第二章 连续信号的时域分析

合集下载

第二章 连续系统的时域分析

第二章  连续系统的时域分析
c2 du 2 (t ) u1 (t ) − u 2 (t ) = R2 dt
du (t ) 整理方程组得:d 2u2 (t ) + 7 2 + 6u2 (t ) = 6e(t ) dt 2 dt 特征方程:a2+7a+6=0 特征根:a=-1, a=-6 齐次解:rh(t) = A1e-t +A2e-6t
5
第二章 连续系统的时域分析
② 选定特解后,将它代入到原微分方程,即得到一个由 yh(t)及其各阶导数以及激励共同组成的一个非齐次微 分方程,依据此方程求出待定系数,然后可确定方程 的特解。
3. 求系统的全响应y(t)
y(t)=方程的全解y(t)=齐次解yh(t) + 特解 yP(t)
=自由响应+强迫响应 将上面方程的全解代入系统的初始条件即可得齐次解中 的待定系数,从而进一步得到系统的全响应。此时, 方程的齐次解yh(t)为系统的自由响应,特解yP(t)为系 统的强迫响应(固有响应)。
解: 由原方程可得
dh 2 (t ) dh(t ) +3 + 2h(t ) = 2δ ′(t ) + 3δ (t ) 2 dt dt
(t ≥ 0)
特征方程: λ2+3λ+2 = 0 特征根: λ1= -1,λ2= -2,且n > m
h (t ) = Ae − t u (t ) + e −2 t (t ) u(t)
20
第二章 连续系统的时域分析
式中A、B为待定系数,将h(t)代入原方程 式,解得A=1,B=1。因此,系统的冲激 响应为 h(t ) = e − t u(t ) + e −2 t (t )
21
第二章 连续系统的时域分析

第二章 信号与系统的时域分析

第二章 信号与系统的时域分析
17
二 卷积积分(The convolution integral) 若 (t ) h(t ) 则 (t ) h(t ) = h (t )
x t x h t

x(t ) x( ) (t )d y(t ) x( )h (t )d
则 y(t ) ak yk (t )
k
4
信号与系统的时域分析:
一般的信号都可以表示为延迟冲激的线性组合。
结合系统的叠加性和时不变性,就能够用LTI的单位
冲激响应来完全表征任何一个LTI系统的特性。这样
一种表示在离散情况下称为卷积和;在连续时间情
况下称为卷积积分。
5
分析方法:
对信号分解可在时域进行,也可在频域或变换域 进行,相应地产生了对LTI系统的时域分析法、频 域分析法和变换域分析法。
h( n n kk n h ) uu (n k )k
1
1
k
0
...
0
k
n
12
运算过程:
k k) ,再随参变量 为 h(
点值累加,得到
将一个信号 xk 不动,另一个信号反转后成为
下,将 xk 与 hn k 对应点相乘,再把乘积的各
n
移位.在每个 n 值的情况
x( [ n] y x x[ (n n] )* [ (n) h2 (n n)] x ) y( n n) (h h1 ) 1 n h2 h (n ) h( n) h2 x(t ) 11 y(t ) x(t ) [h1 (t ) h2 (t )] h1 (t ) h2 (t )
0
16
对一般信号 x(t ) ,可以分成很多 宽度的区段, 用一个阶梯信号 x (t ) 近似表示 x(t ) .当 0 时,

信号与系统第二章第一讲

信号与系统第二章第一讲
i
则相应于1的k阶重根,有k项:
( A1t k 1 A2t k 2 Ak 1t Ak )e1t ( Ai t k i )e1t
i 1
k
例2-3
信 号 与 系 统
求如下所示的微分方程的齐次解。
Hale Waihona Puke d3 d2 d r (t ) 7 2 r (t ) 16 r (t ) 12r (t ) e(t ) 3 dt dt dt
等式两端各对应幂次的系数应相等,于是有:
信 号 与 系 统
特解为: 联立解得:
3B1 1 4 B1 3B2 2 2 B 2 B 3 B 0 2 3 1

线性时不变系统
线性的常系数微分方程
按照元件的约束特性及 系统结构的约束特性
也即:
具体系统物理模型
常系数微分方程建立
(1)元件端口的电压与电流约束关系
iR (t ) R
信 号 与 系 统

vR (t )
C


vR (t ) iR (t ) R
dvC (t ) iC (t ) C dt
vR (t ) Ri R (t )

时域经典法就是直接求解系统微分方程的方法。这种方 系 法的优点是直观,物理概念清楚,缺点是求解过程冗繁,应 用上也有局限性。所以在20世纪50年代以前,人们普遍喜欢 统 采用变换域分析方法(例如拉普拉斯变换法),而较少采用时 域经典法。20世纪50年代以后,由于δ(t)函数及计算机的普 遍应用,时域卷积法得到了迅速发展,且不断成熟和完善, 已成为系统分析的重要方法之一。时域分析法是各种变换域 分析法的基础。
信 号 与 系 统
is (t )

