微积分初等函数

微积分第一章

高等数学教案 、

第一章 函数、极限与与连续 本章将在分别研究数列的极限与函数的极限的基础上,讨论极限的一些重要性质以及运算法则,函数的连续性,闭区间上连续函数的性质。具体的要求如下: 1. 理解极限的概念(理解极限的描述性定义,对极限的N -ε、δε-定义可在学习过程中 逐步加深理解,对于给出ε求N 或δ不作过高要求)。 2. 掌握极限四则运算法则。 3. 了解极限存在准则(夹逼准则和单调有界准则),会用两个重要极限求极限。 4. 了解无穷小、无穷大及无穷小的阶的概念。能够正确运用等价无穷小求极限。 5. 理解函数在一点连续的概念,理解区间内(上)连续函数的概念。 6. 了解间断点的概念,会求函数的间断点并判别间断点的类型。 7. 了解初等函数的连续性和闭区间上连续函数的性质(最大、最小值定理、零点定理、介值定理)。 第一章共12学时,课时安排如下 绪论 §1.1、函数 §1.2初等函数 2课时 §1.4数列极限及其运算法则 2课时 §1.4函数极限及其运算法则 2课时 §1.4两个重要极限 无穷小与无穷大 2课时 §1.4函数的连续性 2课时 第一章 习题课 2课时 绪论 数学:数学是研究空间形式和数量关系的一门学科,数学是研究抽象结构及其规律、特性的学科。数学具有高度的抽象性、严密的逻辑性和应用的广泛性。 关于数学应用和关于微积分的评价: 恩格斯:在一切理论成就中,未必再有像17世纪下叶微积分的微积分的发现那样被看作人类精神的最高胜利了。如果在某个地方我们看到人类精神的纯粹的和唯一的功绩,那就正是这里。 华罗庚:宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之迷,日用之繁,无处不用数学。 张顺燕:微积分是人类的伟大结晶,它给出了一整套科学方法,开创了科学的新纪元,并因此加强和加深了数学的作用。……有了微积分,人类才有能力把握运动和过程;有了微积分,就有了工业革命,有了大工业生产,也就有了现代的社会。航天飞机,宇宙飞船等现代化交通工具都是微积分的直接后果。数学一下子到了前台。数学在人类社会的第二次浪潮中的作用比第一次浪潮要明显多了(《数学通报》数学与文化2001.1.封二) 初等数学与高等数学的根本区别:用初等数学解决实际问题常常只能在有限的范围内孤立的静止的观念来研究,有很多问题不能得到最终答案,甚至无法解决。高等数学用运动的辨正观点研究变量及其依赖关系,极限的方法是研究变量的一种基本方法,贯穿高等数学的始终。用高等数学解决实际问题,计算往往比较简单,且能获得最终的结果。

高等数学函数极限与连续习题及答案

1、函数 ()12 ++=x x x f 与函数()11 3--=x x x g 相同. 错误 ∵当两个函数的定义域和函数关系相同时,则这两个函数是相同的。 ∴()12 ++=x x x f 与()11 3--=x x x g 函数关系相同,但定义域不同,所以()x f 与 ()x g 是不同的函数。 2、如果()M x f >(M 为一个常数),则()x f 为无穷大. 错误 根据无穷大的定义,此题是错误的。 3、如果数列有界,则极限存在. 错误 如:数列()n n x 1-=是有界数列,但极限不存在 4、a a n n =∞ →lim ,a a n n =∞ →lim . 错误 如:数列()n n a 1-=,1)1(lim =-∞ →n n ,但n n )1(lim -∞ →不存在。 5、如果()A x f x =∞ →lim ,则()α+=A x f (当∞→x 时,α为无穷小). 正确 根据函数、极限值、无穷小量的关系,此题是正确的。 6、如果α~β,则()α=β-αo . 正确 ∵1lim =α β ,是 ∴01lim lim =?? ? ??-=-αβαβα,即βα-是α的高阶无穷小量。 7、当0→x 时,x cos 1-与2x 是同阶无穷小. 正确 ∵2122sin 412lim 2sin 2lim cos 1lim 2 02 2020=????? ? ????==-→→→x x x x x x x x x 8、 01 sin lim lim 1sin lim 000=?=→→→x x x x x x x . 错误 ∵x x 1 sin lim 0→不存在,∴不可利用两个函数乘积求极限的法则计算。 9、 e x x x =?? ? ??+→11lim 0 . 错误 ∵e x x x =?? ? ??+∞ →11lim 10、点0=x 是函数x x y =的无穷间断点. 错误 =-→x x x 00lim 1lim 00-=--→x x x ,=+→x x x 00lim 1lim 00=+→x x x ∴点0=x 是函数x x y =的第一类间断点. 11、函数()x f x 1 =必在闭区间[]b a ,内取得最大值、最小值.

