2019年高考理科数学真题(江苏卷)word版

合集下载

2019年江苏省高考数学试卷以及答案解析

2019年江苏省高考数学试卷以及答案解析

绝密★启用前2019年普通高等学校招生全国统一考试(江苏卷)数学一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.(5分)已知集合A={﹣1,0,1,6},B={x|x>0,x∈R},则A∩B=.2.(5分)已知复数(a+2i)(1+i)的实部为0,其中i为虚数单位,则实数a的值是.3.(5分)如图是一个算法流程图,则输出的S的值是.4.(5分)函数y=的定义域是.5.(5分)已知一组数据6,7,8,8,9,10,则该组数据的方差是.6.(5分)从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是.7.(5分)在平面直角坐标系xOy中,若双曲线x2﹣=1(b>0)经过点(3,4),则该双曲线的渐近线方程是.8.(5分)已知数列{a n}(n∈N*)是等差数列,S n是其前n项和.若a2a5+a8=0,S9=27,则S8的值是.9.(5分)如图,长方体ABCD﹣A1B1C1D1的体积是120,E为CC1的中点,则三棱锥E﹣BCD的体积是.10.(5分)在平面直角坐标系xOy中,P是曲线y=x+(x>0)上的一个动点,则点P到直线x+y=0的距离的最小值是.11.(5分)在平面直角坐标系xOy中,点A在曲线y=lnx上,且该曲线在点A处的切线经过点(﹣e,﹣1)(e为自然对数的底数),则点A的坐标是.12.(5分)如图,在△ABC中,D是BC的中点,E在边AB上,BE=2EA,AD与CE交于点O.若•=6•,则的值是.13.(5分)已知=﹣,则sin(2α+)的值是.14.(5分)设f(x),g(x)是定义在R上的两个周期函数,f(x)的周期为4,g(x)的周期为2,且f(x)是奇函数.当x∈(0,2]时,f(x)=,g(x)=其中k>0.若在区间(0,9]上,关于x的方程f(x)=g(x)有8个不同的实数根,则k的取值范围是.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)在△ABC中,角A,B,C的对边分别为a,b,c.(1)若a=3c,b=,cos B=,求c的值;(2)若=,求sin(B+)的值.16.(14分)如图,在直三棱柱ABC﹣A1B1C1中,D,E分别为BC,AC的中点,AB=BC.求证:(1)A1B1∥平面DEC1;(2)BE⊥C1E.17.(14分)如图,在平面直角坐标系xOy中,椭圆C:+=1(a>b>0)的焦点为F1(﹣1,0),F2(1,0).过F2作x轴的垂线l,在x轴的上方,1与圆F2:(x﹣1)2+y2=4a2交于点A,与椭圆C交于点D.连结AF1并延长交圆F2于点B,连结BF2交椭圆C 于点E,连结DF1.已知DF1=.(1)求椭圆C的标准方程;(2)求点E的坐标.18.(16分)如图,一个湖的边界是圆心为O的圆,湖的一侧有一条直线型公路l,湖上有桥AB(AB是圆O的直径).规划在公路l上选两个点P,Q,并修建两段直线型道路PB,QA,规划要求:线段PB,QA上的所有点到点O的距离均不小于...圆O的半径.已知点A,B到直线l的距离分别为AC和BD(C,D为垂足),测得AB=10,AC=6,BD=12(单位:百米).(1)若道路PB与桥AB垂直,求道路PB的长;(2)在规划要求下,P和Q中能否有一个点选在D处?并说明理由;(3)在规划要求下,若道路PB和QA的长度均为d(单位:百米),求当d最小时,P、Q两点间的距离.19.(16分)设函数f(x)=(x﹣a)(x﹣b)(x﹣c),a,b,c∈R,f′(x)为f(x)的导函数.(1)若a=b=c,f(4)=8,求a的值;(2)若a≠b,b=c,且f(x)和f′(x)的零点均在集合{﹣3,1,3}中,求f(x)的极小值;(3)若a=0,0<b≤1,c=1,且f(x)的极大值为M,求证:M≤.20.(16分)定义首项为1且公比为正数的等比数列为“M﹣数列”.(1)已知等比数列{a n}(n∈N*)满足:a2a4=a5,a3﹣4a2+4a1=0,求证:数列{a n}为“M﹣数列”;(2)已知数列{b n}(n∈N*)满足:b1=1,=﹣,其中S n为数列{b n}的前n 项和.①求数列{b n}的通项公式;②设m为正整数,若存在“M﹣数列”{c n}(n∈N*),对任意正整数k,当k≤m时,都有c k≤b k≤c k+1成立,求m的最大值.【选做题】本题包括A、B、C三小题,请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A.[选修4-2:矩阵与变换](本小题满分10分)21.(10分)已知矩阵A=.(1)求A2;(2)求矩阵A的特征值.B.[选修4-4:坐标系与参数方程](本小题满分10分)22.(10分)在极坐标系中,已知两点A(3,),B(,),直线1的方程为ρsin (θ+)=3.(1)求A,B两点间的距离;(2)求点B到直线l的距离.C.[选修4-5:不等式选讲](本小题满分0分)23.设x∈R,解不等式|x|+|2x﹣1|>2.【必做题】第24题、第25题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.24.(10分)设(1+x)n=a0+a1x+a2x2+…+a n x n,n≥4,n∈N*.已知a32=2a2a4.(1)求n的值;(2)设(1+)n=a+b,其中a,b∈N*,求a2﹣3b2的值.25.(10分)在平面直角坐标系xOy中,设点集A n={(0,0),(1,0),(2,0),…,(n,0)},B n={(0,1),(n,1)},∁n={(0,2),(1,2),(2,2),……,(n,2)},n∈N*.令M n=A n∪B n∪∁n.从集合M n中任取两个不同的点,用随机变量X表示它们之间的距离.(1)当n=1时,求X的概率分布;(2)对给定的正整数n(n≥3),求概率P(X≤n)(用n表示).2019年江苏省高考数学答案解析一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.【分析】直接利用交集运算得答案.【解答】解:∵A={﹣1,0,1,6},B={x|x>0,x∈R},∴A∩B={﹣1,0,1,6}∩{x|x>0,x∈R}={1,6}.故答案为:{1,6}.【点评】本题考查交集及其运算,是基础题.2.【分析】利用复数代数形式的乘除运算化简,再由实部为0求的a值.【解答】解:∵(a+2i)(1+i)=(a﹣2)+(a+2)i的实部为0,∴a﹣2=0,即a=2.故答案为:2.【点评】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.3.【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:模拟程序的运行,可得x=1,S=0S=0.5不满足条件x≥4,执行循环体,x=2,S=1.5不满足条件x≥4,执行循环体,x=3,S=3不满足条件x≥4,执行循环体,x=4,S=5此时,满足条件x≥4,退出循环,输出S的值为5.故答案为:5.【点评】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.4.【分析】由根式内部的代数式大于等于0求解一元二次不等式得答案.【解答】解:由7+6x﹣x2≥0,得x2﹣6x﹣7≤0,解得:﹣1≤x≤7.∴函数y=的定义域是[﹣1,7].故答案为:[﹣1,7].【点评】本题考查函数的定义域及其求法,考查一元二次不等式的解法,是基础题.5.【分析】先求出一组数据6,7,8,8,9,10的平均数,由此能求出该组数据的方差.【解答】解:一组数据6,7,8,8,9,10的平均数为:=(6+7+8+8+9+10)=8,∴该组数据的方差为:S2=[(6﹣8)2+(7﹣8)2+(8﹣8)2+(8﹣8)2+(9﹣8)2+(10﹣8)2]=.故答案为:.【点评】本题考查一组数据的方差的求法,考查平均数、方差等基础知识,考查运算求解能力,是基础题.6.【分析】基本事件总数n==10,选出的2名同学中至少有1名女同学包含的基本事件个数m=+=7,由此能求出选出的2名同学中至少有1名女同学的概率.【解答】解:从3名男同学和2名女同学中任选2名同学参加志愿者服务,基本事件总数n==10,选出的2名同学中至少有1名女同学包含的基本事件个数:m=+=7,∴选出的2名同学中至少有1名女同学的概率是p=.故答案为:.【点评】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,考查数形结合思想,是基础题.7.【分析】把已知点的坐标代入双曲线方程,求得b,则双曲线的渐近线方程可求.【解答】解:∵双曲线x2﹣=1(b>0)经过点(3,4),∴,解得b2=2,即b=.又a=1,∴该双曲线的渐近线方程是y=.故答案为:y=.【点评】本题考查双曲线的标准方程,考查双曲线的简单性质,是基础题.8.【分析】设等差数列{a n}的首项为a1,公差为d,由已知列关于首项与公差的方程组,求解首项与公差,再由等差数列的前n项和求得S8的值.【解答】解:设等差数列{a n}的首项为a1,公差为d,则,解得.∴=6×(﹣5)+15×2=16.故答案为:16.【点评】本题考查等差数列的通项公式,考查等差数列的前n项和,是基础题.9.【分析】推导出=AB×BC×DD1=120,三棱锥E﹣BCD的体积:V E﹣BCD===×AB×BC×DD1,由此能求出结果.【解答】解:∵长方体ABCD﹣A1B1C1D1的体积是120,E为CC1的中点,∴=AB×BC×DD1=120,∴三棱锥E﹣BCD的体积:V E﹣BCD===×AB×BC×DD1=10.故答案为:10.【点评】本题考查三棱锥的体积的求法,考查长方体的结构特征、三棱锥的性质等基础知识,考查运算求解能力,考查数形结合思想,是中档题.10.【分析】利用导数求平行于x+y=0的直线与曲线y=x+(x>0)的切点,再由点到直线的距离公式求点P到直线x+y=0的距离的最小值.【解答】解:由y=x+(x>0),得y′=1﹣,设斜率为﹣1的直线与曲线y=x+(x>0)切于(x0,),由,解得(x0>0).∴曲线y=x+(x>0)上,点P()到直线x+y=0的距离最小,最小值为.故答案为:4.【点评】本题考查利用导数研究过曲线上某点处的切线方程,考查点到直线距离公式的应用,是中档题.11.【分析】设A(x0,lnx0),利用导数求得曲线在A处的切线方程,代入已知点的坐标求解x0即可.【解答】解:设A(x0,lnx0),由y=lnx,得y′=,∴,则该曲线在点A处的切线方程为y﹣lnx0=,∵切线经过点(﹣e,﹣1),∴,即,则x0=e.∴A点坐标为(e,1).故答案为:(e,1).【点评】本题考查利用导数研究过曲线上某点处的切线方程,区分过点处与在点处的不同,是中档题.12.【分析】首先算出=,然后用、表示出、,结合•=6•得=,进一步可得结果.【解答】解:设=λ=(),=+=+μ=+μ()=(1﹣μ)+μ=+μ∴,∴,∴==(),==﹣+,6•=6×()×(﹣+)=(++)=++,∵•=++,∴=,∴=3,∴=.故答案为:【点评】本题考查向量的数量积的应用,考查向量的表示以及计算,考查计算能力.13.【分析】由已知求得tanα,分类利用万能公式求得sin2α,cos2α的值,展开两角和的正弦求sin(2α+)的值.【解答】解:由=﹣,得,∴,解得tanα=2或tan.当tanα=2时,sin2α=,cos2α=,∴sin(2α+)==;当tanα=时,sin2α==,cos2α=,∴sin(2α+)==.综上,sin(2α+)的值是.故答案为:.【点评】本题考查三角函数的恒等变换与化简求值,考查两角和的三角函数及万能公式的应用,是基础题.14.【分析】由已知函数解析式结合周期性作出图象,数形结合得答案.【解答】解:作出函数f(x)与g(x)的图象如图,由图可知,函数f(x)与g(x)=﹣(1<x≤2,3<x≤4,5<x≤6,7<x≤8)仅有2个实数根;要使关于x的方程f(x)=g(x)有8个不同的实数根,则f(x)=,x∈(0,2]与g(x)=k(x+2),x∈(0,1]的图象有2个不同交点,由(1,0)到直线kx﹣y+2k=0的距离为1,得,解得k=(k>0),∵两点(﹣2,0),(1,1)连线的斜率k=,∴≤k<.即k的取值范围为[,).故答案为:[,).【点评】本题考查函数零点的判定,考查分段函数的应用,体现了数形结合的解题思想方法,是中档题.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.【分析】(1)由余弦定理得:cos B===,由此能求出c的值.(2)由=,利用正弦定理得2sin B=cos B,再由sin2B+cos2B=1,能求出sin B =,cos B=,由此利用诱导公式能求出sin(B+)的值.【解答】解:(1)∵在△ABC中,角A,B,C的对边分别为a,b,c.a=3c,b=,cos B=,∴由余弦定理得:cos B===,解得c=.(2)∵=,∴由正弦定理得:,∴2sin B=cos B,∵sin2B+cos2B=1,∴sin B=,cos B=,∴sin(B+)=cos B=.【点评】本题考查三角形边长、三角函数值的求法,考查正弦定理、余弦定理、诱导公式、同角三角函数关系式等基础知识,考查推理能力与计算能力,属于中档题.16.【分析】(1)推导出DE∥AB,AB∥A1B1,从而DE∥A1B1,由此能证明A1B1∥平面DEC1.(2)推导出BE⊥AA1,BE⊥AC,从而BE⊥平面ACC1A1,由此能证明BE⊥C1E.【解答】证明:(1)∵在直三棱柱ABC﹣A1B1C1中,D,E分别为BC,AC的中点,∴DE∥AB,AB∥A1B1,∴DE∥A1B1,∵DE⊂平面DEC1,A1B1⊄平面DEC1,∴A1B1∥平面DEC1.解:(2)∵在直三棱柱ABC﹣A1B1C1中,E是AC的中点,AB=BC.∴BE⊥AA1,BE⊥AC,又AA1∩AC=A,∴BE⊥平面ACC1A1,∵C1E⊂平面ACC1A1,∴BE⊥C1E.【点评】本题考查线面平行、线线垂直的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.17.【分析】(1)由题意得到F1D∥BF2,然后求AD,再由AD=DF1=求得a,则椭圆方程可求;(2)求出D的坐标,得到=,写出BF2的方程,与椭圆方程联立即可求得点E的坐标.【解答】解:(1)如图,∵F2A=F2B,∴∠F2AB=∠F2BA,∵F2A=2a=F2D+DA=F2D+F1D,∴AD=F1D,则∠DAF1=∠DF1A,∴∠DF1A=∠F2BA,则F1D∥BF2,∵c=1,∴b2=a2﹣1,则椭圆方程为,取x=1,得,则AD=2a﹣=.又DF1=,∴,解得a=2(a>0).∴椭圆C的标准方程为;(2)由(1)知,D(1,),F1(﹣1,0),∴=,则BF2:y=,联立,得21x2﹣18x﹣39=0.解得x1=﹣1或(舍).∴.即点E的坐标为(﹣1,﹣).【点评】本题考查直线与圆,圆与椭圆位置关系的应用,考查计算能力,证明DF1∥BF2是解答该题的关键,是中档题.18.【分析】(1)设BD与圆O交于M,连接AM,以C为坐标原点,l为x轴,建立直角坐标系,则A(0,﹣6),B(﹣8,﹣12),D(﹣8,0)设点P(x1,0),PB⊥AB,运用两直线垂直的条件:斜率之积为﹣1,求得P的坐标,可得所求值;(2)当QA⊥AB时,QA上的所有点到原点O的距离不小于圆的半径,设此时Q(x2,0),运用两直线垂直的条件:斜率之积为﹣1,求得Q的坐标,即可得到结论;(3)设P(a,0),Q(b,0),则a≤﹣17,b≥﹣,结合条件,可得b的最小值,由两点的距离公式,计算可得PQ.【解答】解:设BD与圆O交于M,连接AM,AB为圆O的直径,可得AM⊥BM,即有DM=AC=6,BM=6,AM=8,以C为坐标原点,l为x轴,建立直角坐标系,则A(0,﹣6),B(﹣8,﹣12),D(﹣8,0)(1)设点P(x1,0),PB⊥AB,则k BP•k AB=﹣1,即•=﹣1,解得x1=﹣17,所以P(﹣17,0),PB==15;(2)当QA⊥AB时,QA上的所有点到原点O的距离不小于圆的半径,设此时Q(x2,0),则k QA•k AB=﹣1,即•=﹣1,解得x2=﹣,Q(﹣,0),由﹣17<﹣8<﹣,在此范围内,不能满足PB,QA上所有点到O的距离不小于圆的半径,所以P,Q中不能有点选在D点;(3)设P(a,0),Q(b,0),则a≤﹣17,b≥﹣,PB2=(a+8)2+144≥225,QA2=b2+36≥225,则b≥3,当d最小时,PQ=17+3.【点评】本题考查直线和圆的位置关系,考查直线的斜率和两直线垂直的条件:斜率之积为﹣1,以及两点的距离公式,分析问题和解决问题的能力,考查运算能力,属于中档题.19.【分析】(1)由a=b=c,可得f(x)=(x﹣a)3,根据f(4)=8,可得(4﹣a)3=8,解得a.(2)a≠b,b=c,设f(x)=(x﹣a)(x﹣b)2.令f(x)=(x﹣a)(x﹣b)2=0,解得x=a,或x=b.f′(x)=(x﹣b)(3x﹣b﹣2a).令f′(x)=0,解得x=b,或x =.根据f(x)和f′(x)的零点均在集合A={﹣3,1,3}中,通过分类讨论可得:只有a=3,b=﹣3,可得==1∈A,可得:f(x)=(x﹣3)(x+3)2.利用导数研究其单调性可得x=1时,函数f(x)取得极小值.(3)a=0,0<b≤1,c=1,f(x)=x(x﹣b)(x﹣1).f′(x)=3x2﹣(2b+2)x+b.△>0.令f′(x)=3x2﹣(2b+2)x+b=0.解得:x1=∈,x2=.x1<x2,可得x=x1时,f(x)取得极大值为M,通过计算化简即可证明结论.【解答】解:(1)∵a=b=c,∴f(x)=(x﹣a)3,∵f(4)=8,∴(4﹣a)3=8,∴4﹣a=2,解得a=2.(2)a≠b,b=c,设f(x)=(x﹣a)(x﹣b)2.令f(x)=(x﹣a)(x﹣b)2=0,解得x=a,或x=b.f′(x)=(x﹣b)2+2(x﹣a)(x﹣b)=(x﹣b)(3x﹣b﹣2a).令f′(x)=0,解得x=b,或x=.∵f(x)和f′(x)的零点均在集合A={﹣3,1,3}中,若:a=﹣3,b=1,则==﹣∉A,舍去.a=1,b=﹣3,则==﹣∉A,舍去.a=﹣3,b=3,则==﹣1∉A,舍去..a=3,b=1,则==∉A,舍去.a=1,b=3,则=∉A,舍去.a=3,b=﹣3,则==1∈A,.因此a=3,b=﹣3,=1∈A,可得:f(x)=(x﹣3)(x+3)2.f′(x)=3[x﹣(﹣3)](x﹣1).可得x=1时,函数f(x)取得极小值,f(1)=﹣2×42=﹣32.(3)证明:a=0,0<b≤1,c=1,f(x)=x(x﹣b)(x﹣1).f′(x)=(x﹣b)(x﹣1)+x(x﹣1)+x(x﹣b)=3x2﹣(2b+2)x+b.△=4(b+1)2﹣12b=4b2﹣4b+4=4+3≥3.令f′(x)=3x2﹣(2b+2)x+b=0.解得:x1=∈,x2=.x1<x2,x1+x2=,x1x2=,可得x=x1时,f(x)取得极大值为M,∵f′(x1)=﹣(2b+2)x1+b=0,可得:=[(2b+2)x1﹣b],M=f(x1)=x1(x1﹣b)(x1﹣1)=(x1﹣b)(﹣x1)=(x1﹣b)(﹣x1)=[(2b﹣1)﹣2b2x1+b2]==,∵﹣2b2+2b﹣2=﹣2﹣<0,∴M在x1∈(0,]上单调递减,∴M≤=≤.∴M≤.【点评】本题考查了利用导数研究函数的单调性、方程与不等式的解法、分类讨论方法、等价转化方法,考查了推理能力与计算能力,属于难题.20.【分析】(1)设等比数列{a n}的公比为q,然后根据a2a4=a5,a3﹣4a2+4a1=0列方程求解,在根据新定义判断即可;(2)求出b2,b3,b4猜想b n,然后用数学归纳法证明;(3)设{c n}的公比为q,将问题转化为,然后构造函数f(x)=,g(x)=,分别求解其最大值和最小值,最后解不等式,即可.【解答】解:(1)设等比数列{a n}的公比为q,则由a2a4=a5,a3﹣4a2+4a1=0,得∴,∴数列{a n}首项为1且公比为正数即数列{a n}为“M﹣数列”;(2)①∵b1=1,=﹣,∴当n=1时,,∴b2=2,当n=2时,,∴b3=3,当n=3时,,∴b4=4,猜想b n=n,下面用数学归纳法证明;(i)当n=1时,b1=1,满足b n=n,(ii)假设n=k时,结论成立,即b k=k,则n=k+1时,由,得==k+1,故n=k+1时结论成立,根据(i)(ii)可知,b n=n对任意的n∈N*都成立.故数列{b n}的通项公式为b n=n;②设{c n}的公比为q,存在“M﹣数列”{c n}(n∈N*),对任意正整数k,当k≤m时,都有c k≤b k≤c k+1成立,即q k﹣1≤k≤k对k≤m恒成立,当k=1时,q≥1,当k=2时,,当k≥3,两边取对数可得,对k≤m有解,即,令f(x)=,则,当x≥3时,f'(x)<0,此时f(x)递增,∴当k≥3时,,令g(x)=,则,令,则,当x≥3时,ϕ'(x)<0,即g'(x)<0,∴g(x)在[3,+∞)上单调递减,即k≥3时,,则,下面求解不等式,化简,得3lnm﹣(m﹣1)ln3≤0,令h(m)=3lnm﹣(m﹣1)ln3,则h'(m)=﹣ln3,由k≥3得m≥3,h'(m)<0,∴h(m)在[3,+∞)上单调递减,又由于h(5)=3ln5﹣4ln3=ln125﹣ln81>0,h(6)=3ln6﹣5ln3=ln216﹣ln243<0,∴存在m0∈(5,6)使得h(m0)=0,∴m的最大值为5,此时q∈,.【点评】本题考查了由递推公式求等比数列的通项公式和不等式恒成立,考查了数学归纳法和构造法,是数列、函数和不等式的综合性问题,属难题.【选做题】本题包括A、B、C三小题,请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A.[选修4-2:矩阵与变换](本小题满分10分)21.【分析】(1)根据矩阵A直接求解A2即可;(2)矩阵A的特征多项式为f(λ)==λ2﹣5λ+4,解方程f(λ)=0即可.【解答】解:(1)∵A=∴A2==(2)矩阵A的特征多项式为:f(λ)==λ2﹣5λ+4,令f(λ)=0,则由方程λ2﹣5λ+4=0,得λ=1或λ=4,∴矩阵A的特征值为1或4.【点评】本题考查了矩阵的运算和特征值等基础知识,考查运算与求解能力,属基础题.B.[选修4-4:坐标系与参数方程](本小题满分10分)22.【分析】(1)设极点为O,则由余弦定理可得,解出AB;(2)根据直线l的方程和点B的坐标可直接计算B到直线l的距离.【解答】解:(1)设极点为O,则在△OAB中,由余弦定理,得AB2=OA2+OB2﹣2OA,∴AB==;(2)由直线1的方程ρsin(θ+)=3,知直线l过(3,),倾斜角为,又B(,),∴点B到直线l的距离为.【点评】本题考查了在极坐标系下计算两点间的距离和点到直线的距离,属基础题.C.[选修4-5:不等式选讲](本小题满分0分)23.【分析】对|x|+|2x﹣1|去绝对值,然后分别解不等式即可.【解答】解:|x|+|2x﹣1|=,∵|x|+|2x﹣1|>2,∴或或,∴x>1或x∈∅或x<﹣,∴不等式的解集为{x|x<﹣或x>1}.【点评】本题考查了绝对值不等式的解法,属基础题.【必做题】第24题、第25题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.24.【分析】(1)运用二项式定理,分别求得a2,a3,a4,结合组合数公式,解方程可得n 的值;(2)方法一、运用二项式定理,结合组合数公式求得a,b,计算可得所求值;方法二、由于a,b∈N*,求得(1﹣)5=a﹣b,再由平方差公式,计算可得所求值.【解答】解:(1)由(1+x)n=C+C x+C x2+…+C x n,n≥4,可得a2=C=,a3=C=,a4=C=,a32=2a2a4,可得()2=2••,解得n=5;(2)方法一、(1+)5=C+C+C()2+C()3+C()4+C()5=a+b,由于a,b∈N*,可得a=C+3C+9C=1+30+45=76,b=C+3C+9C=44,可得a2﹣3b2=762﹣3×442=﹣32;方法二、(1+)5=C+C+C()2+C()3+C()4+C()5=a+b,(1﹣)5=C+C(﹣)+C(﹣)2+C(﹣)3+C(﹣)4+C(﹣)5=C﹣C+C()2﹣C()3+C()4﹣C()5,由于a,b∈N*,可得(1﹣)5=a﹣b,可得a2﹣3b2=(1+)5•(1﹣)5=(1﹣3)5=﹣32.【点评】本题主要考查二项式定理、组合数公式的运用,考查运算能力和分析问题能力,属于中档题.25.【分析】(1)当n=1时,X的所有可能取值为1,,2,,由古典概率的公式,结合组合数可得所求值;(2)设A(a,b)和B(c,d)是从M n中取出的两个点,因为P(X≤n)=1﹣P(X>n),所以只需考虑X>n的情况,分别讨论b,d的取值,结合古典概率的计算公式和对立事件的概率,即可得到所求值.【解答】解:(1)当n=1时,X的所有可能取值为1,,2,,X的概率分布为P(X=1)==;P(X=)==;P(X=2)==;P(X=)==;(2)设A(a,b)和B(c,d)是从M n中取出的两个点,因为P(X≤n)=1﹣P(X>n),所以只需考虑X>n的情况,①若b=d,则AB≤n,不存在X>n的取法;②若b=0,d=1,则AB=≤,所以X>n当且仅当AB=,此时a=0.c=n或a=n,c=0,有两种情况;③若b=0,d=2,则AB=≤,所以X>n当且仅当AB=,此时a=0.c=n或a=n,c=0,有两种情况;④若b=1,d=2,则AB=≤,所以X>n当且仅当AB=,此时a=0.c=n或a=n,c=0,有两种情况;综上可得当X>n,X的所有值是或,且P(X=)=,P(X=)=,可得P(X≤n)=1﹣P(X=)﹣P(X=)=1﹣.【点评】本题考查随机变量的概率的分布,以及古典概率公式的运用,考查分类讨论思想方法,以及化简运算能力,属于难题.。

2019年高考江苏卷数学试题(含答案)

2019年高考江苏卷数学试题(含答案)