信号与系统分析第二章 连续时间系统的时域分析

信号与系统分析第二章 连续时间系统的时域分析

第二章 连续时间系统的时域分析
2.1.1
对系统进行分析时, 首先要建立系统的数学模型。 对于电的系统, 只要利用理想的电路元件, 根据基尔霍 夫定律, 就可以列出一个或一组描述电路特征的线性 微分方程。 现举例来说明微分方程的建立方法。
第二章 连续时间系统的时域分析
例2.1 图2.1所示为RLC串联电路, 求电路中电流i(t) 与激励e(t)之间的关系。
第二章 连续时间系统的时域分析
(3)
y(t) C 1 e t C 2 e 6 t5 2c 0 1o 2 t)s 5 3 (s0i2 n t) (
D(p)y(t)=N(p)f(t)
y(t) N(p) f (t) D(P)
式(2.15)中的 N ( p ) 定义为转移算子, 用H(p)表示,
D (P)
(2.14) (2.15)
H (p ) N D ( (P p ) ) b a m n p p m n a b n m 1 1 p p n m 1 1 a b 1 1 p p a b 0 0 (2.16)
t0
解 (1) 齐次解。 由例2.4 yh (t)=C1e-t+C2e-6t
第二章 连续时间系统的时域分析
(2) 特解。 查表2.2, yp(t)=B1cos (2t)+B2sin(2t)
-14B1+2B2-6=0 2B1+14B2=0
于是,
B15201,
B2530
yp(t)5 20 c 1o2ts) (530 si2 nt)(
第二章 连续时间系统的时域分析
3. 用算子符号表示微分方程, 不仅书写简便, 而且在建 立系统的数学模型时也很方便。 把电路中的基本元件R、 L、 C的伏安关系用微分算子形式来表示, 可以得到相应 的算子模型, 如表2.1所示。

第2章连续系统的时域分析

第2章连续系统的时域分析

信号与线性系统 令 t 0 ,可得
2.2 LTI连续系统的响应
1 uC (0 ) uC (0 ) C


0
0
iC ( )d 0
如果 iC ( t ) 为有限值,则

此时
0 0
iC ( )d 0
uC (0 ) uC (0 )
如果 iC ( t ) ( t ) ,则
y( t ) 2e
2 t
e
3 t
2 cos( t

4
),
t 0
瞬态响应
2-13
稳态响应
信号与线性系统
二、初始条件的确定
(1) t = 0+与t = 0-的概念
认为换路在 t=0时刻进行
x(0 ) x(0 )
x(t)
0- 0+
:换路前一瞬间 :换路后一瞬间
x(0 ) x(0 )
2-18
信号与线性系统
2.2 LTI连续系统的响应
(3)初始条件的确定
这里我们介绍用冲激函数匹配法来确定 0 状态的
值,它的基本原理根据 t 0 时刻微分方程左右两端
的 ( t ) 及其各阶导数应该平衡相等。
2-19
信号与线性系统
2.2 LTI连续系统的响应
例2-2:如果描述系统的微分方程为 y ( t ) 3 y ( t ) 3 ( t ) ,给 定 0 状态起始值为 y(0 ) ,确定它 0 的状态 y(0 ) 。
2-4
激励及其各 阶导数(最 高阶为m次)
信号与线性系统 (1)齐次解是齐次微分方程
2.2 LTI连续系统的响应 的解。
y(n)+an-1y(n-1)+…+a1y(1)(t)+a0y(t)=0

信号与线性系统分析第2章

信号与线性系统分析第2章
t r ( Pmt m Pm1t m1 P 0的特征根) 1t P 0 )(有r重为
e t
cos t sin t
Pe t (不等于特征根) t (P t P )e (等于特征单根) 1 0
(Pr t r Pr 1t r 1 P0 )e t (等于r重特征根)
例:f1(t), f2(t)如图,求f1(t)* f2(t) 解: f1(t) = 2ε (t) –2ε (t –1) f2(t) = ε (t+1) –ε (t –1) f1(t)* f2(t) = 2 ε (t)* ε (t+1) –2 ε (t)* ε (t –1) –2ε (t –1)* ε (t+1) +2ε (t –1)* ε (t –1) 由于ε (t)* ε (t) = tε (t) 据时移特性,有 f1(t)* f2(t) = 2 (t+1) ε (t+1) - 2 (t –1) ε (t –1) –2 tε (t) +2 (t –2) ε (t –2)
f (t ) f1 ( ) f 2 (t )d


为f1(t)与f2(t)的卷积积分,简称卷积;记为 f(t)= f1(t)*f2(t) 注意:积分是在虚设的变量τ下进行的,τ为积分变量, t为参变量。结果仍为t 的函数。
y zs (t )

f ( )h(t ) d f (t ) * ) d
▲ ■ 第 13 页
2 .任意信号作用下的零状态响应
f ( t) 根据h(t)的定义: δ(t)
LTI系统 零状态
yzs(t) h(t) h(t -τ) f (τ) h(t -τ)
由时不变性:

信号与系统教案第2章

信号与系统教案第2章
第2-3页
2.1 LTI连续系统的响应
一、微分方程的经典解
许多实际的系统可以用线性系统来模拟。一个线性系 统其激励与响应之间的关系可以用下列形式的微分方 程来描述:
y(n)(t) + an-1y (n-1)(t) + …+ a1y(1)(t) + a0y (t) = bmf(m)(t) + bm-1f (m-1)(t) + …+ b1f(1)(t) + b0f (t)
第2-7页
2.1 LTI连续系统的响应
齐次解的函数形式仅与系统本身的特性有关,而与激励 f(t)的函数形式无关,称为系统的固有响应或自由响应; 特解的函数形式由激励确定,称为强迫响应。 例1: 描述某系统的微分方程为
y”(t) + 5y’(t) + 6y(t) = f(t) 求(1)当f(t) = 2e-t,t≥0;y(0)=2,y’(0)= -1时的全解;
et[C cos( t) D sin( t)], 或 A cos( t )
其中Ae j C jD
第2-6页
2.1 LTI连续系统的响应
表2- 不同激励所对应的特解
激励 f (t)
tm
e t
cos( t) 或 sin( t)
特解 yp (t) Pmt m Pm-1t m1 P1t P0 所有的特征根均不等于0;
第2-13页
2.1 LTI连续系统的响应
通常,对于具体的系统,初始状态一般容易求得。这样 为求解微分方程,就需要从已知的初始状态y(j)(0-)设法 求得y(j)(0+)。下列举例说明。
例2:描述某系统的微分方程为 y”(t) + 3y’(t) + 2y(t) = 2f’(t) + 6f(t)

第2章 连续时间信号和离散时间信号的时域分析

第2章  连续时间信号和离散时间信号的时域分析

第2章 连续时间信号和离散时间信号的时域分析
2.单位冲激信号 1) 单位冲激信号(Delta函数)的定义
∞ δ (t )dt = 1 ∫ ∞ (2-14) δ (t ) = 0 t ≠ 0 冲激信号用箭头表示,如图2.8(a)所示。冲激信号具有强度,其
强度就是冲激信号对时间的定积分值。在图中以括号注明,以与信 号的幅值相区分。 冲激信号可以延时至任意时刻 t0 ,以符号 δ (t t 0 ) 表示,定义 为
Ae st = Ae(σ + jω
0 )t
= Aeσ t cos(ω0 t ) + jAeσ t sin(ω0 t )
(2-8)
式(2-8)表明,一个复指数信号可以分解为实部﹑虚部两部分。 实部﹑虚部分别为幅度按指数规律变化的正弦信号。若 σ < 0 ,复指 数信号的实部﹑虚部为减幅正弦信号,波形如图2.4(a)﹑(b)所示。 若 σ > 0 ,其实部﹑虚部为增幅正弦信号,波形如图2.4(c)﹑(d)所 示。
第2章 连续时间信号和离散时间信号的时域分析
4.抽样函数 抽样函数是指 sin t 与 t 之比构成的函数,其定义如下:
sin t Sa(t ) = t
抽样函数的波形如图2.5所示。
(2-10)
图2.5 抽样函数的波形 抽样函数具有以下性质:
Sa(0) = 1, Sa(kπ) = 0 ,k
= ±1, ±2,L ∫∞ Sa(t )dt = π
第2章 连续时间信号和离散时间信号的时域分析
应用阶跃信号与延时阶跃信号,可以表示任意的矩形波脉冲信号。 例如,图2.7(a)所示的矩形波信号可由图2.7(b)表示,即 :
f (t ) = u (t T ) u (t 3T )

信号与系统第二章_连续时间系统时域分析(青岛大学)

信号与系统第二章_连续时间系统时域分析(青岛大学)

n
rzi (t) Azikekt k 1
(b)
r(k zi
)
(0
)
r(k) (0 )
k 0,1,L ,(n 1)
系数Azik可直接由 r(k) (0 ) 来确定。
例:已知描述某二阶LTI连续时间系统的动态方程
d2 dt 2
r(t)
5
d dt
r(t)
6r(t)
e(t)
起始状态 r(0 ) 1,r(0 ) ,2激励信号
(t)
2
p3
5
2p p2
5
p
3
e(t)
2
d3 dt3
vo
(t)
5
d2 dt 2
vo
(t)
5
d dt
vo
(t)
3vo
(t)
2
d dt
e(t)
总结: (1)引入算子符号后,RLC 电路可借助纯电阻电路的分析方法;
(2)是否可消去公共因子的原则:微分方程的阶数应等于电路 阶数(独立储能元件的个数)。
§2.3 微分方程的经典解法 r(t) rh (t) rp (t)
r(0 ) r(0 ) 1
(4)由 0状态确定待定系数
r(t) A1et A2e2t 0.5e3t
rr((00))
A1 A1
A2 0.5 1 2A2 1.5
3
A1 A2
5.5 5
全响应 r(t) 5.5et 5e2t 0.5e3t ,t 0
(一)经典法求解微分方程步骤:
r(t) 0 u(t) r(0 ) r(0 )
代入
d2 dt 2
r(t)
3
d dt
r(t)

