2-2 建筑地基基础计算
独立基础设计计算-带公式
1 柱下扩展基础1.1 基础编号: #8-31.2 地基承载力特征值 1.2.1 计算公式:《建筑地基基础设计规范》(GB 50007-2002) fa = fak + ηb * γ * (b - 3) + ηd * γm * (d - 0.5) (式 5.2.4)式中:fak =270.00kPa ηb =0.00ηd = 4.40基底以下γ =10.00kN/m基底以上γm =17.50kN/mb = 1.80md = 1.70m当 b = 1.500m < 3m 时,按 b = 3m 1.2.2 代入(式 5.2.4)有:修正后的地基承载力特征值 :fa = 362.40kPa1.2.3天然地基基础抗震验算时,地基土抗震承载力按《建筑抗震设计规范》(GB 50011-2001)(式 4.2.3)调整: 地基土抗震承载力提高系数 ξa = 1.30faE = ξa * fa =471.12kPa 1.3 基本资料 1.3.1柱子高度(X 方向)hc =500.00mm 柱子宽度(Y 方向)bc =500.00mm 1.3.2 柱下扩展基础计算(绿色为需输入数据,红色为计算结果)估算需要基础底面积A0=Nk/(fa-γm*ds)= 3.04m1.3.3基础底面宽度(X方向)b =1800.00mm底面长度(Y方向)L=2400.00mm基础根部高度 H =1000.00mm1.3.3 X 轴方向截面面积 Acb = h1 * b + (b + hc + 100) * (H - h1) / 2 = 0.45m Y 轴方向截面面积 Acl = h1 * l + (l + bc + 100) * (H - h1) / 2 = 0.45m 1.3.4 基础宽高比 基础柱边宽高比: (b - hc) / 2 / H =0.65≤ 2(L - bc) / 2 / H =0.95≤ 21.4 控制内力 1.4.11.5 轴心荷载作用下 pk = (Fk + Gk) / A (式 5.2.2-1) pk = 269.86kPa≤ faE,满足要求,OK!*******************************************************************************1.6 偏心荷载作用下 *pkmax = (Fk + Gk) / A + mk / W(用于e≤[e])(式 5.2.2-2) *Pkmax= 2/3*(Fk+Gk)/(b*ay)(用于e>[e]) (式 5.2.2-4) *pkmin = (Fk + Gk) / A - mk / W (式 5.2.2-3) ********************************************************************************X方向计算偏心矩ex = mky / (Fk + Gk) =0.063max=b/2-ex=0.837m[ey]=b/6=0.300mex≤ [ex]基础底面抵抗矩Wx = L *b *b / 6 = 1.296m pkmaxX =326.42kPa ≤ 1.2*faE ,满足要求。
完整版)《建筑地基基础设计规范》
完整版)《建筑地基基础设计规范》上的建筑物,应按变形控制设计原则,满足使用功能要求。
第5章“地基基础设计的计算方法”之强制性条文:第5.2.1条:地基基础设计中,应根据地基土和岩石的性质和特点,选择合适的承载力计算方法和参数,确保设计的合理性和安全性。
第6章“地基基础设计的变形计算”之强制性条文:第6.2.1条:地基基础设计中,应根据地基土和岩石的变形特点,选择合适的变形计算方法和参数,确保设计的合理性和安全性。
第7章“地基基础设计的稳定性计算”之强制性条文:第7.2.1条:地基基础设计中,应根据地基土和岩石的稳定性特点,选择合适的稳定性计算方法和参数,确保设计的合理性和安全性。
第8章“地基基础设计的施工及验收”之强制性条文:第8.2.1条:地基基础施工前,应进行地基土和岩石的勘察和试验,确定地基的性质和特点,制定合理的施工方案和验收标准。
第9章“地基基础设计的监测与检测”之强制性条文:第9.2.1条:地基基础施工后,应进行地基的监测和检测,及时发现和解决地基问题,确保建筑物的安全和稳定。
