特点:P(m ,0,0),纵坐标和竖坐标都为零. y 轴上的点的坐标的特点:P(0,m ,0),横坐标和竖坐标都为零. z 轴上的点的坐标的特点:P(0,0,m ),横坐标和纵坐标都为零. x Oy 坐标平面内的点的特点:P(m ,n ,0),竖坐标为零. x Oz 坐标平面内的点的特点:P(m ,0,n ),纵坐标为零. y Oz 坐标平面内的点的特点:P(0,m ,n ),横坐标为零. 2.已知两点的中点坐标:平面上的中点坐标公式可以推广到空间,即设A(1x ,1y , 1z ),B(2x ,2y 2z ),则AB 中点的坐标为(211212,,222z z x x y y +++).请同学门熟记以上公式.3.一个点关于坐标轴和坐标平面的对称点的坐标特点点P (x ,y ,z)关于坐标原点的对称点为1P (-x ,-y ,-z );点P (x ,y ,z)关于坐标横轴(x轴)的对称点为2P (x ,-y ,-z ); 点P (x ,y ,z)关于坐标纵轴(y轴)的对称点为3P (-x ,y ,z ); 点P (x ,y ,z)关于坐标竖轴(z轴)的对称点为4P (-x ,-y ,-z ); 点P (x ,y ,z)关于xOy坐标平面的对称点为5P (x ,y ,-z ); 点P (x ,y ,z)关于yOz坐标平面的对称点为6P (-x ,y ,z ;) 点P (x ,y ,z)关于zOx坐标平面的对称点为7P (x ,-y ,z ).点评:其中记忆的方法为:关于谁谁不变,其余的相反.如关于横轴(x轴)的对称点,横坐标不变,纵坐标、竖坐标变为原来的相反数;关于xOy坐标平面的对称点,横坐标、纵坐标不变,竖坐标变为原来的相反数. 练习题2.已知点B(1,1,1),分别求出该点关于x轴、z轴、原点和xOy坐标平面的对称点的坐标.3.在空间直角坐标系O-xyz中,关于点(0,22m +,m)一定有下列结论( )A.在xOy坐标平面上 B.在xOz坐标平面上 C.在yOz坐标平面上 D.以上都不对4.在空间直角坐标系中, 点P(1,2,3)关于x 轴对称的点的坐标为( )A .(-1,2,3)B .(1,-2,-3)C .(-1, -2, 3)D .(-1 ,2, -3) 5.在空间直角坐标系中, 点P(3,4,5)关于yOz 平面对称的点的坐标为( ) A .(-3,4,5) B .(-3,- 4,5) C .(3,-4,-5) D .(-3,4,-5) 5.点P( 1,0, -2)关于原点的对称点P /的坐标为( )A .(-1, 0, 2)B .(-1,0, 2)C .(1 , 0 ,2)D .(-2,0,1)6.点P( 1, 4, -3)与点Q(3 , -2 , 5)的中点坐标是( )A .( 4, 2, 2)B .(2, -1, 2)C .(2, 1 , 1)D . 4, -1, 2)二,两点间距离公式:(1)已知两点M 1(x 1, y 1, z 1), M 2(x 2, y 2, z 2),求此两点间的距离d 。
空间直角坐标系ppt课件
上的单位向量,且O→B=-i+j-k,则点 B 的坐标是
√A.(-1,1,-1)
B.(-i,j,-k)
C.(1,-1,-1)
D.不确定
由空间直角坐标系中点的坐标的定义可知点B的坐标为(-1,1,-1).
D.5,23,2
由题图知,点 P 在 x 轴、y 轴、z 轴上的射影分别为 P1,P2,P3, 它们在坐标轴上的坐标分别是32,5,4,故点 P 的坐标是32,5,4.
3.已知点 B 的坐标是(-1,2,1),则|O→B|=
√A. 6
B.6
C. 5
D.5
由 B 点坐标是(-1,2,1),得O→B=-i+2j+k,故|O→B|2=1+4+1=6, 故|O→B|= 6.
特别提醒
空间点对称问题的解题策略 (1)空间点的对称问题可类比平面直角坐标系中点的对称问题,要掌握对 称点的变化规律,才能准确求解. (2)对称点的问题常常采用“关于谁对称,谁保持不变,其余坐标相反” 这个结论.
训练3.已知点P(2,3,-1)关于坐标平面Oxy的对称点为P1,点P1关于坐标平面 Oyz 的 对 称 点 为 P2 , 点 P2 关 于 z 轴 的 对 称 点 为 P3 , 则 (点2,P-3 的3,坐1)标 为 ______________.
则p=a+2b+3c=x(a+b)+y(a-b)+zc=(x+y)a+(x-y)b+zc,
x+y=1,
x=23,
所以xz=-3y,=2,解得yz==3-,12,
故 p 在基底{a+b,a-b,c}下的坐标为32,-21,3.
二、空间点及向量的坐标表示
探究 2 在平面直角坐标系中,{i,j}为一个单位正交基底,O→A=xi+yj,那么向 量O→A的坐标为(x,y),点 A 的坐标为(x,y);如果设{i,j,k}为空间的单位正交 基底,O→A=xi+yj+zk,猜想空间向量O→A的坐标是什么?点 A 的坐标是什么? 提示 (x,y,z);(x,y,z).
空间直角坐标系PPT
八个部分,每一个称为一个
Ⅳ
Ⅰ
卦限. x、y、z 轴的正半轴
的卦限称为第 I 卦限,
O
Ⅶx
Ⅴ
Ⅵy
八卦限
Ⅷ
从第 I 卦限开始,从 Oz 轴的正向向下看,按逆时 针的方向,先后出现的卦限依次称为第 Ⅱ、Ⅲ、
Ⅳ 卦限; 第Ⅰ、Ⅱ 、 Ⅲ、 Ⅳ 卦限下面的空间部
分依次称为第 Ⅴ、Ⅵ、Ⅶ、Ⅷ 卦限.
空间的点就与一组有序数组 x,y,z 之间建
y
轴的
正向,这时大拇指所指的方向就是 z 轴的正向. 这个
法则叫做右手法则.
这样就组成了空间直角坐标系. O 称为坐标原
点,每两个坐标轴确定的平面称为坐标平面,简称为
坐标面. x 轴与 y 轴所确定的坐标面称为 x y 坐表
面,类似地有 y z 坐标面,z x 坐标面. z
这些坐标面把空间分成
Ⅲ
Ⅱ
() () ()
这样,三元一次方程组的解,可用三阶行列式表示,
当 D 0 时,
x Dx , y Dy , z Dz .
D
D
D
a1 b1 c1
其中D a2 b2 c2 称为方程组的系数行列式,
a3 b3 c3
Dx , D y 和 Dz 是系数行列式中x 、 y 和 z 的系数
依次分别换成方程组右端的常数项而成的行列式.