连续时间信号的时域分析

连续时间信号的时域分析

(一)连续时间信号的时域表示信号是消息的载体,是消息的一种表现形式。

信号可以是多种多样的,通常表现为随时间变化的某些物理量,一般用x(t)或x(n)来表示。

信号按照自变量的取值是否连续可分为连续时间信号和离散时间信号。

连续时间信号是指自变量的取值范围是连续的,且对于一切自变量的取值,除了有若干不连续点以外,信号都有确定的值与之对应。

严格来说,MATLAB并不能处理连续信号,而是用等时间间隔点的样值来近似地表示连续信号。

当取样时间间隔足够小时,这些离散的样值就能较好地近似连续信号。

在MATLAB中通常用向量来表示连续时间信号,向量需要与时间变量相对应。

对于连续时间信号x(t),可用x、t两个行向量来表示。

其中向量t是形如t=t1:p:t2的MATLAB命令定义的时间范围向量,t1为信号起始时间,t2为终止时间,p为时间间隔。

向量x为连续信号x(t)在向量t所定义的时间点上的样值。

如产生连续信号t ttSa tx)sin( )()(==可用如下命令实现:t =-10:1.5:10;x=sin(t)./ t;在命令窗口(Command Window)中可得到程序执行的结果即x、t的具体值。

注意:在MATLAB程序调试过程中,有时程序执行不出结果或虽然出结果但存在一些问题,MATLAB 都会在Command窗口中给出错误说明,掌握利用Command窗口中的说明检查程序的方法。

用上述向量对连续信号进行表示后,就可以用plot命令绘制信号的时域波形。

命令如下:plot(t,x)title(‘x(t)=Sa(t)’)xlabel(‘t’)axis([-10,10,-0.2,1.2])绘制的信号波形如图一所示,当把t改为:t =-10:0.5:10;则可得到图二。

因为plot命令将点与点之间用直线连接,当点与点之间距离很小时,绘出的图形就成了光滑的曲线。

但图二在t=0时,曲线是间断的。

图一 图二应用plot 函数时应确保自变量t 和函数值x 的个数相等;函数axis([x1,x2,y1,y2])用来对横纵坐标进行限定,以完善图形,其中x1和x2分别为横坐标的起始和截止位置,y1和y2分别为纵坐标的起始和截止位置; xlabel(‘’)、ylabel(‘’)和title(‘’)用于为该图添加横、纵坐标说明和标题;有时在一个程序中需要将几个图形绘制在一个窗口,利用subplot(m,n,k)函数可以将当前窗口分成m 行n 列个子窗口,并在第k 个子窗口绘图,窗口的排列顺序为从左至右,从上至下分别为1,2,…m*n 。

信号与系统 第2章(3-5)

信号与系统 第2章(3-5)

X
n = −∞

k
x[n ]
1 k
n = −∞
∑ x[n]
2 1
k
3
单位阶跃序列可 用单位脉冲序列 的求和表示: 的求和表示:
0
k
k
u[ k ] =
n = −∞
∑ δ [n]
2.5 确定信号的时域分解
X
一、信号分解为直流分量与交流分量 二、信号分解为奇分量与偶分量之和 三、信号分解为实部分量与虚部分量 四、连续信号分解为冲激信号的线性组合 五、离散信号分解为脉冲序列的线性组合 六、信号分解为正交信号集
d
u[k ] =
u( t ) =
∫d ∫
t
−∞
δ (τ ) τ
n =−∞
∑ δ [ n] ∑ u [n]
k
k
u( t ) = d r ( t ) t r (t ) =
−∞
u[k ] = r[k + 1] − r[k ]
u(τ ) τ
d
r [ k + 1] =
n = −∞
2.4 离散时间信号的基本运算
一、序列相加与相乘
2. 序列相乘 序列相乘
x1[ k ]
0 1 k
2 1 y[k]=x1[k]× x2[k] 2 1.5
X
将若干序列同序号的数值相乘。 将若干序列同序号的数值相乘。
y[k ] = x1 [k ] × x2 [k ] × … × xn [k ]
x2 [ k ]
0
k
0
k
2.4.2 序列的相加、相乘、差分与求和
x[k] = x D C [k] + x A C [k]
k = N1