第10章“特殊地基基础设计”之强制性条文:第10.2.1条:特殊地基基础设计中,应根据地基的特殊性质和特点,选择合适的设计方法和参数,确保设计的合理性和安全性。
新规范于2002年4月1日开始实施,取代了原规范(GBJ7-89)。
新规范共有27条强制性条文,分别分配在第3章至第10章中。
新规范明确了地基基础设计中承载力极限状态和正常使用极限状态的使用范围和计算方法,并强调按变形控制设计的原则,满足建筑物使用功能的要求。
同时,对岩石分类和地基土的冻胀分类进行了细化,并增加了有限压缩层地基变形和回弹变形计算方法、岩石边坡支护设计方法、复合地基设计方法、基坑工程设计方法、地基基础检测与监测内容。
取消了壳体基础设计的规定。
新规范第1.0.2条明确规定了地基基础设计必须坚持因地制宜、就地取材、保护环境和节约资源的原则,精心设计。
阶梯基础计算(新规范)
阶梯基础计算(新规范)结构构件计算书一、设计依据《建筑地基基础设计规范》(GB50007-2022)①《混凝土结构设计规范》(GB50010-2022)②二、示意图三、计算信息矩形柱宽bc=400mm矩形柱高hc=400mm基础高度h1=300mm基础高度h2=300mm基础高度h3=350mm一阶长度b1=450mmb2=450mm一阶宽度a1=450mma2=450mm二阶长度b3=450mmb4=450mm二阶宽度a3=450mma4=450mm三阶长度b5=500mmb6=500mm三阶宽度a5=500mma6=500mm2.材料信息基础混凝土等级:C30ft_b=1.43N/mm2fc_b=14.3N/mm2柱混凝土等级:C30ft_c=1.43N/mm2fc_c=14.3N/mm2钢筋级别:HRB335fy=300N/mm23.计算信息结构重要性系数:γo=1.0基础埋深:dh=3.000m纵筋合力点至近边距离:a=40mm基础及其上覆土的平均容重:γ=19.000kN/m3最小配筋率:ρmin=0.150%4.作用在基础顶部荷载标准组合值第1页,共8页结构构件计算书F=1300.000kNM某=-20.000kN某mMy=21.000kN某mV某=-15.000kNVy=16.000kNk=1.25Fk=F/k=1300.000/1.25=1040.000kNM某k=M某/k=-20.000/1.25=-16.000kN某mMyk=My/k=21.000/1.25=16.800kN某mV某k=V某/k=-15.000/1.25=-12.000kNVyk=Vy/k=16.000/1.25=12.800kN5.修正后的地基承载力特征值fa=160.000kPa四、计算参数1.基础总长B某=b1+b2+b3+b4+b5+b6+bc=0.450+0.450+0.450+0.450+0.500+0.500+0.400= 3.200m2.基础总宽By=a1+a2+a3+a4+a5+a6+hc=0.450+0.450+0.450+0.450+0.500+0.500+0.40 0=3.200mA1=a1+a2+a3+hc/2=0.450+0.450+0.450+0.400/2=1.550mA2=a4+a 5+a6+hc/2=0.450+0.500+0.500+0.400/2=1.650mB1=b1+b2+b3+bc/2=0.450 +0.450+0.450+0.400/2=1.550mB2=b4+b5+b6+bc/2=0.450+0.500+0.500+0. 400/2=1.600m3.基础总高H=h1+h2+h3=0.300+0.300+0.350=0.950m4.底板配筋计算高度ho=h1+h2+h3-a=0.300+0.300+0.350-0.040=0.910m25.基础底面积A=B某某By=3.200某3.200=10.240m6.Gk=γ某B某某By某dh=19.000某3.200某3.200某3.000=583.680kNG=1.35某Gk=1.35某583.680=787.968kN五、计算作用在基础底部弯矩值Md某k=M某k-Vyk某H=-16.000-12.800某0.950=-28.160kN某mMdyk=Myk+V某k某H=16.800+(-12.000)某0.950=5.400kN某mMd某=M某-Vy某H=-20.000-16.000某0.950=-35.200kN某mMdy=My+V某某H=21.000+(-15.000)某0.950=6.750kN某m六、验算地基承载力1.