行列式 a1 c1 是把系数行列式中 y 的系数 a2 c2
b1,b2 换成常数项 c1,c2 而成的行列式 ,记为 Dy .
所以,二元一次方程组的解又可表示为:
x Dx , y Dy (其中D 0)
D
D
例 1 解方程组
2x 3 y 7 0 5x 4 y 6 0
1.3.1 空间直角坐标系(解析版)..
1.3空间向量及其运算的坐标表示1.3.1空间直角坐标系知识梳理知识点一空间直角坐标系1.空间直角坐标系及相关概念(1)空间直角坐标系:在空间选定一点O 和一个单位正交基底{i ,j ,k },以O 为原点,分别以i ,j ,k 的方向为正方向,以它们的长为单位长度建立三条数轴:x 轴、y 轴、z 轴,它们都叫做坐标轴,这时我们就建立了一个空间直角坐标系Oxyz .(2)相关概念:O 叫做原点,i ,j ,k 都叫做坐标向量,通过每两个坐标轴的平面叫做坐标平面,分别称为Oxy 平面、Oyz 平面、Ozx 平面,它们把空间分成八个部分.2.右手直角坐标系在空间直角坐标系中,让右手拇指指向x 轴的正方向,食指指向y 轴的正方向,如果中指指向z 轴的正方向,则称这个坐标系为右手直角坐标系.知识点二空间一点的坐标在空间直角坐标系Oxyz 中,i ,j ,k 为坐标向量,对空间任意一点A ,对应一个向量OA →,且点A 的位置由向量OA →唯一确定,由空间向量基本定理,存在唯一的有序实数组(x ,y ,z ),使OA →=x i +y j +z k .在单位正交基底{i ,j ,k }下与向量OA →对应的有序实数组(x ,y ,z )叫做点A 在此空间直角坐标系中的坐标,记作A (x ,y ,z ),其中x 叫做点A 的横坐标,y 叫做点A 的纵坐标,z 叫做点A 的竖坐标.知识点三空间向量的坐标在空间直角坐标系Oxyz 中,给定向量a ,作OA →=a .由空间向量基本定理,存在唯一的有序实数组(x ,y ,z ),使a =x i +y j +z k .有序实数组(x ,y ,z )叫做a 在空间直角坐标系Oxyz 中的坐标,上式可简记作a =(x ,y ,z ).题型探究题型一、空间中点的位置及坐标特征1.若空间一点()21,1,11M a a +-+在z 轴上,则=a ()A .1B .0C .±1D .1-【答案】D【详解】因为空间一点()21,1,11M a a +-+在z 轴上,所以21010a a +=⎧⎨-=⎩,解得1a =-;故选:D2.在空间直角坐标系中,点()2,0,3P 位于()A .x 轴上B .y 轴上C .xOy 平面上D .xOz 平面上【答案】D【详解】在空间直角坐标系Oxyz 中,点()2,0,3P ,因为坐标中0y =,所以点()2,0,3P 位于xOz 平面上.故选:D.3.已知点A '是点(2,9,6)A 在坐标平面Oxy 内的射影,则点A '的坐标为()A .(2,0,0)B .(0,9,6)C .(2,0,6)D .(2,9,0)【答案】D【详解】因为点A '是点(2,9,6)A 在坐标平面Oxy 内的射影,所以A '的竖坐标为0,横、纵坐标与A 点的横、纵坐标相同,所以点A '的坐标为(2,9,0).故选:D4.已知点(),,P x y z ,若点P 在x 轴上,则点P 坐标为___________;若点P 在yOz 平面内,则点P 坐标为___________.若点P 在z 轴上,则点P 坐标为___________;若点P 在xOz 平面内,则点P 坐标为___________.【答案】(),0,0x ()0,,y z ()0,0,z (),0,x z 【详解】若点P 在x 轴上,则点P 坐标为(),0,0x ;若点P 在yOz 平面内,则点P 坐标为()0,,y z ;若点P 在z 轴上,则点P 坐标为()0,0,z ;若点P 在xOz 平面内,则点P 坐标为(),0,x z .故答案为:(),0,0x ;()0,,y z ;()0,0,z ;(),0,x z .题型二、求空间图形上的点的坐标1.如图,在长方体1111ABCD A B C D -中,3AB =,1AD =,12AA =,先建立空间直角坐标系,再求长方体各顶点的坐标.【详解】以点D 为原点,分别以射线DA 、DC 、1DD 为x 轴、y 轴、z 轴的正半轴,建立空间直角坐标系,则()0,0,0D 、()1,0,0A 、()1,3,0B 、()0,3,0C 、()10,0,2D 、()11,0,2A 、()11,3,2B 、()10,3,2C .2.如图所示,在空间直角坐标系中,2BC =,原点O 是BC 的中点,点D 在平面yOz 内,且90BDC ∠=,30DCB ∠=,则点D 的坐标为().A .13(0)22--,,B .13(0)22-,,C .13(0)22-,,D .13(0)22,,【答案】B【详解】过点D 作DE BC ⊥,垂足为E ,在Rt BDC 中,90BDC ∠=,30DCB ∠=,2BC =,得||1BD =、3CD =,所以3sin 302DE CD =⋅=,所以11cos 60122OE OB BE OB BD =-=-⋅=-=,所以点D 的坐标为13(0)22-,,,故选:B .3.如图,长方体ABCD A B C D ''''-中,底面ABCD 是边长为10的正方形,高AA '为12,点P 为体对角线BD '的中点,则P 点坐标为()A .()5,6,5B .()6,6,5C .()5,5,6D .()6,5,5【答案】C【详解】长方体ABCD A B C D ''''-中,底面ABCD 是边长为10的正方形,高AA '为12,所以()0,0,12D ',()10,10,0B ,所以对角线BD '的中点P 点坐标为010010012,,222P +++⎛⎫⎪⎝⎭即()5,5,6,故选:C.4.在如图所示的长方体1111ABCD A B C D -中,已知()10,2,2D ,()3,0,0B ,则点1C 的坐标为________.【答案】()3,2,2【详解】在长方体1111ABCD A B C D -中,已知()10,2,2D ,()3,0,0B ,所以3AB =,2AD =,12AA =,所以点1C 的坐标为()3,2,2,故答案为:()3,2,2题型三、关于坐标轴、坐标平面、原点对称的点的坐标1.如图,分别求点()2,3,4,()1,2,3-关于各个坐标平面、坐标轴、原点对称的点的坐标.【详解】根据空间直角坐标系的概念,可得:点()2,3,4关于坐标平面,,xOy xOz yOz 的对称点分别为()()()2,3,4,2,3,4,2,3,4---;点()1,2,3-关于坐标平面,,xOy xOz yOz 的对称点分别为()()()1,2,31,2,,,31,2,3----;点()2,3,4关于x 轴、y 轴和z 轴的对称点分别为()()()2,3,4,2,3,4,2,3,4------;点()1,2,3-关于x 轴、y 轴和z 轴的对称点分别为()()()1,2,31,2,,,31,2,3-----;点()2,3,4关于原点O 的对称点分别为()2,3,4---;点()1,2,3-关于原点O 的对称点分别为()1,2,3--.2.