多元函数微分学知识点梳理

第九章 多元函数微分学 内容复习 一、基本概念 1、知道:多元函数的一些基本概念(n 维空间,n 元函数,二重极限,连续等);理解:偏导数;全微分. 2、重要定理 (1)二元函数中,可导、连续、可微三者的关系 偏导数连续?可微???函数偏导数存在 ?连续 (2)(二元函数)极值的必要、充分条件 二、基本计算 (一) 偏导数的计算 1、 偏导数值的计算(计算),(00y x f x ') (1)先代后求法 ),(00y x f x '=0),(0x x y x f dx d = (2)先求后代法(),(00y x f x '=00),(y y x x x y x f ==') (3)定义法(),(00y x f x '=x y x f y x x f x ?-?+→?),(),(lim 00000)(分段函数在分段点处的偏导数) 2、偏导函数的计算(计算(,)x f x y ') (1) 简单的多元初等函数——将其他自变量固定,转化为一元函数求导 (2) 复杂的多元初等函数——多元复合函数求导的链式法则(画树形图,写求导公式) (3) 隐函数求导 求方程0),,(=z y x F 确定的隐函数),(y x f z =的一阶导数,z z x y ???? ,,,(),,y x z z F F z z x y z x F y F x y x y z ''???=-=-?''????? 公式法:(地位平等)直接法:方程两边同时对或求导(地位不平等) 注:若求隐函数的二阶导数,在一阶导数的基础上,用直接法求。 3、高阶导数的计算 注意记号表示,以及求导顺序 (二) 全微分的计算 1、 叠加原理

从极限到微积分

从极限到微积分 第一部分:极限 一、极限概念的发展 分析数学中最基本的概念之一,用以描述变量在一定的变化过程中的终极状态。早在中国古代,极限的朴素思想和应用就已在文献中有记载。例如,3世纪中国数学家刘徽的割圆术,就是用圆内接正多边形周长的极限是圆周长这一思想来近似地计算圆周率□的。随着微积分学的诞生,极限作为数学中的一个概念也就明确提出。但最初提出的这一概念是含糊不清的,因此在数学界引起不少争论甚至怀疑。直到19世纪,由A.-L.柯西、K. (T.W.)外尔斯特拉斯等人的工作,才将其置于严密的理论基础。 之上,从而得到举世一致的公认。 凡本质上与极限概念有关的数学分支统称为分析数学,以区别于完全不用这一概念的代数学。几何学的各分支绝大部分也直接或间接地与极限概念密切相关。 极限可分为数列极限和函数极限,分别定义如下。 首先介绍刘徽的"割圆术",设有一半径为1的圆,在只知道直边形的面积计算方法的情况下,要计算其面积。为此,他先作圆的内接正六边形,其面积记为A1,再作内接正十二边形,其面积记为A2,内接二十四边形的面积记为A3,如此将边数加倍,当n无限增大时,An无限接近于圆面积,他计算到3072=6*2的9次方边形,利用不等式 An+10,存在正数M(>=a),使得当x>M时有: |f(x)-A|<ε, 则称函数f当x趋于+∞时以A为极限,记作 lim f(x) = A 或 f(x)->A(x->+∞) 举两个例子说明一下 1、0.999999 (1) 谁都知道1/3=0.333333……,而两边同时乘以3就得到1=0.999999……,可就是看着别扭,因为左边是一个“有限”的数,右边是“无限”的数。 2、“无理数”算是什么数? 我们知道,形如根号2这样的数是不可能表示为两个整数比值的样子的,它的每一位都只有在不停计算之后才能确定,且无穷无尽,这种没完没了的数,大大违背人们的思维习惯。 结合上面的一些困难,人们迫切需要一种思想方法,来界定和研究这种“没完没了”的数,这就产生了数列极限的思想。 类似的根源还在物理中(实际上,从科学发展的历程来看,物理可能才是真正的发展动力),比如瞬时速度的问题。我们知道速度可以用位移差与时间差的比值表示,若时间差趋于零,则此比值就是某时刻的瞬时速度,这就产生了一个问题:趋于无限小的时间差与位移