绝密★启用前2019年普通高等学校招生全国统一考试江苏卷数学Ⅰ参考公式:样本数据12,,,n x x x …的方差()2211n i i s x x n ==-∑,其中11n i i x x n ==∑.柱体的体积V Sh =,其中S 是柱体的底面积,h 是柱体的高. 锥体的体积13V Sh =,其中S 是锥体的底面积,h 是锥体的高. 一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.已知集合{1,0,1,6}A =-,{|0,}B x x x =>∈R ,则AB = ▲ .2.已知复数(2i)(1i)a ++的实部为0,其中i 为虚数单位,则实数a 的值是 ▲ . 3.下图是一个算法流程图,则输出的S 的值是 ▲ .4.函数276y x x =+-的定义域是 ▲ .5.已知一组数据6,7,8,8,9,10,则该组数据的方差是 ▲ .6.从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是 ▲ .7.在平面直角坐标系xOy 中,若双曲线2221(0)y x b b-=>经过点(3,4),则该双曲线的渐近线方程是 ▲ .8.已知数列*{}()n a n ∈N 是等差数列,n S 是其前n 项和.若25890,27a a a S +==,则8S 的值是▲ .9.如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E -BCD 的体积是▲ .10.在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线x +y =0的距离的最小值是 ▲ .11.在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e为自然对数的底数),则点A 的坐标是 ▲ .12.如图,在ABC △中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE 交于点O .若6AB AC AO EC ⋅=⋅,则ABAC的值是 ▲.13.已知tan 2π3tan 4αα=-⎛⎫+ ⎪⎝⎭,则πsin 24α⎛⎫+ ⎪⎝⎭的值是 ▲ . 14.设(),()f x g x 是定义在R 上的两个周期函数,()f x 的周期为4,()g x 的周期为2,且()f x 是奇函数.当2(]0,x ∈时,2()1(1)f x x =--(2),01()1,122k x x g x x +<≤⎧⎪=⎨-<≤⎪⎩,其中k >0.若在区间(0,9]上,关于x 的方程()()f x g x =有8个不同的实数根,则k 的取值范围是 ▲ . 二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c . (1)若a =3c ,b 2,cos B =23,求c 的值; (2)若sin cos 2A B a b =,求sin()2B π+的值. 16.(本小题满分14分)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC . 求证:(1)A 1B 1∥平面DEC 1;(2)BE ⊥C 1E .17.(本小题满分14分)如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的焦点为F 1(–1、0),F 2(1,0).过F 2作x 轴的垂线l ,在x 轴的上方,l 与圆F 2:222(1)4x y a -+=交于点A ,与椭圆C 交于点D .连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E ,连结DF 1. 已知DF 1=52. (1)求椭圆C 的标准方程; (2)求点E 的坐标.18.(本小题满分16分)如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥AB (AB 是圆O 的直径).规划在公路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA .规划要求:线段PB 、QA 上的所有点到点O 的距离均不小于圆....O 的半径.已知点A 、B 到直线l 的距离分别为AC 和BD (C 、D 为垂足),测得AB =10,AC =6,BD =12(单位:百米).(1)若道路PB 与桥AB 垂直,求道路PB 的长;(2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由;(3)对规划要求下,若道路PB 和QA 的长度均为d (单位:百米).求当d 最小时,P 、Q 两点间的距离.19.(本小题满分16分)设函数()()()(),,,R f x x a x b x c a b c =---∈、()f 'x 为f (x )的导函数. (1)若a =b =c ,f (4)=8,求a 的值;(2)若a ≠b ,b =c ,且f (x )和()f 'x 的零点均在集合{3,1,3}-中,求f (x )的极小值; (3)若0,01,1a b c =<=…,且f (x )的极大值为M ,求证:M ≤427. 20.(本小满分16分)定义首项为1且公比为正数的等比数列为“M -数列”.(1)已知等比数列{a n }*()n ∈N 满足:245324,440a a a a a a =-+=,求证:数列{a n }为“M -数列”;(2)已知数列{b n }满足:111221,n n n b S b b +==-,其中S n 为数列{b n }的前n 项和. ①求数列{b n }的通项公式;②设m 为正整数,若存在“M -数列”{c n }*()n ∈N ,对任意正整数k ,当k ≤m 时,都有1k k k c b c +剟成立,求m 的最大值.2019年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ·参考答案一、填空题:本题考查基础知识、基本运算和基本思想方法.每小题5分,共计70分. 1.{1,6} 2.2 3.5 4.[1,7]-5.536.7107.2y x =8.169.1010.411.(e, 1)313.21014.1,34⎡⎢⎣⎭二、解答题15.本小题主要考查正弦定理、余弦定理、同角三角函数关系、诱导公式等基础知识,考查运算求解能力.满分14分. 解:(1)因为23,2,cos 3a cb B ===, 由余弦定理222cos 2a c b B ac +-=,得2222(3)(2)3c c +-=,即213c =.所以33c =(2)因为sin cos 2A Ba b =, 由正弦定理sin sin a b A B =,得cos sin 2B Bb b=,所以cos 2sin B B =. 从而22cos (2sin )B B =,即()22cos 41cos B B =-,故24cos 5B =.因为sin 0B >,所以cos 2sin 0B B =>,从而25cos B =. 因此π25sin cos2B B ⎛⎫+== ⎪⎝⎭16.本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力和推理论证能力.满分14分.证明:(1)因为D,E分别为BC,AC的中点,所以ED∥AB.在直三棱柱ABC-A1B1C1中,AB∥A1B1,所以A1B1∥ED.又因为ED⊂平面DEC1,A1B1⊄平面DEC1,所以A1B1∥平面DEC1.(2)因为AB=BC,E为AC的中点,所以BE⊥AC.因为三棱柱ABC-A1B1C1是直棱柱,所以CC1⊥平面ABC.又因为BE⊂平面ABC,所以CC1⊥BE.因为C1C⊂平面A1ACC1,AC⊂平面A1ACC1,C1C∩AC=C,所以BE⊥平面A1ACC1.因为C1E⊂平面A1ACC1,所以BE⊥C1E.17.本小题主要考查直线方程、圆的方程、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等基础知识,考查推理论证能力、分析问题能力和运算求解能力.满分14分.解:(1)设椭圆C的焦距为2c.因为F1(-1,0),F2(1,0),所以F1F2=2,c=1.又因为DF1=52,AF2⊥x轴,所以DF2222211253()222DF F F-=-=,因此2a=DF1+DF2=4,从而a=2. 由b2=a2-c2,得b2=3.因此,椭圆C的标准方程为221 43x y+=.(2)解法一:由(1)知,椭圆C :22143x y +=,a =2,因为AF 2⊥x 轴,所以点A 的横坐标为1.将x =1代入圆F 2的方程(x -1) 2+y 2=16,解得y =±4. 因为点A 在x 轴上方,所以A (1,4). 又F 1(-1,0),所以直线AF 1:y =2x +2.由22()22116y x x y =+-+=⎧⎨⎩,得256110x x +-=, 解得1x =或115x =-. 将115x =-代入22y x =+,得 125y =-, 因此1112(,)55B --.又F 2(1,0),所以直线BF 2:3(1)4y x =-.由221433(1)4x y x y ⎧⎪⎪⎨⎪+=-⎩=⎪,得276130x x --=,解得1x =-或137x =. 又因为E 是线段BF 2与椭圆的交点,所以1x =-. 将1x =-代入3(1)4y x =-,得32y =-.因此3(1,)2E --. 解法二:由(1)知,椭圆C :22143x y +=.如图,连结EF 1.因为BF 2=2a ,EF 1+EF 2=2a ,所以EF 1=EB , 从而∠BF 1E =∠B .因为F 2A =F 2B ,所以∠A =∠B , 所以∠A =∠BF 1E ,从而EF 1∥F 2A . 因为AF 2⊥x 轴,所以EF 1⊥x 轴.因为F 1(-1,0),由221431x x y ⎧⎪⎨+==-⎪⎩,得32y =±.又因为E 是线段BF 2与椭圆的交点,所以32y =-. 因此3(1,)2E --.18.本小题主要考查三角函数的应用、解方程、直线与圆等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力.满分16分. 解:解法一:(1)过A 作AE BD ⊥,垂足为E .由已知条件得,四边形ACDE 为矩形,6, 8DE BE AC AE CD =====.' 因为PB ⊥AB ,所以84cos sin 105PBD ABE ∠=∠==. 所以12154cos 5BD PB PBD ===∠.因此道路PB 的长为15(百米).(2)①若P 在D 处,由(1)可得E 在圆上,则线段BE 上的点(除B ,E )到点O 的距离均小于圆O 的半径,所以P 选在D 处不满足规划要求. ②若Q 在D 处,连结AD ,由(1)知2210AD AE ED =+=,从而2227cos 0225AD AB BD BAD AD AB +-∠==>⋅,所以∠BAD 为锐角. 所以线段AD 上存在点到点O 的距离小于圆O 的半径.因此,Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处. (3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求; 当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15, 此时11113sin cos 1595PD PB PBD PB EBA =∠=∠=⨯=; 当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15. 再讨论点Q 的位置.由(2)知,要使得QA ≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,2222156321CQ QA AC =--=.此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当PB ⊥AB ,点Q 位于点C 右侧,且CQ =321时,d 最小,此时P ,Q 两点间的距离PQ =PD +CD +CQ =17+321因此,d 最小时,P ,Q 两点间的距离为17+321. 解法二:(1)如图,过O 作OH ⊥l ,垂足为H.以O 为坐标原点,直线OH 为y 轴,建立平面直角坐标系.因为BD =12,AC =6,所以OH =9,直线l 的方程为y =9,点A ,B 的纵坐标分别为3,−3. 因为AB 为圆O 的直径,AB =10,所以圆O 的方程为x 2+y 2=25. 从而A (4,3),B (−4,−3),直线AB 的斜率为34. 因为PB ⊥AB ,所以直线PB 的斜率为43-, 直线PB 的方程为42533y x =--. 所以P (−13,9),22(134)(93)15PB =-+++=. 因此道路PB 的长为15(百米).(2)①若P 在D 处,取线段BD 上一点E (−4,0),则EO =4<5,所以P 选在D 处不满足规划要求.②若Q 在D 处,连结AD ,由(1)知D (−4,9),又A (4,3), 所以线段AD :36(44)4y x x =-+-剟. 在线段AD 上取点M (3,154),因为22221533454OM ⎛⎫=++= ⎪⎝⎭,所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处. (3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求; 当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15,此时1P (−13,9); 当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15. 再讨论点Q 的位置.由(2)知,要使得QA ≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,设Q (a ,9),由22(4)(93)15(4)AQ a a =-+-=>,得a =4321+Q (4321+9),此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当P (−13,9),Q (4321+9)时,d 最小,此时P ,Q 两点间的距离4321(13)17321PQ =+-=+.因此,d 最小时,P ,Q 两点间的距离为17321+.19.本小题主要考查利用导数研究函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.满分16分.解:(1)因为a b c ==,所以3()()()()()f x x a x b x c x a =---=-.因为(4)8f =,所以3(4)8a -=,解得2a =.(2)因为b c =,所以2322()()()(2)(2)f x x a x b x a b x b a b x ab =--=-+++-, 从而2()3()3a b f 'x x b x +⎛⎫=-- ⎪⎝⎭.令()0f 'x =,得x b =或23a bx +=. 因为2,,3a ba b +,都在集合{3,1,3}-中,且a b ≠, 所以21,3,33a b a b +===-.此时2()(3)(3)f x x x =-+,()3(3)(1)f 'x x x =+-. 令()0f 'x =,得3x =-或1x =.列表如下:所以()f x 的极小值为2(1)(13)(13)32f =-+=-.(3)因为0,1a c ==,所以32()()(1)(1)f x x x b x x b x bx =--=-++,2()32(1)f 'x x b x b =-++.因为01b <≤,所以224(1)12(21)30b b b ∆=+-=-+>,则()f 'x 有2个不同的零点,设为()1212,x x x x <.由()0f 'x =,得22121111b b b b b b x x +--+++-+==.列表如下:x 1(,)x -∞1x()12,x x2x2(,)x +∞()f 'x + 0 – 0 + ()f x极大值极小值所以()f x 的极大值()1M f x =. 解法一:()321111(1)M f x x b x bx ==-++()()221111211(1)32(1)3999b b x b b b x b x b x -+++⎛⎫=-++--+ ⎪⎝⎭ ()(23221(1)(1)2127927b b b b b b b --+++=++-+23(1)2(1)(1)2((1)1)272727b b b b b b +-+=-+-+(1)24272727b b +≤+≤.因此427M ≤. 解法二:因为01b <≤,所以1(0,1)x ∈.当(0,1)x ∈时,2()()(1)(1)f x x x b x x x =--≤-.令2()(1),(0,1)g x x x x =-∈,则1()3(1)3g'x x x ⎛⎫=-- ⎪⎝⎭. 令()0g'x =,得13x =.列表如下: x 1(0,)3131(,1)3()g'x + 0 – ()g x极大值所以当13x =时,()g x 取得极大值,且是最大值,故max 14()327g x g ⎛⎫== ⎪⎝⎭. 所以当(0,1)x ∈时,4()()27f x g x ≤≤,因此427M ≤. 20.本小题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.满分16分. 解:(1)设等比数列{a n }的公比为q ,所以a 1≠0,q ≠0.由245321440a a a a a a =⎧⎨-+=⎩,得244112111440a q a q a q a q a ⎧=⎨-+=⎩,解得112a q =⎧⎨=⎩.因此数列{}n a 为“M —数列”. (2)①因为1122n n n S b b +=-,所以0n b ≠. 由1111,b S b ==得212211b =-,则22b =. 由1122n n n S b b +=-,得112()n n n n n b b S b b ++=-, 当2n ≥时,由1n n n b S S -=-,得()()111122n n n nn n n n n b b b b b b b b b +-+-=---,整理得112n n n b b b +-+=.所以数列{b n }是首项和公差均为1的等差数列. 因此,数列{b n }的通项公式为b n =n ()*n ∈N .②由①知,b k =k ,*k ∈N .因为数列{c n }为“M –数列”,设公比为q ,所以c 1=1,q >0. 因为c k ≤b k ≤c k +1,所以1k k q k q -≤≤,其中k =1,2,3,…,m .当k =1时,有q ≥1; 当k =2,3,…,m 时,有ln ln ln 1k kq k k ≤≤-. 设f (x )=ln (1)x x x >,则21ln ()xf 'x x -=. 令()0f 'x =,得x =e.列表如下:x(1,e)e (e ,+∞)()f 'x+0 –f(x )极大值因为ln 2ln8ln 9ln 32663=<=,所以max ln 3()(3)3f k f ==. 取33q =k =1,2,3,4,5时,ln ln kq k…,即k k q ≤, 经检验知1k q k -≤也成立.因此所求m 的最大值不小于5.若m ≥6,分别取k =3,6,得3≤q 3,且q 5≤6,从而q 15≥243,且q 15≤216, 所以q 不存在.因此所求m 的最大值小于6. 综上,所求m 的最大值为5.数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 三小题,请选定其中两小题,并在相应的答题区域内作答......................若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. A.[选修4-2:矩阵与变换](本小题满分10分) 已知矩阵3122⎡⎤=⎢⎥⎣⎦A (1)求A 2;(2)求矩阵A 的特征值.B.[选修4-4:坐标系与参数方程](本小题满分10分) 在极坐标系中,已知两点3,,2,42A B ππ⎛⎫⎫ ⎪⎪⎝⎭⎭,直线l 的方程为sin 34ρθπ⎛⎫+= ⎪⎝⎭. (1)求A ,B 两点间的距离;(2)求点B 到直线l 的距离. C.[选修4-5:不等式选讲](本小题满分10分) 设x ∈R ,解不等式||+|2 1|>2x x -.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)设2*012(1),4,n n n x a a x a x a x n n +=++++∈N ….已知23242a a a =.(1)求n 的值;(2)设(13)3na b +=+*,a b ∈N ,求223a b -的值.23.(本小题满分10分)在平面直角坐标系xOy 中,设点集{(0,0),(1,0),(2,0),,(,0)}n A n =⋯,{(0,1),(,1)},{(0,2),(1,2),(2,2),,(,2)},.n n B n C n n *==∈N令n nnn M A B C =.从集合M n 中任取两个不同的点,用随机变量X 表示它们之间的距离.(1)当n =1时,求X 的概率分布;(2)对给定的正整数n (n ≥3),求概率P (X ≤n )(用n 表示).数学Ⅱ(附加题)参考答案21.【选做题】A .[选修4–2:矩阵与变换]本小题主要考查矩阵的运算、特征值等基础知识,考查运算求解能力.满分10分.解:(1)因为3122⎡⎤=⎢⎥⎣⎦A ,所以231312222⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦A =3312311223222122⨯+⨯⨯+⨯⎡⎤⎢⎥⨯+⨯⨯+⨯⎣⎦=115106⎡⎤⎢⎥⎣⎦. (2)矩阵A 的特征多项式为231()5422f λλλλλ--==-+--.令()0f λ=,解得A 的特征值121,4λλ==. B .[选修4–4:坐标系与参数方程]本小题主要考查曲线的极坐标方程等基础知识,考查运算求解能力.满分10分. 解:(1)设极点为O .在△OAB 中,A (3,4π),B 2,2π), 由余弦定理,得AB 223(2)232cos()524ππ+-⨯⨯⨯-=(2)因为直线l 的方程为sin()34ρθπ+=,则直线l 过点(32,)2π,倾斜角为34π. 又(2,)2B π,所以点B 到直线l 的距离为3(322)sin()242ππ⨯-=. C .[选修4–5:不等式选讲]本小题主要考查解不等式等基础知识,考查运算求解和推理论证能力.满分10分. 解:当x <0时,原不等式可化为122x x -+->,解得x <–13:当0≤x ≤12时,原不等式可化为x +1–2x >2,即x <–1,无解; 当x >12时,原不等式可化为x +2x –1>2,解得x >1. 综上,原不等式的解集为1{|1}3x x x <->或.22.【必做题】本小题主要考查二项式定理、组合数等基础知识,考查分析问题能力与运算求解能力,满分10分.解:(1)因为0122(1)C C C C 4n n nn n n n x x x x n +=++++≥,, 所以2323(1)(1)(2)C ,C 26n nn n n n n a a ---====, 44(1)(2)(3)C 24nn n n n a ---==. 因为23242a a a =,所以2(1)(2)(1)(1)(2)(3)[]26224n n n n n n n n n ------=⨯⨯,解得5n =.(2)由(1)知,5n =.5(13)(13)n +=02233445555555C C 3C (3)C (3)C (3)C (3)=++++ 3a b =+解法一:因为*,a b ∈N ,所以024*********C 3C 9C 76,C 3C 9C 44a b =++==++=,从而222237634432a b -=-⨯=-. 解法二:50122334455555555(13)C C (3)C (3)C (3)C (3)C (3)=+-+-+-+-+-02233445555555C C C C C C =--+-.因为*,a b ∈N ,所以5(1a -=-.因此225553((1(1(2)32a b a a -=+-=⨯-=-=-.23.【必做题】本小题主要考查计数原理、古典概型、随机变量及其概率分布等基础知识,考查逻辑思维能力和推理论证能力.满分10分.解:(1)当1n =时,X 的所有可能取值是1225,,X 的概率分布为22667744(1),(2)C 15C 15P X P X ======, 22662222(2),(5)C 15C 15P X P X ======. (2)设()A a b ,和()B c d ,是从n M 中取出的两个点. 因为()1()P X n P X n ≤=->,所以仅需考虑X n >的情况. ①若b d =,则AB n ≤,不存在X n >的取法;②若01b d ==,,则22()11AB a c n =-+≤+X n >当且仅当21AB n +0 a c n ==,或 0a n c ==,,有2种取法;③若02b d ==,,则22()44AB a c n =-++3n ≥2(1)4n n -+≤,所以X n >当且仅当24AB n =+,此时0 a c n ==,或 0a n c ==,,有2种取法; ④若12b d ==,,则22()11AB a c n =-+≤+X n >当且仅当21AB n +0 a c n ==,或 0a n c ==,,有2种取法.综上,当X n >时,X 21n +24n +,且2222242442(1),(4)C C n n P X n P X n ++=+==+=.因此,222246()1(1)(4)1C n P X n P X n P X n +≤=-=+-=+=-.。

2019年高考真题数学(江苏卷含答案)

2019年高考真题数学(江苏卷含答案)

2019年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ参考公式:样本数据12,,,n x x x …的方差()2211n i i s x x n ==-∑,其中11n i i x x n ==∑.柱体的体积V Sh =,其中S 是柱体的底面积,h 是柱体的高. 锥体的体积13V Sh =,其中S 是锥体的底面积,h 是锥体的高. 一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位......置上... 1.已知集合{1,0,1,6}A =-,{|0,}B x x x =>∈R ,则AB = ▲ .2.已知复数(2i)(1i)a ++的实部为0,其中i 为虚数单位,则实数a 的值是 ▲ . 3.下图是一个算法流程图,则输出的S 的值是 ▲ .4.函数276y x x =+-的定义域是 ▲ .5.已知一组数据6,7,8,8,9,10,则该组数据的方差是 ▲ .6.从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是 ▲ .7.在平面直角坐标系xOy 中,若双曲线2221(0)y x b b-=>经过点(3,4),则该双曲线的渐近线方程是 ▲ .8.已知数列*{}()n a n ∈N 是等差数列,n S 是其前n 项和.若25890,27a a a S +==,则8S 的值是 ▲ .9.如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E -BCD 的体积是 ▲ .10.在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线x +y =0的距离的最小值是 ▲ .11.在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是 ▲ .12.如图,在ABC △中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE 交于点O .若6AB AC AO EC ⋅=⋅,则ABAC的值是 ▲ .13.已知tan 2π3tan 4αα=-⎛⎫+ ⎪⎝⎭,则πsin 24α⎛⎫+ ⎪⎝⎭的值是 ▲ . 14.设(),()f x g x 是定义在R 上的两个周期函数,()f x 的周期为4,()g x 的周期为2,且()f x 是奇函数.当2(]0,x ∈时,2()1(1)f x x =--,(2),01()1,122k x x g x x +<≤⎧⎪=⎨-<≤⎪⎩,其中k >0.若在区间(0,9]上,关于x 的方程()()f x g x =有8个不同的实数根,则k 的取值范围是 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c . (1)若a =3c ,b 2,cos B =23,求c 的值; (2)若sin cos 2A B a b =,求sin()2B π+的值. 16.(本小题满分14分)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC . 求证:(1)A 1B 1∥平面DEC 1; (2)BE ⊥C 1E .17.(本小题满分14分)如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的焦点为F 1(–1、0), F 2(1,0).过F 2作x 轴的垂线l ,在x 轴的上方,l 与圆F 2:222(1)4x y a -+=交于点A ,与椭圆C 交于点D .连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E ,连结DF 1. 已知DF 1=52. (1)求椭圆C 的标准方程; (2)求点E 的坐标.18.(本小题满分16分)如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥AB (AB 是圆O 的直径).规划在公路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA .规划要求:线段PB 、QA 上的所有点到点O 的距离均不小于圆....O 的半径.已知点A 、B 到直线l 的距离分别为AC 和BD (C 、D 为垂足),测得AB =10,AC =6,BD =12(单位:百米).(1)若道路PB 与桥AB 垂直,求道路PB 的长;(2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由;(3)对规划要求下,若道路PB 和QA 的长度均为d (单位:百米).求当d 最小时,P 、Q 两点间的距离.19.(本小题满分16分)设函数()()()(),,,R f x x a x b x c a b c =---∈、()f 'x 为f (x )的导函数. (1)若a =b =c ,f (4)=8,求a 的值;(2)若a ≠b ,b =c ,且f (x )和()f 'x 的零点均在集合{3,1,3}-中,求f (x )的极小值;(3)若0,01,1a b c =<=,且f (x )的极大值为M ,求证:M ≤427. 20.(本小满分16分)定义首项为1且公比为正数的等比数列为“M -数列”.(1)已知等比数列{a n }*()n ∈N 满足:245324,440a a a a a a =-+=,求证:数列{a n }为“M -数列”;(2)已知数列{b n }满足:111221,n n n b S b b +==-,其中S n 为数列{b n }的前n 项和. ①求数列{b n }的通项公式;②设m 为正整数,若存在“M -数列”{c n }*()n ∈N ,对任意正整数k ,当k ≤m 时,都有1k k k c b c +成立,求m 的最大值.数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 三小题,请选定其中两小题,并在相应的答题区域内作....................答..若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A.[选修4-2:矩阵与变换](本小题满分10分) 已知矩阵3122⎡⎤=⎢⎥⎣⎦A (1)求A 2;(2)求矩阵A 的特征值.B.[选修4-4:坐标系与参数方程](本小题满分10分)在极坐标系中,已知两点3,,42A B ππ⎛⎫⎫ ⎪⎪⎝⎭⎭,直线l 的方程为sin 34ρθπ⎛⎫+= ⎪⎝⎭. (1)求A ,B 两点间的距离;(2)求点B 到直线l 的距离. C.[选修4-5:不等式选讲](本小题满分10分) 设x ∈R ,解不等式||+|2 1|>2x x -.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)设2*012(1),4,n n n x a a x a x a x n n +=++++∈N .已知23242a a a =.(1)求n 的值;(2)设(1na +=+*,ab ∈N ,求223a b -的值.23.(本小题满分10分)在平面直角坐标系xOy 中,设点集{(0,0),(1,0),(2,0),,(,0)}n A n =⋯,{(0,1),(,1)},{(0,2),(1,2),(2,2),,(,2)},.n n B n C n n *==∈N令n n n n M A B C =.从集合M n 中任取两个不同的点,用随机变量X 表示它们之间的距离.(1)当n =1时,求X 的概率分布;2019年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ答 案一、填空题:本题考查基础知识、基本运算和基本思想方法.每小题5分,共计70分. 1.{1,6}2.23.54.[1,7]-5.536.7107.2y x =±8.16 9.10 10.4 11.(e, 1) 12.313.21014.12,34⎡⎫⎪⎢⎪⎣⎭二、解答题15.本小题主要考查正弦定理、余弦定理、同角三角函数关系、诱导公式等基础知识,考查运算求解能力.满分14分. 解:(1)因为23,2,cos 3a cb B ===, 由余弦定理222cos 2a c b B ac +-=,得2222(3)(2)323c c c c +-=⨯⨯,即213c =.所以33c =. (2)因为sin cos 2A Ba b =, 由正弦定理sin sin a b A B =,得cos sin 2B Bb b=,所以cos 2sin B B =. 从而22cos (2sin )B B =,即()22cos 41cos B B =-,故24cos 5B =.因为sin 0B >,所以cos 2sin 0B B =>,从而25cos 5B =. 因此π25sin cos 25B B ⎛⎫+== ⎪⎝⎭. 16.本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力和推理论证能力.满分14分.证明:(1)因为D ,E 分别为BC ,AC 的中点, 所以ED ∥AB .在直三棱柱ABC-A 1B 1C 1中,AB ∥A 1B 1, 所以A 1B 1∥ED .又因为ED ⊂平面DEC 1,A 1B 1⊄平面DEC 1, 所以A 1B 1∥平面DEC 1.(2)因为AB =BC ,E 为AC 的中点,所以BE ⊥AC . 因为三棱柱ABC-A 1B 1C 1是直棱柱,所以CC 1⊥平面ABC . 又因为BE ⊂平面ABC ,所以CC 1⊥BE .因为C 1C ⊂平面A 1ACC 1,AC ⊂平面A 1ACC 1,C 1C ∩AC =C , 所以BE ⊥平面A 1ACC 1.因为C 1E ⊂平面A 1ACC 1,所以BE ⊥C 1E .17.本小题主要考查直线方程、圆的方程、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等基础知识,考查推理论证能力、分析问题能力和运算求解能力.满分14分. 解:(1)设椭圆C 的焦距为2c .因为F 1(-1,0),F 2(1,0),所以F 1F 2=2,c =1. 又因为DF 1=52,AF 2⊥x 轴,所以DF 2=222211253()222DF F F -=-=, 因此2a =DF 1+DF 2=4,从而a =2. 由b 2=a 2-c 2,得b 2=3.因此,椭圆C 的标准方程为22143x y +=.(2)解法一:由(1)知,椭圆C :22143x y +=,a =2,因为AF 2⊥x 轴,所以点A 的横坐标为1.将x =1代入圆F 2的方程(x -1) 2+y 2=16,解得y =±4. 因为点A 在x 轴上方,所以A (1,4). 又F 1(-1,0),所以直线AF 1:y =2x +2.由22()22116y x x y =+-+=⎧⎨⎩,得256110x x +-=, 解得1x =或115x =-. 将115x =-代入22y x =+,得 125y =-,因此1112(,)55B --.又F 2(1,0),所以直线BF 2:3(1)4y x =-. 由221433(1)4x y x y ⎧⎪⎪⎨⎪+=-⎩=⎪,得276130x x --=,解得1x =-或137x =. 又因为E 是线段BF 2与椭圆的交点,所以1x =-. 将1x =-代入3(1)4y x =-,得32y =-.因此3(1,)2E --. 解法二:由(1)知,椭圆C :22143x y +=.如图,连结EF 1.因为BF 2=2a ,EF 1+EF 2=2a ,所以EF 1=EB , 从而∠BF 1E =∠B .因为F 2A =F 2B ,所以∠A =∠B , 所以∠A =∠BF 1E ,从而EF 1∥F 2A . 因为AF 2⊥x 轴,所以EF 1⊥x 轴.因为F 1(-1,0),由221431x x y ⎧⎪⎨+==-⎪⎩,得32y =±.又因为E 是线段BF 2与椭圆的交点,所以32y =-. 因此3(1,)2E --.18.本小题主要考查三角函数的应用、解方程、直线与圆等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力.满分16分. 解:解法一:(1)过A 作AE BD ⊥,垂足为E .由已知条件得,四边形ACDE 为矩形,6, 8DE BE AC AE CD =====.' 因为PB ⊥AB ,所以84cos sin 105PBD ABE ∠=∠==.所以12154cos 5BD PB PBD ===∠.因此道路PB 的长为15(百米).(2)①若P 在D 处,由(1)可得E 在圆上,则线段BE 上的点(除B ,E )到点O 的距离均小于圆O 的半径,所以P 选在D 处不满足规划要求. ②若Q 在D 处,连结AD ,由(1)知2210AD AE ED =+=,从而2227cos 0225AD AB BD BAD AD AB +-∠==>⋅,所以∠BAD 为锐角. 所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此,Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处. (3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求; 当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15, 此时11113sin cos 1595PD PB PBD PB EBA =∠=∠=⨯=; 当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15. 再讨论点Q 的位置.由(2)知,要使得QA ≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,2222156321CQ QA AC =-=-=.此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当PB ⊥AB ,点Q 位于点C 右侧,且CQ =321时,d 最小,此时P ,Q 两点间的距离PQ =PD +CD +CQ =17+321.因此,d 最小时,P ,Q 两点间的距离为17+321(百米). 解法二:(1)如图,过O 作OH ⊥l ,垂足为H.以O 为坐标原点,直线OH 为y 轴,建立平面直角坐标系.因为BD =12,AC =6,所以OH =9,直线l 的方程为y =9,点A ,B 的纵坐标分别为3,−3. 因为AB 为圆O 的直径,AB =10,所以圆O 的方程为x 2+y 2=25. 从而A (4,3),B (−4,−3),直线AB 的斜率为34. 因为PB ⊥AB ,所以直线PB 的斜率为43-, 直线PB 的方程为42533y x =--. 所以P (−13,9),22(134)(93)15PB =-+++=. 因此道路PB 的长为15(百米).(2)①若P 在D 处,取线段BD 上一点E (−4,0),则EO =4<5,所以P 选在D 处不满足规划要求.②若Q 在D 处,连结AD ,由(1)知D (−4,9),又A (4,3), 所以线段AD :36(44)4y x x =-+-. 在线段AD 上取点M (3,154),因为22221533454OM ⎛⎫=+<+= ⎪⎝⎭,所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处.(3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求; 当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15,此时1P (−13,9); 当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15. 再讨论点Q 的位置.由(2)知,要使得QA≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,设Q (a ,9),由15(4)AQ a ==>,得a =4+所以Q (4+9),此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当P (−13,9),Q (4+9)时,d 最小,此时P ,Q 两点间的距离4(13)17PQ =+-=+.因此,d 最小时,P ,Q 两点间的距离为17+.19.本小题主要考查利用导数研究函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.满分16分.解:(1)因为a b c ==,所以3()()()()()f x x a x b x c x a =---=-. 因为(4)8f =,所以3(4)8a -=,解得2a =. (2)因为b c =,所以2322()()()(2)(2)f x x a x b x a b x b a b x ab =--=-+++-, 从而2()3()3a b f 'x x b x +⎛⎫=-- ⎪⎝⎭.令()0f 'x =,得x b =或23a bx +=. 因为2,,3a ba b +,都在集合{3,1,3}-中,且a b ≠, 所以21,3,33a b a b +===-.此时2()(3)(3)f x x x =-+,()3(3)(1)f 'x x x =+-.令()0f 'x =,得3x =-或1x =.列表如下:所以()f x 的极小值为2(1)(13)(13)32f =-+=-.(3)因为0,1a c ==,所以32()()(1)(1)f x x x b x x b x bx =--=-++,2()32(1)f 'x x b x b =-++.因为01b <≤,所以224(1)12(21)30b b b ∆=+-=-+>, 则()f 'x 有2个不同的零点,设为()1212,x x x x <.由()0f 'x =,得12x x ==.列表如下:所以()f x 的极大值()1M f x =. 解法一:()321111(1)M f x x b x bx ==-++()()221111211(1)32(1)3999b b x b b b x b x b x -+++⎛⎫=-++--+ ⎪⎝⎭()2321(1)(1)227927b b b b b --+++=++23(1)2(1)(1)2272727b b b b +-+=-+(1)24272727b b +≤+≤.因此427M ≤. 解法二:因为01b <≤,所以1(0,1)x ∈.当(0,1)x ∈时,2()()(1)(1)f x x x b x x x =--≤-. 令2()(1),(0,1)g x x x x =-∈,则1()3(1)3g'x x x ⎛⎫=-- ⎪⎝⎭. 令()0g'x =,得1x =.列表如下: 所以当13x =时,()g x 取得极大值,且是最大值,故max 14()327g x g ⎛⎫== ⎪⎝⎭. 所以当(0,1)x ∈时,4()()27f x g x ≤≤,因此427M ≤. 20.本小题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.满分16分. 解:(1)设等比数列{a n }的公比为q ,所以a 1≠0,q ≠0.由245321440a a a a a a =⎧⎨-+=⎩,得244112111440a q a q a q a q a ⎧=⎨-+=⎩,解得112a q =⎧⎨=⎩.因此数列{}n a 为“M —数列”.(2)①因为1122n n n S b b +=-,所以0n b ≠. 由1111,b S b ==得212211b =-,则22b =. 由1122n n n S b b +=-,得112()n n n n n b b S b b ++=-,当2n ≥时,由1n n n b S S -=-,得()()111122n n n nn n n n n b b b b b b b b b +-+-=---,整理得112n n n b b b +-+=.所以数列{b n }是首项和公差均为1的等差数列. 因此,数列{b n }的通项公式为b n =n ()*n ∈N .②由①知,b k =k ,*k ∈N .因为数列{c n }为“M –数列”,设公比为q ,所以c 1=1,q >0.因为c k ≤b k ≤c k +1,所以1k kq k q -≤≤,其中k =1,2,3,…,m .当k =1时,有q ≥1; 当k =2,3,…,m 时,有ln ln ln 1k kq k k ≤≤-. 设f (x )=ln (1)x x x >,则21ln ()xf 'x x -=. 令()0f 'x =,得x =e.列表如下:x (1,e)e (e ,+∞) ()f 'x+0 –f (x )极大值因为ln 2ln8ln 9ln 32663=<=,所以max ln 3()(3)3f k f ==. 取33q =k =1,2,3,4,5时,ln ln kq k,即k k q ≤,经检验知1k q k -≤也成立.因此所求m 的最大值不小于5.若m ≥6,分别取k =3,6,得3≤q 3,且q 5≤6,从而q 15≥243,且q 15≤216, 所以q 不存在.因此所求m 的最大值小于6. 综上,所求m 的最大值为5.数学Ⅱ(附加题)参考答案21.【选做题】A .[选修4–2:矩阵与变换]本小题主要考查矩阵的运算、特征值等基础知识,考查运算求解能力.满分10分.解:(1)因为3122⎡⎤=⎢⎥⎣⎦A ,所以231312222⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦A=3312311223222122⨯+⨯⨯+⨯⎡⎤⎢⎥⨯+⨯⨯+⨯⎣⎦=115106⎡⎤⎢⎥⎣⎦.(2)矩阵A 的特征多项式为231()5422f λλλλλ--==-+--.令()0f λ=,解得A 的特征值121,4λλ==. B .[选修4–4:坐标系与参数方程]本小题主要考查曲线的极坐标方程等基础知识,考查运算求解能力.满分10分.解:(1)设极点为O .在△OAB 中,A (3,4π),B ,2π),由余弦定理,得AB =. (2)因为直线l 的方程为sin()34ρθπ+=,则直线l 过点)2π,倾斜角为34π.又)2B π,所以点B 到直线l 的距离为3sin()242ππ⨯-=. C .[选修4–5:不等式选讲]本小题主要考查解不等式等基础知识,考查运算求解和推理论证能力.满分10分. 解:当x <0时,原不等式可化为122x x -+->,解得x <–13:当0≤x ≤12时,原不等式可化为x +1–2x >2,即x <–1,无解; 当x >12时,原不等式可化为x +2x –1>2,解得x >1. 综上,原不等式的解集为1{|1}3x x x <->或.22.【必做题】本小题主要考查二项式定理、组合数等基础知识,考查分析问题能力与运算求解能力,满分10分.解:(1)因为0122(1)C C C C 4n n nn n n n x x x x n +=++++≥,, 所以2323(1)(1)(2)C ,C 26n nn n n n n a a ---====, 44(1)(2)(3)C 24nn n n n a ---==. 因为23242a a a =,所以2(1)(2)(1)(1)(2)(3)[]26224n n n n n n n n n ------=⨯⨯,解得5n =.(2)由(1)知,5n =.5(1(1n +=02233445555555C C C C C C =++++a =+解法一:因为*,a b ∈N ,所以024*********C 3C 9C 76,C 3C 9C 44a b =++==++=,从而222237634432a b -=-⨯=-. 解法二:50122334455555555(1C C (C (C (C (C (=+++++02233445555555C C C C C C =--+-.因为*,a b ∈N ,所以5(1a =-.因此225553((1(1(2)32a b a a -=+-=⨯-=-=-.23.【必做题】本小题主要考查计数原理、古典概型、随机变量及其概率分布等基础知识,考查逻辑思维能力和推理论证能力.满分10分.解:(1)当1n =时,X的所有可能取值是12X的概率分布为22667744(1),(C 15C 15P X P X ======,22662222(2),(C 15C 15P X P X ======. (2)设()A a b ,和()B c d ,是从n M 中取出的两个点. 因为()1()P X n P X n ≤=->,所以仅需考虑X n >的情况. ①若b d =,则AB n ≤,不存在X n >的取法;②若01b d ==,,则AB =≤所以X n >当且仅当AB =此时0 a c n ==,或 0a n c ==,,有2种取法; ③若02b d ==,,则AB =,因为当3n ≥时,n ≤,所以X n >当且仅当AB =,此时0 a c n ==,或 0a n c ==,,有2种取法;④若12b d ==,,则AB =≤所以X n >当且仅当AB =此时0 a c n ==,或 0a n c ==,,有2种取法. 综上,当X n >时,X,且22242442(,(C C n n P X P X ++====.因此,2246()1((1C n P X n P X P X +≤=-=-==-.。