已知点(3,2,1)P -,分别写出它关于zOx 平面、x 轴、原点的对称点的坐标.【详解】根据空间直角坐标系的定义,可得:点(3,2,1)P -关于平面zOx 的对称点为1(3,2,1)P ;点(3,2,1)P -关于x 轴的对称点为2(3,2,1)P -;点(3,2,1)P -关于原点的对称点为3(3,2,1)P --.3.(多选)下列各命题正确的是()A .点()1,2,3-关于平面xOz 的对称点为()1,2,3B .点1,1,32⎛⎫- ⎪⎝⎭关于y 的对称点为1,1,32⎛⎫- ⎪⎝⎭C .点()2,1,3-到平面yOz 的距离为1D .设{},,i j k 是空间向量单位正交基底且以i ,j ,k 的方向为x ,y ,z 轴的正方向建立了一个空间直角坐标系,若324m i j k =-+,则()3,2,4m =-【答案】ABD【详解】对于A ,点()1,2,3-关于平面xOz 的对称点为()1,2,3,所以A 正确,对于B ,点1,1,32⎛⎫- ⎪⎝⎭关于y 的对称点为1,1,32⎛⎫- ⎪⎝⎭,所以B 正确,对于C ,点()2,1,3-到平面yOz 的距离为2,所以C 错误,对于D ,由于{},,i j k 是空间向量单位正交基底且以i ,j ,k 的方向为x ,y ,z 轴的正方向建立了一个空间直角坐标系,且324m i j k =-+,所以ۥ,所以D 正确,故选:ABD4.已知()2,3,1A v μ--+关于x 轴的对称点是(),7,6A λ'-,则,,v λμ的值为()A .2,4,5v λμ=-=-=-B .2,4,5v λμ==-=-C .2,10,8v λμ=-==D .2,10,7v λμ===【答案】D【详解】由题意得:()()27361v λμ⎧=⎪=--⎨⎪-=--+⎩,解得:2107v λμ=⎧⎪=⎨⎪=⎩.故选:D.题型四、求空间两点的中点坐标1.在空间直角坐标系中,已知点(1,0,1)A -,(5,2,1)B ,则线段AB 的中点坐标是()A .(1,1,0)B .(4,2,2)C .(2,2,0)D .(2,1,1)【答案】D【详解】因为点(1,0,1)A -,(5,2,1)B ,所以线段AB 的中点坐标是150211,,222-+++⎛⎫⎪⎝⎭,即()2,1,1.故选:D2.在空间直角坐标系中,记点(1,1,2)M -关于x 轴的对称点为N ,关于yOz 平面的对称点为P ,则线段NP 中点坐标为()A .(1,0,0)B .(1,1,0)--C .(1,0,1)D .(0,0,0)【答案】D【详解】依题意,点(1,1,2)M -关于x 轴的对称点的坐标为(1,1,2)N ---,关于yOz 平面的对称点为(1,1,2)P ,所以线段NP 中点坐标为(0,0,0).故选:D3.已知三角形ABC 的三个顶点()()()2,0,00,3,00,0,4A B C ,,,则三角形的重心的坐标为___________.【答案】24,1,33⎛⎫⎪⎝⎭【详解】设重心坐标为(),,x y z ,由重心坐标公式得200233x ++==,03000441,333y z ++++====.所以重心的坐标为24,1,33⎛⎫⎪⎝⎭.故答案为:24,1,33⎛⎫⎪⎝⎭.题型五、空间向量的坐标1.在空间直角坐标系中,已知点()4,3,5A -,()2,1,7B --,则AB =uu u r______.【答案】(6,4,12)--【详解】(24,1(3),75)(6,4,12)AB =------=--故答案为:(6,4,12)--2.如图,在直三棱柱ABC A 1B 1C 1的底面△ABC 中,CA =CB =1,∠BCA =90°,棱AA 1=2,M ,N 分别为A 1B 1,A 1A 的中点,试建立恰当的坐标系求向量BN ,1BA ,1A B uuu r的坐标.【答案】BN =(1,-1,1),1BA =(1,-1,2),1A B uuu r=(-1,1,-2).【详解】由题意知CC 1⊥AC ,CC 1⊥BC ,AC ⊥BC ,以点C 为原点,分别以CA ,CB ,CC 1的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系C xyz ,如图所示.则B (0,1,0),A (1,0,0),A 1(1,0,2),N (1,0,1),∴BN =(1,-1,1),1BA =(1,-1,2),1A B uuu r=(-1,1,-2).跟踪训练1.设z 为任一实数,则点()2,2,z 表示的图形是()A .z 轴B .与平面xOy 平行的一直线C .平面xOyD .与平面xOy 垂直的一直线【答案】D【详解】在空间直角坐标系中画出动点()2,2,z 表示的图形如图所示:故点()2,2,z 表示的图形为与平面xOy 垂直的一直线,故选:D.2.在空间直角坐标系O xyz -中,已知点M 是点()3,4,5N 在坐标平面Oxy 内的射影,则的坐标是()A .()3,0,5B .()0,4,5C .()3,4,0D .()0,0,5【答案】C【详解】点()3,4,5N 在坐标平面Oxy 内的射影为()3,4,0,故点M 的坐标是()3,4,0故选:C3.判断正误(1)空间直角坐标系中,在x 轴上的点的坐标一定是()0,,b c 的形式.()(2)空间直角坐标系中,在xOz 平面内的点的坐标一定是(),0,a c 的形式.()(3)空间直角坐标系中,点()1,3,2关于yOz 平面的对称点为()1,3,2-.()【答案】⨯√√【详解】(1)⨯.空间直角坐标系中,在x 轴上的点的坐标一定是(),0,0a 的形式.(2)√.在xOz 平面内的点,y 坐标必为0.(3)√.空间直角坐标系中,点(),,a b c 关于yOz 平面的对称点为(),,a b c -.4.(多选)在空间直角坐标系中,下列结论中正确的是()A .x 轴上的点坐标可以表示为()0,,b cB .y 轴上的点坐标可以表示为()0,,0bC .xOz 平面上的点坐标可以表示为(),0,a cD .yOz 平面上的点坐标可以表示为()0,,b c 【答案】BCD【详解】x 轴上的点坐标可以表示为(),0,0a ,故A 不正确;y 轴上的点坐标可以表示为()0,,0b 正确;xOz 平面上的点坐标可以表示为(),0,a c 正确;yOz 平面上的点坐标可以表示为()0,,b c 正确.故选:BCD .5.已知正方体ABCD A B C D ''''-的棱长为2,建立如图所示的空间直角坐标系,写出正方体各顶点的坐标.【详解】依题意得()()()()0,0,0,2,0,0,2,2,0,0,2,0A B C D ()()()()11110,0,2,2,0,2,2,2,2,0,2,2A B C D 6.如图,在长方体1111ABCD A B C D -中,4AB =,3AD =,15AA =,点N 为棱1CC 的中点,以点A 为原点,分别以AB ,AD ,1AA 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系.求点A ,B ,C ,D ,1A ,1B ,1C ,1D ,及N 的坐标.【详解】由题意,知()0,0,0A .