04 从西洋参中提取三萜酸
HPLC测定不同产地灵芝中9种三萜酸
HPLC测定不同产地灵芝中9种三萜酸目的:建立HPLC测定灵芝子实体中9种三萜酸的方法。
方法:采用Alltima C18色谱柱(4.6 mm×150 mm,5 μm),流动相为乙腈-0.04%甲酸溶液,检测波长254 nm,流速1.0 mL·min-1,柱温15 ℃。
结果:灵芝酸C2、灵芝酸G、灵芝烯酸B、灵芝酸B、灵芝烯酸A、灵芝酸A、赤芝酸A、灵芝烯酸D、灵芝酸C1的线性范围分别为6.81~40.88,6.38~38.25,6.75~40.50,6.38~38.25,5.95~35.65,5.90~35.25,7.00~42.00,6.20~37.15,6.05~36.4 mg·L-1(r=0.999 4,0.999 2,0.999 4,0.999 2,0.999 2,0.994 5,0.999 0,0.999 2,0.998 4),加样回收率分别为102.1%,102.3%,100.6%,103.3%,104.1%,103.2%,96.42%,102.5%,101.5%,RSD为1.5%,0.96%,1.9%,1.3%,1.7%,2.5%,0.62%,2.9%,1.3%。
测定了31个不同地区、不同栽培条件下灵芝样品的三萜含量。
结论:该方法可行、重复性好,可定量测定灵芝中三萜酸的含量。
标签:HPLC;灵芝;三萜酸灵芝为担子菌纲,多孔菌科(Polyproraceae)灵芝属(Ganoderma)真菌赤芝Ganoderma lucidum和紫芝G.japonicum的干燥子实体。
始载于《神农本草经》,具有补中益气、滋外强壮、扶正固本等功效。
《中国药典》2000年版开始将赤芝、紫芝收为药用正品。
灵芝现在多为栽培品种且大多为赤芝,具有明显生物活性的主要有效成分是三萜类化合物,现已分离得到160多种[1],马林等[2-6]测定了灵芝中三萜酸总含量,建立了灵芝三萜指纹图谱测定方法。
三萜皂苷合成途径
三萜皂苷合成途径
三萜皂苷是一类天然产物,具有广泛的生物活性和药理作用。
它们被广泛应用于医药、化妆品和食品等领域。
本文将介绍三萜皂苷的合成途径,包括植物提取法、化学合成法和生物转化法。
一、植物提取法
植物提取法是最常用的三萜皂苷合成途径之一。
许多植物含有丰富的三萜皂苷,如人参、甘草、当归等。
通过对这些植物进行提取和分离纯化,可以得到高纯度的三萜皂苷。
植物提取法的优点是原料来源广泛,但存在提取效率低、成本高等问题。
二、化学合成法
化学合成法是一种人工合成三萜皂苷的方法。
根据三萜皂苷的结构特点,可以通过化学反应在实验室中合成目标化合物。
化学合成法的优点是可以得到高纯度的产物,但合成步骤繁多、操作复杂,且合成成本较高。
三、生物转化法
生物转化法是利用微生物或酶的代谢活性合成三萜皂苷。
通过对合适的微生物进行培养和发酵,可以利用其代谢途径合成目标化合物。
生物转化法的优点是反应选择性高、操作简单,但需要对微生物的培养条件和代谢途径进行深入研究。
三萜皂苷的合成途径包括植物提取法、化学合成法和生物转化法。
每种方法都有其优缺点,选择合适的合成途径取决于具体的需求和条件。
随着科学技术的不断进步,相信未来会有更多高效、低成本的三萜皂苷合成方法被开发出来,为三萜皂苷的研究和应用提供更多的可能性。
西洋参叶三萜皂苷的分离与鉴定_孟勤
UC -4376生长的活性成分③为抗癌活性成分球毛壳甲素(chaetoglobosin A )。
图2 98M -6组分③的化学结构Fig 2 T he chemical structure of the fraction ③of 98M -63 讨 论3.1 12株美登木内生真菌的液体发酵产物提取物的抑菌实验发现,提取液B 均无抑菌圈出现,提取液A 的抑菌实验显示有7株菌出现抑菌圈,并随着提取物样品用量的增加,抑菌圈加大。
因为提取物样品用量加大,其所含抑制榛色青霉菌UC -4376生长的活性成分含量增加。
其中,98M -6菌株的抑菌圈最大,说明98M -6菌株产生的抑制榛色青霉菌UC -4376生长的活性成分活性最高或含量最高。
3.2 从研究可知,利用榛色青霉菌UC -4376可方便地检测目的物中的微量的生物活性物质,简化了筛选产某些抗癌成分的植物内生真菌的繁杂的工作。
榛色青霉菌UC -4376不仅可作为美登素类似物的检测菌[5,8~9],还可作为其它抗癌活性化合物的检测菌,如本实验的球毛壳甲素。
3.3 榛色青霉菌UC -4376还检测到了美登木内生真菌98M -6产生的3组活性成分,其中①为混合物,②和③是单一成分,③经鉴定为球毛壳甲素,①、②以及另外的6株菌产生的生物活性成分需作深入的研究工作,其中也有可能含有美登素。
但从植物内生真菌中分到能产生与宿主不同的生物活性成分,这还是第一次报道。
由此可见,植物体内的真菌种类具有一定的多样性,这些内生真菌都能适应宿主的环境,尤其是能适应宿主产生的抑制其它真菌生长的生物活性成分。
反过来,这些植物对其内生真菌产生的与其不同的生物活性物质也能产生适应性的反应。
有关机制尚待进一步的深入研究。
参考文献[1]S trobel G ,Stierle A ,Stierle D ,et al .Taxomyces andreanae ,a proposed new taxon for a bulbill iferous hyphomycete associated w ith pacific yew (Taxus brevifolia )[J ].Myc ota xon ,1993,47:71.[2]Sekita S ,Yoshihira K ,Natori S ,et a l .Chaetoglobosis ,cytotoxic 10-(Indo -3-yl )-[13]cytochalasans from Chaetomium spp .Ⅰproduction ,is olation and some cytological effects of chaetoglo -bosins A -J [J ].Chem Pharm Bull ,1982,30(5):1609.[3]Sekita S ,Yoshihira K ,Natori S ,et a l .Chaetoglobosis ,cytotoxic 10-(Indo -3-yl )-[13]cytochalasans from Chaetomium spp .Ⅳ13C -nuclear magnetic resonance spectra and their application to a biosynthetic study [J ].Chem Phar m B ull ,1983,31(2):490.[4]周韵丽,黄丽瑛,周倩如,等.云南美登木中美登素和美登普林的分离和鉴定[J ].科学通报,1980,25:427.[5]Hanka LJ ,Barnett M S .M crobiological assays and bioautography of may tansine and its homologues [J ].A ntimicrobial Agents A nd C hemother apy ,1974,(6)5:651.[6]魏景超.真菌鉴定手册[M ].上海:上海科学技术出版社,1979,196~197.[7]Sekita S ,Yoshihira K ,Natori S ,et a l .Chaetoglobosis ,cytotoxic 10-(Indo -3-yl )-[13]cytochalasans from Chaetomium spp .Ⅱstructures of chaetoglobosins A ,B ,and D [J ].Chem Phar m Bu ll ,1982,30(5):1618.[8]武济民,陈佩君,王富金,等.美登素的微生物鉴定方法研究[J ].抗生素,1980,5(6):26.[9]武济民,陈佩君,王富金,等.美登素抗菌作用的研究[J ].微生物学通报,1982,9(6):277.(收稿日期:2000-10-26)作者简介:孟勤,男,硕士研究生,主管技师Tel :(0431)5645911-6763西洋参叶三萜皂苷的分离与鉴定孟勤1,尹建元1,赵俊艳2,徐景达1(1.吉林大学药学院,吉林长春130021;2.吉林大学制药厂,吉林长春130021)摘要:目的 研究西洋参叶的皂苷成分。