信号与系统-线性系统分析__第二章

信号与系统-线性系统分析__第二章

一.微分方程的经典解法
• n阶常系数线性微分方程
n
m
aiy(i) (t) bjf (j) (t)
i0
j0
(an 1)
y(n) (t) an-1y(n-1)(t) a0y(t)
bmf (m) (t) bm-1f (m-1)(t) b0f(t)
微分方程的全解由齐次解yh(t)和特解yp(t)组成
上例中,可令f(t)=10ejt,得解为 yp(t)=(1−j)ejt=cost+sint+j(sint−cost)
▪ 求微分方程也就是确定解的形式与全部待定系数。 ▪ 解的形式根据表2−1和表2−2确定,待定系数由初始
条件求出。
11
• 用算子方法求微分方程
微分算子:p d dt
积分算子:1 t ( )d
Pet (i) 或 et[Prtr+Pr−1tr−1+…+P0]
Pcos(t)+Qsin(t) 或 Aetcos(t+)
5
f(t)为常数1时,则特解为b0/a0。 考察函数f(t)在t0时作用,则全解的定义域[0,)。
全解由齐次解和特解组成,待定常数由初始条件y(0)、
y(1)(0)、…、y(n−1)(0)确定。
j1
j1
自由响应:由系统 本身的特性确定的 响应形式
强迫响应:由激 励信号确定的响 应形式
当输入信号含有阶跃函数或有始的周期函数时,系 统的全响应可分解为瞬态响应和稳态响应。
18
例:微分方程为 y''(t)+3y'(t)+2y(t)=2f '(t)+6f(t);
初始状态y(0−)=2,y'(0−)=1;输入函数f(t)=(t)。 求零输入响应和零状态响应。

信号与系统课件2连续系统时域分析

信号与系统课件2连续系统时域分析

右端项
表2-1 特 解yd(t)
tm
Pmt m Pm1t m1 P1t P0
et
Pet 当α不是特征根时 P1tet P0et 0 当α是单特征根时 Prtret Pr1tr e1 t P1tet P0et 当α是r重特征根时
cos t sin t
P1 cost P2 sin t P1 cost P2 sin t
2-3 系统的全响应
•系统的全响应就是系统微分方程的解。 •在分析系统时,通常把全响应分成零输入响应和零状态响应
一、零输入响应 当系统的激励为零,但初始状态不为零时,系统的响应,
通常用yx(t)表示。
微分方程为:
d
n yx (t) dt n
an1
d
n1 yx (t) dt n1
a0
yx
(t)
0
零输入响应是系统齐次微分方程的解
hr
(t)
(
p
K1 p1)r
(t)
K1 t r1e U p1t (r 1)!
4
iL(0+) = iL(0-) = 2A
iL (0 ) 0
4) A1 A 2 2
(2 j2) A1 (2 j2) A 2 0
iL(t)
iL (t)
A e(2 j2)t 1
A e(2 j 2)t 2
2
8
p 2p
A1 1 j A2 1 j
2 2e2t cos(2t 45) 0
t
5)画波形
二阶RLC串联电路暂态响应
t>0 ,由KVL,有
iR
L
di dt
uc
Us
RC
duc dt
LC
d 2uc dt2

第二章 连续时间系统的时域分析 重要公式

第二章 连续时间系统的时域分析 重要公式
k 等。初始条件 r k 0 与起始状态 r k 0 之差,称为跳变量,记为 rzs (0 ) 。跳变
量由原方程根据冲激函数匹配法求得。 三、系统微分方程的解 1、全响应 r t =零输入响应 rzi t +零状态响应 rzs t 注意:在求解系统的完全响应 r t 时,要用到有关的三个量是: r k 0 :起始状态,它决定零输入响应;
特别地
f t f1 t f 2 t f1 t f 2
1
1
t
f1 1 t f 21 t
f t t f t f t t t1 f t t1 f t t1 t t2 f t t2 t t1 f t t1 t2 f1 t t1 f 2 t t2 f1 t t2 f 2 t t1 f t t1 t2
方法二:卷积积分法 步骤: (1)先求冲激响应 ht ; (2)再利用 rzs t ht et 求零状态响应。 五、冲激响应 h t 和阶跃响应 g t
1、冲激响应 h t 的定义
定义: 系统在单位冲激信号 t 的激励下产生的零状态响应, 称为冲激响应。 冲激响应 h t 满足的微分方程为:
2、初始条件 r k (0 ) 系统在 t 0 时刻的一组状态称为系统的初始条件,简称 0 状态或“导出的 起始状态” 。
d d n 1 r (0 ) r 0 , r 0 , , n 1 r 0 dt dt
k
dn d n 1 d h t a ht a1 ht a 0 ht n 1 n n 1 dt dt dt