由于点B 在x 轴上,且4AB =,则它的横坐标为4,又它的纵坐标和竖坐标都为0,所以点B 的坐标为()4,0,0.同理可得()0,3,0D ,()10,0,5A .由于点C 在xOy 平面内,则它的竖坐标为0,点C 在x 轴、y 轴上的投影依次为点B 、点D ,又4OB =,3OD =,所以点C 的横坐标和纵坐标依次为4,3,即点C 的坐标为()4,3,0.同理可得()14,0,5B ,()10,3,5D .点1C 在x 轴、y 轴和z 轴上的投影依次为点B 、点D 和点1A ,所以点1C 的坐标为()4,3,5.又N 为1CC 的中点,所以点N 的坐标为443305,,222+++⎛⎫ ⎪⎝⎭,即54,3,2N ⎛⎫ ⎪⎝⎭.7.在空间直角坐标系中,分别求点(2,1,4)P -关于x 轴、xOy 平面、坐标原点对称的点的坐标.【详解】点(2,1,4)P -关于x 轴对称的点的坐标为()2,1,4---,关于xOy 平面对称的点的坐标为()2,1,4--,关于坐标原点对称的点的坐标为()2,1,4--.8.在空间直角坐标系下,点()3,6,2M -关于y 轴对称的点的坐标为()A .()3,6,2-B .()3,6,2---C .()3,6,2-D .()3,6,2--【答案】C【详解】关于y 轴对称的点的y 坐标不变,,x z 坐标变为相反数,()3,6,2M ∴-关于y 轴对称的点为()3,6,2-.故选:C.9.空间直角坐标系中,已知点()1,1,1M 关于x 轴的对称点为N ,则点N 的坐标为()A .()1,1,1--B .()1,1,1-C .()1,1,1--D .()1,1,1--【答案】A【详解】因为点()1,1,1M 关于x 轴的对称点为N ,所以()1,1,1N --.故选:A10.在空间直角坐标系下,点()2,6,1M -关于平面yOz 对称的点的坐标为()A .()2,6,1B .()2,6,1-C .()2,6,1---D .()2,6,1--【答案】A【详解】点()2,6,1M -关于平面yOz 对称的点的坐标为()2,6,1.故选:A.11.在空间直角坐标系Oxyz 中,点P (1,2,3)关于xOy 平面的对称点坐标是()A .(1,2,)3-B .1,23(,)--C .(1,2,3)-D .(1,2,3)--【答案】A【详解】在空间直角坐标系O xyz -,关于xOy 平面的对称点只有竖坐标为原来的相反数,所以点P 关于平面xOy 对称点是()1,2,3-.故选:A12.在空间直角坐标系O-xyz 中,点(3,2,5)A -关于xoz 平面对称的点的坐标为()A .(3,2,5)-B .(3,2,5)--C .(3,2,5)D .(3,2,5)-【答案】C【详解】关于xoz 平面对称的点,y 坐标互为相反数,所以(3,2,5)A -关于xoz 平面对称的点的坐标为(3,2,5).故选:C13.(多选)在空间直角坐标系中,已知点(),,P x y z ,下列叙述正确的是()A .点P 关于x 轴对称的点()1,,P x y z --B .点P 关于y 轴对称的点()2,,P x y z --C .点P 关于原点对称的点()3,,P x y z ---D .点P 关于yOz 平面对称的点()4,,P x y z -【答案】ABC【详解】由点(),,P x y z ,对于A ,点P 关于x 轴对称的点()1,,P x y z --,故A 正确;对于B ,点P 关于y 轴对称的点()2,,P x y z --,故B 正确;对于C ,点P 关于原点对称的点()3,,P x y z ---,故C 正确;对于D ,点P 关于yOz 平面对称的点()4,,P x y z -,故D 错误.故选:ABC.14.空间直角坐标系中的两点()()1,2,3,1,0,1P Q -,则线段PQ 的中点M 的坐标为()A .()0,2,4B .()0,1,2C .()2,2,2D .()2,2,2---【答案】B【详解】设M 的坐标为(,,)x y z ,则1(1)022*******x y z +-⎧==⎪⎪+⎪==⎨⎪+⎪==⎪⎩即M 的坐标为(0,1,2),故选:B.15.已知()4,1,3A 、()2,4,3B --,则线段AB 中点的坐标是______.【答案】31,,32⎛⎫- ⎪⎝⎭【详解】已知()4,1,3A 、()2,4,3B --,则线段AB 中点的坐标是31,,32⎛⎫- ⎪⎝⎭.故答案为:31,,32⎛⎫- ⎪⎝⎭.16.如图PA 垂直于正方形ABCD 所在的平面,,M N 分别是,AB PC 的中点,并且1==PA AB .试建立适当的空间直角坐标系,求向量MN的坐标.【答案】11(0,,)22MN =【详解】因为1==PA AB ,PA ⊥平面ABCD ,AB AD ⊥,所以,,AB AD AP 是两两垂直的单位向量.设123e e AB AD AP e ===,,,以123{e e }e ,,为单位正交基底建立空间直角坐标系A xyz -,连接AC .如图所示,因为1111()2222MN MA AP PN AB AP PC AB AP PA AC ++=-++=-+=++23111111()e 222222AB AP PA AB AD AD AP e =-++++=+=+所以11(0)22MN =,,.17.如图所示,在正方体ABCD —A 1B 1C 1D 1中建立空间直角坐标系,若正方体的棱长为1,则AB 的坐标为____,1DC 的坐标为____,1B D 的坐标为_______.【答案】(1,0,0)(1,0,1)(1,1,1)--【详解】如题图示,11(0,0,0),(1,0,0),(0,1,0),(1,0,1),(1,1,1)A B D B C ,∴(1,0,0)(0,0,0)(1,0,0)AB =-=,1(1,1,1)(0,1,0)(1,0,1)DC =-=,1(0,1,0)(1,0,1)(1,1,1)B D =-=--.故答案为:(1,0,0),(1,0,1),(1,1,1)--.18.(多选)如图,在正三棱柱111ABC A B C -中,已知ABC 的边长为2,三棱柱的高为111,,BC B C 的中点分别为1,D D ,以D 为原点,分别以1,,DC DA DD 的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系,则下列空间点及向量坐标表示正确的是()A .()10,3,1A B .()11,0,1CC .()10,3,1AD =-D .()13,3,1B A =-【答案】ABC【详解】在等边ABC 中,2,1AB BD ==,所以3AD =,则()()()1110,3,0,0,3,1,1,0,1,)(0,0,1A A C D ,()11,0,1B -,则()()110,3,1,1,3,1AD B A =-=-.故选:ABC高分突破1.点()1,2,3P -在坐标平面Oxy 内的射影的坐标为()A .()1,2,3B .()1,2,3---C .()1,2,0D .()0,0,3-【答案】C【详解】在空间直角坐标系中,可得点()1,2,3P -在坐标平面Oxy 内的射影的坐标为()1,2,0.故选:C.2.