多元函数微积分复习试题

多元函数微积分复习题 一、单项选择题 1.函数()y x f ,在点()00,y x 处连续是函数在该点可微分的 ( B ) (A) 充分而不必要条件; (B) 必要而不充分条件; (C) 必要而且充分条件; (D) 既不必要也不充分条件. 2.设函数()y x f ,在点()00,y x 处连续是函数在该点可偏导的 ( D ) (A) 充分而不必要条件; (B) 必要而不充分条件; (C) 必要而且充分条件; (D) 既不必要也不充分条件. … 3.函数()y x f ,在点()00,y x 处偏导数存在是函数在该点可微分的 ( B ). (A) 充分而不必要条件; (B) 必要而不充分条件; (C) 必要而且充分条件; (D) 既不必要也不充分条件. 4.对于二元函数(,)z f x y =, 下列结论正确的是 ( C ). A. 若0 lim x x y y A →→=, 则必有0lim (,)x x f x y A →=且有0 lim (,)y y f x y A →=; B. 若在00(,)x y 处 z x ??和z y ??都存在, 则在点00(,)x y 处(,)z f x y =可微; C. 若在00(,)x y 处 z x ??和z y ??存在且连续, 则在点00(,)x y 处(,)z f x y =可微; D. 若22z x ??和22z y ??都存在, 则. 22z x ??=22 z y ??. ] 5.二元函数(,)z f x y =在点00(,)x y 处满足关系( C ). A. 可微(指全微分存在)?可导(指偏导数存在)?连续; B. 可微?可导?连续; C. 可微?可导, 或可微?连续, 但可导不一定连续; D. 可导?连续, 但可导不一定可微. 6.向量()()3,1,2,1,2,1a b =--=-,则a b = ( A ) (A) 3 (B) 3- (C) 2- (D) 2

微积分-求极限的方法

求极限方法一:直接代入法 例一:()=24 例二:()= 类似这种你直接把x趋近的值代入到函数里面,就可以直接得到函数的极限了。 知识点1:当x趋近值代入后,分子为0,分母不为0时,函数极限等于0 知识点2:当x趋近值代入后,分子不为0,分母为0时,函数极限等于 方法二:因式分解法(一般是平方差,完全平方,十字相乘) 普通的就是分子分母约去相同的项,因为x是趋近值,所以上下是可以约去的,不用考虑0的问题。类似=() 下面讲个例 知识点3:=(x-y)() 例三:== 方法三:分母有理化(用于分母有根式,分子无根式) 例四:= 方法四:分子有理化(用于分子有根式,分母无根式) 例五:==1 方法五:分子分母同时有理化(用于分子有根式,分母有根式) 例六:

知识点4:(使用这个知识点时,必须注意只能在x趋近于无穷时使用,且使用时只用看各项的最高次数,不用管其他) 例七:()=(分子的最高次是两次,大于分母最高次一次,所以直接得出极限为无穷大) 例八:=0 (分子的最高次是一次,小于分母最高次两次,所以直接得出极限为零) ) 例九:(分子的最高次是一次,等于分母最高次一次,所以直接得出极限为分子最高次数项系数 分母最高次数项系数 方法六:通分法(若函数为两个分数相加减时,通常先同分再做处理,一般情况下同分后都要进行因式分解,然后分子分母约去相同的多项式) 例十:- 知识点5:当一个无穷小的函数乘以一个有界函数时,新函数的极限仍为无穷小。(有限个无穷小仍为无穷小=常量与无穷小量的乘积仍是无穷小量) 例十一:()=0 函数左边用知识点4得出是无穷小,右边3+cosx是有界函数,所以新函数极限为无穷小,即0 所有求极限的题中,代入x趋近值后,若出现或,都可以使用洛必达法则求解极限。

考研数学三-多元函数微积分学(一).doc

考研数学三-多元函数微积分学(一) (总分:100.00,做题时间:90分钟) 一、Section Ⅰ Use of Eng(总题数:1,分数:10.00) The mass media is a big part of our culture, yet it can also be a helper, adviser and teacher to our young generation. The mass media affects the lives of our young by acting as a (an) (1) for a number of institutions and social contacts. In this way, it (2) a variety of functions in human life. The time spent in front of the television screen is usually at the (3) of leisure: there is less time for games, amusement and rest. (4) by what is happening on the screen, children not only imitate what they see but directly (5) themselves with different characters. Americans have been concerned about the (6) of violence in the media and its (7) harm to children and adolescents for at least forty years. During this period, new media (8) , such as video games, cable television, music videos, and the Internet. As they continue to gain popularity, these media, (9) television, (10) public concern and research attention. Another large societal concern on our young generation (11) by the media, is body image. (12) forces can influence body image positively or negatively. (13) one, societaland cultural norms and mass media marketing (14) our concepts of beauty. In the mass media, the images of (15) beauty fill magazines and newspapers, (16) from our televisions and entertain us (17) the movies. Even in advertising, the mass media (18) on accepted cultural values of thinness and fitness for commercial gain. Young adults are presented with a (19) defined standard of attractiveness, a(n) (20) that carries unrealistic physical expectations. (分数:10.00) (1).[A] alternative [B] preference [C] substitute [D] representative(分数:0.50) A. B. C. D. (2).[A] accomplishes [B] fulfills [C] provides [D] suffices(分数:0.50) A. B. C. D. (3).[A] risk [B] mercy [C] height [D] expense(分数:0.50) A. B. C. D. (4).[A] Absorbed [B] Attracted [C] Aroused [D] Addicted(分数:0.50) A. B. C. D. (5).[A] identify [B] recognize [C] unify [D] equate(分数:0.50) A. B. C.