《信号与系统》第二版第二章:LTI连续时间系统的时域分析

《信号与系统》第二版第二章:LTI连续时间系统的时域分析
由起始状态Y(0-)≠0 所产生的响应。
零状态(zero state)响应 yzs (t ) :不考虑起始时刻系统储能的作用,即Y(0-) ≡0,由系统的外加激励信号 v (t ) = v (t )u (t ) ≠ 0 所产生的响应。
零输入响应 yzi (t ) :
5
《信号与系统》
第二章:LTI 连续时间系统的时域分析
∏(p −αi )
i =1
(αi 为互异特征根)
= N (p) ⎡⎣eαnt ∗ ∗ eα1t ∗ v (t )⎤⎦
(2-19)
n
∑ yzs (t ) = 齐次解 Aieαit +特解 B (t ) i =1
(2-20)
特解 B (t ) 反映系统输入对输出的强迫。
非零状态线性系统: 定义(非零状态线性系统):系统 T 的初始状态为X(0-)≠0
令: D (p) pn + an−1pn−1 + ... + a1p + a0
N (p) bmpm + ... + b1p + b0
4
《信号与系统》
有:
第二章:LTI 连续时间系统的时域分析
y
(t)
=
N (p) D(p)
v(t
)
H (p)v(t)
(2-13)
其中,
H
(p)
=
N (p) D(p)
称为系统算子。
≤ ∫ ∫ f (τ ) g (t −τ ) dτ dt ΩΩ
= ∫ f (τ ) ∫ g (t −τ ) dtdτ
Ω
Ω
=∫
f (τ )
g (t ) dτ = 1
f (t) 1
g (t ) 1

信号与系统(教案) 第二章

信号与系统(教案) 第二章

二、图解机理
用图形方式理解卷积运算过程,包括以下6个步骤: Step1:换元。画出f1(t)与f2(t)波形,将波形图中的t轴 改换成τ轴,分别得到f1(τ)和f2(τ)。 Step2:翻转。将f2(τ)波形以纵轴为中心轴翻 180°,得 到f2(-τ)波形。 4
信号与系统
2.2
卷积积分
Step3:平移。给定t值,将f2(-τ)波形沿τ轴平移|t|。
卷积积分是一种数学运算,它有许多重要的性质 (或运算规则),灵活地运用它们能简化卷积运算。 下面讨论均设卷积积分是收敛的(或存在的)。
性质1.卷积代数 满足乘法的三律: 1. 交换律: f1(t)* f2(t) =f2(t)* f1(t) 2. 分配律: f1(t)*[ f2(t)+ f3(t)] =f1(t)* f2(t)+ f1(t)* f3(t) 3. 结合律: [f1(t)* f2(t)]* f3(t)] =f1(t)*[ f2(t) * f3(t)]
1.奇异信号
单位冲激信号 (t), 单位阶跃信号 (t).
2.正弦信号
也称为虚指数信号。 f (t ) A cos( t ) A [e j (t ) e j (t ) ] 2
式 中A、和分 别 为 正 弦 信 号 的 振 幅 角 频 率 和 初 相 。 、 f ( t )是 周 期 信 号 , 其 周 期 2 T=
1 0
f 1(t)
2
t
14
信号与系统 例:f1(t), f2(t)如图,求f1(t)* f2(t) 解: f1(t) = 2ε (t) –2ε (t –1) f2(t) = ε (t+1) –ε (t –1)
2.2 卷积积分 2.2 卷积积分

第2章-连续时间信号与系统的时域分析PPT课件

第2章-连续时间信号与系统的时域分析PPT课件
第二章连续时间信号与系统的时域分析
第二章 连续时间信号与系统的时域分析
第一节 单位阶跃信号与单位冲激信号 第二节 LTI连续系统的时域响应 第三节 冲激响应与阶跃响应 第四节 卷积积分及其应用
-
1
第二章连续时间信号与系统的时域分析
第一节 单位阶跃信号与单位冲激信号
一、单位阶跃函数与单位冲激函数
单位阶跃信号 (unit step function)用(t)表
求:当f(t)=t2,y(0+)=1,y’(0+)=1时的全解。
例5:已知某LTI连续系统的方程为
y ( t ) 4 y ( t ) 4 y ( t ) 2 f ( t ) 8 f ( t )
求:当f(t)=e-t,y(0+)=3,y’(0+)=4时的全响应。
-
15
第二章连续时间信号与系统的时域分析
例6:如图所示电路图,其中R=5,L=1H,
C=1/6F,is(t)=4A,uc(0-)=0,i(0-)=0,电感电流
为i(t)为响应,求系统全响应。
+ uR(t) -
解:激励is(t),响应i(t)
ic(t)is(t)i(t)
iS(t)
ic(t)
R
+
C vc(t)
-
i(t) + L uL(t) -
-
21
第二章连续时间信号与系统的时域分析
例9:描述某线性时不变系统的微分方程为: y”(t)+4y’(t)+3y(t)=f’(t)+4f(t)
已知输入: f(t)=2e-2t(t)
y(0+)=1 y’(0+)=7 (1)求系统的零状态响应yf(t); (2)求系统的零输入响应yx(t); (3)全响应y(t)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章连续信号的时域分析所谓信号的时域分析,指的是整个分析过程都在时间域内进行,分析过程中所有的信号都用以时间t为自变量的时间函数表达式或时间波形图表示。