如图,在长方体1111ABCD A B C D -中,3AD =,4DC =,12DD =,以DA ,DC ,1DD 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,则点1B 的空间直角坐标为()A .()4,3,2B .()2,4,3C .()3,4,2D .()3,2,4【答案】C【详解】横坐标为点1B 到坐标面yDz 的距离,纵坐标为点1B 到坐标面xDz 的距离,竖坐标为点1B 到坐标面xDy 的距离,因为3AD =,4DC =,12DD =,所以点1B 的空间直角坐标为()3,4,2.故选:C.3.已知空间向量(1,2,3)a =-,则向量a 在坐标平面xOz 上的投影向量是()A .(0,1,2)-B .(1,2,0)-C .(0,2,3)D .(1,0,3)-【答案】D【详解】根据空间中点的坐标确定方法知,空间中点(1,2,3)A =-在坐标平面xOz 上的投影坐标,纵坐标为0,横坐标与竖坐标不变.所以空间向量(1,2,3)a =-在坐标平面xOz 上的投影向量是:(1,0,3)-,故选:D.4.在空间直角坐标系中,点()2,1,2M -和点()2,1,2N --的位置关系是()A .关于x 轴对称B .关于z 轴对称C .关于xOz 平面对称D .关于yOz 平面对称【答案】C【详解】在空间直角坐标系中,点()2,1,2M -和点()2,1,2N --两点x 坐标,z 坐标相同,y 坐标相反,所以()2,1,2M -和点()2,1,2N --关于xOz 平面对称,故选:C.5.若点()(),,0P x y z xyz ≠关于xOy 的对称点为A ,关于z 轴的对称点为B ,则A 、B 两点的对称是()A .关于xOy 平面对称B .关于x 轴对称C .关于y 轴对称D .关于坐标原点对称【答案】D【详解】点(),,P x y z 关于xOy 的对称点为(),,A x y z -,关于z 轴的对称点为(),,B x y z --,显然,A B 两点关于坐标原点对称.故选:D .6.笛卡尔是世界著名的数学家,他因将几何坐标体系公式化而被认为是解析几何之父.据说在他生病卧床时,还在反复思考一个问题:通过什么样的方法,才能把“点”和“数”联系起来呢?突然,他看见屋顶角上有一只蜘蛛正在拉丝织网,受其启发建立了笛卡尔坐标系的雏形.在如图所示的空间直角坐标系中,单位正方体顶点A 关于x 轴对称的点的坐标是()A .()1,1,1--B .()1,1,1C .()1,1,1-D .()1,1,1---【答案】B【详解】由图可知,点(1,1,1)A --,所以点A 关于x 轴对称的点的坐标为(1,1,1).故选:B.7.在空间直角坐标系O xyz -,点()1,2,5A -关于平面yoz 对称的点B 为()A .()1,2,5--B .()1,2,5--C .()1,2,5---D .()1,2,5-【答案】B【详解】关于平面yoz 对称的点:横坐标互为相反数,纵坐标和竖坐标相同,故选:B8.向量(1,2,0),(1,0,6)OA OB ==-,其中C 为线段AB 的中点,则点C 的坐标为()A .(0,2,6)B .(2,2,6)--C .(0,1,3)D .(1,1,3)--【答案】C【详解】∵(1,2,0),(1,0,6)OA OB ==-,∴由中点坐标公式可得,线段AB 的中点C 的坐标为()0,1,3.故选:C .9.在空间直角坐标系中,点(1,4,3)P -与点Q (3,2,5)-关于点M 对称,则点M 的坐标为()A .(4,2,2)B .(2,1,2)-C .(2,1,1)D .(4,1,2)-【答案】C【详解】因为(1,4,3)P -与点Q (3,2,5)-,M 为PQ 的中点,所以由中点公式可知M 的坐标为()2,1,1.故选:C10.已知点1M ,2M 分别与点(1,2,3)M -关于x 轴和z 轴对称,则12M M =()A .(2,0,6)-B .(2,0,6)-C .(0,4,6)-D .(0,4,6)-【答案】A【详解】依题意,点(1,2,3)M -关于x 轴对称点1(1,2,3)M -,关于z 轴对称点2(1,2,3)M -,所以12(2,0,6)M M =-.故选:A11.(多选)已知正方体1111ABCD A B C D -的棱长为2,建立如图所示的空间直角坐标系Dxyz ,则()A .点1C 的坐标为(2,0,2)B .()12,2,2C A =--C .1BD 的中点坐标为(1,1,1)D .点1B 关于y 轴的对称点为(-2,2,-2)【答案】BCD【详解】根据题意可知点1C 的坐标为(0,2,2),故A 错误;由空间直角坐标系可知:1(2,0,0),(2,2,2)A C A =--,故B 正确;由空间直角坐标系可知:1(2,2,0),(0,0,2)B D ,故1BD 的中点坐标为(1,1,1),故C 正确;点1B 坐标为(2,2,2),关于于y 轴的对称点为(-2,2,-2),故D 正确,故选:BCD12.(多选)已知四边形ABCD 的顶点分别是()312A -,,,()121B -,,,()113C --,,,()353D -,,,那么以下说法中正确的是()A .()233AB =--,,B .A 点关于 x 轴的对称点为()312-,,C .AC 的中点坐标为()201--,,D .D 点关于xOy 面的对称点为()353--,,【答案】ABD【详解】由于四边形ABCD 的顶点分别是(3A ,1-,2),(1B ,2,1)-,(1C -,1,3)-,(3D ,5-,3),对于A :(2,3,3)AB =--,故A 正确;对于B :点A 关于x 轴对称的点的坐标为(3,1,2)-,故B 正确;对于C :AC 的中点坐标为(1,0,1)2-,故C 错误;对于D :点D 关于xOy 面的对称点为(3,5-,3)-,故D 正确;故选:ABD .13.点(),,P a b c 到坐标平面yOz 的距离是______.【答案】a【详解】由已知可得点(),,P a b c 到坐标平面yOz 的距离是a .故答案为:a .14.在空间直角坐标系中,点P 的坐标为()2,4,3-,过P 作xOz 平面的垂线,垂足为Q ,则Q 点的坐标为______.【答案】()2,0,3Q 【详解】由于垂足Q 在xOz 平面内,可设(),0,x z ,因为PQ ⊥平面xOz ,所以,P Q 两点的横坐标和竖坐标相等,故()2,0,3Q ,故答案为:()2,0,3Q .15.在空间直角坐标系中,点()1,4,2M --在xOz 平面上的射影的坐标是______,点M 关于原点对称的点的坐标是______.【答案】()1,0,2--()1,4,2-【详解】点()1,4,2M --在xOz 平面上的射影的坐标是()1,0,2--,点()1,4,2M --关于原点对称的点的坐标是()1,4,2-,故答案为:()1,0,2--,()1,4,2-16.若点()2,3,1A v μ--+关于x 轴的对称点为(),5,6A λ'-,则λ=___________,μ=___________,=v ___________.