一种从西洋参种皮中提取西洋参多糖的方法[发明专利]
(10)申请公布号(43)申请公布日 (21)申请号 201510814771.9(22)申请日 2015.11.20C08B 37/00(2006.01)(71)申请人山东颐阳生物科技有限公司地址264400 山东省威海市文登经济开发区珠海东路26-6号(72)发明人于红霞 孟洪涛 于海先(74)专利代理机构北京怡丰知识产权代理有限公司 11293代理人于振强(54)发明名称一种从西洋参种皮中提取西洋参多糖的方法(57)摘要本发明涉及一种从西洋参种皮中提取西洋参多糖的方法,其解决了现有从西洋参种皮中提取西洋参多糖存在的提取步骤繁琐、提取时间长和产品得率较低的技术问题,其包含以下步骤:(1)将西洋参种皮粉碎后装入提取罐中,然后加入纯化水,采用超声波低温提取20~80min ;(2)将步骤(1)得到的提取物过滤至沉降罐中,滤液在沉降罐中加入酒精,得到酒精的体积百分比浓度为70%-90%的混合液,静置8~12小时,然后过滤得到不溶物,将不溶物干燥后即得到西洋参多糖;(3)将得到的西洋参多糖采用喷雾干燥方法得西洋参多糖粉末。
本发明可用于西洋参多糖的提取。
(51)Int.Cl.(19)中华人民共和国国家知识产权局(12)发明专利申请权利要求书1页 说明书3页CN 105237650 A 2016.01.13C N 105237650A1.一种从西洋参种皮中提取西洋参多糖的方法,其特征是包含以下步骤:(1)将西洋参种皮粉碎后装入提取罐中,然后加入纯化水,采用超声波在30~60℃下,提取20~80min;(2)将步骤(1)得到的提取物过滤至沉降罐中,滤液在沉降罐中加入酒精,得到酒精的体积百分比浓度为70%-90%的混合液,静置8~12小时,然后过滤得到不溶物,将不溶物干燥后即得到西洋参多糖;(3)将得到的西洋参多糖采用喷雾干燥方法得西洋参多糖粉末。
2.根据权利要求1所述的从西洋参种皮中提取西洋参多糖的方法,其特征在于所述步骤(1)中,纯化水与西洋参种皮的质量比为(1~10):1。
一种从灵芝中提取灵芝三萜和灵芝多糖的方法[发明专利]
专利名称:一种从灵芝中提取灵芝三萜和灵芝多糖的方法专利类型:发明专利
发明人:柳秦桥
申请号:CN201910131259.2
申请日:20190222
公开号:CN109893547A
公开日:
20190618
专利内容由知识产权出版社提供
摘要:一种从灵芝中提取灵芝三萜酸和灵芝多糖的方法,包括:(1)原材料预处理:将粉碎后的灵芝子实体放于氢氧化钠‑水溶液浸提,经过超声处理后过滤,得到过滤物和浸提液;(2)调节pH:调节所述浸提液的pH为2.0~4.5;(3)动态回流吸附:将步骤B中得到的提取液进行动态回流吸附,吸附完成后,收集流出液Ⅰ;(4)分段洗脱:洗脱过程分为四阶段,合并收集前三阶段洗脱液Ⅱ,收集第四阶段洗脱液Ⅲ,洗脱液Ⅲ为灵芝三萜提取液;5.合并流出液Ⅰ、洗脱液Ⅱ,加入乙醇进行醇沉后进行过滤、烘干、粉碎后得到灵芝粗多糖。
本发明有效提高了灵芝三萜酸和灵芝多糖的提取率和灵芝三萜的纯度,且提取方案易于实施,提取的产品安全有效。
申请人:湖州柳荫生物科技有限公司
地址:313000 浙江省湖州市南浔区南浔镇硬长桥村
国籍:CN
代理机构:杭州千克知识产权代理有限公司
代理人:裴金华
更多信息请下载全文后查看。
一种从山楂中提取山楂三萜酸的方法[发明专利]
专利名称:一种从山楂中提取山楂三萜酸的方法专利类型:发明专利
发明人:闫雪生,韩媛媛
申请号:CN201310194407.8
申请日:20130523
公开号:CN103285112A
公开日:
20130911
专利内容由知识产权出版社提供
摘要:本发明提供一种从山楂中提取制备三萜酸的方法。
取山楂粗粉加入乙醇回流提取,浓缩提取液至浸膏,水洗后加入纯化剂煮沸除杂,过滤,干燥沉淀,再用乙醇溶解过柱,活性炭脱色后静置析晶得三萜酸粗品,再用乙醇重结晶即得到三萜酸成品。
本发明所得三萜酸成品符合制剂要求;所得山楂多糖可作为食品应用。
所用层析柱的吸附剂经再生处理可循环使用,降低了生产成本;所用有机溶媒种类少,“三废”污染小,适宜工业生产应用。
申请人:山东省中医药研究院
地址:250014 山东省济南市历下区燕子山西路7号
国籍:CN
代理机构:济南泉城专利商标事务所
代理人:袁敬清
更多信息请下载全文后查看。
提取三萜工艺流程
提取三萜工艺流程
三萜是一类重要的天然产物,具有多种生物活性,广泛应用于药物、香料等领域。
提取三萜的工艺流程主要包括原料准备、提取、分离纯化等步骤。
首先是原料准备。
三萜的天然来源主要是各种植物,包括树木、花朵、水果等。
在提取过程中,需要选择新鲜的原料,以保证三萜的含量和品质。
同时,还需要对原料进行处理,如去除杂质、切碎等,以便更好地进行提取。
接下来是提取步骤。
常用的提取方法包括溶剂提取法、超声波提取法、微波提取法等。
其中,溶剂提取法是最常用的方法。
在溶剂提取法中,常用的溶剂有乙醇、丙酮、乙酸乙酯等。
将原料与溶剂充分混合,经过搅拌、浸泡等过程,使三萜溶解在溶剂中。
然后,用过滤和蒸发等方法分离出溶剂中的三萜。
再次是分离纯化步骤。
提取得到的三萜溶液中可能含有其他的杂质,需要进行纯化处理。
常用的分离纯化方法有结晶法、薄层色谱法、溶剂萃取法等。
其中,结晶法是最常用的方法之一。
通过控制温度、溶剂等条件,在溶液中促使三萜结晶出来,然后用过滤、洗涤等步骤得到纯净的三萜晶体。
最后是干燥和包装。
将得到的纯净三萜晶体进行干燥,以去除残留溶剂和水分,从而提高产品的稳定性。
然后,将干燥后的三萜进行包装,以便储存和使用。
总的来说,提取三萜的工艺流程包括原料准备、提取、分离纯
化、干燥和包装等步骤。
在实际操作过程中,需要根据原料的不同特点和工艺的要求,选择适当的工艺方法和操作条件,以提高三萜的产率和品质。
同时,也需要注意安全生产,避免对环境造成污染。
中国药典所公开的灵芝三萜提取方法
中国药典所公开的灵芝三萜提取方法摘要:1.灵芝概述2.灵芝三萜的生理活性3.中国药典所公开的灵芝三萜提取方法4.提取过程的注意事项5.灵芝三萜提取物的应用领域正文:自古以来,灵芝就被誉为神奇的药用真菌,其有效成分之一——灵芝三萜(Lingzhi triterpenoids)在药用价值上备受瞩目。
灵芝三萜具有多种生理活性,如抗肿瘤、抗病毒、抗炎、抗氧化等,因此在我国药典中具有重要地位。
本文将介绍中国药典所公开的灵芝三萜提取方法及其相关注意事项。
灵芝三萜的生理活性丰富多样,对人体具有诸多益处。
抗肿瘤作用是灵芝三萜的重要活性之一,通过抑制肿瘤细胞的生长与扩散,起到抑制肿瘤发展的作用。
此外,灵芝三萜还具有抗病毒、抗炎、抗氧化等活性,可增强免疫力,抵抗外界侵害。
在中国药典中,灵芝三萜的提取方法公开如下:首先,选用优质的灵芝子实体作为原料,经切片、干燥、粉碎后,得到灵芝粉末。