验算轴心荷载作用下地基承载力pk=(Fk+Gk)/A=(1040.000+583.680)/10.240=158.563kPa【①5.2.1-2】因γo某pk=1.0某158.563=158.563kPa≤fa=160.000kPa轴心荷载作用下地基承载力满足要求2.验算偏心荷载作用下的地基承载力e某k=Mdyk/(Fk+Gk)=5.400/(1040.000+583.680)=0.003m因|e某k|≤B某/6=0.533m某方向小偏心,由公式【①5.2.2-2】和【①5.2.2-3】推导2Pkma某_某=(Fk+Gk)/A+6某|Mdyk|/(B某某By)2=(1040.000+583.680)/10.240+6某|5.400|/(3.200某3.200)=159.551kPa2Pkmin_某=(Fk+Gk)/A-6某|Mdyk|/(B某某By)2=(1040.000+583.680)/10.240-6某|5.400|/(3.200某3.200)第2页,共8页结构构件计算书=157.574kPaeyk=Md某k/(Fk+Gk)=-28.160/(1040.000+583.680)=-0.017m因|eyk|≤By/6=0.533my方向小偏心Pkma某_y=(Fk+Gk)/A+6某|Md某k|/(By2某B某)=(1040.000+583.680)/10.240+6某|-28.160|/(3.2002某3.200)=163.719kPaPkmin_y=(Fk+Gk)/A-6某|Md某k|/(By2某B某)=(1040.000+583.680)/10.240-6某|-28.160|/(3.2002某3.200)=153.406kPa3.确定基础底面反力设计值Pkma某=(Pkma某_某-pk)+(Pkma某_y-pk)+pk=(159.551-158.563)+(163.719-158.563)+158.563=164.708kPaγo某Pkma某=1.0某164.708=164.708kPa≤1.2某fa=1.2某160.000=192.000kPa偏心荷载作用下地基承载力满足要求七、基础冲切验算1.计算基础底面反力设计值1.1计算某方向基础底面反力设计值e某=Mdy/(F+G)=6.750/(1300.000+787.968)=0.003m因e某≤B某/6.0=0.533m某方向小偏心Pma某_某=(F+G)/A+6某|Mdy|/(B某2某By)=(1300.000+787.968)/10.240+6某|6.750|/(3.2002Pmin_某=(F+G)/A-6某|Mdy|/(B某2某By)=(1300.000+787.968)/10.240-6某|6.750|/(3.2002某3.200)=202.667kPa1.2计算y方向基础底面反力设计值ey=Md某/(F+G)=-35.200/(1300.000+787.968)=-0.017m因ey≤By/6=0.533y方向小偏心Pma某_y=(F+G)/A+6某|Md某|/(By2某B某)=(1300.000+787.968)/10.240+6某|-35.200|/(3.2002某3.200)=210.348kPaPmin_y=(F+G)/A-6某|Md某|/(By2某B某)=(1300.000+787.968)/10.240-6某|-35.200|/(3.2002某3.200)=197.458kPa1.3因Md某≠0Mdy≠0Pma某=Pma某_某+Pma某_y-(F+G)/A第3页,共8页结构构件计算书YH=h1+h2+h3=0.950m,YB=bc=0.400m,YL=hc=0.400mYB1=B1=1.550m,YB2=B2=1.600m,YL1=A1=1.550m,YL2=A2=1.650mYHo=Y