高等数学同济大学版课程讲解函数的极限

课 时 授 课 计 划 课次序号: 03 一、课 题:§1.3 函数的极限 二、课 型:新授课 三、目的要求:1.理解自变量各种变化趋势下函数极限的概念; 2.了解函数极限的性质. 四、教学重点:自变量各种变化趋势下函数极限的概念. 教学难点:函数极限的精确定义的理解与运用. 五、教学方法及手段:启发式教学,传统教学与多媒体教学相结合. 六、参考资料:1.《高等数学释疑解难》,工科数学课程教学指导委员会编, 高等教育出版社; 2.《高等数学教与学参考》,张宏志主编,西北工业大学出版社. 七、作业:习题1–3 1(2),2(3),3,6 八、授课记录: 九、授课效果 分析: 第三节 函数的极限 复习 1.数列极限的定义:lim 0,N,N n n n x a n x a εε→∞ =??>?>-<当时,; 2.收敛数列的性质:唯一性、有界性、保号性、收敛数列与其子列的关系. 在此基础上,今天我们学习应用上更为广泛的函数的极限. 与数列极限不同的是,对于函数极限来说,其自变量的变化趋势要复杂的多. 一、x →∞时函数的极限 对一般函数y ?f (x )而言,自变量无限增大时,函数值无限地接近一个常数的情形与数列极限类似,所不同的是,自变量的变化可以是连续的.

定义1 若?ε>0,?X >0,当x >X 时,相应的函数值f (x )∈U (A ,ε)(即|f (x )?A |<ε),则称x →?∞时,f (x )以A 为极限,记为lim x →+∞ f (x )?A . 若?ε>0,?X >0,当x <?X 时,相应的函数值f (x )∈U (A ,ε)(即|f (x )?A |<ε),则称x →?∞时,f (x )以A 为极限,记为lim x →-∞ f (x )?A . 例1 证明lim x 0. 证 0 -,故?ε>00-<εε, 即x >21 ε.因此,?ε>0,可取X ?21ε,则当x >X 0-<ε,故由定义1得 lim x ?0. 例2 证明lim 100x x →-∞ =. 证 ?ε>0,要使100x -?10x <ε,只要x <l gε.因此可取X ?|l gε|?1,当x <?X 时,即有|10x ?0|<ε,故由定义1得lim x →+∞ 10x ?0. 定义2 若?ε>0,?X >0,当|x |>X 时,相应的函数值f (x )∈U (A ,ε)(即|f (x )?A |<ε),则称x →∞时,f (x )以A 为极限,记为lim x →∞ f (x )?A . 为方便起见,有时也用下列记号来表示上述极限: f (x )→A (x →?∞);f (x )→A (x →?∞);f (x )→A (x →∞). 注 若lim ()lim ()lim ()x x x f x A f x A f x A →∞→+∞→-∞ ===或或,则称y A =为曲线()y f x =的水 平渐近线. 由定义1、定义2及绝对值性质可得下面的定理. 定理1 lim x →∞f (x )?A 的充要条件是lim x →+∞f (x )?lim x →-∞ f (x )?A . 例3 证明2lim 1 x x x →∞--?1.

(完整版)高等数学第一章函数与极限试题2

高等数学第一章函数与极限试题 一. 选择题 1.设F(x)是连续函数f(x)的一个原函数,""N M ?表示“M 的充分必要条件是N ”,则必有 (A ) F(x)是偶函数?f(x)是奇函数. (B ) F(x)是奇函数?f(x)是偶函数. (C ) F(x)是周期函数?f(x)是周期函数. (D ) F(x)是单调函数?f(x)是单调函数 2.设函数,1 1 )(1 -= -x x e x f 则 (A ) x=0,x=1都是f(x)的第一类间断点. (B ) x=0,x=1都是f(x)的第二类间断点 (C ) x=0是f(x)的第一类间断点,x=1是f(x)的第二类间断点. (D ) x=0是f(x)的第二类间断点,x=1是f(x)的第一类间断点. 3.设f (x)=x x 1-,x ≠0,1,则f [)(1 x f ]= ( D ) A ) 1-x B ) x -11 C ) X 1 D ) x 4.下列各式正确的是 ( C ) A ) lim 0 + →x )x 1 +1(x =1 B ) lim 0 + →x )x 1 +1(x =e C ) lim ∞ →x )x 1 1-(x =-e D ) lim ∞ →x )x 1 +1(x -=e