接着,采用醇提法或水提法提取灵芝三萜,提取过程中需严格控制温度、时间和乙醇浓度等条件。
最后,通过离心、过滤等方法,分离提取液中的灵芝三萜。
在提取灵芝三萜的过程中,注意事项如下:1.选用优质的灵芝原料,以保证提取物的药效;2.严格控制提取条件,如温度、时间和乙醇浓度等,以提高提取效率;3.在提取过程中,避免灵芝三萜的氧化反应,影响提取物的活性;4.分离提取液时,选用合适的过滤器和离心条件,以免损失灵芝三萜。
灵芝三萜提取物在医药、保健等领域具有广泛应用。
医药领域,灵芝三萜提取物可用于治疗肿瘤、病毒感染等疾病;保健领域,灵芝三萜提取物作为保健品,可增强免疫力,预防疾病。
此外,灵芝三萜提取物还可应用于化妆品、食品等领域,发挥其抗氧化等功效。
总之,中国药典所公开的灵芝三萜提取方法为我国灵芝产业的发展提供了重要技术支持。
通过掌握提取方法及注意事项,可确保灵芝三萜提取物的质量和活性,为医药、保健等领域的研发提供优质原料。
三萜皂苷提取分离流程
三萜皂苷提取分离流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!三萜皂苷是一类重要的天然产物,具有多种生物活性,如抗炎、抗肿瘤、免疫调节等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Evaluation of the Efficiency of Three Different Solvent Systems to Extract Triterpene Saponins from Roots ofPanax quinquefolius Using High-Performance LiquidChromatographyS TEFAN G AFNER,*,†C HANTAL B ERGERON,†M EGAN M.M C C OLLOM,†L ORENA M.C OOPER,†K ERRY L.M C P HAIL,‡W ILLIAM H.G ERWICK,‡ANDC INDY K.A NGERHOFER†Tom’s of Maine,P.O.Box710,Kennebunk,Maine04043and College of Pharmacy,Oregon State University,Corvallis,Oregon97331Despite the wide availability of liquid herbal extracts using mixtures of alcohol,glycerin,and water, or glycerin and water as solvents,no data on the chemical composition of such extracts is readily available.In this study,the amount and the stability of the major saponins in Panax quinquefolius root extracts,made either with50%(v/v)aqueous ethanol,a mixture(v/v/v)of20%ethanol,40% glycerin,and40%water,or with65%(v/v)aqueous glycerin,were evaluated by HPLC-UV analysis. The amount of total saponins was highest in the50%aqueous ethanol extract(61.7(0.1mg/g dry root),although similar to the ethanol-glycerin-water extract(59.4(0.5mg/g dry root).Saponins were significantly lower in the65%aqueous glycerin extract(51.5(0.2mg/g dry root).Interestingly, the amounts of individual saponins were quite variable depending on the solvent.This is in part due to enzymatic cleavage of ginsenosides in the glycerin containing extracts during the maceration process.Storage of the extracts at25°C over the period of a year led to a13-15%loss of saponins with all three types of extractions.KEYWORDS:Panax quinquefolius;saponins;extraction efficiency;stability;enzymatic degradation; HPLC-UV/MS/MSINTRODUCTIONLiquid herbal extracts are one of the most popular ways to deliver the benefits of an herb.For commercial products,extracts with mixtures of ethanol and water account for the majority of liquid products.In many countries,however,glycerin extracts, as well as mixtures of glycerin and ethanol in water at percentages commonly ranging from25to75%,are becoming increasingly popular as pleasant-tasting alternatives.Because the solvent largely determines the phytochemical profile of a given plant extract,and because the chemistry influences the biological activity,we are interested in characterizing different extracts from identical plant materials.Despite the wide use of glycerin extracts,data on the composition of glycerites is not available.The aim of this study was to fill this gap for North American ginseng,Panax quinquefolius L(Araliaceae).North American ginseng is generally used as a mild tonic;however,its mechanisms of action remain unclear.Recent publications indicated a weak CNS stimulant activity(1,2)and hypoglycemic activity(3)and showed immunomodulating