2019年江苏理科数学高考试题(含解析).doc

2019年江苏理科数学高考试题(含解析).doc

2019年江苏数学高考试题数学Ⅰ试题参考公式圆柱的体积公式:V 圆柱=Sh ,其中S 是圆柱的底面积,h 为高。

圆锥的体积公式:V 圆锥13Sh ,其中S 是圆锥的底面积,h 为高。

一、填空题:本大题共14个小题,每小题5分,共70分.请把答案写在答题卡相应位置上。

1.已知集合{1,2,3,6},{|23},A B x x =-=-<<则=A B I ________▲________. 2.复数(12i)(3i),z =+-其中i 为虚数单位,则z 的实部是________▲________.3.在平面直角坐标系xOy 中,双曲线22173x y -=的焦距是________▲________.4.已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是________▲________. 5.函数y =232x x --的定义域是 ▲ .6.如图是一个算法的流程图,则输出的a 的值是 ▲ .7.将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是 ▲ .8.已知{a n }是等差数列,S n 是其前n 项和.若a 1+a 22=-3,S 5=10,则a 9的值是 ▲ .9.定义在区间[0,3π]上的函数y =sin2x 的图象与y =cos x 的图象的交点个数是 ▲ .10.如图,在平面直角坐标系xOy 中,F 是椭圆22221()x y a b a b +=>>0的右焦点,直线2by =与椭圆交于B ,C 两点,且90BFC ∠=o ,则该椭圆的离心率是 ▲ .(第10题)11.设f(x)是定义在R上且周期为2的函数,在区间[ −1,1)上,,10, ()2,01,5x axf xx x+-≤<⎧⎪=⎨-≤<⎪⎩其中.a∈R若59()()22f f-=,则f(5a)的值是▲ .12. 已知实数x,y满足240220330x yx yx y-+≥⎧⎪+-≥⎨⎪--≤⎩,则x2+y2的取值范围是▲ .13.如图,在△ABC中,D是BC的中点,E,F是AD上的两个三等分点,4BC CA⋅=u u u r u u u r,1BF CF⋅=-u u u r u u u r,则BE CE⋅u u u r u u u r 的值是▲ .14.在锐角三角形ABC中,若sin A=2sin B sin C,则tan A tan B tan C的最小值是▲ .二、解答题(本大题共6小题,共90分.请在答题卡制定区域内作答,解答时应写出文字说明、证明过程或演算步骤.)15.(本小题满分14分)在ABC△中,AC=6,4πcos.54B C==,(1)求AB的长;(2)求πcos(6A-)的值.16.(本小题满分14分)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为AB ,BC 的中点,点F 在侧棱B 1B 上,且11B D A F ⊥,1111AC A B ⊥.求证:(1)直线DE ∥平面A 1C 1F ;(2)平面B 1DE ⊥平面A 1C 1F .17.(本小题满分14分)现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱锥1111P A B C D -,下部分的形状是正四棱柱1111ABCD A B C D -(如图所示),并要求正四棱柱的高1PO 的四倍. 若16,PO 2,AB m m ==则仓库的容积是多少?(1) 若正四棱柱的侧棱长为6m,则当1PO 为多少时,仓库的容积最大?18. (本小题满分16分)如图,在平面直角坐标系xOy中,已知以M为圆心的圆M:221214600x y x y+--+=及其上一点A(2,4)(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;(2)设平行于OA的直线l与圆M相交于B、C两点,且BC=OA,求直线l的方程;(3)设点T(t,o)满足:存在圆M上的两点P和Q,使得,TA TP TQ+=u u r u u r u u u r,求实数t的取值范围。

2019年高考真题数学(江苏卷含答案)

2019年高考真题数学(江苏卷含答案)

2019 年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共 4 页,均为非选择题(第 1 题 ~第 20 题,共 20 题 )。

本卷满分为160 分,考试时间为 120 分钟。

考试结束后,请将本试卷和答题卡一片交回。

2.答题前,请务必将自己的姓名、准考证号用0.5 毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。

3.请认真核对监考员从答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符。

4.作答试题,必须用0.5 毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。

5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗。

参考公式:样本数据 x1, x2,⋯ , x n的方差 s21nn12x i x ,其中 xi1 nnx i.i 1柱体的体积 V Sh,其中 S 是柱体的底面积, h 是柱体的高.锥体的体积 V 1 Sh,其中 S 是锥体的底面积, h 是锥体的高.3一、填空题:本大题共14 小题,每小题 5 分,共计 70 分.请把答案填写在答题卡相应位......置上...1.已知集合 A { 1,0,1,6} , B { x | x 0, x R} ,则 A B ▲.2.已知复数 (a 2i)(1 i) 的实部为 0,其中 i 为虚数单位,则实数 a 的值是▲. 3.下图是一个算法流程图,则输出的S 的值是▲.4.函数 y7 6x x 2 的定义域是 ▲.5.已知一组数据 6, 7, 8, 8, 9, 10,则该组数据的方差是▲ .6.从 3 名男同学和 2 名女同学中任选 2 名同学参加志愿者服务,则选出的 2 名同学中至少 有 1 名女同学的概率是 ▲.7.在平面直角坐标系 xOy 中,若双曲线 x 2y21(b 0) 经过点( 3, 4),则该双曲线的b 2渐近线方程是▲. 8.已知数列 { a n }( n N *) 是等差数列, S n 是其前 n 项和 .若 a 2a 5a 80, S 9 27,则S 8的 值是 ▲.9.如图,长方体 ABCDA 1B 1C 1D 1 的体积是 120,E 为 CC 1 的中点,则三棱锥 E-BCD 的体积是 ▲.410.在平面直角坐标系 xOy 中, P 是曲线 y x ( x 0) 上的一个动点,则点 P 到直线 xx+y=0 的距离的最小值是 ▲ .11.在平面直角坐标系 xOy 中,点 A 在曲线 y=lnx 上,且该曲线在点 A 处的切线经过点 ( -e ,-1)(e 为自然对数的底数) ,则点 A 的坐标是▲ .12.如图,在 △ ABC 中, D 是 BC 的中点, E 在边 AB 上, BE=2EA , AD 与 CE 交于点 O .若 AB AC 6AO EC ,则 AB的值是 ▲ .AC13.已知 tan 2 ,则 sin 2 π的值是 ▲.π 3 4 tan 4 .设 f ( x), g(x) 是定义在 R 上的两个周期函数, f ( x) 的周期为, g( x) 的周期为 ,且 14 4 2k( x 2),0 x 1f (x) 是奇函数 .当 x (0, 2] 时, f( x) 1 (x 1)2, g( x) 1 2 ,,1 x2 其中 k>0.若在区间 (0, 9]上,关于 x 的方程 f ( x) g(x) 有 8 个不同的实数根,则 k的取值范围是▲ .二、解答题:本大题共 6小题,共计 90分.请在答题卡指定区域 内作答,解答时应写出文字.......说明、证明过程或演算步骤.15.(本小题满分 14 分)在△ ABC 中,角 A , B , C 的对边分别为 a , b , c .( 1)若 a=3 c , b= 2 , cosB= 2,求 c 的值; 3( 2)若sin Acos B,求 sin( B ) 的值.a 2b216.(本小题满分 14 分)如图,在直三棱柱 ABC - A 1B 1C 1 中, D ,E 分别为 BC , AC 的中点, AB=BC .求证:( 1) A 1B 1∥平面 DEC 1;( 2)BE ⊥ C 1E .17.(本小题满分 14 分)如图,在平面直角坐标系xOy 中,椭圆 C: x2y21(a b 0) 的焦点为(– 1、0),a2b2F1 F2( 1, 0).过 F 2作 x 轴的垂线 l ,在 x 轴的上方, l 与圆 F2:(x 1)2y24a2交于点A,与椭圆 C 交于点 D.连结 AF1并延长交圆 F2于点 B,连结 BF2交椭圆 C 于点 E,连结 DF 1.已知 DF1=5.2(1)求椭圆 C 的标准方程;(2)求点 E 的坐标.18.(本小题满分16 分)如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥AB( AB是圆 O 的直径).规划在公路l 上选两个点P、Q,并修建两段直线型道路PB、QA.规划要求 :线段 PB、QA 上的所有点到点 O 的距离均不小于圆.... O 的半径.已知点A、B 到直线 l 的距离分别为百米).( 1)若道路PB 与桥ACAB和 BD(C、D垂直,求道路为垂足),测得 PB 的长;AB =10, AC=6, BD=12 (单位 :( 2)在规划要求下,P和Q 中能否有一个点选在D 处?并说明理由;( 3)对规划要求下,若道路PB 和QA 的长度均为d(单位:百米).求当d 最小时, P、Q 两点间的距离.19.(本小题满分16 分)设函数 f ( x) ( x a)( x b)( x c), a, b, c R 、 f ' ( x) 为 f( x)的导函数.(1)若 a=b=c, f( 4)=8,求 a 的值;( 2)若a≠ b,b=c,且f(x)和f ' ( x) 的零点均在集合{ 3,1,3} 中,求f( x)的极小值;( 3)若 a 0,0 b, 1,c 1 ,且 f (x)的极大值为 M,求证 :M≤4.27 20.(本小满分16 分)定义首项为1 且公比为正数的等比数列为“M-数列” .( 1)已知等比数列{ a n} (n N* ) 满足:a2a4a5 , a3 4a2 4a4 0 ,求证 :数列{ an}为“ M -数列”;( 2)已知数列 { bn} 满足 : b11, 1 2 2 ,其中 Sn 为数列 { bn} 的前 n项和.S n b n b n 1①求数列 { bn} 的通项公式;②设 m 为正整数,若存在“M -数列” { c n } ( n N * ) ,对任意正整数 k,当 k≤ m 时,都有 c k剟b k c k 1成立,求 m 的最大值.数学Ⅱ ( 附加题 )21.【选做题】本题包括 A、 B、 C 三小题,请选定其中两小题,并在相应的答题区域内作....................答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步.骤.A.[ 选修 4-2:矩阵与变换](本小题满分10 分)3 1已知矩阵 A2 2(1)求 A2;(2)求矩阵 A的特征值 .B.[ 选修 4-4:坐标系与参数方程](本小题满分10分)在极坐标系中,已知两点 A 3, , B2, ,直线 l的方程为 sin 3 .4 2 4(1)求 A, B两点间的距离;( 2)求点 B到直线 l的距离 . C.[选修 4-5:不等式选讲 ](本小题满分 10分)设 x R ,解不等式 |x|+|2 x 1|>2 .【必做题】第22 题、第 23 题,每题10 分,共计20 分.请在答题卡指定区域内作答,解.......答时应写出文字说明、证明过程或演算步骤.22. (本小题满分 10 分)设 (1 x)n a0a1 x a2x2a n x n , n⋯4, n N * . 已知a32 2 a2 a.4(1)求 n的值;( 2)设 (1 3) n a b 3 ,其中 a,b N*,求 a23b 2的值 .23(.本小题满分10分)在平面直角坐标系xOy中,设点集 A n {(0,0),(1,0),(2,0), ,( n,0)} ,B n(0,1),(n,1)},C n{(0,2),(1 ,2),(2,2), ,( n,2)}, n N .令 M n A n B n C n .从集合 Mn中任取两个不同的点,用随机变量 X表示它们之间的距离.(1)当 n=1时,求 X的概率分布;2019 年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ答案一、填空题:本题考查基础知识、基本运算和基本思想方法.每小题 5分,共计 70分 .1.{1,6}2.23.54.[ 1,7]56.7 7.y 2x 5.1038.16 9.10 10.4 11. (e, 1) 12. 3 13. 2 14. 1 , 210 3 4二、解答题15.本小题主要考查正弦定理、余弦定理、同角三角函数关系、诱导公式等基础知识,考查运算求解能力 .满分 14分 .解:( 1)因为 a 3c, b 2,cos B 2 ,3由余弦定理 cosB a2c2b2,得 2 (3c)2c2( 2)2,即 c2 1 .2ac 3 2 3c c 33.所以c3( 2)因为sin A cos B ,a 2b由正弦定理 a b ,得 cos B sin B,所以 cosB 2sin B .sin A sin B 2b b4 从而 cos2 B (2sin B)2,即 cos2 B 4 1 cos2 B ,故 cos2 B .5因为 sin B 0 ,所以 cosB 2sin B 0,从而 cos B 2 5. 5因此 sin B π 2 5. 2cosB516.本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力和推理论证能力 .满分 14 分.证明:( 1)因为 D ,E 分别为 BC, AC 的中点,所以 ED ∥AB .在直三棱柱 ABC-A1 B1C1 中, AB∥A1B1,所以 A1B1∥ ED .又因为 ED? 平面 DEC1, A1 B1 平面 DEC 1,所以 A 1B 1∥平面 DEC 1.( 2)因为 AB=BC , E 为 AC 的中点,所以 BE ⊥ AC.因为三棱柱 ABC-A 1 B 1C 1 是直棱柱,所以 CC 1⊥平面 ABC.又因为 BE? 平面 ABC ,所以 CC 1⊥ BE.因为 C1C? 平面 A1ACC1, AC? 平面 A1ACC1, C1C ∩AC=C ,所以 BE ⊥平面 A 1ACC 1.因为 C1E? 平面 A1ACC1,所以 BE ⊥ C1E.17.本小题主要考查直线方程、圆的方程、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等基础知识,考查推理论证能力、分析问题能力和运算求解能力.满分 14分.解:( 1)设椭圆C 的焦距为 2c.因为 F1(-1, 0), F 2(1, 0),所以 F 1F 2=2,c=1.又因为 DF1=5 , AF 2⊥x 轴,所以 DF 2= DF 12 F 1 F 22(5)2 223 , 2 2 2因此 2a=DF 1+DF 2=4,从而a=2.由 b 2=a 2-c 2,得 b 2=3.因此,椭圆 C 的标准方程为x2y 21 .4 3 ( 2)解法一:由( 1)知,椭圆 C :x2y 2 1, ,4 3 a=2因为 AF 2⊥ x 轴,所以点 A 的横坐标为 1.将 x=1 代入圆 F 2 的方程 (x-1) 2+y 2=16 ,解得 y=± 4.因为点 A 在 x 轴上方,所以 A(1,4).又 F1(-1, 0),所以直线 AF1: y=2x+2.y 2x 2 ,得 5x 26x 11 0,由1) 2 y 2( x 16 解得 x 1 或 x11.115 12将 x 代入 y 2x 2 ,得 y ,5 5因此 B( 11, 12) .又 F 2(1, 0),所以直线 BF 2: y 3(x 1) .5 5 4y3( x 1) 13由 4,得 2 ,解得 x 1 或 x y 2 7x 6x 13 0 .x 2 1 74 3又因为E 是线段 BF2 与椭圆的交点,所以x 1 . 将 x 1 代入 y 3( x 1) ,得 y3.因此E( 1, 3). 4 2 2解法二:由( 1)知,椭圆 C :x2y 21 .如图,连结 EF1.43因为 BF 2=2 a ,EF 1+EF2=2a ,所以 EF1 =EB ,从而∠ BF 1E=∠ B.因为 F2A=F2B ,所以∠ A=∠ B ,所以∠ A=∠ BF1E ,从而 EF1∥ F2A.因为 AF 2⊥ x 轴,所以 EF 1⊥ x 轴 .x13 因为 F1(-1 ,0) ,由x 2y2,得 y. 4 123又因为 E 是线段 BF 2 与椭圆的交点,所以 y 3 .23因此 E( 1, ).18.本小题主要考查三角函数的应用、解方程、直线与圆等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力 .满分 16分 .解:解法一:( 1)过 A 作 AE BD ,垂足为 E.由已知条件得,四边形 ACDE 为矩形, DE BE AC 6, AE CD 8.'因为 PB ⊥ AB ,所以 cos PBDsin84ABE.10 5BD 12所以 PB 15 .cos PBD 45因此道路 PB的长为 15(百米) .(2)①若 P在 D 处,由( 1)可得 E在圆上,则线段 BE 上的点(除 B, E)到点 O的距离均小于圆 O的半径,所以 P选在 D 处不满足规划要求 .②若 Q在 D处,连结 AD ,由( 1)知AD AE 2ED 210 ,AD 2 AB2BD 27 ,所以∠ BAD 为锐角 .从而 cos BAD 02AD AB 25所以线段 AD上存在点到点O的距离小于圆O的半径 .因此, Q选在 D 处也不满足规划要求.综上, P和 Q均不能选在 D处 .( 3)先讨论点 P的位置 .当∠ OBP<90°时,线段 PB上存在点到点 O的距离小于圆 O的半径,点 P不符合规划要求;当∠ OBP≥90°,对线段时PB上任意一点 F , OF ≥OB ,即线段 PB 上所有点到点 O的距离均不小于圆 O的半径,点 P符合规划要求 .设 P1为 l上一点,且PB1AB ,由( 1)知, P1 B=15 ,此时 PD1 PB1 sin PBD1PB1 cos EBA 15 39 ;5当∠ OBP>90°时,在△ PPB 中, PB PB1 1 由上可知, d≥15.再讨论点 Q的位置 .由( 2)知,要使得Q A≥15,点 Q只有位于点15.C的右侧,才能符合规划要求.当 QA=15 时,CQ QA2AC 215262 3 21 .此时,线段 QA上所有点到点 O的距离均不小于圆 O的半径 .综上,当 PB⊥ AB ,点 Q位于点 C右侧,且 CQ= 3 21时, d最小,此时 P, Q两点间的距离PQ=PD +CD +CQ=17+ 3 21.因此, d最小时, P, Q两点间的距离为17+ 3 21 (百米) .解法二:( 1)如图,过 O作 OH⊥ l ,垂足为 H.以 O为坐标原点,直线OH为 y轴,建立平面直角坐标系.因为 BD=12, AC=6,所以 OH =9,直线 l的方程为 y=9,点 A, B的纵坐标分别为3,- 3.因为 AB为圆 O的直径, AB=10 ,所以圆 O的方程为 x2+y2=25.从而 A( 4, 3), B(- 4, - 3),直线 AB的斜率为3.4因为 PB⊥ AB,所以直线 PB的斜率为 4 ,4 253x直线 PB的方程为y.3 3所以 P( - 13, 9),PB( 13 4)2(9 3)2 15 .因此道路 PB的长为 15(百米) .(2)①若 P在D 处,取线段 BD上一点 E( - 4, 0),则 EO=4<5 ,所以 P选在 D处不满足规划要求 .②若 Q在 D处,连结 AD ,由( 1)知 D( - 4, 9),又 A( 4, 3),所以线段 AD:y3x 6( 4剟x 4) . 4在线段 AD 上取点 M( 3,15),因为 OM3215 232425,4 4所以线段 AD上存在点到点O的距离小于圆O的半径 . 因此 Q选在 D 处也不满足规划要求.综上, P和 Q均不能选在 D处 .( 3)先讨论点 P 的位置 .当∠ OBP<90°时,线段 PB 上存在点到点 O 的距离小于圆 O 的半径,点 P 不符合规划要求;当∠ OBP ≥ 90°时,对线段 PB 上任意一点 F ,OF ≥OB ,即线段 PB 上所有点到点 O 的距离均不小于圆 O 的半径,点 P 符合规划要求 .设 P 为 l 上一点,且PB AB ,由( 1)知, P B=15 ,此时 P ( - 13,9);1 11 1当∠ OBP>90°时,在 △ PPB 1 中, PB PB 115 . 由上可知, d ≥15. 再讨论点 Q 的位置 .由( 2)知,要使得 QA ≥15,点 Q 只有位于点 C 的右侧,才能符合规划要求 .当 QA=15 时,设Q ( a ,9),由 AQ (a 4) 2 (9 3)215(a 4) ,得a= 4 3 21 ,所以 Q( 4 3 21, 9),此时,线段 QA 上所有点到点 O 的距离均不小于圆 O 的半径 .综上,当 P ( - 13, 9), Q( 43 21 , 9)时, d 最小,此时 P , Q 两点间的距离PQ 4321 ( 13) 17 3 21.因此, d 最小时, P , Q 两点间的距离为17 3 21 (百米) .19.本小题主要考查利用导数研究函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.满分16分.解:( 1)因为 a b c ,所以 f(x)(x a)( x b)( xc) ( x a)3 . 因为 f (4) 8 ,所以(4 a)38 ,解得 a 2 . (2)因为 b c ,所以 f( x)( x a)( x b)2x 3(a 2b)x 2b(2 a b) x ab 2 ,从而 f ' ( x)3( x b)x 2a b.令 f ' ( x) 0 ,得x b 或 x 2a b .33因为 a, b, 2ab,都在集合{3,1,3} 中,且a b ,3所以2a b1,a 3,b3 .3此时 f ( x) ( x 3)(x 3)2, f '( x)3(x 3)( x 1) .令 f ' (x) 0,得x 3 或 x 1 .列表如下:x ( , 3) 3 ( 3,1) 1(1, )f '( x)+ 0 –0+f ( x)极大值极小值所以 f ( x) 的极小值为 f (1) (1 3)(1 3)232 .(3)因为 a 0, c 1,所以 f (x) x( x b)( x 1) x3(b 1) x2bx ,f ' ( x) 3x22(b 1)x b .因为 0 b 1 ,所以4(b 1)212b (2 b1)2 3 0 ,则 f ' (x) 有 2个不同的零点,设为x1 , x2x1x2.由 f ' (x) 0,得 x1 b 1 b2 b 1 , x2 b 1 b2 b 1 .3 3列表如下:x (, x1 )x1x1 , x2x2( x2, )f '( x) + 0–0 +f ( x)极大值极小值所以 f ( x) 的极大值M f x1.解法一:M f x1x13(b 1)x12bx122(b 1)x1 b x1b 1 2 b2 b 1 b(b 1)3x13 9 9 x192 b 2b 1 (b 1) b(b 1) 2 23b b 1279 27b(b 1) 2(b1)2 (b 1) 2 (b(b 1) 1)327 27 27b(b 1) 24.因此M 4 .27 27 27 27 解法二:因为0 b 1 ,所以 x1(0,1) .当 x (0,1) 时, f( x)x(x b)( x 1) x( x 1)2.令 g ( x) x(x 1)2 , x (0,1) ,则 g'( x) 3 x1 ( x1) .31令 g' ( x) 0 ,得 x .列表如下:3x (0, 1) 1 (1 ,1)3 3 3g' ( x)+ 0 –g ( x)极大值所以当x 1时, g( x) 取得极大值,且是最大值,故g (x)max g1 4 .3 3 27所以当x (0,1) 时, f(x)4,因此 M4g ( x) .27 2720.本小题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.满分16分.解:( 1)设等比数列{ an } 的公比为 q,所以 a1≠ 0, q≠0.a2a4 a5,得a12 q4a1q4a1 1由4a24a10 a1q2,解得.a34a1q 4a1 0 q 2 因此数列 { a n} 为“ M —数列” .( 2)①因为1 2 2,所以 b n0 .S n b n b n 11 2 2由 b11,S1b1 得1 1 b2,则 b2 2 .1 2 2S n b n b n 1,由b n,得2(b n 1b n )S n b n 1当 n 2 时,由 b n S n S n 1,得b nb n b n 1 b n 1b n,2 b n 1b n 2 b n b n 1整理得 b n1b n 1 2bn .所以数列 { bn} 是首项和公差均为1的等差数列 .因此,数列{ b n} 的通项公式为bn=n n N*.②由①知, bk=k,k N* .因为数列 { cn} 为“M –数列”,设公比为 q,所以c1=1, q>0.因为ck≤bk≤ck+1,所以q k 1k qk,其中k=1 2 3,⋯,m.,,当 k=1时,有 q≥1;当 k=2,3,⋯, m时,有ln k ln q lnk .k k 1设 f ( x) =ln x1),则 f '(x)1lnx( xx2.x令 f ' (x) 0 ,得 x=e.列表如下:x (1,e) e(e +∞),f ' ( x) +0–(f x)极大值因为ln 2ln8ln9 ln 3f ( k) max f (3)ln 32 6 6,所以3.3取 q 3 3 ,当 k=1, 2,3, 4, 5时,lnk ,ln q ,即k q k,k经检验知 q k 1k 也成立.因此所求 m的最大值不小于5.若m≥6,分别取 k=3 ,6,得 3≤q3,且 q5≤6,从而 q15≥ 243,且q15≤ 216,所以 q不存在 .因此所求 m的最大值小于 6.综上,所求 m的最大值为 5.数学Ⅱ ( 附加题 ) 参考答案21.【选做题】A. [选修 4– 2:矩阵与变换]本小题主要考查矩阵的运算、特征值等基础知识,考查运算求解能力.满分10分.解:( 1)因为 A3 12 ,2所以 A23 1 3 12 2 2 23 3 1 2 3 1 1 2 11 5=3 2 2 2 1 2 =10.2 2 6 ( 2)矩阵 A的特征多项式为f ( )3 1 25 4 .2 2令 f( ) 0 ,解得 A的特征值1 1,2 4.B. [选修 4– 4:坐标系与参数方程]本小题主要考查曲线的极坐标方程等基础知识,考查运算求解能力.满分10分.解:( 1)设极点为 O.在△ OAB 中, A( 3,), B( 2 ,),4 2由余弦定理,得 AB= 32( 2)22 3 2 cos( ) 5 .2 4( 2)因为直线 l的方程为sin( ) 3 ,4则直线 l过点 (3 2,) ,倾斜角为3.2 4B l的距离为(3 2 2) 3 ) 2 .又 B( 2, ) ,所以点到直线sin(2 4 2C. [选修 4–5:不等式选讲]本小题主要考查解不等式等基础知识,考查运算求解和推理论证能力.满分10分.解:当 x<0时,原不等式可化为x 1 2 x 2 ,解得 x<–1:3当 0≤x≤1时,原不等式可化为x+1–2x>2,即 x<–1,无解;2当x> 1时,原不等式可化为 x+2 x–1>2 ,解得 x>1.2综上,原不等式的解集为{ x | x 1 或 x 1} .322.【必做题】本小题主要考查二项式定理、组合数等基础知识,考查分析问题能力与运算求解能力,满分 10分.解:( 1)因为 (1 x)n C n0C1n x C n2 x2 C n n x n,n 4 ,所以 a2 C n2n(n 1) , a3 C n3n( n 1)(n 2) ,2 6a4C n4n( n1)(n 2)( n3) .24因为 a322a2 a4,所以 [ n(n1)(n 2)] 2 2 n(n 1) n( n 1)(n 2)(n 3) ,6 2 24解得 n 5.( 2)由( 1)知,n 5 .(1 3) n(1 3) 5C50C15 3 C52( 3)2C53 ( 3)3C54( 3)4C55( 3)5a b 3 .解法一:因为 a,b N*,所以 a C503C529C5476, b C513C539C5544 ,从而a23b2762 3 44232 .解法二:(1 3)5C50C15( 3) C52 ( 3)2C53( 3) 3C54( 3)4C55 ( 3)5C50C15 3 C52 ( 3)2C53 ( 3)3C54 ( 3)4C55( 3)5.因为 a,b N*,所以 (1 3) 5 a b 3 .因此 a23b2( a b 3)( a b 3) (1 3) 5(1 3) 5 ( 2)532 .23.【必做题】本小题主要考查计数原理、古典概型、随机变量及其概率分布等基础知识,考查逻辑思维能力和推理论证能力.满分10分.解:(1)当 n 1时, X 的所有可能取值是 1, 2 ,2 ,5 .X 的概率分布为P(X 1) 7 7,P(X 2)4 42 2 ,C615 C615P(X 2) 2 2 ,P(X 5) 2 2 .C6215 C 6215( 2)设 A(a ,b) 和 B(c ,d ) 是从 M n中取出的两个点.因为 P(X n) 1 P( X n) ,所以仅需考虑X n 的情况.①若 b d ,则AB n ,不存在 X n 的取法;②若 b 0 ,d 1,则AB(a c) 2 1 n21,所以 X n 当且仅当AB n2 1 ,此时 a 0,c n 或 a n,c 0,有 2 种取法;③若 b 0 ,d2,则AB(a c)2 4 n24,因为当 n 3 时,(n 1)2 4 n,所以 X n 当且仅当ABn24,此时 a 0 ,c n 或a n ,c 0 ,有 2 种取法;④若 b 1,d 2 ,则AB(a c) 2 1 n21,所以 X n 当且仅当AB n2 1 ,此时 a 0,c n 或 a n,c 0 ,有 2 种取法.综上,当 X n 时,X的所有可能取值是n2 1 和n2 4 ,且P( X n 21)4,P(X n24)2.C2n2 4 C2n2 4P( X n) 1 P(X n2 1) P( X n24)1 6因此,C2n24 .。

2019年江苏省高考数学试卷及答案(Word版)

2019年江苏省高考数学试卷及答案(Word版)

YN 输出n 开始1a 2n ←←,1n n ←+32a a ←+20a <结束 (第5题)2019年普通高等学校招生全国统一考试 (江苏卷)数学Ⅰ 注意事项绝密★启用前考生在答题前请认真阅读本注意事项及各题答题要求:1.本试卷共4页,均为非选择题(第1题~第20题,共20题).本卷满分为160分.考试时间为120分钟.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请您务必将自己的姓名、考试证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符.4.作答试题必须用0.5毫米黑色墨水的签字笔在答题卡的指定位置作答,在其它位置作答一律无效. 5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位置上......... 1.函数)42sin(3π-=x y 的最小正周期为 ▲ .解析:2==2T ππ 2.设2)2(i z -=(i 为虚数单位),则复数z 的模为 ▲ . 解析:()2234,34=5Z i Z =-=+-3.双曲线191622=-y x 的两条渐近线的方程为 ▲ . 解析:3y=4x ±4.集合{}1,0,1-共有 ▲ 个子集. 解析:328=(个)5.右图是一个算法的流程图,则输出的n 的值是 ▲解析:经过了两次循环,n 值变为36.抽样统计甲,乙两位射击运动员的5次训练成绩(单位:环),结果如下: 运动员 第1次 第2次 第3次 第4次 第5次 甲 87 91 90 89 93 乙8990918892则成绩较为稳定(方差较小)的那位运动员成绩的方差为 ▲ . 解析:易知均值都是90,乙方差较小,()()()()()()()22222221118990909091908890929025n i i s x xn ==-=-+-+-+-+-=∑7.现有某类病毒记作n m Y X ,其中正整数)9,7(,≤≤n m n m 可以任意选取,则n m ,都取到奇数的概率为 ▲ . 解析:m 可以取的值有:1,2,3,4,5,6,7共7个 n 可以取的值有:1,2,3,4,5,6,7,8,9共9个所以总共有7963⨯=种可能 符合题意的m 可以取1,3,5,7共4个 符合题意的n 可以取1,3,5,7,9共5个 所以总共有4520⨯=种可能符合题意 所以符合题意的概率为20638.如图,在三棱柱ABC C B A -111中,F E D ,,分别是1,,AA AC AB 的中点,设三棱锥ADE F -的体积为1V ,三棱柱ABC C B A -111的体积为2V ,则=21:V V ▲ . 解析:112211111334224ADE ABC V S h S h V ==⨯⨯=所以121:24V V =A BC1ADEF 1B1C9.抛物线2x y =在1=x 处的切线与两坐标轴围成三角形区域为D (包含三角形内部和边界).若点),(y x P 是区域D 内的任意一点,则y x 2+的取值范围是 ▲ .解析:易知切线方程为:21y x =-所以与两坐标轴围成的三角形区域三个点为()()()0,00.5,00,1A B C - 易知过C 点时有最小值2-,过B 点时有最大值0.510.设E D ,分别是ABC ∆的边BC AB ,上的点,AB AD 21=,BC BE 32=,若AC AB DE 21λλ+=(21,λλ为实数),则21λλ+的值为 ▲ .解析:易知()121212232363DE AB BC AB AC AB AB AC =+=+-=-+u u u r u u u r u u u r u u u r u u u r u u ur u u u r所以1212λλ+=11.已知)(x f 是定义在R 上的奇函数.当0>x 时,x x x f 4)(2-=,则不等式x x f >)(的解集用区间表示为 ▲ . 解析:因为)(x f 是定义在R 上的奇函数,所以易知0x ≤时,2()4f x x x =-- 解不等式得到x x f >)(的解集用区间表示为()()5,05,-+∞U12.在平面直角坐标系xOy 中,椭圆C 的标准方程为)0,0(12222>>=+b a by a x ,右焦点为F ,右准线为l ,短轴的一个端点为B ,设原点到直线BF 的距离为1d ,F 到l 的距离为2d .若126d d =,则椭圆的离心率为 ▲ . 解析:由题意知2212,bc a b d d c a c c==-= 所以有26b bcc a= 两边平方得到2246a b c =,即42246a a c c -= 两边同除以4a 得到2416e e -=,解得213e =,即33e =13.平面直角坐标系xOy 中,设定点),(a a A ,P 是函数)0(1>=x xy 图像上一动点,若点A P ,之间最短距离为22,则满足条件的实数a 的所有值为 ▲ . 解析: 由题意设()0001,,0P x x x ⎛⎫> ⎪⎝⎭则有()222222200000200000111112++2=+-2+22PA x a a x a x a x a x a x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫=-+-=+-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 令()001t 2x t x +=≥ 则()222=(t)=t 2222PA f at a t -+-≥ 对称轴t a = 1.2a ≤时,22min 2(2)2422428PA f a a a a ==-+∴-+=1a =- , 3a =(舍去) 2.2a >时,22min 2()228PA f a a a ==-∴-=10a = , 10a =-(舍去) 综上1a =-或10a =14.在正项等比数列{}n a 中,215=a ,376=+a a .则满足n n a a a a a a a a ......321321>++++的最大正整数n 的值为 ▲ . 解析:2252552667123123115521155223 (1),.222222011521312913236002292212n n n n n n n n n n a a a a a a a a a a q a q q a a n nq n q n q a -------=+=+-+=∴++++>∴->∴->>-∴->-+∴<<=>∴==Q QQ n N +∈112,n n N +∴≤≤∈又12n =时符合题意,所以n 的最大值为12二、解答题:本大题共6小题,共计90分。

2019年高考真题数学(江苏卷含答案)

2019年高考真题数学(江苏卷含答案)

2019 年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ 注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共 4 页,均为非选择题 (第 1 题~第 20 题,共 20 题)。