5.已知9)( lim =-+∞→x x a x a x ,则=a ( C )。 A.1; B.∞; C.3ln ; D.3ln 2。 6.极限:=+-∞→x x x x )1 1(lim ( C ) A.1; B.∞; C.2-e ; D.2e 7.极限:∞ →x lim 332x x +=( A ) A.1; B.∞; C.0; D.2. 8.极限:x x x 11lim 0 -+→ =( C ) A.0; B.∞; C 2 1; D.2. 9. 极限:)(lim 2x x x x -+∞ +→=( D ) A.0; B.∞; C.2; D. 2 1 . 10.极限: x x x x 2sin sin tan lim 30-→=( C ) A.0; B.∞; C. 16 1; D.16. 二. 填空题 11.极限1 2sin lim 2+∞ →x x x x = 2 . 12. lim 0 →x x arctanx =_______________. 13. 若)(x f y =在 点 x 连续,则 f )]()([lim 0→-0 x f x f x x =______f ’(xo)_________; 14. =→x x x x 5sin lim 0_________0.2__; 15. =-∞→n n n )2 1(lim _______e*e__________; 16. 若函数2 31 22+--=x x x y ,则它的间断点是___________2___1_____

大学微积分练习题1函数与极限

一、 极限与连续 一、填空题 1、极限=-+∞→x x x x 1sin 2357lim 2 2、若b x a x x =??? ? ?---→421lim 22,则=ab 3、21sin(1)lim 1 x x x →-=- 4、设1,0,(),ln(1),0x e x f x x x x +?≤?=?+>??0x =为)(x f 间断点 5、若03sin()2lim ,23 x mx x →=,则m = 二、选择题 1、“)(x f 在点0x x =处有定义”是“0x x →时,)(x f 有极限”的( ) A .必要条件 B .充分条件 C .充分必要条件 D .无关条件 2、下列函数中,( )在点0=x 补充定义可成为连续函数 A .2sin 2)(x x x f = B .x e x f 1)(= C .x x f 1sin )(= D .211)(x x x x f +-= 3、若1619 12)(lim 23-=-+-→x x x f x ,则=)(x f ( ) A .2+x B .5+x C .13+x D .6+x 4、下列极限中( )正确 A .1sin lim =∞→x x x B .11sin lim =∞→x x x

C .11sin 1lim =∞→x x x D .1sin 1lim =∞→x x x 5、当0→x 时,下列变量( )与x 为等价无穷小 A .x x sin B .x x sin C .x x --+11 D .x x 1cos 三、计算题 1、 221lim ++∞→??? ??-x x x 2 、1lim 1x x →+∞?- ??? 3、 111lim x x x -→ 4、 1 0lim 1+)x x x xe →( 5、0tan sin lim x x x x →- 6、30tan sin lim sin x x x x →- 7、1 1lim 31--→x x x 8 、4x → 9、3131lim 11x x x →??- ?--? ? 10、已知21lim 51x x ax b x →++=-,求,a b 的值。 四、应用题 1、 设函数1 11)(--=x e x x f ,补充定义)0(f ,使)(x f 在0=x 处连续。 2、求下列函数的间断点,并判断间断点的类型。 1)20 1()21, 121, 2x f x x x x x ??? 3、下列函数中,问k 为何值时,函数()f x 在其定义域内连续。 1) 1sin 0 () 01sin 1 0x x x f x k x x x x ??2) 2sin 2 0()32 0x x f x x x x k x ?

微积分求极限的方法

求极限 方法一:直接代入法 例一:=24 例二:= 类似这种你直接把x趋近的值代入到函数里面,就可以直接得到函数的极限了。 知识点1:当x趋近值代入后,分子为0,分母不为0时,函数极限等于0 知识点2:当x趋近值代入后,分子不为0,分母为0时,函数极限等于 方法二:因式分解法(一般是平方差,完全平方,十字相乘) 普通的就是分子分母约去相同的项,因为x是趋近值,所以上下是可以约去的,不用考虑0 的问题。类似= 下面讲个例 知识点3:=(x-y)() 例三:== 方法三:分母有理化(用于分母有根式,分子无根式) 例四:= 方法四:分子有理化(用于分子有根式,分母无根式) 例五:==1 方法五:分子分母同时有理化(用于分子有根式,分母有根式) 例六: 知识点4:(使用这个知识点时,必须注意只能在x趋近于无穷时使用,且使用时只用看各项的最高次数,不用管其他) 例七:=(分子的最高次是两次,大于分母最高次一次,所以直接得出极限为无穷大)