properties(4).In general,saponins and polysaccharides are thought to be responsible for the biological activity.We investigated the extraction efficiency on the major ginsenosides and gypenoside XVII in extracts made with three different solvent systems.North American ginseng roots were extracted either with65%(v/v)aqueous glycerin, an aqueous mixture(v/v/v)of20%ethanol and40%glycerin, or with50%(v/v)aqueous ethanol,and the major saponins were quantified using HPLC-UV.MATERIALS AND METHODSChemicals.HPLC grade acetonitrile was purchased from Fisher Scientific Co.(Pittsburgh,PA).Ginsenosides Rb1,Rc,Rd,Re,and Rg1 were obtained from Extrasynthe`se,SA(Genay,France).Ginsenoside F2and gypenoside XVII were isolated from a P.quinquefolius glycerin extract as outlined below.The purity of the standards was evaluated by HPLC-UV analysis.Silica gel(170-400mesh)and copper sulfate pentahydrate was from Fisher Scientific Co.,Sephadex LH-20was from Amersham Pharmacia Biotech(Uppsala,Sweden),and the high load C18solid-phase extraction cartridges were from Alltech Corp.(Deer-field,IL).Instruments.The HPLC system consisted of an Agilent quaternary pump,UV-vis detector(DAD),and automatic sample injector,and LC-MS data were obtained with an Agilent1100series LC/MSD Trap*To whom correspondence should be addressed.Tel.:++12079852944.Fax++12079852196.E-mail stefang@.†Tom’s of Maine.‡Oregon State University.1546J.Agric.Food Chem.2004,52,1546−155010.1021/jf0307503CCC:$27.50©2004American Chemical SocietyPublished on Web02/20/2004(Agilent Technologies,Burlington,MA)with an ESI interface.For the mass spectrometry,the following conditions were used:capillary voltage,4.5kV;skim 1,67.9V;capillary exit offset,118.8V;trap drive,64.5.The drying temperature was set at 350°C.The mass detector was used in positive ion mode (scan range m /z 400-1400)including an automated MS/MS operation.The HPLC separation was performed on a 150-×2.0-mm i.d.,2-µm,Phenomenex Synergi Hydro-RP column (Phenomenex,Torrance,CA).The mobile phase consisted of acetonitrile (solvent A)and water (solvent B),starting with 20%A,followed by a gradient to 22%A in 10min.,28%A at 11min.,42%A at 25min.,and 100%isocratic A from 26to 30min at a flow of 0.7mL/min.The column temperature was set at 20°C.The compounds were quantified with a UV detector at 203nm.1H and 13C NMR spectra were recorded on a Bruker Avance DRX 600instrument at 600and 150MHz,respectively.All spectra were recorded in pyridine-d 5with the solvent used as an internal reference (δH 8.74,7.58,7.22;δC 150.35,135.91,123.87).For the statistical evaluation,StatView 5software,version 5.0.1,was used.Plant Material and Extraction.Determination of Extraction Efficiency .P.quinquefolius was purchased from Baumann Farms (Wausau,WI).The dried roots were cut and macerated for 6weeks with either 50%(v/v)aqueous ethanol;a mixture (v/v/v)of 20%ethanol,40%glycerin,and 40%water;or 65%(v/v)aqueous glycerin (ratio plant material/solvent 1:5(w/v)).Determination of Stability of Saponins in Glycerin Extracts During Maceration .Dried and cut P.quinquefolius roots were purchased from Blessed Herbs (Oakham,MA).The roots were either macerated with 65%glycerin or with 65%glycerin containing 100mM of copper sulfate,as described above.After 