本章首先介绍几个典型的连续时间信号,以及对这些信号的基本运算。

此外,连续信号的卷积积分也是信号与系统时域分析中的基本运算,本章将详细介绍卷积积分的定义及其运算方法。

2.1 基本要求1.基本要求♦了解基本的连续信号及其相关参数和描述;♦了解信号的基本运算;♦掌握阶跃信号和冲激信号的定义、性质及作用;♦掌握卷积积分的定义、性质及计算。

2.重点和难点♦冲激信号的定义及性质♦含有阶跃和冲激函数的信号的求导和求积分运算♦卷积积分的计算2.2 知识要点1.基本的连续信号了解正弦信号、实指数信号、复简谐信号、门信号及抽样函数信号的函数表达式、时间波形及其相关参数。

2.信号的基本运算从数学意义上看,系统对信号的处理和变换就是对信号进行一系列的运算。

一个复杂的运算可以分解为一些基本运算的组合。

本章主要了解信号的加减乘除运算、翻转平移和尺度变换、微积分等几种基本的运算。

所有运算既可以利用信号的时间函数表达式进行,也可以在时间波形图上进行运算。

注意与数学上相关运算的区别。

这里强调,作为信号基本运算之一的积分运算,运算结果得到的是一个新的以t 为自变量的函数,具体表示符号和定义为⎰∞--=tf t fττd )()()1( (2-1)3.阶跃信号和冲激信号阶跃信号和冲激信号是对实际系统中的某类信号进行理想近似后得到的两个特殊信号,这两种信号用于描述一类特殊的物理现象,对于信号特性和系统性能的分析,起着十分重要的作用。

阶跃信号和冲激信号的时间波形如图2-1所示。

在信号与系统的分析过程中,经常利用阶跃函数将分段信号的时间函数表达式统一为一个解析表达式,以简化信号的运算。

利用阶跃函数还可以方便地表示因果、非因果信号等。

由于阶跃函数和冲激函数是两个特殊的函数,因此在进行求导和求积分等运算时,必须根据其定义和性质对函数表达式进行分析,以便化为普通函数的运算。

本节公式较多,这里再将几个常用的公式和结论总结如下:(1)单位斜变信号的导数等于单位阶跃信号,单位阶跃信号的导数等于单位冲激信号,即[()](),()()tu t u t u t t δ''== (2-1)(2)单位冲激信号的积分等于单位阶跃信号,单位阶跃信号的积分等于单位斜变信号,即(1)(1)()()d (),()()d ()t tt u t u t u tu t δδττττ---∞-∞====⎰⎰ (2-2)此外,有⎩⎨⎧-=<>=-⎰∞)(0d )(00-0t t Au t t t t A t A tττδ (2-3) (3)对冲激信号取定积分,结果等于冲激的强度,即A t t A =⎰+∞∞-d )(δ (2-4)(4)冲激信号的性质:)(||1)(t a at δδ=(尺度变换性质) (2-5) ()()t t δδ-= (奇偶性质) (2-6) )()()()(000t t t f t t t f -=-δδ (筛选性质) (2-7)A δ(t -t 0)t0t 0A0 图2-14.卷积积分卷积积分主要用于在时域中求解系统在给定输入作用下的零状态响应。

这里首先介绍了卷积积分的三种计算方法,即定义法、图解法和性质法。

本课程重点掌握根据卷积积分的定义和性质计算卷积积分的方法。

卷积积分的定义式为⎰∞∞∆-==-2121d )()()(*)()(τττt f f t f t f t f (2-8)卷积积分的几个主要性质总结如下:设12()()*()f t f t f t = 则1212()()*()()*()f t f t f t f t f t '''== (微分性质) (2-9)(1)(1)(1)1212()*()()*f t f f t f t f ---== (积分性质) (2-10) (1)(1)1212()()*()()*()f t f t f t f t f t --''== (微积分性质) (2-11)011021()()*()f t t t f t t f t t --=-- (时移性质) (2-12)2.3 补充例题例2-1 已知下列信号的时间函数表达式,分析并画出其时间波形。

(1)1()()(1) f t u t u t =--- (2)2()(1)(1)()f t t u t tu t =++-解 (1)根据阶跃信号的定义可知1 ,0()0 ,0t u t t <⎧-=⎨>⎩,1 ,1(1)0 ,1t u t t <⎧-=⎨>⎩ 则当t <0时,u (-t )=1,u (1-t )=1,所以f 1(t )=1-1=0;当0<t <1时,u (-t )=0,u (1-t )=1,所以f 1(t )=0-1=-1; 当t >1时,u (-t )=0,u (1-t )=0,所以f 1(t )=0-0=0。

最后得到 11,01()0 ,0t f t t -<<⎧=⎨<⎩(2)根据阶跃信号的定义可知1 ,1(1)0 ,1t u t t >-⎧+=⎨<-⎩, 1 ,0()0 ,0t u t t >⎧=⎨<⎩ 则 20 ,1() 1 ,101 1 ,1t f t t t t t t <-⎧⎪=+-<<⎨⎪+-=>⎩根据以上分析得到f 1(t )和f 2(t )的时间波形如图2-2所示。