本卷满分为 160 分,考试时间为 120 分钟。

考试结束后,请将本试卷和答题卡一片交回。

2.答题前,请务必将自己的姓名、准考证号用0.5 毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。

3.请认真核对监考员从答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符。

4.作答试题,必须用0.5 毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。

5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗。

参考公式:样本数据x 1, x 2,⋯ ,x n 的方差n1 2s x xini 1 2 ,其中n 1xx ini 1. 柱体的体积 V Sh ,其中 S 是柱体的底面积, h 是柱体的高.锥体的体积1VSh ,其中 S 是锥体的底面积, h 是锥体的高. 3一、填空题:本大题共 14 小题,每小题 5 分,共计70 分.请把答案填写在答题.卡.相.应.位. . 置.上. .1.已知集合 A { 1,0,1,6} , B { x | x 0, x R } ,则A B ▲ . 2.已知复数 (a 2i)(1 i) 的实部为 0,其中 i 为虚数单位,则实数 a 的值是▲.3.下图是一个算法流程图,则输出的S 的值是▲.4.函数2y 7 6x x 的定义域是▲.5.已知一组数据6,7,8,8,9,10,则该组数据的方差是▲.6.从 3 名男同学和 2 名女同学中任选 2 名同学参加志愿者服务,则选出的 2 名同学中至少有 1 名女同学的概率是▲.7.在平面直角坐标系xOy 中,若双曲线2y2x bb21( 0)经过点( 3,4),则该双曲线的渐近线方程是▲.8.已知数列*{ a n}( n N ) 是等差数列,S n 是其前n 项和.若a2a5 a8 0, S9 27 ,则S8 的值是▲.9.如图,长方体ABCD A1B1C1D1 的体积是120,E 为CC1的中点,则三棱锥E-BCD 的体积是▲.10.在平面直角坐标系xOy 中,P 是曲线4y x (x0)x上的一个动点,则点P 到直线x+ y=0 的距离的最小值是▲.11.在平面直角坐标系xOy 中,点 A 在曲线 y=ln x 上,且该曲线在点 A 处的切线经过点(-e,-1)(e 为自然对数的底数),则点 A 的坐标是▲.12.如图,在 △ABC 中, D 是 BC 的中点, E 在边 AB 上,BE=2EA ,AD 与 CE 交于点 O .若A B AC 6AO EC ,则 ABAC的值是 ▲ .13.已知tant an 2 π 3 4,则sin 2π 4 的值是 ▲ .14.设 f ( x), g(x) 是定义在 R 上的两个周期函数, f (x) 的周期为 4,g( x) 的周期为 2,且k( x 2),0 x 1f (x) 是奇函数 .当 x (0, 2] 时,2f ( x)1 (x1) ,g x( )12,1 x 2 , 其中 k>0.若在区间 (0,9]上,关于 x 的方程 f (x) g(x) 有 8 个不同的实数根,则 k 的 取值范围是▲.二、解答题:本大题共 6小题,共计 90分.请在答.题.卡.指.定.区.域. 内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分 14 分)在△ABC 中,角 A ,B ,C 的对边分别为 a ,b ,c .(1)若 a=3 c ,b= 2 ,cosB =2 3,求 c 的值;(2)若s in Acos B a2b ,求s in( B) 的值.216.(本小题满分 14 分)如图,在直三棱柱 ABC -A 1B1C 1 中,D ,E 分别为 BC ,AC 的中点, AB=BC . 求证:( 1)A 1B 1∥平面 DEC 1; (2)BE ⊥C 1E .17.(本小题满分14 分)如图,在平面直角坐标系xOy 中,椭圆C:2 2x y2 2 1(a b0)a b的焦点为F1(–1、0),F2(1,0).过F2 作 x 轴的垂线l ,在 x 轴的上方, l 与圆 F2:2 2 2 (x 1) y 4a 交于点 A,与椭圆 C 交于点 D.连结 AF1 并延长交圆F2 于点 B,连结 BF2 交椭圆 C 于点 E,连结 DF 1.已知 DF 1=52.(1)求椭圆 C 的标准方程;(2)求点 E 的坐标.18.(本小题满分16 分)如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l,湖上有桥AB(AB 是圆 O 的直径).规划在公路l 上选两个点P、Q,并修建两段直线型道路PB、QA.规划要求 :线段 PB、QA 上的所有点到点O 的距离均不.小.于.圆.O 的半径.已知点A、B 到直线 l 的距离分别为AC 和 BD(C、D 为垂足),测得AB =10,AC=6,BD=12(单位: 百米).(1)若道路PB 与桥 AB 垂直,求道路PB 的长;(2)在规划要求下, P 和 Q 中能否有一个点选在 D 处?并说明理由;(3)对规划要求下,若道路PB 和 QA 的长度均为 d (单位:百米) .求当 d 最小时, P 、 Q 两点间的距离.19.(本小题满分 16 分)设函数 f (x) ( x a)( x b)( x c), a,b,c R 、 f '(x) 为 f (x )的导函数. (1)若 a= b=c ,f (4)=8,求 a 的值;(2)若 a ≠b ,b= c ,且 f (x )和 f '(x ) 的零点均在集合 { 3,1,3} 中,求 f ( x )的极小 值;(3)若 a 0,0 b, 1,c 1 ,且 f (x )的极大值为 M ,求证:M ≤4 27. 20.(本小满分 16 分)定义首项为 1 且公比为正数的等比数列为“M -数列” .(1)已知等比数列 { a n }* (n N )满足: a 2a 4a 5,a 3 4a 2 4a 40 ,求证:数列 {an}为“M -数列”;(2)已知数列 { b n } 满足 : b 11,1 2 2 S b b n n n 1,其中 S n 为数列 {b n } 的前 n 项和. ①求数列 { b n }的通项公式; ②设 m 为正整数,若存在“M -数列” { c n }* (n N ) ,对任意正整数 k ,当 k ≤ m 时,都有c 剟b c 成立,求 m 的最大值.k k k 1数学Ⅱ ( 附加题 )21.【选做题】本题包括 A 、B 、C 三 小 题 , 请.选.定.其.中.两.小.题.,.并.在.相.应.的.答.题.区.域.内.作.答..若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A.[ 选修4-2:矩阵与变换](本小题满分 10 分)已知矩阵 A3 1 2 2(1)求 A2;(2)求矩阵 A 的特征值 .B.[选修4-4:坐标系与参数方程 ](本小题满分 10分)在极坐标系中,已知两点A 3,, B2, ,直线l 的方程为s in3 424.(1)求 A ,B 两点间的距离;( 2)求点 B 到直线l 的距离 . C.[选修4-5:不等式选讲](本小题满分 10分) 设 x R ,解不等式 |x|+|2 x 1|>2.【必做题】第22 题、第23 题,每题 10 分,共计20 分.请在答.题.卡.指.定.区.域. 内作答,解 答时应写出文字说明、证明过程或演算步骤.22. ( 本 小 题满分 10 分 ) 设 n 2n * (1 x) aa x a x a x , n ⋯ 4, n N . 已 知0 12n2 a3 2 a 2 a.4n a b ,其中(1)求 n 的值;( 2)设 (1 3)3* a,b N ,求22 a 3b 的值 . 23(. 本小题满分 10分)在平面直角坐标系 xOy 中,设点集 A n {(0,0),(1,0),(2,0),,( n,0)} ,B(0,1),(n,1)},C {(0,2),(1 ,2),(2,2),,( n,2)}, n N .n n令 M A B C .从集合 M n 中任取两个不同的点, 用随机变量X 表示它们之间的距 n n n n 离.(1)当 n=1时,求 X 的概率分布;2019 年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ答案一、填空题:本题考查基础知识、基本运算和基本思想方法.每小题5分,共计70分.1.{1,6}2.23.54.[ 1,7]5. 536.7107. y2x8.16 9.10 10.4 11.(e, 1) 12. 3 13.21014.1 2,3 4二、解答题15.本小题主要考查正弦定理、余弦定理、同角三角函数关系、诱导公式等基础知识,考查运算求解能力.满分14分.解:(1)因为 3 , 2,cos 2a cb B ,3由余弦定理cos B2 22a c b2ac,得2 222 (3c) c( 2)3 2 3c c,即2 1c .3所以3 c .3(2)因为s in A cos Ba 2b,由正弦定理a bsin A sinB ,得c os B sin B2b b,所以 cosB 2sin B .从而2 2cos B (2sin B) ,即2 2cos B 4 1 cos B ,故2 4cos B .5因为s in B 0,所以cosB 2sin B 0,从而c os 2 5B .5因此π 2 5 sin B cosB .2 516.本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力和推理论证能力.满分14 分.证明:(1)因为 D,E 分别为BC,AC 的中点,所以 ED∥AB.在直三棱柱ABC-A1B1C1 中,AB∥A1B1,所以 A1B1∥ED.又因为 ED? 平面 DEC 1,A 1B 1 平面 DEC 1,所以 A 1B 1∥平面 DEC 1.(2)因为 AB=BC ,E 为 AC 的中点,所以 BE ⊥AC. 因为三棱柱 ABC-A 1B1C 1 是直棱柱,所以 CC 1⊥平面 ABC. 又因为 BE? 平面 ABC ,所以 CC 1⊥BE.因为 C 1C? 平面 A1ACC 1,AC? 平面 A 1ACC 1,C 1C ∩AC= C , 所以 BE ⊥平面 A 1ACC 1.因为 C 1E? 平面 A1ACC 1,所以 BE ⊥C 1E.17.本小题主要考查直线方程、圆的方程、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等基础知识,考查推理论证能力、分析问题能力和运算求解能力 .满分 14 分 .解:(1)设椭圆 C 的焦距为 2c.因为 F 1(-1,0),F 2(1,0),所以 F 1F 2=2,c=1.又因为 DF 1=5 2 ,AF 2⊥x 轴,所以 DF 2= 5 3 2 2 2 2DF F F ( )2 , 1 1 222因此 2a =DF 1+DF 2=4,从而 a=2.2=a 2-c 2,得 b 2=3.由 b因此,椭圆 C 的标准方程为22 x y 431. (2)解法一:由(1)知,椭圆 C :2 2 x y 431,a=2, 因为 AF 2⊥x 轴,所以点 A 的横坐标为 1.将 x=1 代入圆 F 2 的方程 (x-1)2+y 2=16,解得 y=± 4. 因为点 A 在 x 轴上方,所以 A(1,4). 又 F 1(-1,0),所以直线 AF 1:y=2x+2.由 y 2x 2 2 2(x 1) y 16,得 5x 26x 11 0 ,解得x1或11x .5将11x 代入 y 2x 2 ,得512y ,5因此11 12B( , ) .又F2(1,0),所以直线BF2:5 53y (x1) .4由3y ( x1)42 2x y4 31,得27x 6x 13 0 ,解得x 1或13x .7又因为 E 是线段BF2 与椭圆的交点,所以x 1 .将x1代入3y (x1) ,得43y .因此23E( 1, ) .2解法二:由(1)知,椭圆C:2 2x y4 31 .如图,连结EF1.因为 BF2=2 a,EF 1+ EF2=2 a,所以EF1= EB,从而∠BF 1E=∠B.因为 F2A=F2B,所以∠ A=∠B,所以∠A=∠BF1E,从而 EF1∥F2A.因为 AF2⊥x 轴,所以EF1⊥x 轴.x 1因为 F1(-1,0),由 2 2x y ,得14 33 y .2又因为 E 是线段BF2 与椭圆的交点,所以3y .2因此3E( 1, ) .218.本小题主要考查三角函数的应用、解方程、直线与圆等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力.满分16分.解:解法一:(1)过A作 AE BD ,垂足为 E.由已知条件得,四边形ACDE为矩形,DE BE AC 6, AE CD 8.'因为PB⊥AB,所以8 4 cos PBD sin ABE .10 5所以12 15BDPB45cos PBD.因此道路PB的长为15(百米).(2)①若P在D处,由(1)可得E在圆上,则线段B E上的点(除B, E)到点O的距离均小于圆 O的半径,所以P选在 D处不满足规划要求.②若 Q在 D处,连结AD,由(1)知 2 2 10AD AE ED ,从而2 2 2 7AD AB BDcos BAD 02AD AB 25,所以∠BAD为锐角.所以线段A D上存在点到点O的距离小于圆O的半径 .因此,Q选在 D处也不满足规划要求.综上,P和Q均不能选在D处.( 3)先讨论点P的位置 .当∠ OBP<90°时,线段P B上存在点到点O的距离小于圆O的半径,点P不符合规划要求;当∠ OBP≥90时°,对线段P B上任意一点F,OF≥OB,即线段P B上所有点到点O的距离均不小于圆O的半径,点P符合规划要求.设P 为l上一点,且P1B AB ,由(1)知,P1 B=15,1此时3 PD PB sin PBD PB cos EBA 15 9 ;1 1 1 15当∠ OBP>90°时,在△PPB 中,PB P1B 15 .1由上可知,d≥15.再讨论点Q的位置 .由( 2)知,要使得QA≥15,点 Q只有位于点C的右侧,才能符合规划要求.当QA=15 时,2 2 152 623 21CQ QA AC .此时,线段Q A上所有点到点O的距离均不小于圆O的半径 .综上,当 PB ⊥AB ,点Q 位于点 C 右侧,且 CQ= 3 21时,d 最小,此时 P ,Q 两点间的距离 PQ=PD +CD +CQ=17+ 3 21.因此, d 最小时, P ,Q 两点间的距离为 17+ 3 21(百米) . 解法二:(1)如图,过 O 作OH ⊥l ,垂足为 H.以O 为坐标原点,直线 OH 为y 轴,建立平面直角坐标系 .因为 BD=12,AC =6,所以 OH =9,直线 l 的方程为 y=9,点 A ,B 的纵坐标分别为 3,- 3. 2+y 2=25. 因为 AB 为圆O 的直径, AB=10,所以圆 O 的方程为 x 从而 A (4,3),B (- 4,- 3),直线 AB 的斜率为3 4 . 因为 PB ⊥AB ,所以直线 PB 的斜率为 43,直线 PB 的方程为 4 25 yx . 3 3所以 P (- 13,9),2 2 PB ( 13 4) (9 3) 15. 因此道路 PB 的长为 15(百米) .(2)①若 P 在D 处,取线段 BD 上一点 E (- 4,0),则 EO =4<5,所以 P 选在 D 处不满足规 划要求 .②若 Q 在D 处,连结 AD ,由( 1)知D (- 4,9),又 A (4,3), 所以线段 AD :3 y x 6( 4剟x 4) .4在线段 AD 上取点 M (3, 15 4),因为22 15 2 2OM 33 4 5 ,4所以线段 AD 上存在点到点 O 的距离小于圆 O 的半径 . 因此 Q 选在D 处也不满足规划要求 .综上, P和Q均不能选在D处.( 3)先讨论点 P 的位置 .当∠ OBP<90°时,线段P B 上存在点到点 O 的距离小于圆O 的半径,点 P 不符合规划要求; 当∠ OBP ≥ 90°时,对线段P B 上任意一点 F ,OF ≥OB ,即线段P B 上所有点到点 O 的距离均 不小于圆O 的半径,点 P 符合规划要求 . 设 P 为l 上一点,且 P 1B AB ,由( 1)知, P 1 B=15,此时 P 1 (- 13,9);1当∠ OBP>90°时,在 △PPB 中, PB P 1B 15 . 1 由上可知, d ≥ 15. 再讨论点 Q 的位置 .由(2)知,要使得 QA ≥ 15,点Q 只有位于点 C 的右侧,才能符合规划要求 .当 QA=15时,设Q (a ,9),由2 2 AQ (a 4) (9 3) 15(a 4) ,得a= 43 21,所以 Q (4 321,9),此时,线段Q A 上所有点到点 O 的距离均不小于圆O 的半径 .综上,当 P (- 13,9), Q ( 4 3 21,9)时, d 最小,此时 P ,Q 两点间的距离 PQ 4 3 21 ( 13) 17 3 21 .因此, d 最小时, P ,Q 两点间的距离为17 3 21(百米) . 19.本小题主要考查利用导数研究函数的性质,考查综合运用数学思想方法分析与解决问题 以及逻辑推理能力.满分 16分.解:( 1)因为a b c ,所以3 f (x) (x a)( x b)( x c) (xa) .因为f (4)8 ,所以3(4 a) 8 ,解得 a2.(2)因为b c ,所以 2 3 2 2f (x) ( x a)( x b) x (a 2b) x b(2 a b)x ab ,从而2a b f ' x x b x .令 f '( x) 0 ,得 x b 或( ) 3( )32a bx. 3 2a ba b,都在集合 { 3,1,3} 中,且 a b ,因为,,3所以2a b3 1,a 3,b 3.此时 2f (x) (x3)( x 3) , f '( x) 3(x3)( x 1) .令 f'(x) 0,得x 3或x1.列表如下:x ( , 3) 3 ( 3,1) 1 (1, )f '( x) + 0 –0 +f (x) 极大值极小值所以 f ( x) 的极小值为2f (1) (1 3)(1 3)32 .(3)因为 a 0,c 1,所以3 2f (x) x( x b)( x 1) x (b 1)x bx ,2f'(x)3x 2(b 1)x b .因为 0 b 1,所以2 24(b 1) 12b (2 b 1) 3 0 ,则 f ' (x)有2个不同的零点,设为x1,x2 x1 x2 .由 f'(x) 0,得2 2b 1 b b 1 b 1 b b 1 x ,x .1 23 3列表如下:x (, x ) x1 x1,x2 x2( x2 , )1f ' (x) + 0 –0 +f ( x) 极大值极小值所以 f ( x) 的极大值M fx .1解法一:3 2M f x1 x1 (b 1)x1 bx122 b b 1x b 1 b(b 1)2 13x 2(b 1)x b x1 1 13 9 9 922 b b 1 (b 1) b(b 1) 227 9 272b b 132b(b 1) 2(b 1) (b 1)227 27 27 3( b(b 1) 1)b(b 1) 2 4 27 27 27.因此4 M .27解法二:因为0 b 1,所以x 1(0,1) .当 x (0,1) 时,2 f (x) x(x b)( x 1) x( x 1) .令2g(x) x(x 1) , x (0,1) ,则 1 g'( x) 3 x (x 1).3令 g'(x) 0,得1x .列表如下:3x (0, 1) 31 3 1( ,1) 3g'( x) + 0 –g(x)极大值所以当11 4 x时, g( x) 取得极大值,且是最大值,故 g (x)maxg .3327所以当 x (0,1) 时,4 f (x) g(x) ,因此 274 M . 2720.本小题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.满分 16分.解:( 1)设等比数列 { a n }的公比为 q ,所以 a 1≠0,q ≠0.由 a a a2 45 a 3 4a 2 4a 1,得 2 44 a q a q 1 1 2 a 1q 4a 1q 4a 1,解得a 1 1 q 2.因此数列 { }a 为“ M —数列” . n(2)①因为1 2 2 S b b n n n1,所以 0 b . n由b 1 1,S 1 b 1 得1 2 21 1 b2,则 b 2 2 .由1 2 2S b bn nn1,得Snb bn n12(bb )n 1n,当 n 2 时,由b S S ,得 n n n 1 b nb b b b n n 1 n 1 n 2b b 2 b b n 1 n n n 1, 整理得 b n 1 b n 1 2b n .所以数列 { b n } 是首项和公差均为 1的等差数列 . 因此,数列 {b n } 的通项公式为 b n =n* n N . ②由①知, b k =k , k N *.因为数列 { c n } 为“M – 数列 ”,设公比为 q ,所以 c1=1,q>0. 因为 c k ≤ bk ≤c k+1,所以k 1k q k q ,其中 k=1,2,3,⋯ , m. 当k=1时,有q ≥ 1;ln k ln k当k=2,3,⋯ , m 时,有l n qk k 1.设f (x )= l n x x (x 1) f ' (x) ,则 1 ln 2 x x. 令 f ' (x) 0,得 x=e.列表如下:x (1,e)e (e , +∞)f '(x) +0 –(f x )极大值 因为l n 2 ln8ln9ln 3ln3f (k) f (3) .,所以 max2 6633取q ,当 k=1,2,3,4, 5时,33 33l n kk, ln q ,即 k k q ,经检验知 k 1 q k 也成立.因此所求 m 的最大值不小于5. 若m ≥ 6,分别取 k=3,6,得 3≤q3,且 q 5≤ 6,从而 q 15≥ 24,3 且 q 15≤216,所以 q 不存在 .因此所求 m 的最大值小于6.综上,所求m的最大值为5.)参考答案数学Ⅱ ( 附加题21.【选做题】A .[选修 4–2:矩阵与变换 ]本小题主要考查矩阵的运算、特征值等基础知识,考查运算求解能力.满分 10分.解:( 1)因为3 1 A, 2 2所以 2 3 131A2 2 2 2= 3 3 1 2 3 1 1 2 2 3 2 2 2 1 2 2 =11 5 10 6. (2)矩阵 A 的特征多项式为312f ( ) 54.22令 f ( ) 0,解得 A 的特征值1 1,24 . B .[选修4–4:坐标系与参数方程 ]本小题主要考查曲线的极坐标方程等基础知识,考查运算求解能力.满分10分.解:( 1)设极点为 O.在△OAB 中,A (3, ),B ( 2 ,),42由余弦定理,得 AB= 22 3 ( 2) 2 3 2 cos()5 24.(2)因为直线 l 的方程为 sin() 34,则直线 l 过点 (3 2, )2 ,倾斜角为34 .又B ( 2, ) ,所以点 B 到直线 l 的距离为23(3 2 2) sin()242.C .[选修 4–5:不等式选讲 ]本小题主要考查解不等式等基础知识,考查运算求解和推理论证能力.满分10分.解:当 x<0时,原不等式可化为 x 1 2x 2,解得 x<–1 3:当0≤x≤12时,原不等式可化为x+1–2x>2,即 x<–1,无解;当x> 12时,原不等式可化为x+2 x–1>2,解得 x>1.1综上,原不等式的解集为{x|x 或x 1}.322.【必做题】本小题主要考查二项式定理、组合数等基础知识,考查分析问题能力与运算求解能力,满分10分.n 0 1 2 2 n n 解:( 1)因为(1 x) C C x C x C x ,n 4 ,n n n n所以n(n 1) n(n 1)(n 2)2 3a C ,aC ,2 n3 n2 6n(n 1)(n 2)( n3) 4a C .4 n242因为a3 2a2a4 ,所以n(n 1)(n 2) n(n 1) n(n 1)( n 2)( n 3)2[ ] 26 2 24,解得n 5.(2)由( 1)知,n 5.n(1 3) (13)50 1 2 2 3 3 4 4 5 5C C 3 C ( 3) C ( 3) C ( 3) C ( 3)5 5 5 5 5 5a b 3 .解法一:*因为a,b N ,所以0 2 4 1 3 5a C 3C 9C 76,b C 3C 9C 44 ,5 5 5 5 5 5从而a2 3b2 762 3 442 32 .解法二:5 0 1 2 2 3 3 4 4 5 5(1 3) C C ( 3) C ( 3) C ( 3) C ( 3) C ( 3)5 5 5 5 5 50 1 2 2 3 3 4 4 5 5C C 3 C ( 3) C ( 3) C ( 3) C ( 3) .5 5 5 5 5 5*因为a,b N ,所以5(1 3) a b 3 .因此 2 3 2 ( 3)( 3) (1 3)5 (1 3)5 ( 2)532a b a b ab .23.【必做题】本小题主要考查计数原理、古典概型、随机变量及其概率分布等基础知识,考查逻辑思维能力和推理论证能力.满分10分.解:(1)当n1时,X 的所有可能取值是1, 2 ,2,5 .7 7 4 4P(X1) , P( X2) , X 的概率分布为 22C 15 C 156 62 2 2 2P( X 2) , P( X 5) .2 2C 15 C 156 6(2)设 A(a,b) 和 B(c,d )是从M中取出的两个点.n因为 P( X n) 1 P(X n) ,所以仅需考虑X n 的情况.①若b d ,则A B n ,不存在X n 的取法;②若 b 0,d 1,则AB (a c)2 1 n2 1,所以X n 当且仅当 2 1AB n ,此时 a 0,c n 或 a n,c 0 ,有 2 种取法;③若 b 0,d 2 ,则AB (a c)2 4 n2 4 ,因为当n 3 时,(n 1)2 4 n ,所以X n 当且仅当AB n2 4 ,此时a 0,c n 或a n ,c 0 ,有 2 种取法;④若 b 1,d 2,则AB (a c)2 1 n2 1,所以X n 当且仅当 2 1AB n ,此时 a 0,c n 或 a n,c 0 ,有 2 种取法.综上,当X n 时,X 的所有可能取值是n 2 1和 2 4n ,且4 22 2P( X n 1) ,P(X n 4) .2 2C n C n2 4 2 42 2P(X n) 1 P( X n 1) P( X n 4) 16 2 C n 24因此,.。

2019年高考江苏卷数学真题试题(word版,含答案与解析)

2019年高考江苏卷数学真题试题(word版,含答案与解析)

2019年高考数学真题试卷(江苏卷)原卷+解析一、填空题:本大题共14小题,每小题5分,共计70分.(共14题;共70分)1.(2019•江苏)已知集合,,则________.【答案】【考点】交集及其运算【解析】【解答】集合,,借助数轴得:【分析】根据已知条件借助数轴,用交集的运算法则求出集合。

2.(2019•江苏)已知复数的实部为0,其中为虚数单位,则实数a的值是________. 【答案】 2【考点】复数代数形式的乘除运算【解析】【解答】设复数的实部为0,又【分析】利用复数的乘法运算法则求出复数,从而求出复数的实部和虚部,再结合复数的实部为0的已知条件求出a的值。

3.(2019•江苏)下图是一个算法流程图,则输出的S的值是________.【答案】 5【考点】程序框图【解析】【解答】第一步:不成立;第二步:不成立;第三步:不成立;第四步:成立;输出的【分析】根据题中的已知条件结合程序框图的顺序结构、条件结构和循环结构求出输出的S的值。

4.(2019•江苏)函数的定义域是________.【答案】【考点】函数的定义域及其求法【解析】【解答】函数,要是函数有意义,则函数的定义域为【分析】利用根式函数求定义域的方法结合一元二次不等式求解集的方法求出函数的定义域。

5.(2019•江苏)已知一组数据6,7,8,8,9,10,则该组数据的方差是________.【答案】【考点】极差、方差与标准差【解析】【解答】设一组数据为6,7,8,8,9,10的平均数为方差为这组数据的平均数为:这组数据的方差为:【分析】利用已知数据结合平均数和方差公式求出这组数据的平均数和方差。

6.(2019•江苏)从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是________.【答案】【考点】古典概型及其概率计算公式【解析】【解答】设3名男同学为:2名女同学为:设选出的2名同学中至少有1名女同学的事件为A,则从3名男同学和2名女同学中任选2名同学参加志愿者服务的基本事件为:共十种,选出的2名同学中至少有1名女同学的基本事件为:共七种,利用古典概型求概率的公式,得:【分析】根据实际问题的已知条件结合古典概型求概率的公式,求出选出的2名同学中至少有1名女同学的概率。

(Word版)2019年(江苏)高考数学真题试卷(附答案)

(Word版)2019年(江苏)高考数学真题试卷(附答案)

为虚数单位,则实数a的值是且公比为正数的等比数列为16.本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力和推理论证能力.满分14分.证明:(1)因为D,E分别为BC,AC的中点,所以ED∥AB.在直三棱柱ABC-A1B1C1中,AB∥A1B1,所以A1B1∥ED.又因为ED⊂平面DEC1,A1B1⊄平面DEC1,所以A1B1∥平面DEC1.(2)因为AB=BC,E为AC的中点,所以BE⊥AC.因为三棱柱ABC-A1B1C1是直棱柱,所以CC1⊥平面ABC.又因为BE⊂平面ABC,所以CC1⊥BE.因为C1C⊂平面A1ACC1,AC⊂平面A1ACC1,C1C∩AC=C,所以BE⊥平面A1ACC1.因为C1E⊂平面A1ACC1,所以BE⊥C1E.17.本小题主要考查直线方程、圆的方程、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等基础知识,考查推理论证能力、分析问题能力和运算求解能力.满分14分.解:(1)设椭圆C的焦距为2c.因为F1(-1,0),F2(1,0),所以F1F2=2,c=1.又因为DF1=52,AF2⊥x轴,所以DF2=222211253()222DF F F-=-=,因此2a=DF1+DF2=4,从而a=2.由b2=a2-c2,得b2=3.因此,椭圆C 的标准方程为22143x y +=. (2)解法一:由(1)知,椭圆C :22143x y +=,a =2, 因为AF 2⊥x 轴,所以点A 的横坐标为1.将x =1代入圆F 2的方程(x -1) 2+y 2=16,解得y =±4.因为点A 在x 轴上方,所以A (1,4).又F 1(-1,0),所以直线AF 1:y =2x +2.由22()22116y x x y =+-+=⎧⎨⎩,得256110x x +-=, 解得1x =或115x =-. 将115x =-代入22y x =+,得 125y =-, 因此1112(,)55B --.又F 2(1,0),所以直线BF 2:3(1)4y x =-. 由221433(1)4x y x y ⎧⎪⎪⎨⎪+=-⎩=⎪,得276130x x --=,解得1x =-或137x =. 又因为E 是线段BF 2与椭圆的交点,所以1x =-.将1x =-代入3(1)4y x =-,得32y =-.因此3(1,)2E --. 解法二:由(1)知,椭圆C :22143x y +=.如图,连结EF 1. 因为BF 2=2a ,EF 1+EF 2=2a ,所以EF 1=EB ,从而∠BF 1E =∠B .因为F 2A =F 2B ,所以∠A =∠B ,所以∠A =∠BF 1E ,从而EF 1∥F 2A .因为AF 2⊥x 轴,所以EF 1⊥x 轴.因为F 1(-1,0),由221431x x y ⎧⎪⎨+==-⎪⎩,得32y =±. 又因为E 是线段BF 2与椭圆的交点,所以32y =-. 因此3(1,)2E --.18.本小题主要考查三角函数的应用、解方程、直线与圆等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力.满分16分.解:解法一:(1)过A 作AE BD ⊥,垂足为E .由已知条件得,四边形ACDE 为矩形,6, 8DE BE AC AE CD =====.'因为PB ⊥AB ,所以84cos sin 105PBD ABE ∠=∠==. 所以12154cos 5BD PB PBD ===∠. 因此道路PB 的长为15(百米).),因为OM=,其中*a-,a b∈N,求23A=点集{(0,0),(1,0),(2,0),n=1时,求X的概率分布;)对给定的正整数n(n≥3。

2019年江苏卷数学高考试题(含答案)

2019年江苏卷数学高考试题(含答案)