6weeks,solids were removed by filtration of the macerates through a screw press.Isolation of Saponins.A 500-mL aliquot of a 65%aqueous glycerin extract of P.quinquefolius roots was partitioned three times with 500mL of n -butanol.The n -butanol/glycerin partition fractions were combined,and the n -butanol was evaporated.The remaining glycerin was removed by solid phase extraction over an RP-18cartridge using a gradient of water,water/methanol (4:1),and methanol.The saponins were found in the 100%methanol fractions.After evaporation of the solvent,the powder containing mainly saponins was fractionated by column chromatography on silica gel (280-×41-mm i.d.)using mixtures of CH 2Cl 2/methanol/water (80:20:5(lower layer)and 65:35:5)and methanol/water (8:2and 6:4)to yield eight fractions.Fraction 2was further separated by gel filtration on Sephadex LH-20(260-×19-mm i.d.)using methanol/water (1:1)to give ginsenoside F 2(27.5mg).Fraction 4was separated by gel filtration on Sephadex LH-20(methanol/water 1:1)to give four fractions (4a -4d).Gypenoside XVII (10.3mg)was purified from fraction 4c using an RP-18solid-phase extraction cartridge with a step gradient using mixtures of acetonitrile/water (1:4-1:1).The same compound (21.2mg)was isolated from fraction 4b after gel filtration on Sephadex LH-20(dichloromethane/methanol 1:1)and a final purification step using an RP-18solid-phase extraction cartridge with a mixture of acetonitrile/water (3:7)as solvent.The structures of gypenoside XVII and ginsenoside F 2(Figure 1)were elucidated by comparison of 1H NMR and MS spectra with literature values (5,6)and were confirmed by interpretation of complete 13C NMR and 2D datasets (HSQC,HMBC,and COSY90).The 13C NMR data,which has not been published so far,is listed in Table 1.RESULTS AND DISCUSSIONSeveral methods for the analysis of Panax spp.,especially P.ginseng ,have been published to date.Most of them use a gradient with acetonitrile and water,which gives an acceptable separation of the major saponins.To obtain a shorter run time,we used a modified version of the HPLC method published by Li et al.(7).The method validation,which proved accuracy,repeatability,intermediate precision,and linearity,showed that this method is suitable for the analysis of the major saponins.Accuracy was determined by addition of 9mL of standard solution to 1mL of 65%glycerin extract;each analysis was performed in duplicate.The recovery rate was between 93.9and 113.9%for all the saponins.Repeatability was evaluated on two samples,each sample injected six times in a row.The relative standard deviation of the results did not exceed 1.58%for any of the compounds.For intermediate precision (two workers,each preparing three samples),the relative standard deviation of the results was below 4.65%for the saponins analyzed.It is crucial,however,to have the specificity checked on a given sample,as the UV spectra of all the saponins are very similar,but the composition of the extract can be rather variable depending on the source of the roots.To verify that there had been no overlapping of peaks in the HPLC chromatogram,an LC-UV/MS analysis was carried out on every lot (Figure 2).In general,the main ions observed in the MS spectrum were the sodiated