【答案】287【详解】点()2,3,1A v μ--+关于x 轴的对称点为()2,3,1v μ--,又其坐标为(),5,6λ-,故可得2,8,7v λμ===.故答案为:2;8;7.17.在空间直角坐标系中,已知点(,,)P x y z ,下列叙述中,正确的序号是_______.①点P 关于x 轴的对称点是1(,,)P x y z -②点P 关于yOz 平面的对称点是2(,,)P x y z --③点P 关于y 轴的对称点是3(,,)P x y z -④点P 关于原点的对称点是4(,,)P x y z ---【答案】④【详解】①点P 关于x 轴的对称点的坐标是(x ,y -,)z -,故①错误;②点P 关于yOz 平面的对称点的坐标是(x -,y ,)z ,则②错误;③点P 关于y 轴的对称点的坐标是(x -,y ,)z -,则③错误;④点P 关于原点的对称点的坐标是(x -,y -,)z -,故④正确,故正确的序号是④.故答案为:④.18.已知()3,1,2a =-,a 的起点坐标是()2,0,5-,则a 的终点坐标为______.【答案】()5,1,3--【详解】设a 的终点坐标为(),,x y z ,由题可得:()()2,,53,1,2x y z -+=-,故可得5,1,3x y z ==-=-,即a 的终点坐标为()5,1,3--.故答案为:()5,1,3--.19.已知(357)A -,,、(243)B -,,,设点A 、B 在yOz 平面上的射影分别为1A 、1B ,则向量11A B 的坐标为________.【答案】(0110)-,,【详解】点(357)A -,,、(243)B -,,在yOz 平面上的射影分别为1(057)A -,,、1(043)B ,,,∴向量11A B 的坐标为(0110)-,,.故答案为:(0110)-,,.20.已知三棱锥P ABC -中,PA ⊥平面ABC ,AB AC ⊥,若3PA =,1AB =,2AC =,先建立空间直角坐标系.(1)求各顶点的坐标;(2)若点D 在线段PC 上靠近点P 的三等分点,求点D 的坐标.【详解】(1)因为PA ⊥平面ABC ,所以PA AC ⊥,PA AB ⊥,又因为AB AC ⊥,所以建立以点A 为原点,以射线AB 、AC 、AP 为x 轴、y 轴、z 轴的正半轴的空间直角坐标系,如图所示:因为3PA =,1AB =,2AC =,所以()0,0,0A 、()1,0,0B 、()0,2,0C 、()0,0,3P ;(2)若D 点在线段PC 上靠近P 点的三等分点,所以2CD DP =,设点D 的坐标为(),,x y z ,则020*******,1230232,12x y z +⋅⎧==⎪+⎪+⋅⎪==⎨+⎪+⋅⎪==⎪+⎩所以20,,23D ⎛⎫⎪⎝⎭.21.如图,在长方体1111ABCD A B C D -中,AB 4=,3AD =,15AA =,N 为棱1CC 的中点,分别以1,,DA DC DD 所在的直线为x 轴、y 轴、z轴,建立空间直角坐标系.(1)求点1111,,,,,,,A B C D A B C D 的坐标;(2)求点N 的坐标.【详解】(1)D 为坐标原点,则()0,0,0D ,点A 在x 轴的正半轴上,且3AD =,()3,0,0A ∴,同理可得:()0,4,0C ,()10,0,5D .点B 在坐标平面xOy 内,BC CD ⊥,BA AD ⊥,()3,4,0B ∴,同理可得:()13,0,5A ,()10,4,5C ,与B 的坐标相比,点1B 的坐标中只有z 坐标不同,115BB AA ==,()13,4,5B ∴.综上所述:()3,0,0A ,()3,4,0B ,()0,4,0C ,()0,0,0D ,()13,0,5A ,()13,4,5B ,()10,4,5C ,()10,0,5D .(2)由(1)知:()0,4,0C ,()10,4,5C ,则1CC 的中点N 为004405,,222+++⎛⎫ ⎪⎝⎭,即50,4,2N ⎛⎫ ⎪⎝⎭.22.如图,正方体OABC D A B C ''''-的棱长为a ,E ,F ,G ,H ,I ,J 分别是棱C D '',D A '',A A ',AB ,BC ,CC '的中点,写出正六边形EFGHIJ 各顶点的坐标.【答案】0,,2a E a ⎛⎫ ⎪⎝⎭,,0,2a F a ⎛⎫ ⎪⎝⎭,,0,2a G a ⎛⎫ ⎪⎝⎭,,,02a H a ⎛⎫ ⎪⎝⎭,,,02a I a ⎛⎫ ⎪⎝⎭,0,,2a J a ⎛⎫ ⎪⎝⎭.【详解】因为正方体OABC D A B C ''''-的棱长为a ,E ,F ,G ,H ,I ,J 分别是棱C D '',D A '',A A ',AB ,BC ,CC '的中点所以0,,2a E a ⎛⎫ ⎪⎝⎭,,0,2a F a ⎛⎫ ⎪⎝⎭,,0,2a G a ⎛⎫ ⎪⎝⎭,,,02a H a ⎛⎫ ⎪⎝⎭,,,02a I a ⎛⎫ ⎪⎝⎭,0,,2a J a ⎛⎫ ⎪⎝⎭23.已知三棱锥P ABC -中,PA ⊥平面ABC ,AB AC ⊥,若3PA =,2AB =,2AC =,建立空间直角坐标系.(1)求各顶点的坐标;(2)若点Q 是PC 的中点,求点Q 坐标;(3)若点M 在线段PC 上移动,写出点M 坐标.【详解】(1)在三棱锥P ABC -中,PA ⊥平面ABC ,AB AC ⊥,则射线,,AB AC AP 两两垂直,以点A 为原点,射线,,AB AC AP 分别为x ,y ,z 轴非负半轴建立空间直角坐标系,如图,所以(0,0,0)A ,(2,0,0)B ,(0,2,0)C ,(0,0,3)P .(2)由(1)知,点Q 是PC 中点,则3(0,1,)2Q .(3)由(1)知,点M 在线段PC 上移动,则点M 的横坐标为0,设其纵坐标为t (02)t ≤≤,其竖坐标z ,当M 与A 不重合时,23,3322z t z t -==-,当M 与A 重合时,z =3满足上式,因此332z t =-,所以点3(0,,3)(02)2M t t t -≤≤.。
空间直角坐标系
一、空间向量的基本概念
平面向量
空间向量
定义
具有大小和方向的量
表示法 几何表示:有向线段 AB 字母表示: a
向量的模
向量的大小 AB a
相等向量 相反向量 单位向量 零向量
长度相等且方向相同的向量 长度相等且方向相反的向量 模为1的向量,没有规定方向 模为0的向量,与任何向量共线
空间任意两个向量都可以平移到同一个平面内,
( x y z 1)
判断四点共面,或直线平行 于平面
1.下列命题中正确的有:B
(1) p xa yb p 与 a 、b 共面 ; (2) p 与 a 、b 共面 p xa yb ;
(3) MP x MA y MB P、M、A、B共面;
(4) P、M、A、B共面 MP xMA yMB ;
预备知识
数轴Ox上的点M
实数x
O
直角坐标平面上的点M
y
M
x
x
实数对(x,y)
y A(x,y)
Ox
x
一、空间直角坐标系 —Oxyz
z
竖轴
1
纵轴
o
1
1
y
x
右手直角坐标系
横轴
右手直角坐标系:在空间直角坐标系中,让 右手拇指指向 x 轴的正方向,食指指向 y 轴的 正方向,如果中指指向 z 轴的正方向,则称这 个坐标系为右手直角坐标系.