2019年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ参考公式:样本数据12,,,n x x x …的方差()2211n i i s x x n ==-∑,其中11n i i x x n ==∑.柱体的体积V Sh =,其中S 是柱体的底面积,h 是柱体的高. 锥体的体积13V Sh =,其中S 是锥体的底面积,h 是锥体的高. 一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.已知集合{1,0,1,6}A =-,{|0,}B x x x =>∈R ,则AB = ▲ .2.已知复数(2i)(1i)a ++的实部为0,其中i 为虚数单位,则实数a 的值是 ▲ . 3.下图是一个算法流程图,则输出的S 的值是 ▲ .4.函数276y x x =+-的定义域是 ▲ .5.已知一组数据6,7,8,8,9,10,则该组数据的方差是 ▲ .6.从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是 ▲ .7.在平面直角坐标系xOy 中,若双曲线2221(0)y x b b-=>经过点(3,4),则该双曲线的渐近线方程是▲ .8.已知数列*{}()n a n ∈N 是等差数列,n S 是其前n 项和.若25890,27a a a S +==,则8S 的值是 ▲ .9.如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E -BCD 的体积是 ▲.10.在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线x +y =0的距离的最小值是 ▲ .11.在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是 ▲ .12.如图,在ABC △中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE 交于点O .若6AB AC AO EC ⋅=⋅,则ABAC的值是 ▲ .13.已知tan 2π3tan 4αα=-⎛⎫+ ⎪⎝⎭,则πsin 24α⎛⎫+ ⎪⎝⎭的值是 ▲ . 14.设(),()f x g x 是定义在R 上的两个周期函数,()f x 的周期为4,()g x 的周期为2,且()f x 是奇函数.当2(]0,x ∈时,2()1(1)f x x =--,(2),01()1,122k x x g x x +<≤⎧⎪=⎨-<≤⎪⎩,其中k >0.若在区间(0,9]上,关于x 的方程()()f x g x =有8个不同的实数根,则k 的取值范围是 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .(1)若a =3c ,b =2,cos B =23,求c 的值; (2)若sin cos 2A B a b =,求sin()2B π+的值. 16.(本小题满分14分)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC . 求证:(1)A 1B 1∥平面DEC 1; (2)BE ⊥C 1E .17.(本小题满分14分)如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的焦点为F 1(–1、0),F 2(1,0).过F 2作x 轴的垂线l ,在x 轴的上方,l 与圆F 2:222(1)4x y a -+=交于点A ,与椭圆C 交于点D .连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E ,连结DF 1. 已知DF 1=52. (1)求椭圆C 的标准方程; (2)求点E 的坐标.18.(本小题满分16分)如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥AB (AB 是圆O 的直径).规划在公路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA .规划要求:线段PB 、QA 上的所有点到点O 的距离均不小于圆....O 的半径.已知点A 、B 到直线l 的距离分别为AC 和BD (C 、D 为垂足),测得AB =10,AC =6,BD =12(单位:百米). (1)若道路PB 与桥AB 垂直,求道路PB 的长;(2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由;(3)在规划要求下,若道路PB 和QA 的长度均为d (单位:百米).求当d 最小时,P 、Q 两点间的距离.19.(本小题满分16分)设函数()()()(),,,f x x a x b x c a b c =---∈R 、()f 'x 为f (x )的导函数. (1)若a =b =c ,f (4)=8,求a 的值;(2)若a ≠b ,b =c ,且f (x )和()f 'x 的零点均在集合{3,1,3}-中,求f (x )的极小值;(3)若0,01,1a b c =<=…,且f (x )的极大值为M ,求证:M ≤427. 20.(本小满分16分)定义首项为1且公比为正数的等比数列为“M -数列”.(1)已知等比数列{a n }*()n ∈N 满足:245324,440a a a a a a =-+=,求证:数列{a n }为“M -数列”;(2)已知数列{b n }*()n ∈N 满足:111221,n n n b S b b +==-,其中S n 为数列{b n }的前n 项和. ①求数列{b n }的通项公式;②设m 为正整数,若存在“M -数列”{c n }*()n ∈N ,对任意正整数k ,当k ≤m 时,都有1k k k c b c +剟成立,求m 的最大值.2019年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ·参考答案一、填空题:本题考查基础知识、基本运算和基本思想方法.每小题5分,共计70分. 1.{1,6}2.23.54.[1,7]-5.536.7107.2y x =±8.16 9.10 10.4 11.(e, 1) 12.313.21014.12,34⎡⎫⎪⎢⎪⎣⎭二、解答题15.本小题主要考查正弦定理、余弦定理、同角三角函数关系、诱导公式等基础知识,考查运算求解能力.满分14分.解:(1)因为23,2,cos 3a cb B ===, 由余弦定理222cos 2a c b B ac +-=,得2222(3)(2)323c c c c +-=⨯⨯,即213c =.所以33c =. (2)因为sin cos 2A Ba b =, 由正弦定理sin sin a b A B =,得cos sin 2B Bb b=,所以cos 2sin B B =. 从而22cos (2sin )B B =,即()22cos 41cos B B =-,故24cos 5B =.因为sin 0B >,所以cos 2sin 0B B =>,从而25cos 5B =. 因此π25sin cos 25B B ⎛⎫+== ⎪⎝⎭. 16.本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力和推理论证能力.满分14分.证明:(1)因为D ,E 分别为BC ,AC 的中点, 所以ED ∥AB .在直三棱柱ABC -A 1B 1C 1中,AB ∥A 1B 1, 所以A 1B 1∥ED .又因为ED ⊂平面DEC 1,A 1B 1⊄平面DEC 1,所以A 1B 1∥平面DEC 1.(2)因为AB =BC ,E 为AC 的中点,所以BE ⊥AC . 因为三棱柱ABC -A 1B 1C 1是直棱柱,所以CC 1⊥平面ABC . 又因为BE ⊂平面ABC ,所以CC 1⊥BE .因为C 1C ⊂平面A 1ACC 1,AC ⊂平面A 1ACC 1,C 1C ∩AC =C , 所以BE ⊥平面A 1ACC 1.因为C 1E ⊂平面A 1ACC 1,所以BE ⊥C 1E .17.本小题主要考查直线方程、圆的方程、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等基础知识,考查推理论证能力、分析问题能力和运算求解能力.满分14分. 解:(1)设椭圆C 的焦距为2c .因为F 1(-1,0),F 2(1,0),所以F 1F 2=2,c =1. 又因为DF 1=52,AF 2⊥x 轴,所以DF 2=222211253()222DF F F -=-=, 因此2a =DF 1+DF 2=4,从而a =2.由b 2=a 2-c 2,得b 2=3.因此,椭圆C 的标准方程为22143x y +=.(2)解法一:由(1)知,椭圆C :22143x y +=,a =2,因为AF 2⊥x 轴,所以点A 的横坐标为1.将x =1代入圆F 2的方程(x -1) 2+y 2=16,解得y =±4.因为点A 在x 轴上方,所以A (1,4).又F 1(-1,0),所以直线AF 1:y =2x +2.由22()22116y x x y =+-+=⎧⎨⎩,得256110x x +-=, 解得1x =或115x =-. 将115x =-代入22y x =+,得 125y =-,因此1112(,)55B --.又F 2(1,0),所以直线BF 2:3(1)4y x =-. 由221433(1)4x y x y ⎧⎪⎪⎨⎪+=-⎩=⎪,得276130x x --=,解得1x =-或137x =. 又因为E 是线段BF 2与椭圆的交点,所以1x =-. 将1x =-代入3(1)4y x =-,得32y =-.因此3(1,)2E --. 解法二:由(1)知,椭圆C :22143x y +=.如图,连结EF 1.因为BF 2=2a ,EF 1+EF 2=2a ,所以EF 1=EB , 从而∠BF 1E =∠B .因为F 2A =F 2B ,所以∠A =∠B , 所以∠A =∠BF 1E ,从而EF 1∥F 2A . 因为AF 2⊥x 轴,所以EF 1⊥x 轴.因为F 1(-1,0),由221431x x y ⎧⎪⎨+==-⎪⎩,得32y =±.又因为E 是线段BF 2与椭圆的交点,所以32y =-. 因此3(1,)2E --.18.本小题主要考查三角函数的应用、解方程、直线与圆等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力.满分16分. 解:解法一:(1)过A 作AE BD ⊥,垂足为E .由已知条件得,四边形ACDE 为矩形,6, 8DE BE AC AE CD =====.' 因为PB ⊥AB ,所以84cos sin 105PBD ABE ∠=∠==.所以12154cos 5BD PB PBD ===∠.因此道路PB 的长为15(百米).(2)①若P 在D 处,由(1)可得E 在圆上,则线段BE 上的点(除B ,E )到点O 的距离均小于圆O 的半径,所以P 选在D 处不满足规划要求.②若Q 在D 处,连结AD ,由(1)知2210AD AE ED =+=,从而2227cos 0225AD AB BD BAD AD AB +-∠==>⋅,所以∠BAD 为锐角. 所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此,Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处. (3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15, 此时11113sin cos 1595PD PB PBD PB EBA =∠=∠=⨯=; 当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15. 再讨论点Q 的位置.由(2)知,要使得QA ≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,2222156321CQ QA AC =-=-=.此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当PB ⊥AB ,点Q 位于点C 右侧,且CQ =321时,d 最小,此时P ,Q 两点间的距离PQ =PD +CD +CQ =17+321.因此,d 最小时,P ,Q 两点间的距离为17+321(百米). 解法二:(1)如图,过O 作OH ⊥l ,垂足为H.以O 为坐标原点,直线OH 为y 轴,建立平面直角坐标系.因为BD =12,AC =6,所以OH =9,直线l 的方程为y =9,点A ,B 的纵坐标分别为3,−3. 因为AB 为圆O 的直径,AB =10,所以圆O 的方程为x 2+y 2=25. 从而A (4,3),B (−4,−3),直线AB 的斜率为34. 因为PB ⊥AB ,所以直线PB 的斜率为43-, 直线PB 的方程为42533y x =--. 所以P (−13,9),22(134)(93)15PB =-+++=. 因此道路PB 的长为15(百米).(2)①若P 在D 处,取线段BD 上一点E (−4,0),则EO =4<5,所以P 选在D 处不满足规划要求. ②若Q 在D 处,连结AD ,由(1)知D (−4,9),又A (4,3), 所以线段AD :36(44)4y x x =-+-剟. 在线段AD 上取点M (3,154),因为22221533454OM ⎛⎫=+<+= ⎪⎝⎭,所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处. (3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15,此时1P (−13,9); 当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15. 再讨论点Q 的位置.由(2)知,要使得QA≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,设Q (a ,9),由22(4)(93)15(4)AQ a a =-+-=>,得a =4321+,所以Q (4321+,9),此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当P (−13,9),Q (4321+,9)时,d 最小,此时P ,Q 两点间的距离4321(13)17321PQ =+--=+.因此,d 最小时,P ,Q 两点间的距离为17321+(百米).19.本小题主要考查利用导数研究函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.满分16分.解:(1)因为a b c ==,所以3()()()()()f x x a x b x c x a =---=-. 因为(4)8f =,所以3(4)8a -=,解得2a =. (2)因为b c =,所以2322()()()(2)(2)f x x a x b x a b x b a b x ab =--=-+++-, 从而2()3()3a b f 'x x b x +⎛⎫=-- ⎪⎝⎭.令()0f 'x =,得x b =或23a bx +=. 因为2,,3a ba b +,都在集合{3,1,3}-中,且a b ≠, 所以21,3,33a b a b +===-.此时2()(3)(3)f x x x =-+,()3(3)(1)f 'x x x =+-. 令()0f 'x =,得3x =-或1x =.列表如下:x (,3)-∞-3-(3,1)-1 (1,)+∞()f 'x + 0 – 0 + ()f x极大值极小值所以()f x 的极小值为2(1)(13)(13)32f =-+=-.(3)因为0,1a c ==,所以32()()(1)(1)f x x x b x x b x bx =--=-++,2()32(1)f 'x x b x b =-++.因为01b <≤,所以224(1)12(21)30b b b ∆=+-=-+>, 则()f 'x 有2个不同的零点,设为()1212,x x x x <.由()0f 'x =,得22121111,33b b b b b b x x +--+++-+==.列表如下:x 1(,)x -∞1x()12,x x2x2(,)x +∞()f 'x+ 0 – 0 + ()f x极大值极小值所以()f x 的极大值()1M f x =. 解法一:()321111(1)M f x x b x bx ==-++()221111211(1)[32(1)]3999b b x b b b x b x b x -+++⎛⎫=-++--+ ⎪⎝⎭()()23221(1)(1)2127927b b b b b b b --+++=++-+23(1)2(1)(1)2((1)1)272727b b b b b b +-+=-+-+(1)24272727b b +≤+≤.因此427M ≤. 解法二:因为01b <≤,所以1(0,1)x ∈.当(0,1)x ∈时,2()()(1)(1)f x x x b x x x =--≤-. 令2()(1),(0,1)g x x x x =-∈,则1()3(1)3g'x x x ⎛⎫=-- ⎪⎝⎭. 令()0g'x =,得13x =.列表如下: x 1(0,)3131(,1)3()g'x + 0 – ()g x极大值所以当13x =时,()g x 取得极大值,且是最大值,故max 14()327g x g ⎛⎫== ⎪⎝⎭. 所以当(0,1)x ∈时,4()()27f x g x ≤≤,因此427M ≤. 20.本小题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.满分16分. 解:(1)设等比数列{a n }的公比为q ,所以a 1≠0,q ≠0.由245321440a a a a a a =⎧⎨-+=⎩,得244112111440a q a q a q a q a ⎧=⎨-+=⎩,解得112a q =⎧⎨=⎩.因此数列{}n a 为“M —数列”.(2)①因为1122n n n S b b +=-,所以0n b ≠. 由1111,b S b ==,得212211b =-,则22b =. 由1122n n n S b b +=-,得112()n n n n n b b S b b ++=-, 当2n ≥时,由1n n n b S S -=-,得()()111122n n n nn n n n n b b b b b b b b b +-+-=---,整理得112n n n b b b +-+=.所以数列{b n }是首项和公差均为1的等差数列. 因此,数列{b n }的通项公式为b n =n ()*n ∈N .②由①知,b k =k ,*k ∈N .因为数列{c n }为“M –数列”,设公比为q ,所以c 1=1,q >0. 因为c k ≤b k ≤c k +1,所以1k k q k q -≤≤,其中k =1,2,3,…,m .当k =1时,有q ≥1; 当k =2,3,…,m 时,有ln ln ln 1k kq k k ≤≤-. 设f (x )=ln (1)x x x >,则21ln ()xf 'x x-=. 令()0f 'x =,得x =e.列表如下:x (1,e)e (e ,+∞) ()f 'x+0 –f (x )极大值因为ln 2ln8ln 9ln 32663=<=,所以max ln 3()(3)3f k f ==. 取33q =,当k =1,2,3,4,5时,ln ln kq k…,即k k q ≤, 经检验知1k q k -≤也成立.因此所求m 的最大值不小于5.若m ≥6,分别取k =3,6,得3≤q 3,且q 5≤6,从而q 15≥243,且q 15≤216,所以q 不存在.因此所求m 的最大值小于6. 综上,所求m 的最大值为5.数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 三小题,请选定其中两小题,并在相应的答题区域内作答......................若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. A.[选修4-2:矩阵与变换](本小题满分10分)已知矩阵3122⎡⎤=⎢⎥⎣⎦A (1)求A 2;(2)求矩阵A 的特征值.B.[选修4-4:坐标系与参数方程](本小题满分10分) 在极坐标系中,已知两点3,,2,42A B ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,直线l 的方程为sin 34ρθπ⎛⎫+= ⎪⎝⎭. (1)求A ,B 两点间的距离;(2)求点B 到直线l 的距离. C.[选修4-5:不等式选讲](本小题满分10分) 设x ∈R ,解不等式||+|2 1|>2x x -.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)设2*012(1),4,n n n x a a x a x a x n n +=++++∈N ….已知23242a a a =.(1)求n 的值;(2)设(13)3na b +=+,其中*,a b ∈N ,求223a b -的值.23.(本小题满分10分)在平面直角坐标系xOy 中,设点集{(0,0),(1,0),(2,0),,(,0)}n A n =⋯,{(0,1),(,1)},{(0,2),(1,2),(2,2),,(,2)},.n n B n C n n *==∈N令n nn n M A B C =.从集合M n 中任取两个不同的点,用随机变量X 表示它们之间的距离.(1)当n =1时,求X 的概率分布;(2)对给定的正整数n (n ≥3),求概率P (X ≤n )(用n 表示).数学Ⅱ(附加题)参考答案21.【选做题】A .[选修4–2:矩阵与变换]本小题主要考查矩阵的运算、特征值等基础知识,考查运算求解能力.满分10分.解:(1)因为3122⎡⎤=⎢⎥⎣⎦A ,所以231312222⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦A=3312311223222122⨯+⨯⨯+⨯⎡⎤⎢⎥⨯+⨯⨯+⨯⎣⎦=115106⎡⎤⎢⎥⎣⎦. (2)矩阵A 的特征多项式为231()5422f λλλλλ--==-+--.令()0f λ=,解得A 的特征值121,4λλ==. B .[选修4–4:坐标系与参数方程]本小题主要考查曲线的极坐标方程等基础知识,考查运算求解能力.满分10分. 解:(1)设极点为O .在△OAB 中,A (3,4π),B (2,2π), 由余弦定理,得AB =223(2)232cos()524ππ+-⨯⨯⨯-=. (2)因为直线l 的方程为sin()34ρθπ+=,则直线l 过点(32,)2π,倾斜角为34π. 又(2,)2B π,所以点B 到直线l 的距离为3(322)sin()242ππ-⨯-=. C .[选修4–5:不等式选讲]本小题主要考查解不等式等基础知识,考查运算求解和推理论证能力.满分10分. 解:当x <0时,原不等式可化为122x x -+->,解得x <-13; 当0≤x ≤12时,原不等式可化为x +1–2x >2,即x <–1,无解; 当x >12时,原不等式可化为x +2x –1>2,解得x >1. 综上,原不等式的解集为1{|1}3x x x <->或.22.【必做题】本小题主要考查二项式定理、组合数等基础知识,考查分析问题能力与运算求解能力,满分10分.解:(1)因为0122(1)C C C C 4n n nn n n n x x x x n +=++++≥,, 所以2323(1)(1)(2)C ,C 26n nn n n n n a a ---====, 44(1)(2)(3)C 24nn n n n a ---==. 因为23242a a a =,所以2(1)(2)(1)(1)(2)(3)[]26224n n n n n n n n n ------=⨯⨯,解得5n =.(2)由(1)知,5n =.5(13)(13)n +=+0122334455555555C C 3C (3)C (3)C (3)C (3)=+++++ 3a b =+.解法一:因为*,a b ∈N ,所以024*********C 3C 9C 76,C 3C 9C 44a b =++==++=,从而222237634432a b -=-⨯=-. 解法二:50122334455555555(13)C C (3)C (3)C (3)C (3)C (3)-=+-+-+-+-+- 0122334455555555C C C (3)C (3)C (3)(3C 3)=-+-+-. 因为*,a b ∈N ,所以5(13)3a b -=-.因此225553(3)(3)(13)(13)(2)32a b a b a b -=+-=+⨯-=-=-.23.【必做题】本小题主要考查计数原理、古典概型、随机变量及其概率分布等基础知识,考查逻辑思维能力和推理论证能力.满分10分.解:(1)当1n =时,X 的所有可能取值是1225,,,.X 的概率分布为22667744(1),(2)C 15C 15P X P X ======, 22662222(2),(5)C 15C 15P X P X ======.(2)设()A a b ,和()B c d ,是从n M 中取出的两个点. 因为()1()P X n P X n ≤=->,所以仅需考虑X n >的情况. ①若b d =,则AB n ≤,不存在X n >的取法;②若01b d ==,,则22()11AB a c n =-+≤+,所以X n >当且仅当21AB n =+,此时0 a c n ==,或 0a n c ==,,有2种取法;③若02b d ==,,则22()44AB a c n =-+≤+,因为当3n ≥时,2(1)4n n -+≤,所以X n >当且仅当24AB n =+,此时0 a c n ==,或 0a n c ==,,有2种取法; ④若12b d ==,,则22()11AB a c n =-+≤+,所以X n >当且仅当21AB n =+,此时0 a c n ==,或 0a n c ==,,有2种取法.综上,当X n >时,X 的所有可能取值是21n +和24n +,且2222242442(1),(4)C C n n P X n P X n ++=+==+=.因此,222246()1(1)(4)1C n P X n P X n P X n +≤=-=+-=+=-.。

2019年江苏卷数学高考真题Word版含答案解析(江苏卷解答题)

2019年江苏卷数学高考真题Word版含答案解析(江苏卷解答题)

2019年江苏卷数学高考真题Word版含答案解析(江苏卷解答题)大家好,今天给大家分享2019年江苏卷数学高考真题Word版含答案解析,江苏卷解答题来看看吧15.在△ABC中,角A,B,C的对边分别为a,b,c.2(1)若a=3c,b=√2,cosB=,求c的值;3(2)若=,求sin(??+)的值.22本小题主要考查正弦定理、余弦定理、同角三角函数关系、诱导公式等基础知识,考查运算求解能力2解:(1)因为a=3c,b=√2,cosB=322+2?222(3)2+2?(√2)1由余弦定理cosB=,得=,即??2=2332×3??×??33所以c=√3(2)因为=,2由正弦定理=,得=,所以cosB=2sinB从而2??=(2??)2即2??=4(1?cos2B)4故2??=525因为sinB>0,所以cosB=2sinB>0,从而cosB=√5n25因此sin(B+)=cosB=√2516.如图,在直三棱柱ABC-??1??1??1中,D,E分别为BC,AC 的中点,AB=BC.求证:(1)??1??1∥平面DE??1;(2)BE⊥??1E..本小题主要考查直线方程、圆的方程、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等基础知识,考查推理论证能力、分析问题能力和运算求解能力证明:(1)因为D,E分别为BC,AC的中点,所以ED∥AB.在直三棱柱ABC-??1??1??1中,AB∥??1??1,所以??1??1∥ED.又因为ED?平面DE??1,??1??1平面DE??1,所以??1??1∥平面DE??1.(2)因为AB=BC,E为AC的中点,所以BE⊥AC.因为三棱柱ABC-??1??1??1是直棱柱,所以C??1⊥平面ABC.又因为BE?平面ABC,所以C??1⊥BE.因为??1C?平面??1AC??1,AC?平面??1AC??1,??1C∩AC=C,所以BE⊥平面??1AC??1.因为??1E?平面??1AC??1,所以BE⊥??1E2217.如图,在平面直角坐标系xOy中,椭圆C:+=221(??>??>0)的焦点为??1(–1、0),??2(1,0).过??2作x轴222的垂线l,在x轴的上方,l与圆??2:(1)+??=4??交于点A,与椭圆C交于点D.连结A??1并延长交圆??2于点B,连结B??2交椭圆C于点E,连结D??1.5已知D??=√.12(1)求椭圆C的标准方程;(2)求点E的坐标.本小题主要考查直线方程、圆的方程、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等基础知识,考查推理论证能力、分析问题能力和运算求解能力解:(1)设椭圆C的焦距为2c.因为??1(-1,0),??2(1,0),所以??1??2=2,c=1.5又因为D??=,A??⊥x轴,所以D??=√2?2=1222112523√()?23=22因此2a=D??1+D??2=4,从而a=2.由??2=??2-??2,得??2=3.22因此,椭圆c的标准方程为+=143(2)解法一:22由(1)知,椭圆c:+=1,a=243因为A??2⊥X轴,所以点A的横坐标为1.22将x=1代入圆??2的方程(1)+??=16,解得y=±4因为点A在x轴上方,所以A(1,4)又??1(?1,0),所以直线A??1:y=2x+2y=2x+2由{,得5??2+611=0(1)2+??2=1611解得x=1或x=?51112将x=?代入y=2x+2,得y=?5511123因此B(?,?),又??(1,0),所以直线:??=(1) 552243y=(1)4213由{??2??3得7613=0,解得x=?1或x=+=1743又因为E是线段2与椭圆的交点,所以x=-1333将x=-1代入y=(1),得y=?因此E(?1,?)422解法二:22由(1)知,椭圆c:+=1如图,连接E??431因为B??2=2a,E??1+E??2=2a,所以E??1=EB,从而∠B??1E=∠B.因为??2A=F2B,所以∠A=∠B,所以∠A=∠B??1E,从而E??1∥??2A.??2因为A??2⊥x轴,所以E??1⊥x轴.x=?13因为??(?1,0),由{??2??2,得y=±1+=12433又因为E是线段与椭圆的交点,所以y=?223因此E(?1,?)218.如图,一个湖的边界是圆心为O的圆,湖的一侧有一条直线型公路l,湖上有桥AB(AB是圆O的直径).规划在公路l上选两个点P、Q,并修建两段直线型道路PB、QA.规划要求:线段PB、QA上的所有点到点O的距离均不小于圆O的半径.已知点A、B到直线l的距离分别为AC和BD(C、D为垂足),测得AB=10,AC=6,BD=12(单位:百米).(1)若道路PB与桥AB垂直,求道路PB的长(2)在规划要求下,P和Q中能否有一个点选在D处?并说明理由;(3)对规划要求下,若道路PB和QA的长度均为d(单位:百米).求当d最小时,P、Q两点间的距离..本小题主要考查三角函数的应用、解方程、直线与圆等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力解:解法一:(1)过A作AEBD,垂足为E.由已知条件得,四边形ACDE为矩形,DE=BE=AC=6,AE=CD=8.''因为PB⊥AB,84所以cos∠PBD=sin∠ABE==10512所以PB===15∠45因此道路PB的长为15(百米).(2)①若P在D处,由(1)可得E在圆上,则线段BE上的点(除B,E)到点O的距离均小于圆O的半径,所以P选在D处不满足规划要求.②若Q在D处,连接AD,由(1)知AD=√2+2=102+2?27从而cos∠BAD==>0,所以∠BAD为锐角225所以线段AD上存在点到点O的距离小于圆O的半径.因此,Q选在D处也不满足规划要求.综上,P和Q均不能选在D处.(3)先讨论点P的位置.当∠OBP<90°时,线段PB上存在点到点O的距离小于圆O的半径,点P不符合规划要求;当∠OBP≥90°时,对线段PB上任意一点F,OF≥OB,即线段PB上所有点到点O的距离均不小于圆O的半径,点P符合规划要求.设??1为l上一点,且??1B⊥AB,由(1)知,??1B=15,3此时??D=??Bsin∠??BD=cos∠EBA=15×=911115当∠OBP>90°时,?P??1B中,PB>??1B=15由上可知d≥15.再讨论点Q的位置.由(2)知,要使得QA≥15,点Q只有位于点C的右侧,才能符合规划要求.当QA=15时,=√2?2=√152?62=3√21,此时,线段QA上所有点到点O的距离均不小于圆O的半径.综上,当PB⊥AB,点Q位于点C右侧,且CQ=3√21时,d最小,此时P,Q两点间的距离PQ=PD+CD+CQ=17+3√21因此,d最小时,P,Q两点间的距离为17+3√21(百米)解法二:(1)如图,过O作OH⊥l,垂足为H.以O为坐标原点,直线OH为y轴,建立平面直角坐标系.因为BD=12,AC=6,所以OH=9,直线l的方程为y=9,点A,B的纵坐标分别为3,-3.因为AB为圆O的直径,AB=10,所以圆O的方程为??2+??2= 253从而A(4,3),B(-4,-3),直线AB的斜率为43因为PB⊥AB,所以直线PB的斜率为为4425直线PB的方程为??=33所以P(-13,9),PB=√(?13+4)2+(9+3)2=15因此道路PB的长为15(百米).(2)①若P在D处,取线段BD上一点E(-4,0),则EO=4>5,所以p选在D处不满足规划要求。

2019年高考(江苏卷)数学真题及解析

2019年高考(江苏卷)数学真题及解析

2019 年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,均为非选择题(第1题~第20题,共20题)。