molecular ions [M +Na]+,and to a lesser extent,the [M +K]+ions.The cleavage reaction in the MS/MS experiment occurs predominantely at the glycosidic linkage at C(20),as described by (8).The amounts of total saponins in the 50%aqueous ethanol extract (61.7(0.1mg/g dry root)and theethanol/glycerin/Figure 1.Structures of the saponins analyzed.Table 1.13CNMR Data of Gypenoside XVII and Ginsenoside F 2aglycone sugar moieties gypenoside XVIIginsenosideF 2gypenoside XVII ginsenosideF 23-Glc C-139.639.6C-1′107.4107.4C-227.027.0C-2′76.276.2C-389.289.2C-3′79.779.7C-440.140.1C-4′72.372.3C-556.856.8C-5′78.878.8C-618.818.8C-6′63.563.5C-735.535.5C-840.440.520-Glc C-950.650.6C-1037.337.4C-1′′98.598.7C-1131.231.3C-2′′75.275.5C-1270.570.5C-3′′80.279.2C-1349.949.9C-4′′72.072.1C-1451.851.8C-5′′77.578.7C-1531.131.2C-6′′70.663.3C-1627.127.2C-1′′′105.8C-1752.052.0C-2′′′75.7C-1816.416.4C-3′′′79.2C-1916.716.7C-4′′′72.1C-2083.883.7C-5′′′78.8C-2122.822.8C-6′′′63.2C-2236.636.6C-2323.623.6C-24126.4126.4C-25131.4131.3C-2626.226.1C-2718.118.1C-2828.528.5C-2917.217.2C-3017.817.8Saponins in Extracts of Panax quinquefoliusJ.Agric.Food Chem.,Vol.52,No.6,20041547water extract (59.4(0.5mg/g dry root)were similar,but saponins were significantly lower in the 65%aqueous glycerin extract (51.5(0.2mg/g dry root).Interestingly,the amount of individual saponins varied depending on the solvent (Table 2).Ginsenosides Rb 1and Rd were best extracted in 50%aqueous ethanol,while the highest levels of gypenoside XVII and ginsenoside F 2were found in the glycerin extract.The ethanol/glycerin/water extract contained amounts of saponins similar to the 50%aqueous ethanol extract with the exceptions of ginsenosides Rb 1,Rd,and gypenoside XVII.The amount of total saponins decreased over the period of one year in all three extracts,with a loss in the range of 13-15%(Table 3).The fact that the amounts of gypenoside XVII and ginsenoside F 2were high while the amounts of ginsenosides Rb 1,Rc,and Rd were low in the glycerin extract compared to the ethanol-containing products suggested that a possible cleavage of the terminal sugars in ginsenoside Rb 1,and to a lesser extent in Rc and Rd,might occur.This could be due to enzymatic activity.It has been reported that plant enzymes can be active even after harvesting and drying of the plant material (9).Two enzymes that can catalyze a cleavage of terminal sugars have been isolated recently (10,11)from roots of Asian ginseng (P.ginseng C.A.Meyer).A hydrolytic cleavage,which has been described by Karikura et al.(12),seems unlikely.ThehydrolysisFigure 2.HPLC-UV/MS analysis of a 50%aqueous ethanol extract of Panax quinquefolius roots.Table 2.Amount of Saponins (mg/g Dry Root)Extracted in VariousSolvents after 6Weeks of Maceration50%ethanolethanol/glycerin/water65%glycerin ginsenoside Rg 1 1.59±0.03a 1.63±0.06a 1.51±0.03b ginsenoside Re 15.9±0.1a 15.7±0.2b 14.1±0.0c ginsenoside Rb 128.7±0.1a 26.3±0.1b 15.3±0.1c ginsenoside Rc 5.04±0.13a 5.01±0.01b 2.46±0.09c ginsenoside Rd 8.40±0.13a 7.48±0.05b 4.41±0.01c gypenoside XVII 1.63±0.05a 2.54±0.01b 10.9±0.0c ginsenoside F 20.49±0.01a 0.77±0.00b 2.70±0.01c total saponins61.7±0.1a59.4±0.5b51.5±0.2ca -cValues indicate mean ±SD (n )3).Mean values of each row followed by a different superscript