【温故知新】
平面向量基本定理:
如果e1,e2是同一平面内的两个不共线向量, 那么对于这一平面内的任一向量a,有且只有
一对实数1,2,使a=1e1+2 e2。
(e1、e2叫做表示这一平面内所有向量的一组基底。)
五、共面向量
2. 如果两个向量 a,不b 共线,
空间直角坐标系(98)
三个数轴分别称为x轴、y轴和z 轴,它们互相垂直并相交于原点
O。
空间直角坐标系具有三个基本性 质:坐标轴的正方向、单位长度
和原点位置。
坐标轴与坐标平面
x轴、y轴和z轴统称为坐标轴, 它们分别代表不同的方向。
由任意两个坐标轴确定的平面 称为坐标平面,共有三个:xy 平面、yz平面和zx平面。
坐标平面将空间分为八个象限, 每个象限内的点具有特定的坐 标符号组合。
通过已知点作给定直线的垂线,求出垂足坐标,再利用两点间
距离公式计算点到直线的距离。
两异面直线距离计算
公垂线法
找出两异面直线的公垂线,然后利用公垂线的长度计算两异面直 线的距离。
向量法
分别求出两异面直线上任意两点的向量,然后利用向量间的夹角 和模长计算两上的直线,然后利用平面几何知识 求解两直线的距离。
面。
点法式
$A(x-x_0)+B(y-y_0)+C(zz_0)=0$,其中$(x_0,y_0,z_0)$ 为平面上一点,$A,B,C$为平面
的法向量。
三点式
通过平面上不共线的三点 $(x_1,y_1,z_1),(x_2,y_2,z_2),(x_ 3,y_3,z_3)$可确定一个平面。
直线与平面位置关系判断
点在空间直角坐标系中表示
空间中的任意一点P可以用三个 实数x、y、z来表示,称为点P的
坐标,记作P(x,y,z)。
坐标x、y、z分别表示点P到x轴、 y轴和z轴的垂直距离,距离的正
负号由点P所在的象限确定。
原点O的坐标为(0,0,0),它是空 间中唯一一个三个坐标都为0的
点。
02 空间向量及其运算
几种常见的空间曲面
球面、柱面、旋转曲面等。例如,球 心在原点、半径为$R$的球面方程为 $x^2+y^2+z^2=R^2$。
【参考教案】《空间直角坐标系》(人教)
一、教学目标1. 理解空间直角坐标系的定义和基本概念。
2. 学会在空间直角坐标系中确定点的位置。
3. 掌握空间直角坐标系中线段、距离和角度的计算方法。
4. 能够应用空间直角坐标系解决实际问题。
二、教学内容1. 空间直角坐标系的定义和基本概念。
2. 如何在空间直角坐标系中确定点的位置。
3. 空间直角坐标系中线段、距离和角度的计算方法。
4. 实际问题中的应用案例。
三、教学重点与难点1. 教学重点:空间直角坐标系的定义和基本概念,确定点的位置方法,线段、距离和角度的计算方法。
2. 教学难点:空间直角坐标系中线段、距离和角度的计算方法。
四、教学方法1. 采用问题驱动的教学方法,引导学生通过观察、思考、探究和讨论来理解空间直角坐标系的概念和方法。
2. 使用多媒体课件和实物模型辅助教学,帮助学生直观地理解空间直角坐标系。
3. 结合实例和练习题,培养学生的实际应用能力。
五、教学过程1. 导入:通过简单的实例引入空间直角坐标系的概念,激发学生的兴趣。
2. 讲解:讲解空间直角坐标系的定义和基本概念,引导学生理解并掌握相关知识。
3. 实践:让学生通过实际操作,学会在空间直角坐标系中确定点的位置。
4. 讲解:讲解空间直角坐标系中线段、距离和角度的计算方法,引导学生理解和掌握相关知识。
5. 练习:布置练习题,让学生巩固所学知识,培养实际应用能力。
6. 总结:对本节课的主要内容进行总结,强调重点和难点。
7. 作业:布置作业,巩固所学知识。
六、教学评估1. 课堂提问:通过提问了解学生对空间直角坐标系概念的理解程度。
2. 练习题:布置练习题,评估学生对基本知识和计算方法的掌握情况。
3. 小组讨论:观察学生在小组讨论中的表现,了解他们的合作能力和问题解决能力。
七、教学资源1. 多媒体课件:使用课件展示空间直角坐标系的图像和动画,帮助学生直观理解。
2. 实物模型:使用模型展示空间直角坐标系,让学生更直观感受。
3. 练习题库:准备不同难度的练习题,适应不同学生的学习需求。
(整理版)空间直角坐标系的应用
空间直角坐标系的应用空间直角坐标系是在平面坐标系的根底上,通过类比推广建立的,从而可以将“坐标法〞推广到空间去解决空间几何体问题.利用空间直角坐标系解题时,依据几何体的特点建立适当的坐标系是解决问题的根底,合理、准确地求出相关点的坐标是解决问题的关键.与此同时,还要掌握空间直角坐标系中一些特殊点的坐标特点,主要有:〔1〕点P 在Ox 轴上时,其坐标为(00)x ,,;点P 在Oy 轴上时,其坐标为(00)y ,,;点P 在Oz 轴上时,其坐标为(00)z ,,. 〔2〕点P 分别在xOy 坐标平面,yOz 坐标平面或xOz 坐标平面时,其坐标分别为(0)(0)P x y P y z ,,,,,或(0)P x z ,,.〔3〕点()P x y z ,,关于x 轴对称的点为1()Q x y z --,,;关于y 轴对称的点为2()Q x y z --,,;关于z 对称的点3()Q x y z --,,.关于xOy 平面对称的点为4()Q x y z -,,;关于yOz 平面对称的点为5()Q x y z -,,;关于xOz 平面对称的点为6()Q x y z -,,.下面举例说明其应用.例1 (234)A -,,,在y 轴上求一点B ,使7AB =,那么点B 的坐标为 . 解析:由题意,设点B 的坐标为(00)y ,,7,解得3y =±故点B的坐标为(03B ,或(03B ,.例2 点3(331)(105)124A B C ⎛⎫ ⎪⎝⎭,,,,,,,,. 〔1〕求线段AB 中点D 的坐标;〔2〕证明:AC BC =;〔3〕求到A B ,两点距离相等的点()P x y z ,,的坐标x y z ,,所满足的条件. 解析:〔1〕设线段AB 中点D 的坐标为()x y z ,,, 那么312302152x y z +⎧=⎪⎪+⎪=⎨⎪+⎪=⎪⎩,,,即3232D ⎛⎫ ⎪⎝⎭,,. 〔2〕由空间两点间的距离公式,得AC =BC =AC BC ∴=. 