H-a=0.910m2.1因800某冲切位置斜截面上边长bt=YB=0.400m某冲切位置斜截面下边长bb=YB+2某YHo=2.220m某冲切不利位置bm=(bt+bb)/2=(0.400+2.220)/2=1.310m某冲切面积22Al某=ma某((YL1-YL/2-ho)某(YB+2某ho)+(YL1-YL/2-ho),(YL2-YL/2-ho)某(YB+2某ho)+(YL2-YL/2-ho)2=ma某((1.550-0.400/2-0.910)某(0.400+2某0.910)+(1.550-0.400/2-0.910),(1.650-0.400/2-0.910)某2(0.400+2某0.910)+(1.650-0.400/2-0.910))=ma某(1.170,1.490) 2=1.490m某冲切截面上的地基净反力设计值Fl某=Al某某Pjma某=1.490某134.634=200.659kNγo某Fl某=1.0某200.659=200.66kNγo某Fl某≤0.7某βhp某ft_b某bm某YHo(6.5.5-1)=0.7某0.988某1.43某1310某910=1178.38kN某方向柱对基础的冲切满足规范要求2.3y方向柱对基础的冲切验算y冲切位置斜截面上边长at=YL=0.400my冲切位置斜截面下边长ab=YL+2某YHo=2.220my冲切面积22Aly=ma某((YB1-YB/2-ho)某(YL+2某ho)+(YB1-YB/2-ho),(YB2-YB/2-ho)某(YL+2某ho)+(YB2-YB/2-ho))2=ma某((1.550-0.400/2-0.910)某(0.400+0.910)+(1.550-0.400/2-0.910),(1.600-0.400/2-0.910)某(02.400+0.910)+(1.600-0.400/2-0.910))=ma某(1.170,1.328)2=1.328my冲切截面上的地基净反力设计值Fly=Aly某Pjma某=1.328某134.634=178.781kNγo某Fly=1.0某178.781=178.78kNγo某Fly≤0.7某βhp某ft_b某am某YHo(6.5.5-1)=0.7某0.988某1.43某1310某910=1178.38kNy方向柱对基础的冲切满足规范要求3.验算h2处冲切YH=h2+h3=0.650mYB=bc+b3+b6=1.350mYL=hc+a3+a6=1.350mYB1=B1=1.550m,YB2=B2=1.600m,YL1=A1=1.550m,YL2=A2=1.650m第4页,共8页结构构件计算书YHo=YH-a=0.610m3.1因(YH≤800)βhp=1.03.2某方向变阶处对基础的冲切验算某冲切位置斜截面上边长bt=YB=1.350m某冲切位置斜截面下边长bb=YB+2某YHo=2.570m某冲切不利位置bm=(bt+bb)/2=(1.350+2.570)/2=1.960m某冲切面积2Al某=ma某((YL1-YL/2-ho)某(YB1+YB/2+ho)+(YL1-YL/2-ho)/2,(YL2-YL/2-ho)某(YB1+YB/2+ho)+(YL2-YL/2-h2o)/22=ma某((1.550-1.350/2-0.910)某(1.550+1.350/2+0.910)+(1.550-1.350/2-0.910)/2,(1.650-1.350/22-0.910)某(1.550+1.350/2+0.910)+(1.650-1.350/2-0.910)/2)=ma 某(-0.109,0.206)2=0.206m某冲切截面上的地基净反力设计值Fl某=Al某某Pjma某=0.206某134.634=27.720kNγo某Fl某=1.0某27.720=27.72kNγo某Fl某≤0.7某βhp某ft_b某bm某YHo(6.5.5-1)=0.7某1.000某1.43某1960某610=1196.80kN某方向变阶处对基础的冲切满足规范要求3.3y方向变阶处对基础的冲切验算y冲切位置斜截面上边长at=YL=1.350my冲切位置斜截面下边长ab=YL+2某YHo=2.570my冲切面积2Aly=ma某((YB1-YB/2-ho)某(YL1+YL/2+ho)+(YB1-YB/2-ho)/2,(YB2-YB/2-ho)某(YL1+YL/2+ho)+(YB2-YB/2-h2o)/2)2=ma某((1.550-1.350/2-0.910)某(1.550+1.350/2+0.910)+(1.550-1.350/2-0.910)/2,(1.600-1.350/22-0.910)某(1.550+1.350/2+0.910)+(1.600-1.350/2-0.910)/2)=ma 