例八:=0 (分子的最高次是一次,小于分母最高次两次,所以直接得出极限为零) 例九:(分子的最高次是一次,等于分母最高次一次,所以直接得出极限为 ) 方法六:通分法(若函数为两个分数相加减时,通常先同分再做处理,一般情况下同分后都要进行因式分解,然后分子分母约去相同的多项式) 例十:- 知识点5:当一个无穷小的函数乘以一个有界函数时,新函数的极限仍为无穷小。(有限个无穷小仍为无穷小=常量与无穷小量的乘积仍是无穷小量) 例十一:=0 函数左边用知识点4得出是无穷小,右边3+cosx是有界函数,所以新函数极限为无穷小,即0 所有求极限的题中,代入x趋近值后,若出现或,都可以使用洛必达法则求解极限。

微积分-函数、极限和连续

《微积分初步》单元学习辅导一(函数极限连续) 微积分初步学习辅导(一) ——函数、极限和连续部分 学习重难点解析 (一)关于函数的概念 1.组成函数的要素: (1)定义域:自变量的取值范围D ; (2)对应关系:因变量与自变量之间的对应关系f . 函数的定义域确定了函数的存在范围,对应关系确定了自变量如何对应到应变量.因此,这两个要素一旦确定,函数也就随之确定.所以说,两个函数相等(即)()(x g x f =)的充分必要条件是两个函数的定义域和对应关系都相等.若两者之一不同,就是两个不同的函数. 2.函数定义域的确定 对于初等函数,一般要求它的自然定义域,具体说来通过下面的途径确定: (1) 函数式里如果有分式,则分母的表达式不为零; (2) 函数式里如果有偶次根式,则根式里的表达式非负; (3) 函数式里如果有对数式,则对数式中真数的表达式大于零; (4)如果函数表达式是由若干表达式的代数和的形式,则其定义域为各部分定义域的公共部分; (5)对于分段函数,其定义域为函数自变量在各段取值的之并集. (6)对于实际的应用问题,应根据问题的实际意义来确定函数的定义域. 3.函数的对应关系 函数的对应关系f 或f ( )表示对自变量x 的一个运算,通过f 或f ( )把x 变成了y ,例如152)(3 +-==x x x f y ,则f 代表算式 1)(5)(2)(3+-=f 括号内是自变量的位置,运算的结果得到因变量的值. (二)关于函数的基本属性 函数的基本属性是指函数的单调性、奇偶性、周期性和有界性.了解函数的属性有助于我们对函数的研究. 理解函数属性中需要注意下面的问题: 1.关于函数的奇偶性:讨论函数的奇偶性,其定义域必须是关于原点对称的的区间,函数奇偶性的判别方法是函数奇偶性定义和奇偶函数的运算性质,即

微积分(曹定华)(修订版)课后题答案第一章习题详解

第一章 习题1-1 1.用区间表示下列不等式的解 2(1)9;(2)1;1(3)(1)(2)0;(4)00.01 1 x x x x x ≤>--+<<<+ 解 (1)原不等式可化为(3)(3)0x x -+≤,其解为33x -≤≤,用区间表示是[-3,3]. (2)原不等式可化为11x ->或11x -<-,其解为2x >或0x <,用区间表示是(-∞,0)∪(2,+ ∞). (3)原不等式的解为21x -<<,用区间表示是(-2,1). (4)原不等式可化为0.0110.0110x x -<+??>?即0210x x x ≤≤??>??>? 所以函数的定义域是12x <≤,用区间表示就是(1,2]. (3)要使函数有意义,必须2650ln(2)020x x x x ?--≥?-≠??->?即6112x x x -≤≤??≠??