本卷满分为160分,考试时间为120分钟。

考试结束后,请将本试卷和答题卡一片交回。

2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。

3.请认真核对监考员从答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符。

4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。

5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗。

参考公式:样本数据x1, x2 ,⋯, x n 的方差n12s x xini 12,其中n1x xn .ii 1柱体的体积V Sh,其中S 是柱体的底面积,h是柱体的高.锥体的体积1V Sh,其中S 是锥体的底面积,h 是锥体的高.3一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题..卡.相.应.位.置.上.1.已知集合A={ -1,0,1,6} ,B x|x0,x R ,则A∩B=_____.【答案】{1,6}.【解析】【分析】由题意利用交集的定义求解交集即可.【详解】由题知, A B { 1,6} .【点睛】本题主要考查交集的运算,属于基础题.2.已知复数(a 2i)(1 i) 的实部为0,其中i 为虚数单位,则实数 a 的值是_____.【答案】2【解析】【分析】本题根据复数的乘法运算法则先求得z ,然后根据复数的概念,令实部为0 即得 a 的值.【详解】 2(a 2i )(1 i) a ai 2i 2i a 2 (a2)i ,令a 2 0得a 2.【点睛】本题主要考查复数的运算法则,虚部的定义等知识,意在考查学生的转化能力和计算求解能力.3.下图是一个算法流程图,则输出的S 的值是_____.【答案】5【解析】【分析】结合所给的流程图运行程序确定输出的值即可.【详解】执行第一次,x 1S S ,x 1 4不成立,继续循环,x x 1 2;2 2执行第二次,x 3S S , x 2 4 不成立,继续循环,x x 1 3;2 2x执行第三次,3, 3 4S S x 不成立,继续循环,x x 1 4 ;2x执行第四次,5, 4 4S S x 成立,输出S 5.2【点睛】识别、运行程序框图和完善程序框图的思路:(1)要明确程序框图的顺序结构、条件结构和循环结构.(2)要识别、运行程序框图,理解框图所解决的实际问题.(3)按照题目的要求完成解答并验证.4.函数y 7 6x x2 的定义域是_____.【答案】[ -1,7]【解析】【分析】由题意得到关于x 的不等式,解不等式可得函数的定义域.【详解】由已知得 27 6x x 0 ,即 2 6 7 0x x解得 1 x 7,故函数的定义域为[-1,7].【点睛】求函数的定义域,其实质就是以函数解析式有意义为准则,列出不等式或不等式组,然后求出它们的解集即可.5.已知一组数据6,7,8,8,9,10,则该组数据的方差是____.【答案】【解析】5 3【分析】由题意首先求得平均数,然后求解方差即可.【详解】由题意,该组数据的平均数为67 8 8 9 1068 ,所以该组数据的方差是1 52 2 2 2 2 2 [(6 8) (7 8) (8 8) (8 8) (9 8) (10 8) ]6 3.【点睛】本题主要考查方差的计算公式,属于基础题.6.从3 名男同学和 2 名女同学中任选 2 名同学参加志愿者服务,则选出的 2 名同学中至少有 1 名女同学的概率是_____.【答案】【解析】7 10【分析】先求事件的总数,再求选出的 2 名同学中至少有 1 名女同学的事件数,最后根据古典概型的概率计算公式得出答案.【详解】从 3 名男同学和 2 名女同学中任选 2 名同学参加志愿服务,共有 2C5 10 种情况.若选出的 2 名学生恰有 1 名女生,有 1 1C3C2 6 种情况,若选出的 2 名学生都是女生,有 2C2 1种情况,所以所求的概率为6 1 710 10.【点睛】计数原理是高考考查的重点内容,考查的形式有两种,一是独立考查,二是与古典概型结合考查,由于古典概型概率的计算比较明确,所以,计算正确基本事件总数是解题的重要一环.在处理问题的过程中,应注意审清题意,明确“分类”“分步”,根据顺序有无,明确“排列”组“合”.7.在平面直角坐标系xOy 中,若双曲线2y2x 2 1(b 0)b经过点(3,4),则该双曲线的渐近线方程是_____. 【答案】y 2x【解析】 【分析】根据条件求 b ,再代入双曲线的渐近线方程得出答案.【详解】由已知得24231,2b解得 b2或b2,因为 b 0,所以 b2 .因为 a 1,所以双曲线的渐近线方程为y 2x .【点睛】双曲线的标准方程与几何性质,往往以小题的形式考查,其难度一般较小,是高考 必得分题 .双曲线渐近线与双曲线标准方程中的 a,b 密切相关,事实上,标准方程中化1 为 0,即得渐近线方程 .8.已知数列 { a n } *(n N ) 是等差数列, S n 是其前 n 项和.若 a 2a 5 a 8 0, S 9 27 ,则 S 8 的值是_____. 【答案】 16 【解析】 【分析】由题意首先求得首项和公差,然后求解前 8 项和即可 .a aaad a4d a 7d0 2 58111【详解】由题意可得:9 8S9ad 27 912,解得:a 15 d 2 ,则8 7S 8a d 40 28 2 16.8 12【点睛】等差数列、等比数列的基本计算问题,是高考必考内容,解题过程中要注意应用函 数方程思想,灵活应用通项公式、求和公式等,构建方程(组),如本题,从已知出发,构建a , d 的方程组 .19.如图,长方体 ABCD -A 1B 1C 1D 1 的体积是 120,E 为 CC 1 的中点,则三棱锥 E-BCD 的体积是 _____.【答案】10【解析】【分析】由题意结合几何体的特征和所给几何体的性质可得三棱锥的体积. 【详解】因为长方体ABCD A1B1C1D1 的体积为120,所以AB BC CC1 120 ,因为E 为C C1 的中点,所以1CE CC ,12由长方体的性质知CC1 底面ABCD ,所以C E是三棱锥E BCD 的底面BCD上的高,所以三棱锥E BCD 的体积1 1 1 1 1 1V AB BC CE AB BC CC1 120 10 .3 2 3 2 2 12【点睛】本题蕴含“整体和局部”的对立统一规律.在几何体面积或体积的计算问题中,往往需要注意理清整体和局部的关系,灵活利用“割”与“补”的方法解题.10.在平面直角坐标系xOy 中,P 是曲线的距离的最小值是_____.4y x (x0)x上的一个动点,则点P 到直线x+ y=0【答案】4【解析】【分析】将原问题转化为切点与直线之间的距离,然后利用导函数确定切点坐标可得最小距离【详解】当直线2gR2r平移到与曲线y x4x相切位置时,切点Q 即为点P 到直线2gR2r的距离最小.由y41 1,得x 2( 2舍) ,y 32 ,2x即切点Q( 2,3 2) ,则切点Q 到直线2gR2r的距离为2 3 22 21 14,故答案为:4.【点睛】本题考查曲线上任意一点到已知直线的最小距离,渗透了直观想象和数学运算素养. 采取导数法和公式法,利用数形结合和转化与化归思想解题.11.在平面直角坐标系xOy 中,点A 在曲线y=ln x 上,且该曲线在点 A 处的切线经过点(-e,-1)(e 为自然对数的底数),则点 A 的坐标是____.【答案】(e,1)【解析】【分析】设出切点坐标,得到切线方程,然后求解方程得到横坐标的值可得切点坐标.【详解】设点 A x0 ,y0 ,则y0 ln x0 .又y 1 x,当x x0 时,y 1x,点A 在曲线y ln x上1y y (x x ) 切线为0 0x,xy ln x 1即0 ,xe代入点e, 1 ,得 1 ln x0 1,x的即x0 ln x0 e ,考查函数H x xln x,当x 0,1 时,H x 0,当x 1, 时,H x 0,且H ' x ln x 1,当x 1时,H ' x 0,H x 单调递增,注意到H e e,故x0 ln x0 e 存在唯一的实数根x0 e,此时y0 1,故点A的坐标为A e,1 .【点睛】导数运算及切线的理解应注意的问题:一是利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆.二是直线与曲线公共点的个数不是切线的本质,直线与曲线只有一个公共点,直线不一定是曲线的切线,同样,直线是曲线的切线,则直线与曲线可能有两个或两个以上的公共点.12.如图,在△ABC 中,D 是BC 的中点, E 在边AB 上,BE=2EA,AD 与CE 交于点O.若AB ACAO EC ,则6AB AC的值是 _____. 【答案】 3 【解析】 【分析】由题意将原问题转化为基底的数量积,然后利用几何性质可得比值.【详解】如图,过点 D 作DF // CE ,交AB 于点 F ,由 BE=2EA ,D 为BC 中点,知BF =FE =EA ,AO =OD .36AO EC 3AD AC AEAB ACAC AE231 311 22AB ACACABAB ACAB ACAB AC2 3 23 33 21132222AB AC AB AC AB ACABAC AB AC ,2 332 2 得1 3AB22AB AC , 即 AB 3 AC ,故322AC. 【点睛】本题考查在三角形中平面向量的数量积运算,渗透了直观想象、逻辑推理和数学运 算素养 .采取几何法,利用数形结合和方程思想解题.tan2 π3 4,则 sin 2π 4的值是 _____.13.已知tan【答案】2 10【解析】 【分析】 由题意首先求得tan 的值,然后利用两角和差正余弦公式和二倍角公式将原问题转化为齐次式求值的问题,最后切化弦求得三角函数式的值即可.tantan tan 1 tan 2 【详解】由tan4tan 1 tan 1 3 1 tan, 得23tan5tan2 0, 解得tan 2,或 tan1 3. sin 2 sin 2 cos cos 2 sin444222 2 2sin coscossinsin 2 cos2 =222 2sin cos= 22 2tan 1 tan22 tan1,当t an 2 时,上式22 2 2 1 22 = = ; 222 110当 tan1 3时,上式 =21 1 212 3 32= 22 101 13. 综上,2 sin2.410【点睛】本题考查三角函数的化简求值,渗透了逻辑推理和数学运算素养 .采取转化法,利用分类讨论和转化与化归思想解题.14.设 f(x),g(x)是定义在 R 上的两个周期函数, f(x)的周期为 4,g(x)的周期为 2,且 f (x)是奇函k(x 2),0 x 1数.当 x (0,2] 时, f (x)1 (x 1)2 , g (x)12,1 x 2,其中 k>0.若在区间 (0, 9]上,关于 x 的方程 f( x )= g (x)有 8 个不同的实数根,则 k 的取值范围是 _____. 【答案】 12,3 4【解析】【分析】分别考查函数 f x 和函数g x 图像的性质,考查临界条件确定k 的取值范围即可.【详解】当x 0,2 时, 2f (x) 1 x 1 , 即2 2x 1 y 1,y 0.又 f (x) 为奇函数,其图象关于原点对称,其周期为4,如图,函数 f (x) 与g( x) 的图象,要使f (x) g (x) 在(0,9] 上有8 个实根,只需二者图象有8 个交点即可.当1g( )x 时,函数 f (x) 与g(x) 的图象有2 个交点;2当g(x) k(x 2) 时,g( x) 的图象为恒过点(-2,0)的直线,只需函数 f (x) 与g( x) 的图象有6 个交点.当f (x) 与g(x) 图象相切时,圆心(1,0)到直线kx y 2k 0的距离为1,即k 2k 1 2 k 1 ,得 2k ,函数 f ( x) 与g( x) 的图象有3 个交点;当g(x) k(x 2) 过点(1,1)4时,函数 f ( x) 与g(x) 的图象有6 个交点,此时1 3k ,得1 k .3综上可知,满足 f (x) g(x) 在(0,9]上有8 个实根的k 的取值范围为1 2 ,.3 4【点睛】本题考点为参数的取值范围,侧重函数方程的多个实根,难度较大.不能正确画出函数图象的交点而致误,根据函数的周期性平移图象,找出两个函数图象相切或相交的临界交点个数,从而确定参数的取值范围.二、解答题:本大题共6小题,共计90分.请在答.题.卡.指.定.区.域.内作答,解答时应写出文字说明、证明过程或演算步骤.15.在△ABC 中,角A,B,C 的对边分别为a,b,c.(1)若a=3 c,b= 2 ,cosB= 23,求c的值;(2)若s in A cos Ba 2b ,求s in( B ) 的值.2【答案】(1) 3c ;(2)3 2 5 5.【解析】【分析】(1)由题意结合余弦定理得到关于 c 的方程,解方程可得边长 c 的值;(2)由题意结合正弦定理和同角三角函数基本关系首先求得cosB的值,然后由诱导公式可得sin( B ) 的值.2【详解】(1)因为2 a 3c, b 2,cos B ,3由余弦定理cos B2 2 2a c b2ac,得2 2 22 (3 c) c ( 2)3 2 3c c,即 21c .3所以3 c .3(2)因为s in A cosB a 2b,由正弦定理a bsin A sin B,得c os B sin B2b b ,所以cosB 2sin B .从而 2 2cos B (2sin B) ,即2 2cos B 4 1 cos B ,故2 4cos B .5因为s in B 0,所以cosB 2sin B 0,从而cos 2 5B .5因此π 2 5 sin B cosB .2 5【点睛】本题主要考查正弦定理、余弦定理、同角三角函数关系、诱导公式等基础知识,考查运算求解能力.16.如图,在直三棱柱ABC-A1B1C1 中,D,E 分别为BC,AC 的中点,AB=BC.求证:(1)A1B1∥平面DEC 1;(2)BE⊥C1E.【答案】(1)见解析;(2)见解析.【解析】【分析】(1)由题意结合几何体的空间结构特征和线面平行的判定定理即可证得题中的结论;(2)由题意首先证得线面垂直,然后结合线面垂直证明线线垂直即可.【详解】(1)因为D,E 分别为BC,AC 的中点,所以ED∥AB.在直三棱柱ABC-A1B1C1 中,AB∥A1B1,所以A1B1∥ED.又因为ED ? 平面DEC1,A1B1 平面DEC1,所以A1B1∥平面DEC1.(2)因为AB=BC,E 为AC 的中点,所以BE⊥AC.因为三棱柱ABC-A1B1C1 是直棱柱,所以CC1⊥平面ABC .又因为BE? 平面ABC,所以CC1⊥BE.因为C1C? 平面A1ACC1,AC? 平面A1ACC1,C1C∩AC= C,所以BE⊥平面A1ACC1.因为C1E? 平面A1ACC1,所以BE⊥C1E.【点睛】本题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力和推理论证能力.17.如图,在平面直角坐标系xOy 中,椭圆C:2 2x y2 2 1( 0)a ba b的焦点为F1(–1、0),F2(1,0).过F2 作x 轴的垂线l,在x 轴的上方,l 与圆F2: 2 2 2(x1) y 4a 交于点A,与椭圆 C 交于点 D.连结AF1 并延长交圆F2于点B,连结BF2 交椭圆 C 于点E,连结DF1.已知DF1= 5 2 .(1)求椭圆 C 的标准方程;(2)求点 E 的坐标.【答案】(1)2 2x y4 31 ;(2)3 E( 1, ) .2【解析】【分析】(1)由题意分别求得a,b 的值即可确定椭圆方程;(2)解法一:由题意首先确定直线AF1 的方程,联立直线方程与圆的方程,确定点 B 的坐标,联立直线BF2 与椭圆的方程即可确定点 E 的坐标;解法二:由题意利用几何关系确定点 E 的纵坐标,然后代入椭圆方程可得点 E 的坐标.【详解】(1)设椭圆 C 的焦距为2c.因为F1(-1,0),F2(1,0),所以F1F2=2,c=1.又因为DF 1= 52,AF 2⊥x 轴,所以DF 2=5 32 2 2 2DF F F ( ) 2 ,1 1 22 2因此2a= D F 1+DF 2=4,从而a=2 2=a2-c2,得b2=3.由b因此,椭圆 C 的标准方程为2 2x y4 31 .(2)解法一:由(1)知,椭圆C:2 2x y4 31 ,a=2,因为AF2⊥x 轴,所以点 A 的横坐标为 1.将x=1 代入圆F2的方程(x-1) 2 2+y =16,解得y=±4.因为点 A 在x 轴上方,所以A(1,4).又F1(-1,0),所以直线AF1:y=2x+2.y 2x 2由 22x 1 y 16 ,得 25x 6x11 0 ,解得x 1或11 x .5将11x 代入y 2x 2,得512y ,5因此11 12B( , ) .又F2(1,0),所以直线BF2:5 53y (x1) .4 3y (x 1)4由 2 2x y4 31 ,得 27x 6x 13 0,解得x 1或13x .7又因为 E 是线段BF 2与椭圆的交点,所以x 1 .将x1代入解法二:3y (x1) ,得43y .因此23E( 1, ) .2由(1)知,椭圆C:2 2x y4 31 .如图,连结EF1.因为BF2=2a,EF1+ E F2=2a,所以EF1=EB,从而∠BF 1E=∠B.因为F2A= F2B,所以∠A=∠B,所以∠A=∠BF1E,从而EF1∥F2A.因为AF2⊥x 轴,所以EF1⊥x 轴.x 1因为F1(-1,0),由 2 2x y ,得14 33 y .2又因为 E 是线段BF 2与椭圆的交点,所以3 y .2因此3 E( 1, ) .2【点睛】本题主要考查直线方程、圆的方程、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等基础知识,考查推理论证能力、分析问题能力和运算求解能力.18.如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l,湖上有桥AB(AB 是圆O 的直径).规划在公路l 上选两个点P、Q,并修建两段直线型道路PB、QA.规划要求: 线段PB、QA 上的所有点到点O 的距离均不.小.于.圆.O 的半径.已知点A、B 到直线l 的距离分别为AC 和BD(C、D 为垂足),测得AB=10,AC =6,BD =12(单位:百米).(1)若道路PB 与桥AB 垂直,求道路PB 的长;(2)在规划要求下,P 和Q 中能否有一个点选在 D 处?并说明理由;(3)对规划要求下,若道路PB 和QA 的长度均为d(单位:百米).求当 d 最小时,P、Q 两点间的距离.【答案】(1)15(百米);(2)见解析;(3)17+ 3 21(百米).【解析】【分析】解:解法一:(1)过 A 作AE BD ,垂足为E.利用几何关系即可求得道路PB 的长;(2)分类讨论P 和Q 中能否有一个点选在 D 处即可.(3)先讨论点P 的位置,然后再讨论点Q 的位置即可确定当 d 最小时,P、Q 两点间的距离.解法二:(1)建立空间直角坐标系,分别确定点P 和点 B 的坐标,然后利用两点之间距离公式可得道路PB 的长;(2)分类讨论P和Q 中能否有一个点选在 D 处即可.(3)先讨论点P 的位置,然后再讨论点Q 的位置即可确定当 d 最小时,P、Q 两点间的距离.【详解】解法一:(1)过A作AE BD ,垂足为 E.由已知条件得,四边形ACDE 为矩形,DE BE AC 6, AE CD 8 .因为PB⊥AB,所以8 4 cos PBD sin ABE .10 5所以PBBD 12154cos PBD .5因此道路PB 的长为15(百米).(2)①若P 在D 处,由(1)可得 E 在圆上,则线段B E 上的点(除B,E)到点O 的距离均小于圆O 的半径,所以P 选在D 处不满足规划要求.②若Q 在D 处,连结AD,由(1)知AD AE2 ED2 10 ,从而2 2 2 7AD AB BDcos BAD 02AD AB 25,所以∠BAD 为锐角.所以线段A D 上存在点到点O 的距离小于圆O 的半径.因此,Q 选在 D 处也不满足规划要求.综上,P 和Q 均不能选在 D 处.(3)先讨论点P 的位置.当∠OBP<90°时,线段P B 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP≥90°时,对线段P B 上任意一点F,OF ≥OB,即线段P B 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设P1为l 上一点,且P1B AB ,由(1)知,P1B 15 ,此时3PD PB sin PBD PB cos EBA 15 9 ;1 1 1 15当∠OBP>90°时,在△PPB 中,PB P1B 15.1由上可知,d≥15.再讨论点Q 的位置.由(2)知,要使得QA≥15,点Q 只有位于点 C 的右侧,才能符合规划要求.当QA =15 时,2 2 152 623 21CQ QA AC .此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当PB⊥AB,点Q 位于点 C 右侧,且CQ= 3 21时,d 最小,此时P,Q 两点间的距离PQ=PD+CD +CQ =17+ 3 21.因此,d 最小时,P,Q 两点间的距离为17+ 3 21(百米).解法二:(1)如图,过O 作OH⊥l,垂足为H.以O 为坐标原点,直线OH 为y 轴,建立平面直角坐标系.因为BD =12,AC=6,所以OH =9,直线l 的方程为y=9,点A,B 的纵坐标分别为3,- 3.2+y2=25.因为AB 为圆O 的直径,AB=10,所以圆O 的方程为x从而A(4,3),B(- 4,- 3),直线AB 的斜率为3 4 .因为PB⊥AB,所以直线PB 的斜率为43,直线PB 的方程为4 25 y x .3 3所以P(- 13,9),PB ( 13 4)2 (9 3)2 15.因此道路PB 的长为15(百米).(2)①若P 在D 处,取线段BD 上一点E(- 4,0),则EO =4<5,所以P 选在D 处不满足规划要求.②若Q 在D 处,连结AD,由(1)知D(- 4,9),又A(4,3),所以线段AD:3y x 6( 4 x 4) .4在线段AD 上取点M (3,154),因为22 15 2 2OM 3 3 4 5 ,4所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此Q 选在 D 处也不满足规划要求.综上,P 和Q 均不能选在 D 处.(3)先讨论点P 的位置.当∠OBP<90°时,线段P B 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP≥90°时,对线段P B 上任意一点F,OF ≥OB,即线段P B 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设P1为l上一点,且P1B AB ,由(1)知,P1B 15 ,此时P1 13,9 ;当∠OBP>90°时,在△PP1B 中,PB P1B 15.由上可知,d≥15.再讨论点Q 的位置.由(2)知,要使得QA≥15,点Q 只有位于点 C 的右侧,才能符合规划要求.当QA =15 时,设Q(a,9),由AQ (a 4)2 (9 3)2 15( a4) ,得a= 4 3 21,所以Q(4 3 21,9),此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当P(- 13,9),Q(4 3 21,9)时,d 最小,此时P,Q 两点间的距离PQ 4 3 21 ( 13) 17 3 21 .因此,d 最小时,P,Q 两点间的距离为17 3 21(百米).【点睛】本题主要考查三角函数的应用、解方程、直线与圆等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力.19.设函数 f (x) (x a)( x b)( x c), a,b,c R ,f '( x)为f(x)的导函数.(1)若a=b= c,f(4)=8,求 a 的值;(2)若a≠b,b=c,且f(x)和 f '( x) 的零点均在集合{-3,1,3} 中,求f(x)的极小值;(3)若a 0,0 b 1, c 1 ,且f(x)的极大值为M,求证:M≤【答案】(1)a 2;(2)见解析;4 27.(3)见解析.【解析】【分析】(1)由题意得到关于 a 的方程,解方程即可确定 a 的值;(2)由题意首先确定a, b,c 的值从而确定函数的解析式,然后求解其导函数,由导函数即可确定函数的极小值.(3)由题意首先确定函数的极大值M 的表达式,然后可用如下方法证明题中的不等式:解法一:由函数的解析式结合不等式的性质进行放缩即可证得题中的不等式;解法二:由题意构造函数,求得函数在定义域内的最大值,因为0 b 1,所以x1 (0,1).当x (0,1) 时, f ( x) x(x b)( x1) x( x 1)2 .令 2g(x) x(x 1) , x (0,1) ,则1g' (x) 3 x (x 1) .3令g'( x) 0 ,得 1x .列表如下:3x (0, 1)3 131( ,1)3g' x + 0 –( )g(x) ↗极大值↘所以当1 1 4 x 时,g(x) 取得极大值,且是最大值,故g( x)max g .3 3 27所以当x (0,1) 时,4f (x) g(x) ,因此274M .27【详解】(1)因为a b c,所以 3f ( x) (x a)( x b)( x c) (x a) .因为 f (4) 8,所以(4 a)3 8 ,解得a 2.(2)因为 b c ,所以 2 3 2 2f (x) (x a)( x b) x (a2b) x b(2 a b)x ab ,从而2a bf '(x) 3(x b) x .令 f '(x) 0 ,得x=b 或32a bx .3因为2a ba b ,都在集合{ 3,1,3} 中,且 a b,, ,3所以2a b31,a 3,b 3.此时 2f x x x ,f'(x) 3(x 3)( x1).( ) ( 3)( 3)令 f '(x) 0 ,得x 3或x1.列表如下:x (-∞,-3) -3 (-3,1) 1 (1,+ ∞) + 0 –0 +f (x) ↗极大值↘极小值↗所以 f (x) 的极小值为 2f (1) (1 3)(1 3) 32 .(3)因为 a 0,c 1,所以 f (x) x(x b)( x 1) x3 (b 1)x2 bx ,2f '( x) 3x 2(b 1)x b .因为0 b 1,所以 2 24(b 1) 12b (2b 1) 3 0 ,则有2 个不同的零点,设为x1 ,x2 x1 x2 .由 f '(x) 0 ,得2 2b 1 b b 1 b 1 b b 1 x ,x.1 23 3列表如下:x ( , x ) x1 x1, x2 x2 (x2,)1+ 0 –0 +f (x) ↗极大值↘极小值↗所以 f (x) 的极大值M f x1 .解法一:3 2M f x1 x1 (b 1)x1 bx122 b b 1x b 1 b(b 1)2 13x 2(b 1)x b x1 1 13 9 9 922 b b 1 (b 1) b(b 1) 227 9 272b b 132b(b 1) 2(b 1) (b 1) 227 27 27( b(b 1) 1) 3b(b 1) 2 4 27 27 27 .因此4M .27解法二:因为0 b 1,所以x1 (0,1).当x (0,1) 时, f ( x) x(x b)( x1) x( x 1)2 .令12g' (x) 3 x (x 1) .g(x) x(x 1) , x (0,1) ,则3令g'( x) 0 ,得 1x .列表如下:3x (0, 1)3 131( ,1)3g' x + 0 –( )g(x) ↗极大值↘所以当1 1 4 x 时,g(x) 取得极大值,且是最大值,故g( x)max g .3 3 27所以当x (0,1) 时,4f (x) g(x) ,因此274M .27【点睛】本题主要考查利用导数研究函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.20.定义首项为 1 且公比为正数的等比数列为“M-数列”.(1)已知等比数列{ a n} 满足:a2a4 a5 ,a3 4a2 4a1 0 ,求证:数列{ a n} 为“M-数列”;b (2)已知数列{ b n} 满足: 11,1 2 2S b bn n n1,其中S n 为数列{ b n} 的前n 项和.①求数列{ b n}的通项公式;②设m为正整数,若存在“M-数列”{c n}( n∈N * ),对任意正整数k,当k≤m 时,都有c b ck k k1 成立,求m 的最大值.【答案】(1)见解析;(2)①b n=n *n N;②5.【解析】【分析】(1)由题意分别求得数列的首项和公比即可证得题中的结论;(2)①由题意利用递推关系式讨论可得数列{ b n} 是等差数列,据此即可确定其通项公式;②由①确定b k 的值,将原问题进行等价转化,构造函数,结合导函数研究函数的性质即可求得m 的最大值.【详解】(1)设等比数列{ a n} 的公比为q,所以a1≠0,q≠0.由a a a2 4 5,得a3 4a2 4a1 02 4 4a q a q1 12a1q 4a1q 4a1 0,解得a1 1q 2.因此数列{ }a 为“M—数列”.n(2)①因为1 2 2S b bn n n1,所以0b .n由b1 1, S1 b1 得1 2 21 1 b2,则b2 2 .由1 2 2S b bn n n1,得Snb bn n12(b b )n 1 n,当n 2 时,由b n S n S n 1 ,得bnb b b bn n 1 n 1 n2 b b 2 b bn 1 n n n 1,整理得b 1 b 1 2b .n n n所以数列{ b n}是首项和公差均为 1 的等差数列.因此,数列{ b n} 的通项公式为b n=n *n N .②由①知,b k=k,k N* .因为数列{ c n} 为“M –数列”,设公比为q,所以c1=1,q>0.因为c k≤b k≤c k+1,所以k 1 kq k q ,其中k=1,2,3,⋯,m.当k=1 时,有q≥1;ln k ln k当k=2,3,⋯,m 时,有ln qk k 1.设f(x)= l nxx(x 1) ,则f '(x)1 ln2xx.令f '( x) 0 ,得x=e.列表如下:x (1,e) e (e,+∞) f '( x) + 0 –f(x)↗极大值↘ln 2 ln8 ln9 ln 3 因为2 6 6 3ln3f (k) f (3) .,所以max3取q ,当k=1,2,3,4,5 时,3 33 3 lnkkln q ,即kk q ,经检验知k 1q k 也成立.因此所求m 的最大值不小于5.若m≥6,分别取k=3,6,得3≤q3,且q5≤6,从而q15≥24,3且q15≤216,所以q 不存在.因此所求m 的最大值小于6.综上,所求m 的最大值为5.【点睛】本题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.数学Ⅱ(附加题)【选做题】本题包括21、22、23 三小题,请.选.定.其.中.两.小.题.,.并.在.相.应.的.答.题.区.域.内.作.答..若多做,则按作答的前两小题评分.解答时应写出文字说明、证过程或演算步骤.21.已知矩阵 A 3 1 2 2(1)求A2;(2)求矩阵 A 的特征值.【答案】(1)11 5 10 6;(2) 1 1, 2 4 .【解析】【分析】(1)利用矩阵的乘法运算法则计算A的值即可;2(2)首先求得矩阵的特征多项式,然后利用特征多项式求解特征值即可.3 1【详解】(1)因为A,2 2所以2 3 1 3 1 A2 2 2 2= 3 3 1 2 3 1 1 22 3 2 2 2 1 2 2=11 510 6.(2)矩阵 A 的特征多项式为3 12f ( ) 5 4.2 2令 f ( ) 0,解得A的特征值 1 1, 2 4 .【点睛】本题主要考查矩阵的运算、特征值等基础知识,考查运算求解能力.A B ,直线l 的方程为sin 322.在极坐标系中,已知两点3, , 2,4 2 4.(1)求A,B 两点间的距离;(2)求点 B 到直线l 的距离.【答案】(1) 5 ;(2)2.【解析】【分析】(1)由题意,在△OAB 中,利用余弦定理求解AB 的长度即可;(2)首先确定直线的倾斜角和直线所过的点的极坐标,然后结合点 B 的坐标结合几何性质可得点B 到直线l 的距离.【详解】(1)设极点为O.在△OAB 中,A(3,),B( 2 ,),4 2由余弦定理,得AB= 32 ( 2) 2 2 3 2 cos( ) 52 4.(2)因为直线l 的方程为sin( ) 34,则直线l 过点(3 2, )2 ,倾斜角为34.又B( 2, ) ,所以点 B 到直线l 的距离为23(3 2 2) sin( ) 24 2.【点睛】本题主要考查曲线的极坐标方程等基础知识,考查运算求解能力.23.设x R,解不等式| x|+|2 x 1|>2 .【答案】1 { x|x或x 1} .3【解析】【分析】由题意结合不等式的性质零点分段即可求得不等式的解集.【详解】当 x<0 时,原不等式可化为 x 1 2x 2 ,解得 x<– 13:当 0≤ x ≤ 1 2时,原不等式可化为x+1–2x>2,即 x<–1,无解;当 x> 1 2时,原不等式可化为x+2 x –1>2,解得 x>1.综上,原不等式的解集为1 {x |x或x 1} .3【点睛】本题主要考查解不等式等基础知识,考查运算求解和推理论证能力. 【必做题】第24 题、第25 题,每题 10 分,共计 20 分 . 请 在 答.题.卡.指.定.区.域. 内 作答,解答时应写出文字说明、证明过程或演算步骤. n2n*(1 x)aa x a xa x ,n ⋯ 4,n N .已知 24.设12n2a32a 2a 4 .(1)求 n 的值;na b,其中 (2)设(1 3)3*a, b N ,求23 2ab 的值 .【答案】(1) n 5; (2) -32. 【解析】 【分析】(1)首先由二项式展开式的通项公式确定a 2 ,a 3, a 4 的值,然后求解关于n 的方程可得 n 的值;(2)解法一: 利用 (1)中求得的 n 的值确定有理项和无理项从而可得 a,b 的值,然后计算23 2ab的值即可;解法二:利用 (1)中求得的 n 的值,由题意得到51 3 的展开式,最后结合平方差公式即可确定 a 23b 2 的值 .n0 1 2 2 n n【详解】(1)因为(1 x)C C x C x C x ,n 4 ,nnnn所以n(n 1)n(n 1)( n 2) 23aC,aC,2 n3n26n(n 1)( n 2)( n 3)4aC.4n242因为a 32a 2a 4 ,所以n(n 1)(n 2)n(n 1) n(n 1)(n 2)( n 3) 2[ ]2,6 2 24解得n 5.(2)由(1)知,n 5 .n 5(1 3) (1 3)0 1 2 2 3 3 4 4 5 5C C 3 C ( 3) C ( 3) C ( 3) C ( 3)5 5 5 5 5 5a b 3 .解法一:因为*a,b N,所以0 2 4 1 3 5a C 3C 9C 76,b C 3C 9C 44 ,5 5 5 5 5 5从而a2 3b2 762 3 442 32 .解法二:5 0 1 2 2 3 3 4 4 5 5 (1 3) C C ( 3) C ( 3) C ( 3) C ( 3) C ( 3)5 5 5 5 5 50 1 2 2 3 3 4 4 5 5C C 3 C ( 3) C ( 3) C ( 3) C ( 3) .5 5 5 5 5 5因为*a,b N,所以5(1 3) a b 3 .因此 2 3 2 ( 3)( 3) (1 3)5 (1 3) 5 ( 2)5 32a b a b a b .【点睛】本题主要考查二项式定理、组合数等基础知识,考查分析问题能力与运算求解能力.25.在平面直角坐标系x Oy 中,设点集A n {(0,0),(1,0),(2,0), ,( n,0)} ,B (0,1),(n,1)},C {(0,2),(1 ,2),(2,2), ,( n,2)}, n N .令M n A n B n C n .从集n n合M n 中任取两个不同的点,用随机变量X表示它们之间的距离.(1)当n=1 时,求X 的概率分布;(2)对给定的正整数n(n≥3),求概率P(X≤n)(用n 表示).【答案】(1)见解析;(2)见解析.【解析】【分析】(1)由题意首先确定X 可能的取值,然后利用古典概型计算公式求得相应的概率值即可确定分布列;(2)将原问题转化为对立事件的问题求解P X n 的值,据此分类讨论①. b d ,②.b 0,d 1,③. b 0,d 2 ,④.b 1,d 2 四种情况确定X 满足X n的所有可能的取值,然后求解相应的概率值即可确定P X ≤n 的值.【详解】(1)当n 1时,X 的所有可能取值是1,2 ,2,5 .7744P(X1),P(X2),X的概率分布为22C15C15662222P(X2),P(X5).22C15C1566(2)设A(a,b)和B(c,d)是从M n中取出的两个点.因为P(X n)1P(X n),所以仅需考虑X n的情况.①若b d,则AB n,不存在X n的取法;②若b0,d1,则AB(a c)21n21,所以X n当且仅当21AB n,此时a0,c n或a n,c0,有2种取法;③若b0,d2,则AB(a c)24n24,因为当n3时,2(n1)4n,所以X n当且仅当AB n24,此时a0,c n或a n,c0,有2种取法;④若b1,d2,则AB(a c)21n21,所以X n当且仅当21AB n,此时a0,c n或a n,c0,有2种取法.综上,当X n时,X的所有可能取值是n2+1和24n,且2242P(X n1),P(X n4).22C n C n2424因此,622P(X n)1P(X n1)P(X n4)1.2C n24【点睛】本题主要考查计数原理、古典概型、随机变量及其概率分布等基础知识,考查逻辑思维能力和推理论证能力.。

2019年高考真题数学(江苏卷含答案)

2019年高考真题数学(江苏卷含答案)

2019年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,均为非选择题(第1题~第20题,共20题)。