〔3〕点()P x y z ,,到A B ,的距离相等, 那么222222(3)(3)(1)(1)(0)(5)x y z x y z -+-+-=-+-+-, 化简,得46870x y z +-+=,即到A B ,距离相等的点P 满足的条件是46870x y z +-+=.例3(1211)(423)(614)A B C --,,,,,,,,,求证:ABC △是直角三角形. 证明:222(14)(22)(113)89AB =-+--+-=, 222(16)(21)(114)75AC =-+-++-=, 222(46)(21)(34)14BC =-+++-=, 222AC BC AB ∴+=.ABC ∴△为直角三角形.例 4 如图1,直三棱柱111ABC A B C -中,1CA CB ==,90BAC ∠=,棱12AA M N =,,分别是111A B A A ,的中点.求BN 的长.解析:如图1,以C 为坐标原点O ,分别以1CACB CC ,,所在直线为x 轴,y 轴,z 轴,建立空间直角坐标系,那么(010)B ,,,(101)N ,,. 222(10)(01)(10)3BN ∴=-+-+-=.例5 如图2,正方形ABCD ,ABEF 的边长都是1,且平面ABCD ,ABEF 互相垂直,点M 在AC 上移动,点N 在BF 上移动,假设(02)CM BN a a ==<<.(1) 求MN 的长;(2) 当a 为何值时,MN 的长最小.解析:〔1〕如图2,以点B 为原点,BA BE BC ,,所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系.可求得2222010M a a N a a ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,,,,,. 22222222010212222MN a a a a a a ⎛⎫⎛⎫⎛⎫∴=-+-+--=-+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.〔2〕由〔1〕知MN =∴当a =时,MN =,即M N ,分别移动到AC BF ,的中点时,MN .。
空间直角坐标系点到平面的距离
空间直角坐标系中的点到平面的距离是一个重要的数学概念,它在几何学、物理学、工程学等领域都有着广泛的应用。
在本文中,我们将探讨空间直角坐标系中点到平面的距离的计算方法,并给出一些具体的例子来帮助读者更好地理解这一概念。
一、点到平面的距离的概念及计算公式1.1 空间直角坐标系在空间直角坐标系中,三维空间中的点可以用一个有序三元组 (x, y, z) 来表示,其中 x、y、z 分别代表该点在 x、y、z 轴上的坐标。
平面则可以用一个一般方程 ax + by + cz + d = 0 来表示,其中 a、b、c 为平面的法向量的分量,d 为平面的距离原点的距离。
1.2 点到平面的距离点到平面的距离是指空间直角坐标系中的一个点到一个平面的最短距离。
在计算中,我们可以利用点到平面距离的公式来求解。
点 P (x1, y1, z1) 到平面 ax + by + cz + d = 0 的距离可以表示为:d = |ax1 + by1 + cz1 + d| / √(a^2 + b^2 + c^2)1.3 计算公式的推导我们可以利用向量的方法来推导点到平面的距离公式。
假设平面的法向量为 n = (a, b, c),点 P 到平面上的一点 A 的向量为 r = (x1 - x, y1 - y, z1 - z),则点 P 到平面的距离可以表示为点积的形式:d = |n · r| / |n|其中|n · r| 表示 n 和 r 的点积,|n| 表示向量 n 的模。
化简后即可得到点到平面的距离公式。
二、点到平面距离的计算示例现在,我们通过一些具体的例子来演示点到平面距离的计算过程。
2.1 例题一已知点 P (1, 2, 3) 到平面 2x - y + z - 4 = 0 的距离。
按照公式,我们先计算平面的法向量 n = (2, -1, 1),然后代入点 P 的坐标,得到 r = (1, -2, -1),最后带入公式计算距离:d = |2*1 - (-1)*2 + 1*3 - 4| / √(2^2 + (-1)^2 + 1^2) = |2 + 2 + 3 - 4| / √(6) = |3| / √(6) = 3 / √(6)2.2 例题二现在我们来看一个稍复杂的例题。
空间直角坐标系讲义37页文档
31、只有永远躺在泥坑里的人,才不会再掉进坑里。——黑格尔 32、希望的灯一旦熄灭,生活刹那间变成了一片黑暗。——普列姆昌德 33、希望是人生的乳母。——科策布 34、形成天才的决定因素应该是勤奋。——郭沫若 35、学到很多东西的诀窍,就是一下子不要学很多。——洛克
空间直角坐标系讲义
51、没有哪个社会可以制订一部永远 适用的 宪法, 甚至一 条永远 适用的 法律。 ——杰 斐逊 52、法律源于人的自卫本能。——英 格索尔
53、人们通常会发现,法律就是这样 一种的 网,触 犯法律 的人, 小的可 以穿网 而过, 大的可 以破网 而出, 只有中 等的才 会坠入 网中。 ——申 斯通 54、法律就是法律它是一座雄伟的大 夏,庇 护着我 们大家 ;它的 每一块 砖石都 垒在另 一块砖 石上。 ——高 尔斯华 绥 55、今天的法律未必
实例空间直角坐标系讲解材料共29页
6、纪律是自由的第一条件。——黑格 尔 7、纪律是集体的面貌,集体的声音, 集体的 动作, 集体的 表情, 集体的 信念。 ——马 卡连柯
8、我们现在必须完全保持党的纪律, 否则一 切都会 陷入污 泥中。 ——马 克思 9、学校没有纪律便如磨坊没有水。— —夸美 纽斯
10、一个人应该:活泼而守纪律,天 真而不 幼稚, 勇敢而 鲁莽, 倔强而 有原则 ,热情 而不冲 动,乐 观而不 盲目。 ——马 克思
Thank you
Hale Waihona Puke 6、最大的骄傲于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛卡儿