多元函数微分法及其应用

第八章多元函数微分法及其应用 (讲授法18学时) 上册研究了一元函数微分法,利用这些知识,我们可以求直线上质点运动的速度和加速度,也可以求曲线的切线的斜率,可以判断函数的单调性和极值、最值等,但这远远不够,因为一元函数只是研究了由一个因素确定的事物。一般地说,研究自然现象总离不开时间和空间,确定空间的点需要三个坐标,所以一般的物理量常常依赖于四个变量,在有些问题中还需要考虑更多的变量,这样就有必要研究多元函数的微分学。 多元函数微分学是一元函数的微分学的推广,所以多元函数微分学与一元函数微分学有许多相似的地方,但也有许多不同的地方,学生在学习这部分内容时,应特别注意它们的不同之处。 一、教学目标与基本要求 1、理解多元函数的概念,理解二元函数的几何意义。 2、了解二元函数的极限与连续性的概念,以及有界闭区域上连续函数的性质。 3、理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性,了解全微分在近似计算中的应用。 4、理解方向导数与梯度的概念并掌握其计算方法。 5、掌握多元复合函数偏导数的求法。 6、会求隐函数(包括由方程组确定的隐函数)的偏导数。 7、了解曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程。 8、了解二元函数的二阶泰勒公式。 9、理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题。 二、教学内容及学时分配: 第一节多元函数的基本概念2课时 第二节偏导数2学时 第三节全微分2学时 第四节多元复合函数的求导法则2学时 第五节隐函数的求导公式2学时 第六节多元函数微分学的几何应用2学时 第七节方向导数与梯度2学时 第八节多元函数的极值及其求法2学时 三、教学内容的重点及难点: 重点: 1.多元函数的极限与连续; 2.偏导数的定义;全微分的定义 3.多元复合函数的求导法则;隐函数的求导法则 4.方向导数与梯度的定义 5.多元函数的极值与最值的求法 难点: 1.多元函数微分学的几个概念,即多元函数极限的存在性、多元函数的连续性、偏导数的存在性、全微分的存在性、偏导数的连续性之间的关系; 2.多元复合函数的求导法则中,抽象函数的高阶导数; 3.由方程组确定的隐函数的求导法则; 4.梯度的模及方向的意义; 5.条件极值的求法

微积分第一章---函数--习题及答案

第一章 函数 一、填空 1、设()()x t t f ψ=,则()()=-01f f 。 2、设()11 1>≤???=x x x x f ,则()()x e f x f +?1sin = 。 3、71 2arcsin 42-+-=x x y 的定义域为 。 4、()x x f x f 2 12=??? ??- ,则()x f = 。 5、()00 1<≥?????=x x x x x f ,则()[]=x f f 。 6、已知()()[]21,sin x x f x x f -==?,则()x ?= 。 7、设函数()x f 满足关系式:()()x e x f x f 3121=--+,则函数()x f = 。 8、已知()[]()2sin ,cos 1x x x x f =+=??,则()x f = 。 9、已知()?????≤≤+<≤<≤-+=3 121030 31 32x x x x x x f x ,则其反函数()x f 1-= 。 10、函数3arcsin cos lg x y =由 复合而成。 二、选择 1、函数()x x f 3=,则()y x f +=( ) A 、()()y f x f B 、()x f 2 C 、()x f D 、()y f 2、若()x f 是(-∞,+∞)上有定义的函数,则下列( )奇函数。 A 、()3x f B 、()[]3x f C 、()()x f x f -- D ()()x f x f -+ 3、设函数()x f 定义在(0,+∞)内,b a ,为任意正数,若函数() x x f 单调减少,则有( ) A 、()()()b f a f b a f +<+ B 、()()() b a b f a f b a f ++<+ C 、()()()b f a f b a f +>+ D 、()()() b a b f a f b a f ++>+

多元函数微分学及其应用归纳总结

第八章 多元函数微分法及其应用 一、多元函数的基本概念 1、平面点集,平面点集的内点、外点、边界点、聚点,多元函数的定义等概念 2、多元函数的极限 ? 00(,)(,) lim (,)x y x y f x y A →=(或0 lim (,)P P f x y A →=)的εδ-定义 ? 掌握判定多元函数极限不存在的方法: (1)令(,)P x y 沿y kx =趋向00(,)P x y ,若极限值与k 有关,则可断言 函数极限不存在; (2)找两种不同趋近方式,若 00(,)(,) lim (,)x y x y f x y →存在,但两者不相等, 此时也可断言极限不存在。 ? 多元函数的极限的运算法则(包括和差积商,连续函数的和差积商, 等价无穷小替换,夹逼法则等)与一元类似: 例1.用εδ-定义证明 2222 (,)(0,0) 1 lim ()sin 0x y x y x y →+=+ 例2(03年期末考试 三、1,5分)当0,0→→x y 时,函数22 2 222 ()+++-x y x y x y 的极限是否存在?证明你的结论。 例3 设22 2222,0 (,)0,0xy x y x y f x y x y ?+≠?+=??+=? ,讨论(,)(0,0) lim (,)x y f x y →是否存在? 例4(07年期末考试 一、2,3分)设222 24 22,0(,)0,0?+≠?+=??+=? xy x y x y f x y x y ,讨论 (,)(0,0) lim (,)→x y f x y 是否存在?