letter differ significantly at P <0.05,according to Fisher’s PLSD test.Table 3.Amount of Saponins (mg/g dry root)Extracted in VariousSolvents after Storage of Extracts for One Year at 25°C50%ethanol ethanol/glycerin/water65%glycerin ginsenoside Rg 1 1.26±0.10a 1.37±0.06b 1.28±0.05a ginsenoside Re 12.6±0.1a 12.7±0.1a 11.4±0.1b ginsenoside Rb 124.7±0.4a 22.7±0.3b 13.6±0.2c ginsenoside Rc 4.56±0.11a 4.57±0.05a 2.40±0.05b ginsenoside Rd 7.61±0.14a 6.94±0.09b 4.15±0.02c gypenoside XVII 1.44±0.03a 2.26±0.06b 9.64±0.09c ginsenoside F 20.44±0.03a 0.76±0.01b 2.44±0.03c total saponins52.6±0.8a51.2±0.5b44.9±0.5ca -cValues indicate mean ±SD (n )6).Mean values of each row followed by a different superscript letter differ significantly at P <0.05,according to Fisher’s PLSD test.1548J.Agric.Food Chem.,Vol.52,No.6,2004Gafner et al.of ginsenoside Rb 1with 0.1N HCl favors cleavage between the C(20)-OH and the sugar moieties,leading to ginsenoside 20(S )-Rg 3.Furthermore,the evaluation of the extracts after 1year of storage at 25°C shows that there is only a slight decrease in ginsenoside Rb 1and no increase in gypenoside XVII after the end of the maceration period (Table 3).To determine if degradation was occurring during the maceration process,American ginseng roots were macerated with 65%glycerin extract or with 65%glycerin containing 100mM copper sulfate.It has been shown that enzymes from Asian ginseng,which hydrolyze ginsenoside Rc or ginsenoside Rg 3,were effectively inhibitied by Cu 2+at levels of 50and 100mM (10,11).The saponin content of each macerate was measured by HPLC on a weekly basis for 6weeks (Figures 3and 4).The results for the glycerin macerate indicated an increase in the amounts of ginsenoside Rb 1and gypenoside XVII by 22.7and 54.5%,respectively,over the whole 6weeks.The addition of CuSO 4to the extraction solvent gave a larger increase of ginsenoside Rb 1(54.2%),while the amount of gypenoside XVII increased only by 28.9%.These data provide evidence of an enzymatic cleavage of ginsenoside Rb 1in the glycerin extract.This means that the large amount of gypenoside XVII is at least in part due to a hydrolysis of ginsenoside Rb 1and that the enzyme responsible for the degradation may be membrane bound,as degradation stops as soon as the solid root parts are filtered off.Similar enzymatic reactions may take place with ginsenosides Rc and Rd as well,as the increase in levels of these two compounds over the 6weeks maceration time was much lower in the 65%aqueous glycerin macerate than in the sample extracted with 65%aqueous glycerin containing CuSO 4.Despite the fact that the ethanol extracts gave the highest yields of triterpene saponins,the study shows that the ethanol/glycerin/water mixture or the 65%aqueous glycerin extracts contain high amounts of the saponins as well.It remains to be clarified if the differences in the amount of individual saponins lead to an important change in the efficacy,especially as the ginsenosides have demonstrated a distinct bioactivity depending on the sugar moieties attached.Eventually,the presenceofFigure 3.Changes in the amounts of saponins in a 65%aqueous glycerin extract of Panax quinquefolius roots over a maceration period of 6weeks.Figure 4.Changes in the amounts