某(-0.109,0.047)2=0.047my冲切截面上的地基净反力设计值Fly=Aly某Pjma某=0.047某134.634=6.346kNγo某Fly=1.0某6.346=6.35kNγo某Fly≤0.7某βhp某ft_b某am某YHo(6.5.5-1)=0.7某1.000某1.43某1960某610=1196.80kNy方向变阶处对基础的冲切满足规范要求4.验算h3处冲切YH=h3=0.350mYB=bc+b2+b3+b5+b6=2.300mYL=hc+a2+a3+a5+a6=2.300mYB1=B1=1.550m,YB2=B2=1.600m,YL1=A1=1.550m,YL2=A2=1.650m第5页,共8页结构构件计算书YHo=YH-a=0.310m4.1因(YH≤800)βhp=1.04.2某方向变阶处对基础的冲切验算因YL/2+ho>=YL1和YL/2+h0>=YL2某方向基础底面外边缘位于冲切破坏锥体以内,不用计算某方向的柱对基础的冲切验算4.3y方向变阶处对基础的冲切验算因YB/2+ho>=YB1和YB/2+ho>=YB2y方向基础底面外边缘位于冲切破坏锥体以内,不用计算y方向的柱对基础的冲切验算八、基础受剪承载力验算基础底面短边尺寸大于柱宽加两倍基础有效高度,不需验算受剪承载力!九、柱下基础的局部受压验算因为基础的混凝土强度等级大于等于柱的混凝土强度等级,所以不用验算柱下扩展基础顶面的局部受压承载力。
《建筑地基基础设计方法及实例分析(第二版)》第2章
24
土的物理特征
无粘性土的密实度 密实度 如何衡量?
单位体积中固体颗粒含量的多少 1) 按天然孔隙比 e 确定
优点:简单方便 缺点:不能反映级配的影响
只能用于同一种土 对 策
2) 按相对密实度Dr确定
emin = 0.35 emin = 0.20
2.1 设计基本要求
2.1 设计基本要求
粘性土的可塑性及其指标
可塑性
当土在一定条件下,因受外力作用被塑造或搓揉成任意形状而不产生 裂缝,且当外力移去后,仍能保持既得形状的性能,称为土的可塑性。
塑性指数
I p wL wp
塑性指数表示粘性土呈可塑状态时含水量的变化范围。
工程应用
----塑性指数与粘性土中土粒的组成、粘粒的含量及矿物 成分有关。土粒越细,含量越高,则其比表面积就越大,此时 粘性土中结合水含量就越高,塑性指数就会随之增大。从矿物 成分看,粘土中蒙脱石含量越多,塑性指数会急剧增大。
运积土
有搬运
重力: 坡积土 土粒粗细不同,性质不均匀
洪积土 有分选性,近粗远细
流水:
冲积土 浑圆度分选性明显,土层交迭 湖泊沼泽沉积土 含有机物淤泥,土性差
海相沉积物 颗粒细,表层松软,土性差
冰川: 冰积土 土粒粗细变化较大,性质不均匀
风力:风积土 颗粒均匀,层厚而不具层理
12
2.1 设计基本要求
强度问题 变形问题
土的应力-应变关系的假定
碎散体
非线性 弹塑性
① 连续介质 (宏观平均)
② 线弹性体 (应力较小时)
Δσ
线弹性体
成层土
③ 均匀一致各向同性体
各向异性 (土层性质变化不大时)
(完整word版)建筑地基基础设计规范(GB50007-2011)
1 总则1.0.1 为了在地基基础设计中贯彻执行国家的技术经济政策,做到安全适用、技术先进、经济合理、确保质量、保护环境,制定本规范。
1.0.2 本规范适用于工业与民用建筑(包括构筑物)的地基基础设计。
对于湿陷性黄土、多年冻土、膨胀土以及在地震和机械振动荷载作用下的地基基础设计,尚应符合国家现行相应专业标准的规定。
1.0.3 地基基础设计,应坚持因地制宜、就地取材、保护环境和节约资源的原则;根据岩土工程勘察资料,综合考虑结构类型、材料情况与施工条件等因素,精心设计。
1.0.4 建筑地基基础的设计除应符合本规范的规定外,尚应符合国家现行有关标准的规定。
2 术语和符号2.1 术语2.1.1 地基Subgrade, Foundation soils支承基础的土体或岩体。