例5.求222 (,)(0,0)sin() lim x y x y x y →+ 3、多元函数的连续性0000(,)(,) lim (,)(,)x y x y f x y f x y →? = ? 一切多元初等函数在其定义区域内都是连续的,定义区域是指包含 在定义域内的区域或闭区域。 ? 在定义区域内的连续点求极限可用“代入法” 例1. 讨论函数3322 22 22,0(,)0,0x y x y x y f x y x y ?++≠?+=??+=? 在(0,0)处的连续性。 例2. (06年期末考试 十一,4分)试证222 24 22,0(,)0,0?+≠?+=??+=? xy x y x y f x y x y 在 点(0,0)不连续,但存在一阶偏导数。 例3.求 (,)(1,2)lim x y x y xy →+ 例4 .(,)(0,0)lim x y → 4、了解闭区域上商连续函数的性质:有界性,最值定理,介值定理 二、多元函数的偏导数 1、 二元函数(,)z f x y =关于,x y 的一阶偏导数的定义(二元以上类似定义) 如果极限00000 (,)(,) lim x f x x y f x y x ?→+?-?存在,则有 00 000 0000000 (,)(,) (,)lim x x x x x y y x x x x y y y y f x x y f x y z f z f x y x x x =?→=====+?-??= ===??? (相当于把y 看成常数!所以求偏导数本质是求一元函数的导数。)

《高等数学一》第一章-函数--课后习题(含答案解析)

第一章函数 历年试题模拟试题课后习题(含答案解析)[单选题] 1、 设函数,则f(x)=() A、x(x+1) B、x(x-1) C、(x+1)(x-2) D、(x-1)(x+2) 【正确答案】B 【答案解析】 本题考察函数解析式求解. ,故 [单选题] 2、 已知函数f(x)的定义域为[0,4],函数g(x)=f(x+1)+f(x-1)的定义域是(). A、[1,3] B、[-1,5] C、[-1,3] D、[1,5] 【正确答案】A 【答案解析】x是函数g(x)中的定义域中的点,当且仅当x满足0≤x+1≤4且0≤x-1≤4 即-1≤x≤3且1≤x≤5也即1≤x≤3,由此可知函数g(x)的定义域D(g)={x|1≤x≤3}=[1,3]. [单选题] 3、 设函数f(x)的定义域为[0,4],则函数f(x2)的定义域为(). A、[0,2] B、[0,16] C、[-16,16] D、[-2,2] 【正确答案】D 【答案解析】根据f(x)的定义域,可知中应该满足: [单选题] 4、 函数的定义域为(). A、[-1,1] B、[-1,3] C、(-1,1) D、(-1,3) 【正确答案】B 【答案解析】 根据根号函数的性质,应该满足: 即 [单选题]

写出函数的定义域及函数值(). A、 B、 C、 D、 【正确答案】C 【答案解析】 分段函数的定义域为各个分段区间定义域的并集, 故D=(-∞,-1]∪(-1,+∞). [单选题] 6、 设函数,则对所有的x,则f(-x)=(). A、 B、 C、 D、 【正确答案】A 【答案解析】本题考察三角函数公式。 . [单选题] 7、 设则=(). A、 B、

多元函数微积分练习题

练习题 一 多元函数微分学部分练习题 1 求函数y x y x z -+ += 11的定义域. 2已知xy y x xy y x f 5),(2 2 -+=-,求),(y x f . 3计算下列极限 (1) 22) 0,1(),() ln(lim y x e x y y x ++→ (2) 442 2),(),(lim y x y x y x ++∞∞→ (3) 2 43lim ) 0,0(),(-+→xy xy y x (4) x y x xy 1) 1,0(),()1(lim +→ (5)2222)1,2(),(2lim y x y x xy y x ++→ (6)2222)0,0(),() (2sin lim y x y x y x ++→ 4 证明极限 y x y x y x +-→)0,0(),(lim 不存在. 5 指出函数2 2),(y x y x y x f -+= 的间断点. 6计算下列函数的偏导数 (1))ln(2y x z = (2)x xy z )1(-= (3)),(2 y x f x z = (4))(xy x z ?= (5)y xy y x z 234 4+-+= (6))ln(22y x z += (7))3cos(22y x e z y x += (8)y xy z )1(+= (9)2 221 z y x u ++= (10)? = 220 sin y x dt t z 7 计算下列函数的二阶偏导数 (1)2 43y xy x z -+= (2))ln(xy y z = (3)y e z xy sin = (4)),(2 y x f x z = (5)2 (,)z f xy x =

相关文档
最新文档