本卷满分为160分,考试时间为120分钟。

考试结束后,请将本试卷和答题卡一片交回。

2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。

3.请认真核对监考员从答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符。

4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。

5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗。

参考公式:样本数据的方差,其中.12,,,n x x x …()2211n i i s x x n ==-∑11n i i x x n ==∑柱体的体积,其中是柱体的底面积,是柱体的高.V Sh =S h 锥体的体积,其中是锥体的底面积,是锥体的高.13V Sh =S h 一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.已知集合,,则 ▲ .{1,0,1,6}A =-{|0,}B x x x =>∈R A B = 2.已知复数的实部为0,其中为虚数单位,则实数a 的值是 ▲ .(2i)(1i)a ++i 3.下图是一个算法流程图,则输出的S 的值是 ▲ .4.函数的定义域是 ▲ .y =5.已知一组数据6,7,8,8,9,10,则该组数据的方差是 ▲ .6.从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是 ▲ .7.在平面直角坐标系中,若双曲线经过点(3,4),则该双曲线的渐近线方程是 xOy 2221(0)y x b b -=>▲ .8.已知数列是等差数列,是其前n 项和.若,则的值是 ▲ .*{}()n a n ∈N n S 25890,27a a a S +==8S 9.如图,长方体的体积是120,E 为的中点,则三棱锥E -BCD 的体积是 ▲ .1111ABCD A B C D -1CC10.在平面直角坐标系中,P 是曲线上的一个动点,则点P 到直线x +y =0的距离的最xOy 4(0)y x x x=+>小值是 ▲ .11.在平面直角坐标系中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对xOy数的底数),则点A 的坐标是 ▲ .12.如图,在中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE 交于点.若ABC △O ,则的值是▲ .6AB AC AO EC ⋅=⋅ AB AC13.已知,则的值是 ▲ .tan 2π3tan 4αα=-⎛⎫+ ⎪⎝⎭πsin 24α⎛⎫+ ⎪⎝⎭14.设是定义在R 上的两个周期函数,的周期为4,的周期为2,且是奇函数.(),()f x g x ()f x ()g x ()f x 当时,,,其中k >0.若在区间(0,9]上,关于2(]0,x ∈()f x =(2),01()1,122k x x g x x +<≤⎧⎪=⎨-<≤⎪⎩x 的方程有8个不同的实数根,则k 的取值范围是 ▲ .()()f x g x =二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .(1)若a =3c ,b ,cos B =,求c 的值;23(2)若,求的值.sin cos 2A B a b =sin(2B π+16.(本小题满分14分)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC .求证:(1)A 1B 1∥平面DEC 1;(2)BE ⊥C 1E .17.(本小题满分14分)如图,在平面直角坐标系xOy 中,椭圆C :的焦点为F 1(–1、0),22221(0)x y a b a b+=>>F 2(1,0).过F 2作x 轴的垂线l ,在x 轴的上方,l 与圆F 2:交于点A ,与椭圆C 222(1)4x y a -+=交于点D .连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E ,连结DF 1.已知DF 1=.52(1)求椭圆C 的标准方程;(2)求点E 的坐标.18.(本小题满分16分)如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥AB (AB 是圆O 的直径).规划在公路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA .规划要求:线段PB 、QA 上的所有点到点O 的距离均不小于圆O 的半径.已知点A 、B 到直线l 的距离分别为AC 和BD (C 、D 为垂足),测得AB =10,AC =6,BD =12(单位:百米).(1)若道路PB 与桥AB 垂直,求道路PB 的长;(2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由;(3)对规划要求下,若道路PB 和QA 的长度均为d (单位:百米).求当d 最小时,P 、Q 两点间的距离.19.(本小题满分16分)设函数、为f (x )的导函数.()()()(),,,R f x x a x b x c a b c =---∈()f 'x (1)若a =b =c ,f (4)=8,求a 的值;(2)若a ≠b ,b =c ,且f (x )和的零点均在集合中,求f (x )的极小值;()f 'x {3,1,3}-(3)若,且f (x )的极大值为M ,求证:M ≤.0,01,1a b c =<= (427)20.(本小满分16分)定义首项为1且公比为正数的等比数列为“M -数列”.(1)已知等比数列{a n }满足:,求证:数列{a n }为“M -数列”;*()n ∈N 245324,440a a a a a a =-+=(2)已知数列{b n }满足:,其中S n 为数列{b n }的前n 项和.111221,n n n b S b b +==-①求数列{b n }的通项公式;②设m 为正整数,若存在“M -数列”{c n },对任意正整数k ,当k ≤m 时,都有*()n ∈N 成立,求m 的最大值.1k k k c b c +……数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 三小题,请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A.[选修4-2:矩阵与变换](本小题满分10分)已知矩阵 3122⎡⎤=⎢⎥⎣⎦A (1)求A 2;(2)求矩阵A 的特征值.B.[选修4-4:坐标系与参数方程](本小题满分10分)在极坐标系中,已知两点,直线l 的方程为.3,,42A B ππ⎛⎫⎫ ⎪⎪⎝⎭⎭sin 34ρθπ⎛⎫+= ⎪⎝⎭(1)求A ,B 两点间的距离;(2)求点B 到直线l 的距离.C.[选修4-5:不等式选讲](本小题满分10分)设,解不等式.x ∈R ||+|2 1|>2x x -【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)设.已知.2*012(1),4,n n n x a a x a x a x n n +=++++∈N …23242a a a =(1)求n 的值;(2)设,求的值.(1n a +=+*,a b ∈N 223a b -23.(本小题满分10分)在平面直角坐标系xOy 中,设点集,{(0,0),(1,0),(2,0),,(,0)}n A n =⋯{(0,1),(,1)},{(0,2),(1,2),(2,2),,(,2)},.n n B n C n n *==∈N 令.从集合M n 中任取两个不同的点,用随机变量X 表示它们之间的距离.n n n n M A B C = (1)当n =1时,求X 的概率分布;2019年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ答 案一、填空题:本题考查基础知识、基本运算和基本思想方法.每小题5分,共计70分.1. 2.2 3.5 4. 5. 6.7.{1,6}[1,7]-53710y =8.169.1010.411.14.(e, 1)13⎡⎢⎣二、解答题15.本小题主要考查正弦定理、余弦定理、同角三角函数关系、诱导公式等基础知识,考查运算求解能力.满分14分.解:(1)因为,23,3a cb B ===由余弦定理,得,即.222cos 2a c b B ac +-=23=213c =所以c =(2)因为,sin cos 2A B a b=由正弦定理,得,所以.sin sin a b A B =cos sin 2B B b b=cos 2sin B B =从而,即,故.22cos (2sin )B B =()22cos 41cos B B =-24cos 5B =因为,所以,从而.sin 0B >cos 2sin 0B B =>cos B =因此πsin cos 2B B ⎛⎫+== ⎪⎝⎭16.本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力和推理论证能力.满分14分.证明:(1)因为D,E分别为BC,AC的中点,所以ED∥AB.在直三棱柱ABC-A1B1C1中,AB∥A1B1,所以A1B1∥ED.又因为ED⊂平面DEC1,A1B1平面DEC1,⊄所以A1B1∥平面DEC1.(2)因为AB=BC,E为AC的中点,所以BE⊥AC.因为三棱柱ABC-A1B1C1是直棱柱,所以CC1⊥平面ABC.又因为BE⊂平面ABC,所以CC1⊥BE.因为C1C⊂平面A1ACC1,AC⊂平面A1ACC1,C1C∩AC=C,所以BE⊥平面A1ACC1.因为C1E⊂平面A1ACC1,所以BE⊥C1E.17.本小题主要考查直线方程、圆的方程、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等基础知识,考查推理论证能力、分析问题能力和运算求解能力.满分14分.解:(1)设椭圆C的焦距为2c.因为F1(-1,0),F2(1,0),所以F1F2=2,c=1.又因为DF1=,AF2⊥x轴,所以DF2,5 232 ==因此2a=DF1+DF2=4,从而a=2.由b2=a2-c2,得b2=3.因此,椭圆C 的标准方程为.22143x y +=(2)解法一:由(1)知,椭圆C :,a =2,22143x y +=因为AF 2⊥x 轴,所以点A 的横坐标为1.将x =1代入圆F 2的方程(x -1) 2+y 2=16,解得y =±4.因为点A 在x 轴上方,所以A (1,4).又F 1(-1,0),所以直线AF 1:y =2x +2.由,得,22()22116y x x y =+-+=⎧⎨⎩256110x x +-=解得或.1x =115x =-将代入,得,115x =-22y x =+125y =-因此.又F 2(1,0),所以直线BF 2:.1112(,55B --3(1)4y x =-由,得,解得或.221433(1)4x y x y ⎧⎪⎪⎨⎪+=-⎩=⎪276130x x --=1x =-137x =又因为E 是线段BF 2与椭圆的交点,所以.1x =-将代入,得.因此.1x =-3(1)4y x =-32y =-3(1,2E --解法二:由(1)知,椭圆C :.如图,连结EF 1.22143x y +=因为BF 2=2a ,EF 1+EF 2=2a ,所以EF 1=EB ,从而∠BF 1E =∠B .因为F 2A =F 2B ,所以∠A =∠B ,所以∠A =∠BF 1E ,从而EF 1∥F 2A .因为AF 2⊥x 轴,所以EF 1⊥x 轴.因为F 1(-1,0),由,得.221431x x y ⎧⎪⎨+==-⎪⎩32y =±又因为E 是线段BF 2与椭圆的交点,所以.32y =-因此.3(1,2E --18.本小题主要考查三角函数的应用、解方程、直线与圆等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力.满分16分.解:解法一:(1)过A 作,垂足为E .AE BD ⊥由已知条件得,四边形ACDE 为矩形,.'6, 8DE BE AC AE CD =====因为PB ⊥AB ,所以.84cos sin 105PBDABE ∠=∠==所以.12154cos 5BD PB PBD ===∠因此道路PB 的长为15(百米).(2)①若P 在D 处,由(1)可得E 在圆上,则线段BE 上的点(除B ,E )到点O 的距离均小于圆O 的半径,所以P 选在D 处不满足规划要求.②若Q 在D 处,连结AD ,由(1)知,10AD ==从而,所以∠BAD 为锐角.2227cos 0225AD AB BD BAD AD AB +-∠==>⋅所以线段AD 上存在点到点O 的距离小于圆O 的半径.因此,Q 选在D 处也不满足规划要求.综上,P 和Q 均不能选在D 处.(3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设为l 上一点,且,由(1)知,B =15,1P 1PB AB ⊥1P 此时;11113sin cos 1595PD PB PBD PB EBA =∠=∠=⨯=当∠OBP >90°时,在中,.1PPB △115PB PB >=由上可知,d ≥15.再讨论点Q 的位置.由(2)知,要使得QA ≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.CQ ===综上,当PB ⊥AB ,点Q 位于点C 右侧,且CQ =d 最小,此时P ,Q 两点间的距离PQ =PD +CD +CQ =17+因此,d 最小时,P ,Q 两点间的距离为17+.解法二:(1)如图,过O 作OH ⊥l ,垂足为H.以O 为坐标原点,直线OH 为y 轴,建立平面直角坐标系.因为BD =12,AC =6,所以OH =9,直线l 的方程为y =9,点A ,B 的纵坐标分别为3,−3.因为AB 为圆O 的直径,AB =10,所以圆O 的方程为x 2+y 2=25.从而A (4,3),B (−4,−3),直线AB 的斜率为.34因为PB ⊥AB ,所以直线PB 的斜率为,43-直线PB 的方程为.42533y x =--所以P (−13,9),.15PB ==因此道路PB 的长为15(百米).(2)①若P 在D 处,取线段BD 上一点E (−4,0),则EO =4<5,所以P 选在D 处不满足规划要求.②若Q 在D 处,连结AD ,由(1)知D (−4,9),又A (4,3),所以线段AD :.36(44)4y x x =-+-……在线段AD 上取点M (3,),因为,1545OM =<=所以线段AD 上存在点到点O 的距离小于圆O 的半径.因此Q 选在D 处也不满足规划要求.综上,P 和Q 均不能选在D 处.(3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设为l 上一点,且,由(1)知,B =15,此时(−13,9);1P 1PB AB ⊥1P 1P 当∠OBP >90°时,在中,.1PPB △115PB PB >=由上可知,d ≥15.再讨论点Q 的位置.由(2)知,要使得QA≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,设Q (a ,9),由,得a =,所以Q (,9),此时,线段QA15(4)AQ a ==>4+4+上所有点到点O 的距离均不小于圆O 的半径.综上,当P (−13,9),Q (9)时,d 最小,此时P ,Q 两点间的距离4+.4(13)17PQ =+-=+因此,d 最小时,P ,Q 两点间的距离为(百米).17+19.本小题主要考查利用导数研究函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.满分16分.解:(1)因为,所以.a b c ==3()()()()()f x x a x b x c x a =---=-因为,所以,解得.(4)8f =3(4)8a -=2a =(2)因为,b c =所以,2322()()()(2)(2)f x x a x b x a b x b a b x ab =--=-+++-从而.令,得或.2()3()3a b f 'x x b x +⎛⎫=--⎪⎝⎭()0f 'x =x b =23a b x +=因为,都在集合中,且,2,,3a ba b +{3,1,3}-a b ≠所以.21,3,33a ba b +===-此时,.2()(3)(3)f x x x =-+()3(3)(1)f 'x x x =+-令,得或.列表如下:()0f 'x =3x =-1x =x(,3)-∞-3-(3,1)-1(1,)+∞()f 'x +0–0+()f x极大值极小值所以的极小值为.()f x 2(1)(13)(13)32f =-+=-(3)因为,所以,0,1a c ==32()()(1)(1)f x x x b x x b x bx =--=-++.2()32(1)f 'x x b x b =-++因为,所以,01b <≤224(1)12(21)30b b b ∆=+-=-+>则有2个不同的零点,设为.()f 'x ()1212,x x x x <由,得.()0f 'x =12x x ==列表如下:x1(,)x -∞1x ()12,x x2x 2(,)x +∞()f 'x +–+()f x极大值极小值所以的极大值.()f x ()1M f x =解法一:()321111(1)M f x x b x bx ==-++()()221111211(1)32(1)3999b b x b b b x b x b x -+++⎛⎫=-++--+ ⎪⎝⎭()2321(1)(1)227927b b b b b --+++=++23(1)2(1)(1)2272727b b b b +-+=-+.因此.(1)24272727b b +≤+≤427M ≤解法二:因为,所以.01b <≤1(0,1)x ∈当时,.(0,1)x ∈2()()(1)(1)f x x x b x x x =--≤-令,则.2()(1),(0,1)g x x x x =-∈1()3(1)3g'x x x ⎛⎫=-- ⎪⎝⎭令,得.列表如下:()0g'x =13x =x1(0,)3131(,1)3()g'x +–()g x极大值所以当时,取得极大值,且是最大值,故.13x =()g x max 14()327g x g ⎛⎫== ⎪⎝⎭所以当时,,因此.(0,1)x ∈4()()27f x g x ≤≤427M ≤20.本小题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.满分16分.解:(1)设等比数列{a n }的公比为q ,所以a 1≠0,q ≠0.由,得,解得.245321440a a a a a a =⎧⎨-+=⎩244112111440a q a q a q a q a ⎧=⎨-+=⎩112a q =⎧⎨=⎩因此数列为“M —数列”.{}n a (2)①因为,所以.1122nn n S b b +=-0n b ≠由得,则.1111,b S b ==212211b =-22b =由,得,1122nn n S b b +=-112()n n n n n b b S b b ++=-当时,由,得,2n ≥1n n n b S S -=-()()111122n n n nn n n n n b b b b b b b b b +-+-=---整理得.112n n n b b b +-+=所以数列{b n }是首项和公差均为1的等差数列.因此,数列{b n }的通项公式为b n=n.()*n ∈N ②由①知,b k =k ,.*k ∈N 因为数列{c n }为“M –数列”,设公比为q ,所以c 1=1,q >0.因为c k ≤b k ≤c k +1,所以,其中k =1,2,3,…,m .1k kq k q -≤≤当k =1时,有q ≥1;当k =2,3,…,m 时,有.ln ln ln 1k kq kk ≤≤-设f (x )=,则.ln (1)x x x >21ln ()xf 'x x -=令,得x =e.列表如下:()0f 'x =x(1,e)e (e ,+∞)()f 'x +0–f (x极大值)因为,所以.ln 2ln 8ln 9ln 32663=<=max ln 3()(3)3f k f ==取k =1,2,3,4,5时,,即,q =ln ln kq k …kk q ≤经检验知也成立.1k q k -≤因此所求m 的最大值不小于5.若m ≥6,分别取k =3,6,得3≤q 3,且q 5≤6,从而q 15≥243,且q 15≤216,所以q 不存在.因此所求m 的最大值小于6.综上,所求m 的最大值为5.数学Ⅱ(附加题)参考答案21.【选做题】A .[选修4–2:矩阵与变换]本小题主要考查矩阵的运算、特征值等基础知识,考查运算求解能力.满分10分.解:(1)因为,3122⎡⎤=⎢⎥⎣⎦A 所以231312222⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦A ==.3312311223222122⨯+⨯⨯+⨯⎡⎤⎢⎥⨯+⨯⨯+⨯⎣⎦115106⎡⎤⎢⎥⎣⎦(2)矩阵A 的特征多项式为.231()5422f λλλλλ--==-+--令,解得A 的特征值.()0f λ=121,4λλ==B .[选修4–4:坐标系与参数方程]本小题主要考查曲线的极坐标方程等基础知识,考查运算求解能力.满分10分.解:(1)设极点为O .在△OAB 中,A (3,),B,),4π2π由余弦定理,得AB.=(2)因为直线l 的方程为,sin()34ρθπ+=则直线l 过点,倾斜角为.2π34π又,所以点B 到直线l的距离为.2B π3sin(242ππ⨯-=C .[选修4–5:不等式选讲]本小题主要考查解不等式等基础知识,考查运算求解和推理论证能力.满分10分.解:当x <0时,原不等式可化为,解得x <–:122x x -+->13当0≤x ≤时,原不等式可化为x +1–2x >2,即x <–1,无解;12当x >时,原不等式可化为x +2x –1>2,解得x >1.12综上,原不等式的解集为.1{|1}3x x x <->或22.【必做题】本小题主要考查二项式定理、组合数等基础知识,考查分析问题能力与运算求解能力,满分10分.解:(1)因为,0122(1)C C C C 4n n n n n n n x x x x n +=++++≥ ,所以,2323(1)(1)(2)C ,C 26n n n n n n n a a ---====.44(1)(2)(3)C 24n n n n n a ---==因为,23242a a a =所以,2(1)(2)(1)(1)(2)(3)[]26224n n n n n n n n n ------=⨯⨯解得.5n =(2)由(1)知,.5n=5(1(1n =02233445555555C C C C C C =+++++a =+解法一:因为,所以,*,a b ∈N 024*********C 3C 9C 76,C 3C 9C 44a b =++==++=从而.222237634432a b -=-⨯=-解法二:50122334455555555(1C C (C (C (C (C (=+++++.012233445555555C C C C C C =-+-+-因为,所以.*,a b ∈N 5(1a =-因此.225553((1(1(2)32a b a a -=+-=+⨯=-=-23.【必做题】本小题主要考查计数原理、古典概型、随机变量及其概率分布等基础知识,考查逻辑思维能力和推理论证能力.满分10分.解:(1)当时,的所有可能取值是.1n =X 12的概率分布为,X 22667744(1),(C 15C 15P X P X ======.22662222(2),(C 15C 15P X P X ======(2)设和是从中取出的两个点.()A a b ,()B c d ,n M 因为,所以仅需考虑的情况.()1()P X n P X n ≤=->X n >①若,则,不存在的取法;b d =AB n ≤X n >②若,则当且仅当01b d ==,AB =≤X n >AB =或,有2种取法;0 a c n ==, 0a n c ==,③若,则,因为当,所以02b d ==,AB =≤3n ≥n ≤当且仅当,此时或,有2种取法;X n>AB =0 a c n ==,0a n c ==,④若,则当且仅当12b d ==,AB =≤X n >AB =或,有2种取法.0 a c n ==, 0a n c ==,综上,当时,,且X n >X.22242442(,(C C n nP X P X++====因此,.2246()1((1C n P X n P X P X +≤=-=-==-。

2019年高考真题数学(江苏卷含答案)

2019年高考真题数学(江苏卷含答案)

2019年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ参考公式:样本数据12,,,n x x x …的方差()2211n i i s x x n ==-∑,其中11n i i x x n ==∑.柱体的体积V Sh =,其中S 是柱体的底面积,h 是柱体的高. 锥体的体积13V Sh =,其中S 是锥体的底面积,h 是锥体的高. 一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位......置上... 1.已知集合{1,0,1,6}A =-,{|0,}B x x x =>∈R ,则AB = ▲ .2.已知复数(2i)(1i)a ++的实部为0,其中i 为虚数单位,则实数a 的值是 ▲ . 3.下图是一个算法流程图,则输出的S 的值是 ▲ .4.函数y =的定义域是 ▲ .5.已知一组数据6,7,8,8,9,10,则该组数据的方差是 ▲ .6.从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是 ▲ .7.在平面直角坐标系xOy 中,若双曲线2221(0)y x b b-=>经过点(3,4),则该双曲线的渐近线方程是 ▲ .8.已知数列*{}()n a n ∈N 是等差数列,n S 是其前n 项和.若25890,27a a a S +==,则8S 的值是 ▲ .9.如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E -BCD 的体积是 ▲ .10.在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线x +y =0的距离的最小值是 ▲ .11.在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是 ▲ .12.如图,在ABC △中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE 交于点O .若6AB AC AO EC ⋅=⋅,则ABAC的值是 ▲.13.已知tan 2π3tan 4αα=-⎛⎫+ ⎪⎝⎭,则πsin 24α⎛⎫+ ⎪⎝⎭的值是 ▲ . 14.设(),()f x g x 是定义在R 上的两个周期函数,()f x 的周期为4,()g x 的周期为2,且()f x 是奇函数.当2(]0,x ∈时,()f x =,(2),01()1,122k x x g x x +<≤⎧⎪=⎨-<≤⎪⎩,其中k >0.若在区间(0,9]上,关于x 的方程()()f x g x =有8个不同的实数根,则k 的取值范围是 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c . (1)若a =3c ,b,cos B =23,求c 的值; (2)若sin cos 2A B a b =,求sin()2B π+的值. 16.(本小题满分14分)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC . 求证:(1)A 1B 1∥平面DEC 1; (2)BE ⊥C 1E .17.(本小题满分14分)如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的焦点为F 1(–1、0), F 2(1,0).过F 2作x 轴的垂线l ,在x 轴的上方,l 与圆F 2:222(1)4x y a -+=交于点A ,与椭圆C 交于点D .连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E ,连结DF 1. 已知DF 1=52. (1)求椭圆C 的标准方程; (2)求点E 的坐标.18.(本小题满分16分)如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥AB (AB 是圆O 的直径).规划在公路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA .规划要求:线段PB 、QA 上的所有点到点O 的距离均不小于圆....O 的半径.已知点A 、B 到直线l 的距离分别为AC 和BD (C 、D 为垂足),测得AB =10,AC =6,BD =12(单位:百米).(1)若道路PB 与桥AB 垂直,求道路PB 的长;(2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由;(3)对规划要求下,若道路PB 和QA 的长度均为d (单位:百米).求当d 最小时,P 、Q 两点间的距离.19.(本小题满分16分)设函数()()()(),,,R f x x a x b x c a b c =---∈、()f 'x 为f (x )的导函数. (1)若a =b =c ,f (4)=8,求a 的值;(2)若a ≠b ,b =c ,且f (x )和()f 'x 的零点均在集合{3,1,3}-中,求f (x )的极小值;(3)若0,01,1a b c =<=…,且f (x )的极大值为M ,求证:M ≤427. 20.(本小满分16分)定义首项为1且公比为正数的等比数列为“M -数列”.(1)已知等比数列{a n }*()n ∈N 满足:245324,440a a a a a a =-+=,求证:数列{a n }为“M -数列”;(2)已知数列{b n }满足:111221,n n n b S b b +==-,其中S n 为数列{b n }的前n 项和. ①求数列{b n }的通项公式;②设m 为正整数,若存在“M -数列”{c n }*()n ∈N ,对任意正整数k ,当k ≤m 时,都有1k k k c b c +剟成立,求m 的最大值.数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 三小题,请选定其中两小题,并在相应的答题区域内作....................答..若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A.[选修4-2:矩阵与变换](本小题满分10分) 已知矩阵3122⎡⎤=⎢⎥⎣⎦A (1)求A 2;(2)求矩阵A 的特征值.B.[选修4-4:坐标系与参数方程](本小题满分10分)在极坐标系中,已知两点3,,42A B ππ⎛⎫⎫ ⎪⎪⎝⎭⎭,直线l 的方程为sin 34ρθπ⎛⎫+= ⎪⎝⎭.(1)求A ,B 两点间的距离;(2)求点B 到直线l 的距离. C.[选修4-5:不等式选讲](本小题满分10分) 设x ∈R ,解不等式||+|2 1|>2x x -.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)设2*012(1),4,n n n x a a x a x a x n n +=++++∈N ….已知23242a a a =.(1)求n 的值;(2)设(1na +=+*,ab ∈N ,求223a b -的值.23.(本小题满分10分)在平面直角坐标系xOy 中,设点集{(0,0),(1,0),(2,0),,(,0)}n A n =⋯,{(0,1),(,1)},{(0,2),(1,2),(2,2),,(,2)},.n n B n C n n *==∈N令n n n n M A B C =.从集合M n 中任取两个不同的点,用随机变量X 表示它们之间的距离.(1)当n =1时,求X 的概率分布;2019年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ答 案一、填空题:本题考查基础知识、基本运算和基本思想方法.每小题5分,共计70分.1.{1,6}2.23.54.[1,7]-5.536.7107.y =8.16 9.10 10.4 11.(e, 1)13.1014.1,34⎡⎫⎪⎢⎪⎣⎭二、解答题15.本小题主要考查正弦定理、余弦定理、同角三角函数关系、诱导公式等基础知识,考查运算求解能力.满分14分.解:(1)因为23,3a cb B ===,由余弦定理222cos 2a c b B ac +-=,得2222(3)323c c c c +-=⨯⨯,即213c =.所以c =(2)因为sin cos 2A Ba b =, 由正弦定理sin sin a b A B =,得cos sin 2B Bb b=,所以cos 2sin B B =. 从而22cos (2sin )B B =,即()22cos 41cos B B =-,故24cos 5B =.因为sin 0B >,所以cos 2sin 0B B =>,从而cos 5B =.因此πsin cos 2B B ⎛⎫+== ⎪⎝⎭16.本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力和推理论证能力.满分14分.证明:(1)因为D ,E 分别为BC ,AC 的中点,所以ED ∥AB .在直三棱柱ABC-A 1B 1C 1中,AB ∥A 1B 1, 所以A 1B 1∥ED .又因为ED ⊂平面DEC 1,A 1B 1⊄平面DEC 1, 所以A 1B 1∥平面DEC 1.(2)因为AB =BC ,E 为AC 的中点,所以BE ⊥AC . 因为三棱柱ABC-A 1B 1C 1是直棱柱,所以CC 1⊥平面ABC . 又因为BE ⊂平面ABC ,所以CC 1⊥BE .因为C 1C ⊂平面A 1ACC 1,AC ⊂平面A 1ACC 1,C 1C ∩AC =C , 所以BE ⊥平面A 1ACC 1.因为C 1E ⊂平面A 1ACC 1,所以BE ⊥C 1E .17.本小题主要考查直线方程、圆的方程、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等基础知识,考查推理论证能力、分析问题能力和运算求解能力.满分14分. 解:(1)设椭圆C 的焦距为2c .因为F 1(-1,0),F 2(1,0),所以F 1F 2=2,c =1.又因为DF 1=52,AF 2⊥x 轴,所以DF 232==, 因此2a =DF 1+DF 2=4,从而a =2.由b 2=a 2-c 2,得b 2=3.因此,椭圆C 的标准方程为22143x y +=.(2)解法一:由(1)知,椭圆C :22143x y +=,a =2,因为AF 2⊥x 轴,所以点A 的横坐标为1.将x =1代入圆F 2的方程(x -1) 2+y 2=16,解得y =±4.因为点A 在x 轴上方,所以A (1,4).又F 1(-1,0),所以直线AF 1:y =2x +2.由22()22116y x x y =+-+=⎧⎨⎩,得256110x x +-=, 解得1x =或115x =-. 将115x =-代入22y x =+,得 125y =-,因此1112(,)55B --.又F 2(1,0),所以直线BF 2:3(1)4y x =-. 由221433(1)4x y x y ⎧⎪⎪⎨⎪+=-⎩=⎪,得276130x x --=,解得1x =-或137x =. 又因为E 是线段BF 2与椭圆的交点,所以1x =-. 将1x =-代入3(1)4y x =-,得32y =-.因此3(1,)2E --. 解法二:由(1)知,椭圆C :22143x y +=.如图,连结EF 1.因为BF 2=2a ,EF 1+EF 2=2a ,所以EF 1=EB , 从而∠BF 1E =∠B .因为F 2A =F 2B ,所以∠A =∠B , 所以∠A =∠BF 1E ,从而EF 1∥F 2A . 因为AF 2⊥x 轴,所以EF 1⊥x 轴.因为F 1(-1,0),由221431x x y ⎧⎪⎨+==-⎪⎩,得32y =±.又因为E 是线段BF 2与椭圆的交点,所以32y =-. 因此3(1,)2E --.18.本小题主要考查三角函数的应用、解方程、直线与圆等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力.满分16分. 解:解法一:(1)过A 作AE BD ⊥,垂足为E .由已知条件得,四边形ACDE 为矩形,6, 8DE BE AC AE CD =====.' 因为PB ⊥AB ,所以84cos sin 105PBD ABE ∠=∠==.所以12154cos 5BD PB PBD ===∠.因此道路PB 的长为15(百米).(2)①若P 在D 处,由(1)可得E 在圆上,则线段BE 上的点(除B ,E )到点O 的距离均小于圆O 的半径,所以P 选在D 处不满足规划要求. ②若Q 在D 处,连结AD ,由(1)知10AD ==,从而2227cos 0225AD AB BD BAD AD AB +-∠==>⋅,所以∠BAD 为锐角. 所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此,Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处. (3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求; 当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15, 此时11113sin cos 1595PD PB PBD PB EBA =∠=∠=⨯=; 当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15. 再讨论点Q 的位置.由(2)知,要使得QA ≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,CQ ===.此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当PB⊥AB,点Q位于点C右侧,且CQ=d最小,此时P,Q两点间的距离PQ=PD+CD+CQ=17+因此,d最小时,P,Q两点间的距离为17+.解法二:(1)如图,过O作OH⊥l,垂足为H.以O为坐标原点,直线OH为y轴,建立平面直角坐标系.因为BD=12,AC=6,所以OH=9,直线l的方程为y=9,点A,B的纵坐标分别为3,−3.因为AB为圆O的直径,AB=10,所以圆O的方程为x2+y2=25.从而A(4,3),B(−4,−3),直线AB的斜率为3 4 .因为PB⊥AB,所以直线PB的斜率为43 -,直线PB的方程为42533 y x=--.所以P(−13,9),15PB==.因此道路PB的长为15(百米).(2)①若P在D处,取线段BD上一点E(−4,0),则EO=4<5,所以P选在D处不满足规划要求.②若Q在D处,连结AD,由(1)知D(−4,9),又A(4,3),所以线段AD:36(44)4y x x=-+-剟.在线段AD上取点M(3,154),因为5OM=<=,所以线段AD上存在点到点O的距离小于圆O的半径. 因此Q选在D处也不满足规划要求.综上,P和Q均不能选在D处.(3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求; 当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15,此时1P (−13,9); 当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15. 再讨论点Q 的位置.由(2)知,要使得QA≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,设Q (a ,9),由15(4)AQ a ==>,得a =4+所以Q (4+9),此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当P (−13,9),Q (4+9)时,d 最小,此时P ,Q 两点间的距离4(13)17PQ =+-=+.因此,d 最小时,P ,Q 两点间的距离为17+.19.本小题主要考查利用导数研究函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.满分16分.解:(1)因为a b c ==,所以3()()()()()f x x a x b x c x a =---=-. 因为(4)8f =,所以3(4)8a -=,解得2a =. (2)因为b c =,所以2322()()()(2)(2)f x x a x b x a b x b a b x ab =--=-+++-, 从而2()3()3a b f 'x x b x +⎛⎫=-- ⎪⎝⎭.令()0f 'x =,得x b =或23a bx +=. 因为2,,3a ba b +,都在集合{3,1,3}-中,且a b ≠, 所以21,3,33a b a b +===-.此时2()(3)(3)f x x x =-+,()3(3)(1)f 'x x x =+-.令()0f 'x =,得3x =-或1x =.列表如下:所以()f x 的极小值为2(1)(13)(13)32f =-+=-.(3)因为0,1a c ==,所以32()()(1)(1)f x x x b x x b x bx =--=-++,2()32(1)f 'x x b x b =-++.因为01b <≤,所以224(1)12(21)30b b b ∆=+-=-+>, 则()f 'x 有2个不同的零点,设为()1212,x x x x <.由()0f 'x =,得12x x ==.列表如下:所以()f x 的极大值()1M f x =. 解法一:()321111(1)M f x x b x bx ==-++()()221111211(1)32(1)3999b b x b b b x b x b x -+++⎛⎫=-++--+ ⎪⎝⎭()2321(1)(1)227927b b b b b --+++=++23(1)2(1)(1)2272727b b b b +-+=-+(1)24272727b b +≤+≤.因此427M ≤. 解法二:因为01b <≤,所以1(0,1)x ∈.当(0,1)x ∈时,2()()(1)(1)f x x x b x x x =--≤-. 令2()(1),(0,1)g x x x x =-∈,则1()3(1)3g'x x x ⎛⎫=-- ⎪⎝⎭. 令()0g'x =,得1x =.列表如下: 所以当13x =时,()g x 取得极大值,且是最大值,故max 14()327g x g ⎛⎫== ⎪⎝⎭. 所以当(0,1)x ∈时,4()()27f x g x ≤≤,因此427M ≤. 20.本小题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.满分16分. 解:(1)设等比数列{a n }的公比为q ,所以a 1≠0,q ≠0.由245321440a a a a a a =⎧⎨-+=⎩,得244112111440a q a q a q a q a ⎧=⎨-+=⎩,解得112a q =⎧⎨=⎩.因此数列{}n a 为“M —数列”. (2)①因为1122n n n S b b +=-,所以0n b ≠. 由1111,b S b ==得212211b =-,则22b =. 由1122n n n S b b +=-,得112()n n n n n b b S b b ++=-,当2n ≥时,由1n n n b S S -=-,得()()111122n n n nn n n n n b b b b b b b b b +-+-=---,整理得112n n n b b b +-+=.所以数列{b n }是首项和公差均为1的等差数列. 因此,数列{b n }的通项公式为b n =n ()*n ∈N .②由①知,b k =k ,*k ∈N .因为数列{c n }为“M –数列”,设公比为q ,所以c 1=1,q >0.因为c k ≤b k ≤c k +1,所以1k kq k q -≤≤,其中k =1,2,3,…,m .当k =1时,有q ≥1; 当k =2,3,…,m 时,有ln ln ln 1k kq k k ≤≤-. 设f (x )=ln (1)x x x >,则21ln ()xf 'x x -=. 令()0f 'x =,得x =e.列表如下:因为ln 2ln8ln 9ln 32663=<=,所以max ln 3()(3)3f k f ==. 取q =k =1,2,3,4,5时,ln ln kq k…,即k k q ≤, 经检验知1k q k -≤也成立.因此所求m 的最大值不小于5.若m ≥6,分别取k =3,6,得3≤q 3,且q 5≤6,从而q 15≥243,且q 15≤216,所以q 不存在.因此所求m 的最大值小于6. 综上,所求m 的最大值为5.数学Ⅱ(附加题)参考答案21.【选做题】A .[选修4–2:矩阵与变换]本小题主要考查矩阵的运算、特征值等基础知识,考查运算求解能力.满分10分.解:(1)因为3122⎡⎤=⎢⎥⎣⎦A ,所以231312222⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦A=3312311223222122⨯+⨯⨯+⨯⎡⎤⎢⎥⨯+⨯⨯+⨯⎣⎦=115106⎡⎤⎢⎥⎣⎦.(2)矩阵A 的特征多项式为231()5422f λλλλλ--==-+--.令()0f λ=,解得A 的特征值121,4λλ==. B .[选修4–4:坐标系与参数方程]本小题主要考查曲线的极坐标方程等基础知识,考查运算求解能力.满分10分.解:(1)设极点为O .在△OAB 中,A (3,4π),B ,2π),由余弦定理,得AB =. (2)因为直线l 的方程为sin()34ρθπ+=,则直线l 过点)2π,倾斜角为34π.又)2B π,所以点B 到直线l 的距离为3sin()242ππ⨯-=. C .[选修4–5:不等式选讲]本小题主要考查解不等式等基础知识,考查运算求解和推理论证能力.满分10分. 解:当x <0时,原不等式可化为122x x -+->,解得x <–13:当0≤x ≤12时,原不等式可化为x +1–2x >2,即x <–1,无解; 当x >12时,原不等式可化为x +2x –1>2,解得x >1. 综上,原不等式的解集为1{|1}3x x x <->或.22.【必做题】本小题主要考查二项式定理、组合数等基础知识,考查分析问题能力与运算求解能力,满分10分.解:(1)因为0122(1)C C C C 4n n nn n n n x x x x n +=++++≥,, 所以2323(1)(1)(2)C ,C 26n nn n n n n a a ---====, 44(1)(2)(3)C 24nn n n n a ---==. 因为23242a a a =,所以2(1)(2)(1)(1)(2)(3)[]26224n n n n n n n n n ------=⨯⨯,解得5n =.(2)由(1)知,5n =.5(1(1n +=02233445555555C C C C C C =++++a =+解法一:因为*,a b ∈N ,所以024*********C 3C 9C 76,C 3C 9C 44a b =++==++=,从而222237634432a b -=-⨯=-. 解法二:50122334455555555(1C C (C (C (C (C (=+++++02233445555555C C C C C C =--+-.因为*,a b ∈N ,所以5(1a =-.因此225553((1(1(2)32a b a a -=+-=⨯-=-=-.23.【必做题】本小题主要考查计数原理、古典概型、随机变量及其概率分布等基础知识,考查逻辑思维能力和推理论证能力.满分10分.解:(1)当1n =时,X的所有可能取值是12X的概率分布为22667744(1),(C 15C 15P X P X ======,22662222(2),(C 15C 15P X P X ======. (2)设()A a b ,和()B c d ,是从n M 中取出的两个点. 因为()1()P X n P X n ≤=->,所以仅需考虑X n >的情况. ①若b d =,则AB n ≤,不存在X n >的取法;②若01b d ==,,则AB =≤所以X n >当且仅当AB =此时0 a c n ==,或 0a n c ==,,有2种取法; ③若02b d ==,,则AB =,因为当3n ≥时,n ≤,所以X n >当且仅当AB =,此时0 a c n ==,或 0a n c ==,,有2种取法;④若12b d ==,,则AB =≤所以X n >当且仅当AB =此时0 a c n ==,或 0a n c ==,,有2种取法. 综上,当X n >时,X,且22242442(,(C C n n P X P X ++====.因此,2246()1((1C n P X n P X P X +≤=-=-==-.。

2019年江苏卷数学高考试题文档版(有答案)(主推版)

2019年江苏卷数学高考试题文档版(有答案)(主推版)