说 明:在分析和绘制信号波形时,如果信号的时间函数表达式中含有阶跃函数,则信号的波形一般是分段的。

因此必须根据阶跃函数的定义对信号的时间函数表达式进行分析,写成为分段函数的形式,再分别分析和绘制各段的时间波形。

分析时,其中的阶跃信号一般是由基本的单位阶跃信号进行一些基本运算而得到。

图2-3分别为单位阶跃信号经过翻转、平移后得到的时间波形。

例2-2 写出图2-4中信号f (t )的解析表达式。

解 信号f (t )的分段函数表达式为2(1)1 ,1()e,1t t f t t --<⎧=⎨>⎩ 则其解析表达式可表示为2(1)()(1)e (1)t f t u t u t --=-+-说 明:引入阶跃函数以后,分段信号中的各段可以用一个表达式同时表示,而不用写成为分段函数的形式。

这样不仅可以在一定程度上简化表达式,也便于根据表达式对信号进行运算。

列写的一般方法是:首先得到分段函数表达式,然后将每段表示为12---()[()()]i f t u t t u t t的形式。

其中f i (t )为第i 段的函数表达式,t 1和t 2分别为第i 段的起始时刻。

如果t 1=-∞,则u (t -t 1)=u (t +∞)=1;如果t 2=+∞,则u (t -t 2)=u (t -∞)=0。

然后将各段的上述表达式直接相加即得到信号总的时间函数表达式。

例2-3 写出图2-5所示信号的解析表达式。

解 从左向右各段的表达式分别为图2-2图2-3图2-4图2-512()(1)[(1)()]()(1)[()(1)]=++-=---f t t u t u t f t t u t u t则12()()()(1)[(1)()](1)[()(1)](1)(1)2()(1)(1)=+=++-+---=++----f t f t f t t u t u t t u t u t t u t tu t t u t 例2-4 已知f (t )的波形如图2-6(a )所示,分析并画出f (1-2t )的波形。

解 法一:利用表达式进行变换。

首先得到f (t )的表达式为()(1)[()(1)]δ=++--f t t t u t u t 则(12)(121)(12)[(12)(121)](22)(12)[(12)(2)]0.5(1)(12)[(12)(2)]f t t t u t u t t t u t u t t t u t u t δδδ-=-++-----=-+----=-+----根据阶跃信号的定义可得⎩⎨⎧><=⎩⎨⎧>->-=-⎩⎨⎧><=⎩⎨⎧>->-=-0, 00, 102, 002, 1)2(5.0, 05.0, 1021, 0021, 1)21(t t t t t u t t t t t u 则(12) ,00.5(12)[(12)(2)]0 ,t t t u t u t -<<⎧----=⎨⎩其它根据以上分析得到f (1-2t )的波形如图2-6(b )所示。

法二:根据波形图进行变换。

由f (t )得到f (1-2t ),首先经过翻转得到f (-t ),再左移t 0得到f [-(t +t 0)]= f (-t 0-t ),然后进行伸缩变换得到f (-t 0-at )。

将最后的结果与要求的结果f (1-2t )比较可知,其中a =2,t 0=-1。

因此,第二步实际上应是右移1得到f (1-t ),第三步再压缩1/2得到f (1-2t )。

各步变换的结果依次如图2-7所示。

说 明:将信号变换得到一个新的信号,如果其中同时需要经过翻转、平移和伸缩变换,由于每步只能画出一种变换后的波形,因此要注意三种变换的顺序。

因为顺序不同,则变换过程中的参数(特别是其中平移的方向和距离)也会有所不同,中间过程中得到的波形也会(a ) (b )图2-6有所区别。

请读者采用另外几种变换顺序重新绘制。

此外,本例已知的f (t )中含有冲激信号。

绘制波形时,对冲激进行翻转和平移与普通函数波形相同,但是进行伸缩变换时需要用到单位冲激信号的尺度变换性质。

仔细比较图中f (1-t )和f (1-2t )的波形,特别注意冲激信号的变化。

例2-5 已知)()(t tu t f =,求)()(1t f t y '=,)()()1(2t f t y -=,并画出各信号的时间波形。

解 y 1(t )为f (t )的一阶导数,则)()()(1t t t u t y δ+=再利用冲激信号的筛选性质化简得到)()(1t u t y =y 2(t )为f (t )的一重积分,则)(21)(d d )()d ()(202t u t t u u f t y t t t =⋅===⎰⎰⎰∞-∞-τττττττ信号f (t )、y 1(t )和y 2(t ) 波形如图2-8所示,分别称为单位斜变信号、单位阶跃信号和单位抛物线信号。

由此可见,单位阶跃信号、单位斜变信号和单位抛物线信号依次呈积分关系,而单位阶跃信号等于单位冲激信号的积分。

相关文档
最新文档