of saponins in an extract of Panax quinquefolius roots over a maceration period of 6weeks using 65%aqueousglycerin containing 100mM CuSO 4as solvent.Saponins in Extracts of Panax quinquefolius J.Agric.Food Chem.,Vol.52,No.6,20041549gypenoside XVII and ginsenoside F2may lead to an increased bioavailability of an extract,as it has been shown in rats that the major metabolites of ginsenosides Rb1and Rd are formed via gypenoside XVII and/or ginsenoside F2(12). ACKNOWLEDGMENTWe are thankful to the Biochemistry NMR facility at Oregon State University for the NMR spectrometer time and to Elizabeth R.Dumas for her help with the manuscript.LITERATURE CITED(1)Yuan,C.S.;Attele,A.S.;Wu,J.A.;Liu,D.Modulation ofAmerican ginseng on brainstem GABAergic effects in rats.J.Ethnopharmacol.1998,62,215-222.(2)Li,Z.;Guo,Y.Y.;Wu,C.F.;Li,X.;Wang,J.H.Protectiveeffects of pseudoginsenoside-F11on scopolamine-induced memory impairment in mice and rats.J.Pharm.Pharmacol.1999,51, 435-440.(3)Vuksan,V.;Stavro,M.P.;Sievenpiper,J.L.;Koo,V.Y.;Wong,E.;Beljan-Zdravkovic,U.;Francis,T.;Jenkins,A.L.;Leiter,L.A.;Josse,R.G.;Xu,Z.American ginseng improves glycemia in individuals with normal glucose tolerance:Effect of dose and time escalation.J.Am.Coll.Nutr.2000,19,738-744.(4)Assinewe,V.A.;Arnason,J.T.;Aubry,A.;Mullin,J.;Lemaire,I.Extractable polysaccharides of Panax quinquefolius L.(NorthAmerican ginseng)root stimulate TNF-alpha production by alveolar macrophages.Phytomedicine2002,9,398-404. (5)Yahara,S.;Tanaka,O.;Komori,T.Saponins of the leaves ofPanax ginseng C.A.Meyer.Chem.Pharm.Bull.1976,24, 2204-2208.(6)Takemoto,T.;Arihara,S.;Nakajima,T.;Okuhira,M.Studieson the constituents of Gymnostema pentaphyllum Makino.II.Structures of gypenosides XV-XXI.Yakugaku Zasshi1983,103, 1015-1023.(7)Li,W.;Fitzloff,J. F.A validated method for quantitativedetermination of saponins in notoginseng(Panax notoginseng) using high-performance liquid chromatography with evaporative light-scattering detection.J.Pharm.Pharmacol.2001,53,1637-1643.(8)Ackloo,S.Z.;Smith,R.W.;Terlouw,J.K.;McCarry,B.E.Characterization of ginseng saponins using electrospray mass spectrometry and collision-induced dissociation experiments of metal-attachment ions.Analyst2000,125,591-597.(9)Nu¨sslein,B.;Kurzmann,M.;Bauer,R.;Kreis,W.Enzymaticdegradation of cichoric acid in Echinacea purpurea preparations.J.Nat.Prod,2000,63,1615-1618.(10)Zhang,C.Z.;Yu,H.S.;Bao,Y.M.;An,L.J.;Jin,F.X.Purification and characterization of ginsenoside-R-arabinofura-nase hydrolyzing ginsenoside Rc into Rd from the fresh root of Panax ginseng.Proc.Biochem.2002,37,793-798.(11)Zhang,C.Z.;Yu,H.S.;Bao,Y.M.;An,L.J.;Jin,F.X.Purification and characterization of ginsenoside- -glucosidase from ginseng.Chem.Pharm.Bull.2001,49,795-798. (12)Karikura,M.;Miyase,T.;Tanizawa,H.;Taniyama,T.;Takino,Y.Studies on absorption,distribution,excretion,and metabolism of ginseng parison of the decomposition modes of ginsenoside Rb1and-Rb2in the digestive tract of rats.Chem.Pharm.Bull.1991,39,2357-2361.Received for review November7,2003.Revised manuscript received January13,2004.Accepted January14,2004.This work has been financially supported by the National Institute of Health(grant GM63554).JF03075031550J.Agric.Food Chem.,Vol.52,No.6,2004Gafner et al.。