绝密★启用前2019年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ样本数据12,,,n x x x …的方差()2211n i i s x x n ==-∑,其中11n i i x x n ==∑.柱体的体积V Sh =,其中S 是柱体的底面积,h 是柱体的高. 锥体的体积13V Sh =,其中S 是锥体的底面积,h 是锥体的高. 一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.已知集合{1,0,1,6}A =-,{|0,}B x x x=>∈R ,则AB = ▲ .2.已知复数(2i)(1i)a ++的实部为0,其中i 为虚数单位,则实数a 的值是 ▲ . 3.下图是一个算法流程图,则输出的S 的值是 ▲ .4.函数y =的定义域是 ▲ .5.已知一组数据6,7,8,8,9,10,则该组数据的方差是 ▲ .6.从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是 ▲ .7.在平面直角坐标系xOy 中,若双曲线2221(0)y x b b-=>经过点(3,4),则该双曲线的渐近线方程是 ▲ .8.已知数列*{}()n a n ∈N 是等差数列,n S 是其前n 项和.若25890,27a a a S +==,则8S 的值是▲ .9.如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E -BCD 的体积是▲ .10.在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线x +y =0的距离的最小值是 ▲ .11.在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e为自然对数的底数),则点A 的坐标是 ▲ .12.如图,在ABC △中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE 交于点O .若6AB AC AO EC ⋅=⋅,则ABAC的值是 ▲ .13.已知tan 2π3tan 4αα=-⎛⎫+ ⎪⎝⎭,则πsin 24α⎛⎫+ ⎪⎝⎭的值是 ▲ . 14.设(),()f x g x 是定义在R 上的两个周期函数,()f x 的周期为4,()g x 的周期为2,且()f x 是奇函数.当2(]0,x ∈时,()f x =,(2),01()1,122k x x g x x +<≤⎧⎪=⎨-<≤⎪⎩,其中k >0.若在区间(0,9]上,关于x 的方程()()f x g x =有8个不同的实数根,则k 的取值范围是 ▲ . 二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .(1)若a =3c ,b ,cos B =23,求c 的值; (2)若sin cos 2A B a b =,求sin()2B π+的值. 16.(本小题满分14分)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC . 求证:(1)A 1B 1∥平面DEC 1; (2)BE ⊥C 1E .17.(本小题满分14分)如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的焦点为F 1(–1、0),F 2(1,0).过F 2作x 轴的垂线l ,在x 轴的上方,l 与圆F 2:222(1)4x y a -+=交于点A ,与椭圆C 交于点D .连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E ,连结DF 1. 已知DF 1=52. (1)求椭圆C 的标准方程; (2)求点E 的坐标.18.(本小题满分16分)如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥AB (AB 是圆O 的直径).规划在公路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA .规划要求:线段PB 、QA 上的所有点到点O 的距离均不小于圆....O 的半径.已知点A 、B 到直线l 的距离分别为AC 和BD (C 、D 为垂足),测得AB =10,AC =6,BD =12(单位:百米). (1)若道路PB 与桥AB 垂直,求道路PB 的长;(2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由;(3)在规划要求下,若道路PB 和QA 的长度均为d (单位:百米).求当d 最小时,P 、Q 两点间的距离.19.(本小题满分16分)设函数()()()(),,,f x x a x b x c a b c =---∈R 、()f 'x 为f (x )的导函数. (1)若a =b =c ,f (4)=8,求a 的值;(2)若a ≠b ,b =c ,且f (x )和()f 'x 的零点均在集合{3,1,3}-中,求f (x )的极小值; (3)若0,01,1a b c =<=…,且f (x )的极大值为M ,求证:M ≤427. 20.(本小满分16分)定义首项为1且公比为正数的等比数列为“M -数列”.(1)已知等比数列{a n }*()n ∈N 满足:245324,440a a a a a a =-+=,求证:数列{a n }为“M-数列”;(2)已知数列{b n }*()n ∈N 满足:111221,n n n b S b b +==-,其中S n 为数列{b n }的前n 项和. ①求数列{b n }的通项公式;②设m 为正整数,若存在“M -数列”{c n }*()n ∈N ,对任意正整数k ,当k ≤m 时,都有1k k k c b c +剟成立,求m 的最大值.2019年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ·参考答案一、填空题:本题考查基础知识、基本运算和基本思想方法.每小题5分,共计70分. 1.【答案】{1,6}.【解析】由题意利用交集的定义求解交集即可. 【详解】由题知,{1,6}A B =.【点睛】本题主要考查交集的运算,属于基础题. 2.【答案】2【解析】本题根据复数的乘法运算法则先求得z ,然后根据复数的概念,令实部为0即得a 的值.【详解】2(a 2)(1i)222(2)i a ai i i a a i ++=+++=-++,令20a -=得2a =.【点睛】本题主要考查复数的运算法则,虚部的定义等知识,意在考查学生的转化能力和计算求解能力.3. 【答案】5【解析】结合所给的流程图运行程序确定输出的值即可. 【详解】执行第一次,1,1422x S S x =+==≥不成立,继续循环,12x x =+=; 执行第二次,3,2422x S S x =+==≥不成立,继续循环,13x x =+=; 执行第三次,3,342xS S x =+==≥不成立,继续循环,14x x =+=;执行第四次,5,442xS S x =+==≥成立,输出 5.S =【点睛】识别、运行程序框图和完善程序框图的思路: (1)要明确程序框图的顺序结构、条件结构和循环结构. (2)要识别、运行程序框图,理解框图所解决的实际问题. (3)按照题目的要求完成解答并验证. 4.【答案】[-1,7]【解析】由题意得到关于x 的不等式,解不等式可得函数的定义域. 【详解】由已知得2760x x +-≥, 即2670x x --≤ 解得17x -≤≤,故函数的定义域为[-1,7].【点睛】求函数的定义域,其实质就是以函数解析式有意义为准则,列出不等式或不等式组,然后求出它们的解集即可. 5.【答案】53【解析】由题意首先求得平均数,然后求解方差即可. 【详解】由题意,该组数据的平均数为678891086+++++=,所以该组数据的方差是22222215[(68)(78)(88)(88)(98)(108)]63-+-+-+-+-+-=. 【点睛】本题主要考查方差的计算公式,属于基础题. 6.【答案】710【解析】先求事件的总数,再求选出的2名同学中至少有1名女同学的事件数,最后根据古典概型的概率计算公式得出答案.【详解】从3名男同学和2名女同学中任选2名同学参加志愿服务,共有2510C =种情况.若选出的2名学生恰有1名女生,有11326C C =种情况, 若选出的2名学生都是女生,有221C =种情况, 所以所求的概率为6171010+=. 【点睛】计数原理是高考考查的重点内容,考查的形式有两种,一是独立考查,二是与古典概型结合考查,由于古典概型概率的计算比较明确,所以,计算正确基本事件总数是解题的重要一环.在处理问题的过程中,应注意审清题意,明确“分类”“分步”,根据顺序有无,明确“排列”“组合”. 7.【答案】y =【解析】根据条件求b ,再代入双曲线的渐近线方程得出答案.【详解】由已知得222431b-=,解得b =b =, 因为0b >,所以b =因为1a =,所以双曲线的渐近线方程为y =.【点睛】双曲线的标准方程与几何性质,往往以小题的形式考查,其难度一般较小,是高考必得分题.双曲线渐近线与双曲线标准方程中的,a b 密切相关,事实上,标准方程中化1为0,即得渐近线方程.8.【答案】16【解析】由题意首先求得首项和公差,然后求解前8项和即可.【详解】由题意可得:()()()25811191470989272a a a a d a d a d S a d ⎧+=++++=⎪⎨⨯=+=⎪⎩, 解得:152a d =-⎧⎨=⎩,则8187840282162S a d ⨯=+=-+⨯=. 【点睛】等差数列、等比数列的基本计算问题,是高考必考内容,解题过程中要注意应用函数方程思想,灵活应用通项公式、求和公式等,构建方程(组),如本题,从已知出发,构建1a d ,的方程组.9.【答案】10【解析】由题意结合几何体的特征和所给几何体的性质可得三棱锥的体积. 【详解】因为长方体1111ABCD A B C D -的体积为120,所以1120AB BC CC ⋅⋅=, 因为E 为1CC 的中点,所以112CE CC =, 由长方体的性质知1CC ⊥底面ABCD ,所以CE 是三棱锥E BCD -的底面BCD 上的高, 所以三棱锥E BCD -的体积1132V AB BC CE =⨯⋅⋅=111111201032212AB BC CC =⨯⋅⋅=⨯=. 【点睛】本题蕴含“整体和局部”的对立统一规律.在几何体面积或体积的计算问题中,往往需要注意理清整体和局部的关系,灵活利用“割”与“补”的方法解题. 10.【答案】4【解析】将原问题转化为切点与直线之间的距离,然后利用导函数确定切点坐标可得最小距离【详解】当直线22gR r 平移到与曲线4y x x =+相切位置时,切点Q 即为点P 到直线22gR r的距离最小.由2411y'=-=-,得)x =,y =即切点Q ,则切点Q 到直线22gR r4=,故答案为:4.【点睛】本题考查曲线上任意一点到已知直线的最小距离,渗透了直观想象和数学运算素养.采取导数法和公式法,利用数形结合和转化与化归思想解题. 11.【答案】(e,1)【解析】设出切点坐标,得到切线方程,然后求解方程得到横坐标的值可得切点坐标. 【详解】设点()00,A x y ,则00ln y x =.又1y x'=, 当0x x =时,01y x '=, 点A 在曲线ln y x =上切线为0001()y y x x x -=-, 即00ln 1xy x x -=-, 代入点(),1e --,得001ln 1ex x ---=-, 即00ln x x e =,考查函数()ln H x x x =,当()0,1x ∈时,()0H x <,当()1,x ∈+∞时,()0H x >, 且()'ln 1H x x =+,当1x >时,()()'0,H x H x >单调递增, 注意到()H e e =,故00ln x x e =存在唯一的实数根0x e =,此时01y =,故点A 的坐标为(),1A e .【点睛】导数运算及切线的理解应注意的问题:一是利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆.二是直线与曲线公共点的个数不是切线的本质,直线与曲线只有一个公共点,直线不一定是曲线的切线,同样,直线是曲线的切线,则直线与曲线可能有两个或两个以上的公共点. 12.的【解析】由题意将原问题转化为基底的数量积,然后利用几何性质可得比值.【详解】如图,过点D 作DF //CE ,交AB 于点F ,由BE =2EA ,D 为BC 中点,知BF =FE =EA ,AO =OD .()()()3632AO EC AD AC AE AB AC AC AE =-=+- ()223131123233AB AC AC AB AB AC AB AC AB AC ⎛⎫⎛⎫=+-=-+- ⎪ ⎪⎝⎭⎝⎭22223211323322AB AC AB AC AB AC AB AC AB AC ⎛⎫=-+=-+= ⎪⎝⎭,得2213,22AB AC =即3,AB AC =故AB AC =【点睛】本题考查在三角形中平面向量的数量积运算,渗透了直观想象、逻辑推理和数学运算素养.采取几何法,利用数形结合和方程思想解题. 13.【答案】10【解析】由题意首先求得tan α的值,然后利用两角和差正余弦公式和二倍角公式将原问题转化为齐次式求值的问题,最后切化弦求得三角函数式的值即可.【详解】由()tan 1tan tan tan 2tan 1tan 13tan 1tan 4αααααπααα-===-++⎛⎫+ ⎪-⎝⎭, 得23tan 5tan 20αα--=,解得tan 2α=,或1tan 3α=-.sin 2sin 2cos cos 2sin 444πππααα⎛⎫+=+ ⎪⎝⎭)22222sin cos cos sin sin 2cos 2=22sin cos αααααααα⎫+-=+⎪+⎝⎭222tan 1tan =2tan 1ααα⎫+-⎪+⎝⎭, 当tan 2α=时,上式222212==22110⎛⎫⨯+- ⎪+⎝⎭ 当1tan 3α=-时,上式=22112133=210113⎛⎫⎛⎫⎛⎫⨯-+-- ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪ ⎪⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭综上,sin 2410πα⎛⎫+= ⎪⎝⎭【点睛】本题考查三角函数的化简求值,渗透了逻辑推理和数学运算素养.采取转化法,利用分类讨论和转化与化归思想解题.14.【答案】1,34⎡⎫⎪⎢⎪⎣⎭【解析】分别考查函数()f x 和函数()g x 图像的性质,考查临界条件确定k 的取值范围即可. 【详解】当(]0,2x ∈时,()f x =即()2211,0.x y y -+=≥又()f x 为奇函数,其图象关于原点对称,其周期为4,如图,函数()f x 与()g x 的图象,要使()()f x g x =在(0,9]上有8个实根,只需二者图象有8个交点即可.当1g()2x =-时,函数()f x 与()g x 的图象有2个交点; 当g()(2)x k x =+时,()g x 的图象为恒过点(-2,0)的直线,只需函数()f x 与()g x 的图象有6个交点.当()f x 与()g x 图象相切时,圆心(1,0)到直线20kx y k -+=的距离为1,1=,得4k =,函数()f x 与()g x 的图象有3个交点;当g()(2)x k x =+过点(1,1)时,函数()f x 与()g x 的图象有6个交点,此时13k =,得13k =.综上可知,满足()()f x g x =在(0,9]上有8个实根的k 的取值范围为134⎡⎫⎪⎢⎪⎣⎭,. 【点睛】本题考点为参数的取值范围,侧重函数方程的多个实根,难度较大.不能正确画出函数图象的交点而致误,根据函数的周期性平移图象,找出两个函数图象相切或相交的临界交点个数,从而确定参数的取值范围. 二、解答题 15.【答案】(1)c =;(2. 【解析】(1)由题意结合余弦定理得到关于c 的方程,解方程可得边长c 的值;(2)由题意结合正弦定理和同角三角函数基本关系首先求得cos B 的值,然后由诱导公式可得sin()2B π+的值.【详解】(1)因为23,3a cb B ===, 由余弦定理222cos 2a c b B ac +-=,得2222(3)323c c c c+-=⨯⨯,即213c=.所以3c =.(2)因为sin cos 2A Ba b =, 由正弦定理sin sin a b A B =,得cos sin 2B Bb b=,所以cos 2sin B B =. 从而22cos (2sin )B B =,即()22cos 41cos B B =-,故24cos 5B =.因为sin 0B >,所以cos 2sin 0B B =>,从而cos B =.因此πsin cos 2B B ⎛⎫+== ⎪⎝⎭【点睛】本题主要考查正弦定理、余弦定理、同角三角函数关系、诱导公式等基础知识,考查运算求解能力. 16.【答案】(1)见解析;(2)见解析.【解析】(1)由题意结合几何体的空间结构特征和线面平行的判定定理即可证得题中的结论; (2)由题意首先证得线面垂直,然后结合线面垂直证明线线垂直即可. 【详解】(1)因为D ,E 分别为BC ,AC 的中点,所以ED ∥AB .在直三棱柱ABC-A 1B 1C 1中,AB ∥A 1B 1, 所以A 1B 1∥ED .又因为ED ⊂平面DEC 1,A 1B 1⊄平面DEC 1, 所以A 1B 1∥平面DEC 1.(2)因为AB =BC ,E 为AC 的中点,所以BE ⊥AC .因为三棱柱ABC-A 1B 1C 1是直棱柱,所以CC 1⊥平面ABC . 又因为BE ⊂平面ABC ,所以CC 1⊥BE .因为C 1C ⊂平面A 1ACC 1,AC ⊂平面A 1ACC 1,C 1C ∩AC =C , 所以BE ⊥平面A 1ACC 1.因为C 1E ⊂平面A 1ACC 1,所以BE ⊥C 1E .【点睛】本题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力和推理论证能力.17.【答案】(1)22143x y +=;(2)3(1,)2E --. 【解析】(1)由题意分别求得a ,b 的值即可确定椭圆方程;(2)解法一:由题意首先确定直线1AF 的方程,联立直线方程与圆的方程,确定点B 的坐标,联立直线BF 2与椭圆的方程即可确定点E 的坐标;解法二:由题意利用几何关系确定点E 的纵坐标,然后代入椭圆方程可得点E 的坐标. 【详解】(1)设椭圆C 的焦距为2c .因为F 1(-1,0),F 2(1,0),所以F 1F 2=2,c =1.又因为DF 1=52,AF 2⊥x 轴,所以DF 232==,因此2a =DF 1+DF 2=4,从而a =2由b 2=a 2-c 2,得b 2=3.因此,椭圆C 的标准方程为22143x y +=.(2)解法一:由(1)知,椭圆C :22143x y +=,a =2,因为AF 2⊥x 轴,所以点A 的横坐标为1.将x =1代入圆F 2的方程(x -1) 2+y 2=16,解得y =±4.因为点A 在x 轴上方,所以A (1,4).又F 1(-1,0),所以直线AF 1:y =2x +2.由()2222116y x x y =+⎧⎪⎨-+=⎪⎩,得256110x x +-=, 解得1x =或115x =-.将115x =-代入22y x =+,得125y =-,因此1112(,)55B --.又F 2(1,0),所以直线BF 2:3(1)4y x =-.由223(1)4143y x x y ⎧=-⎪⎪⎨⎪+=⎪⎩,得276130x x --=,解得1x =-或137x =. 又因为E 是线段BF 2与椭圆的交点,所以1x =-.将1x =-代入3(1)4y x =-,得32y =-.因此3(1,)2E --.解法二:由(1)知,椭圆C :22143x y +=.如图,连结EF 1.因为BF 2=2a ,EF 1+EF 2=2a ,所以EF 1=EB , 从而∠BF 1E =∠B .因为F 2A =F 2B ,所以∠A =∠B , 所以∠A =∠BF 1E ,从而EF 1∥F 2A . 因为AF 2⊥x 轴,所以EF 1⊥x 轴.因为F 1(-1,0),由221143x x y =-⎧⎪⎨+=⎪⎩,得32y =±.又因为E 是线段BF 2与椭圆的交点,所以32y =-. 因此3(1,)2E --.【点睛】本题主要考查直线方程、圆的方程、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等基础知识,考查推理论证能力、分析问题能力和运算求解能力. 18.【答案】(1)15(百米);(2)见解析;(3)17+. 【解析】解:解法一:(1)过A 作AE BD ⊥,垂足为E .利用几何关系即可求得道路PB 的长; (2)分类讨论P 和Q 中能否有一个点选在D 处即可.(3)先讨论点P 的位置,然后再讨论点Q 的位置即可确定当d 最小时,P 、Q 两点间的距离. 解法二:(1)建立空间直角坐标系,分别确定点P 和点B 的坐标,然后利用两点之间距离公式可得道路PB 的长;(2)分类讨论P 和Q 中能否有一个点选在D 处即可.(3)先讨论点P 的位置,然后再讨论点Q 的位置即可确定当d 最小时,P 、Q 两点间的距离. 【详解】解法一:(1)过A 作AE BD ⊥,垂足为E . 由已知条件得,四边形ACDE 为矩形, 6, 8DE BE AC AE CD =====. 因为PB ⊥AB ,所以84cos sin 105PBD ABE ∠=∠==. 所以12154cos 5BD PB PBD ===∠. 因此道路PB 的长为15(百米).(2)①若P 在D 处,由(1)可得E 在圆上,则线段BE 上的点(除B ,E )到点O 的距离均小于圆O 的半径,所以P 选在D 处不满足规划要求.②若Q 在D 处,连结AD ,由(1)知10AD ==,从而2227cos 0225AD AB BD BAD AD AB +-∠==>⋅,所以∠BAD 为锐角.所以线段AD 上存在点到点O 的距离小于圆O 的半径.因此,Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处. (3)先讨论点P 的位置. 当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设P 1为l 上一点,且1PB AB ⊥,由(1)知,115P B =,此时11113sin cos 1595PD PB PBD PB EBA =∠=∠=⨯=; 当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15. 再讨论点Q 的位置.由(2)知,要使得QA ≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,CQ =此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当PB ⊥AB ,点Q 位于点C 右侧,且CQ =d 最小,此时P ,Q 两点间的距离PQ =PD +CD +CQ =17+因此,d 最小时,P ,Q 两点间的距离为17+. 解法二:(1)如图,过O 作OH ⊥l ,垂足为H.以O 为坐标原点,直线OH 为y 轴,建立平面直角坐标系.因为BD =12,AC =6,所以OH =9,直线l 的方程为y =9,点A ,B 的纵坐标分别为3,−3.因为AB 为圆O 的直径,AB =10,所以圆O 的方程为x 2+y 2=25. 从而A (4,3),B (−4,−3),直线AB 的斜率为34. 因为PB ⊥AB ,所以直线PB 的斜率为43-,直线PB 的方程为42533y x =--.所以P (−13,9),15PB ==.因此道路PB 的长为15(百米).(2)①若P 在D 处,取线段BD 上一点E (−4,0),则EO =4<5,所以P 选在D 处不满足规划要求.②若Q 在D 处,连结AD ,由(1)知D (−4,9),又A (4,3), 所以线段AD :36(44)4y x x =-+-≤≤.在线段AD 上取点M (3,154),因为5OM =<=, 所以线段AD 上存在点到点O 的距离小于圆O 的半径.因此Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处. (3)先讨论点P 的位置. 当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设P 1为l 上一点,且1PB AB ⊥,由(1)知,115P B =,此时()113,9P -; 当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15. 再讨论点Q 的位置.由(2)知,要使得QA≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,设Q (a ,9),由15(4)AQ a ==>,得a =4+Q (4+9),此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当P (−13,9),Q (4+9)时,d 最小,此时P ,Q 两点间的距离4(13)17PQ =+-=+.因此,d 最小时,P ,Q 两点间的距离为17+.【点睛】本题主要考查三角函数的应用、解方程、直线与圆等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力. 19.【答案】(1)2a =;(2)见解析;(3)见解析. 【解析】(1)由题意得到关于a 的方程,解方程即可确定a 的值;(2)由题意首先确定a ,b ,c 的值从而确定函数的解析式,然后求解其导函数,由导函数即可确定函数的极小值.(3)由题意首先确定函数的极大值M 的表达式,然后可用如下方法证明题中的不等式: 解法一:由函数的解析式结合不等式的性质进行放缩即可证得题中的不等式; 解法二:由题意构造函数,求得函数在定义域内的最大值, 因为01b <≤,所以1(0,1)x ∈.当(0,1)x ∈时,2()()(1)(1)f x x x b x x x =--≤-. 令2()(1),(0,1)g x x x x =-∈,则1()3(1)3g'x x x ⎛⎫=-- ⎪⎝⎭.令()0g'x =,得13x =.列表如下:所以当13x =时,()g x 取得极大值,且是最大值,故max 14()327g x g ⎛⎫== ⎪⎝⎭. 所以当(0,1)x ∈时,4()()27f x g x ≤≤,因此427M ≤.【详解】(1)因为a b c ==,所以3()()()()()f x x a x b x c x a =---=-.因为(4)8f =,所以3(4)8a -=,解得2a =. (2)因为b c =,所以2322()()()(2)(2)f x x a x b x a b x b a b x ab =--=-+++-,从而2()3()3a b f 'x x b x +⎛⎫=-- ⎪⎝⎭.令()0f 'x =,得x =b 或23a b x +=. 因为2,,3a ba b +,都在集合{3,1,3}-中,且a b ≠,所以21,3,33a ba b +===-. 此时2()(3)(3)f x x x =-+,()3(3)(1)f 'x x x =+-. 令()0f 'x =,得或.列表如下:+ 所以()f x 的极小值为2(1)(13)(13)32f =-+=-.(3)因为0,1a c ==,所以32()()(1)(1)f x x x b x x b x bx =--=-++,2()32(1)f 'x x b x b =-++.因为01b <≤,所以224(1)12(21)30b b b ∆=+-=-+>, 则有2个不同的零点,设为()1212,x x x x <.由()0f 'x =,得121133b b x x ++==.+所以()f x 的极大值()1M f x =. 解法一:()321111(1)M f x x b x bx ==-++()()221111211(1)32(1)3999b b x b b b x b x b x -+++⎛⎫=-++--+ ⎪⎝⎭ ()2321(1)(1)227927b b b b b --+++=++23(1)2(1)(1)2272727b b b b +-+=-+(1)24272727b b +≤+≤.因此427M ≤.解法二:因为01b <≤,所以1(0,1)x ∈.当(0,1)x ∈时,2()()(1)(1)f x x x b x x x =--≤-. 令2()(1),(0,1)g x x x x =-∈,则1()3(1)3g'x x x ⎛⎫=-- ⎪⎝⎭.令()0g'x =,得1x =.列表如下:所以当13x =时,()g x 取得极大值,且是最大值,故max 14()327g x g ⎛⎫== ⎪⎝⎭.所以当(0,1)x ∈时,4()()27f x g x ≤≤,因此427M ≤.【点睛】本题主要考查利用导数研究函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.20.【答案】(1)见解析;(2)①b n =n ()*n ∈N ;②5.【解析】(1)由题意分别求得数列的首项和公比即可证得题中的结论;(2)①由题意利用递推关系式讨论可得数列{b n }是等差数列,据此即可确定其通项公式; ②由①确定k b 的值,将原问题进行等价转化,构造函数,结合导函数研究函数的性质即可求得m 的最大值. 【详解】(1)设等比数列{a n }的公比为q ,所以a 1≠0,q ≠0.由245321440a a a a a a =⎧⎨-+=⎩,得244112111440a q a q a q a q a ⎧=⎨-+=⎩,解得112a q =⎧⎨=⎩.因此数列{}n a 为“M —数列”.(2)①因为1122n n n S b b +=-,所以0n b ≠. 由1111,b S b ==得212211b =-,则22b =.由1122n n n S b b +=-,得112()n n n n n b b S b b ++=-, 当2n ≥时,由1n n n b S S -=-,得()()111122n n n nnn n n n b b b b b b b b b +-+-=---, 整理得112n n n b b b +-+=.所以数列{b n }是首项和公差均为1的等差数列. 因此,数列{b n }的通项公式为b n =n ()*n N∈.②由①知,b k =k ,*k N ∈.因为数列{c n }为“M –数列”,设公比为q ,所以c 1=1,q >0.因为c k ≤b k ≤c k +1,所以1k kq k q -≤≤,其中k =1,2,3,…,m . 当k =1时,有q ≥1;当k =2,3,…,m 时,有ln ln ln 1k kq k k ≤≤-. 设f (x )=ln (1)x x x >,则21ln ()xf 'x x-=.因为ln 2ln8ln 9ln 32663=<=,所以max ln 3()(3)3f k f ==. 取q =k =1,2,3,4,5时,ln ln kq k≤,即k k q ≤, 经检验知1k q k -≤也成立.因此所求m 的最大值不小于5.若m ≥6,分别取k =3,6,得3≤q 3,且q 5≤6,从而q 15≥243,且q 15≤216, 所以q 不存在.因此所求m 的最大值小于6. 综上,所求m 的最大值为5.【点睛】本题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.数学Ⅱ(附加题)21.【答案】(1)115106⎡⎤⎢⎥⎣⎦;(2)121,4λλ==. 【解析】(1)利用矩阵的乘法运算法则计算2A 的值即可;(2)首先求得矩阵的特征多项式,然后利用特征多项式求解特征值即可.【详解】(1)因为3122⎡⎤=⎢⎥⎣⎦A ,所以231312222⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦A =3312311223222122⨯+⨯⨯+⨯⎡⎤⎢⎥⨯+⨯⨯+⨯⎣⎦=115106⎡⎤⎢⎥⎣⎦. (2)矩阵A 的特征多项式为231()5422f λλλλλ--==-+--.令()0f λ=,解得A 的特征值121,4λλ==.【点睛】本题主要考查矩阵的运算、特征值等基础知识,考查运算求解能力.22.【答案】(1(2)2.【解析】(1)由题意,在OAB △中,利用余弦定理求解AB 的长度即可;(2)首先确定直线的倾斜角和直线所过的点的极坐标,然后结合点B 的坐标结合几何性质可得点B 到直线l 的距离.【详解】(1)设极点为O .在△OAB 中,A (3,π),B ,2π),由余弦定理,得AB =(2)因为直线l 的方程为sin()34ρθπ+=,则直线l 过点)2π,倾斜角为34π.又)2B π,所以点B 到直线l 的距离为3sin()242ππ⨯-=. 【点睛】本题主要考查曲线的极坐标方程等基础知识,考查运算求解能力. 23.【答案】1{|1}3x x x <->或.【解析】由题意结合不等式的性质零点分段即可求得不等式的解集. 【详解】当x <0时,原不等式可化为122x x -+->,解得x <–13: 当0≤x ≤12时,原不等式可化为x +1–2x >2,即x <–1,无解; 当x >12时,原不等式可化为x +2x –1>2,解得x >1. 综上,原不等式的解集为1{|1}3x x x <->或.【点睛】本题主要考查解不等式等基础知识,考查运算求解和推理论证能力.【必做题】24.【答案】(1)5n =;(2)-32.【解析】(1)首先由二项式展开式的通项公式确定234,,a a a 的值,然后求解关于n 的方程可得n 的值; (2)解法一:利用(1)中求得的n 的值确定有理项和无理项从而可得a ,b 的值,然后计算223a b -的值即可;解法二:利用(1)中求得的n 的值,由题意得到(51-的展开式,最后结合平方差公式即可确定223a b -的值.【详解】(1)因为0122(1)C C C C 4n n nn n n n x x x x n +=++++≥,,所以2323(1)(1)(2)C ,C 26n nn n n n n a a ---====, 44(1)(2)(3)C 24nn n n n a ---==. 因为23242a a a =,所以2(1)(2)(1)(1)(2)(3)[]26224n n n n n n n n n ------=⨯⨯,解得5n =.(2)由(1)知,5n =.5(1(1n +=+02233445555555C C C C C C =++++a =+解法一:因为*,a b ∈N ,所以024135555555C 3C 9C 76,C 3C 9C 44a b =++==++=,从而222237634432a b -=-⨯=-. 解法二:50122334455555555(1C C (C (C (C (C (=+++++02233445555555C C C C C C =--+-. 因为*,a b ∈N,所以5(1a -=-.因此225553((1(1(2)32a b a a -=+-=+⨯=-=-.【点睛】本题主要考查二项式定理、组合数等基础知识,考查分析问题能力与运算求解能力.25.【答案】(1)见解析;(2)见解析.【解析】(1)由题意首先确定X 可能的取值,然后利用古典概型计算公式求得相应的概率值即可确定分布列;(2)将原问题转化为对立事件的问题求解()P X n >的值,据此分类讨论①.b d =,②.0,1b d ==,③.0,2b d ==,④.1,2b d ==四种情况确定X 满足X n >的所有可能的取值,然后求解相应的概率值即可确定()P X n ≤的值.【详解】(1)当1n =时,X的所有可能取值是12X的概率分布为22667744(1),(C 15C 15P X P X ======,22662222(2),(C 15C 15P X P X ======.(2)设()A a b ,和()B c d ,是从n M 中取出的两个点. 因为()1()P X n P X n ≤=->,所以仅需考虑X n >的情况.①若b d =,则AB n ≤,不存在X n >的取法;②若01b d ==,,则AB =≤X n >当且仅当AB =0 a c n ==,或 a n c ==,,有2种取法;③若02b d ==,,则AB =≤,因为当3n ≥n ≤,所以X n >当且仅当AB =0 a c n ==,或 0a n c ==,,有2种取法; ④若12b d ==,,则AB =≤X n >当且仅当AB =0 a c n ==,或 0a n c ==,,有2种取法.综上,当X n >时,X,且22242442(,(C C n n P X P X ++====.因此,2246()1((1C n P X n P X P X +≤=-=-==-.【点睛】本题主要考查计数原理、古典概型、随机变量及其概率分布等基础知识,考查逻辑思维能力和推理论证能力.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启用前
2019年普通高等学校招生全国统一考试(江苏卷)
数学Ⅰ
参考公式:
圆柱的侧面积公式:cl S =圆柱侧,其中c 是圆柱底面的周长,l 为母线长. 圆柱的体积公式:Sh V =圆柱, 其中S 是圆柱的底面积,h 为高.
一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.........
1. 已知集合A ={4,3,1,2--},}3,2,1{-=B ,则=B A ▲ .
2. 已知复数2)i 25(+=z (i 为虚数单位),则z 的实部为 ▲ .
3. 右图是一个算法流程图,则输出的n 的值是 ▲ .
4. 从1,2,3,6这4个数中一次随机地取2个数,则所取2个数的乘积为6
的概率是 ▲ .
5. 已知函数x y cos =与)2sin(ϕ+=x y (0≤πϕ<),它们的图象有一个
横坐标为3
π
的交点,则ϕ的值是 ▲ .
(第3题)
6. 设抽测的树木的底部周长均在区间[80,130]
上,其频率分布直方图如图所示,则在抽测的60株树木中,有 ▲ 株树木的底部周长小于100cm.
7. 在各项均为正数的等比数列}
{n a 中,,12=a 4682a a a +=,则6a 的值是 ▲ .
8. 设甲、乙两个圆柱的底面分别为1S ,2S ,体
积分别为1V ,2V ,若它们的侧面积相等,且4921=S S ,则2
1V V
的值是 ▲ .
9. 在平面直角坐标系xOy 中,直线032=-+y x 被圆4)1()2(22=++-y x 截得的弦长为
▲ .
10. 已知函数,1)(2-+=mx x x f 若对于任意]1,[+∈m m x ,都有0)(<x f 成立,则实数m 的取值
范围是 ▲ .
11. 在平面直角坐标系xOy 中,若曲线x
b
ax y +
=2(a ,b 为常数)过点)5,2(-P ,且该曲线在点P 处的切线与直线0327=++y x 平行,则b a +的值是 ▲ .
12. 如图,在平行四边形ABCD 中,已知8=AB ,5=AD ,
PD CP 3=,2=⋅BP AP ,则AD AB ⋅的值是 ▲ .
13. 已知)(x f 是定义在R 上且周期为3的函数,当)
3,0[∈x 时,|2
1
2|)(2+
-=x x x f .若函数a x f y -=)(在区间]4,3[-上有10个零点(互不相同),则实数a 的取值范围是 ▲ .
14. 若△ABC 的内角满足C B A sin 2sin 2sin =+,则C cos 的最小值是 ▲ .
100 80 90 110 /cm
(第6题)
(第12题)
二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......
内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)
已知),2
(ππ
α∈,55sin =α.
(1)求)4sin(
απ
+的值;
(2)求)265cos(απ
-的值.
16.(本小题满分14分)
如图,在三棱锥ABC P -中,D ,E ,F 分别为棱AB AC PC ,,的中点.已知AC PA ⊥,,6=PA .5,8==DF BC
求证: (1)直线//PA 平面DEF ;
(2)平面⊥BDE 平面ABC .
17.(本小题满分14分)
如图,在平面直角坐标系xOy 中,21,F F 分别是椭圆)0(123
22>>=+b a b
y a x 的左、右焦点,
顶点B 的坐标为),0(b ,连结2BF 并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另
一点C ,连结C F 1.
(1)若点C 的坐标为)3
1
,34(,且22=BF ,求椭圆的方程;
(2)若,1AB C F ⊥求椭圆离心率e 的值.
(第16题)P D C E F B
A
18.(本小题满分16分)
如图,为了保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆.且古桥两端O 和A 到该圆上任意一点的距离均不少于80m. 经测量,点A 位于点O 正北方向60m
处, 点C 位于点O 正东方向170m 处(OC 为河岸),3
4
tan =∠BCO .
(1)求新桥BC 的长;
(2)当OM 多长时,
19.(本小题满分16分)
已知函数x x x f -+=e e )(,其中e 是自然对数的底数. (1)证明:)(x f 是R 上的偶函数;
(2)若关于x 的不等式)(x mf ≤1e -+-m x 在),0(+∞上恒成立,求实数m 的取值范围;
(3)已知正数a 满足:存在),1[0+∞∈x ,使得)3()(03
0x x a x f +-<成立.试比较1e -a 与1e -a 的大小,并证明你的结论.
20.(本小题满分16分)
设数列}{n a 的前n 项和为n S .若对任意正整数n ,总存在正整数m ,使得m n a S =,则称
}{n a 是“H 数列”.
(1)若数列}{n a 的前n 项和n n S 2=(∈n N *),证明: }{n a 是“H 数列”;
(2)设}{n a 是等差数列,其首项11=a ,公差0<d .若}{n a 是“H 数列”,求d 的值; (3)证明:对任意的等差数列}{n a ,总存在两个“H 数列”}{n b 和}{n c ,使得n n n c b a += (∈n N *)成立.。

相关文档
最新文档