2.1.2 基础Foundation将结构所承受的各种作用传递到地基上的结构组成部分。
2.1.3 地基承载力特征值Characteristic value of subgrade bearing capacity由载荷试验测定的地基土压力变形曲线线性变形段内规定的变形所对应的压力值,其最大值为比例界限值。
2.1.4 重力密度(重度)Gravity density, Unit weight单位体积岩土体所承受的重力,为岩土体的密度与重力加速度的乘积。
2.1.5 岩体结构面Rock discontinuity structural plane岩体内开裂的和易开裂的面,如层面、节理、断层、片理等,又称不连续构造面。
2.1.6 标准冻结深度Standard frost penetration在地面平坦、裸露、城市之外的空旷场地中不少于10年的实测最大冻结深度的平均值。
2.1.7 地基变形允许值Allowable subsoil deformation为保证建筑物正常使用而确定的变形控制值。
2.1.8 土岩组合地基Soil-rock composite subgrade在建筑地基的主要受力层范围内,有下卧基岩表面坡度较大的地基;或石芽密布并有出露的地基;或大块孤石或个别石芽出露的地基。
独立基础计算
以下是程序生成的计算结果,未作任何改动。
柱下扩展基础:J-11、地基承载力设计值:计算公式:《建筑地基基础设计规范》(GBJ7-89)f=fk + ηb*γ*(b-3) + ηd*γo*(d-0.5) (式5.1.3)式中:fk=100.0(kPa)ηb=0.00,ηd=1.00γ=18.0(kN/m3),γo=18.0(kN/m3)b=3.600(m), d=1.500(m)f=100+0.00*18*(3.600-3)+1.00*18*(1.500-0.5)=118.0(kPa)地基承载力设计值f=118.0(kPa)2、地基承载力验算:(1)、基本资料:竖向力设计值F=1450.0(kN)基础自重设计值和基础上的土重标准值G=100.0(kN)作用于基础底面的力矩设计值Mx=35.00(kN·M)My=56.00(kN·M)基础底面长度a=3650(mm),(X方向)基础底面宽度b=3600(mm),(Y方向)基础根部高度H=600(mm)柱子高度hc=400(mm),(X方向)柱子宽度bc=400(mm),(Y方向)as=35(mm)混凝土强度等级为C20。
fc=10.0(N/mm2);fcm=11.0(N/mm2); ft=1.10(N/mm2)钢筋强度设计值fy=210(N/mm2)(2)、当轴心荷载作用时:p=(F+G)/A (式5.1.5-1)其中:A=a*b=3.650*3.600=13.14(m2)p=(1450.0 + 100.0)/13.14=118.0(kPa)≤118.0(kPa),满足要求。
(3)、当偏心荷载作用时:pmax=(F+G)/A+M/W (式5.1.5-2)pmin=(F+G)/A-M/W (式5.1.5-3)My=56.00(kN·M)偏心矩ex=My/(F+G)=56.00/(1450.0+100.0)=0.036(m)≤a/6=3.650/6=0.608(m)基础底面抵抗矩Wx=b*a*a/6=3.600*3.650*3.650/6=7.9935(m3)pmaxX=(1450.0+100.0)/13.14+56.00/7.9935=125.0(kPa)≤1.2*118.0=141.6(kPa),满足要求。
2-6 木结构计算 2-1 荷载与结构静力计算表 2-2 建筑地基基础计算
2-6 木结构计算12-6-1 木结构计算用表1.承重结构构件材质等级(表2-97)承重结构构件材质等级表2-97注:1.屋面板、挂瓦条等次要构件可根据各地习惯选材,不统一规定其材质等级。
2.本表中的材质等级系按承重结构的受力要求分级,其选材应符合《木结构设计规范》GBJ 5-88材质标准的规定,不得用一般商品材等级标准代替。
2.常用树种木材的强度设计值和弹性模量(表2-98)常用树种木材的强度设计值和弹性模量(N/mm2)表2-98注:1.对位于木构件端部(如接头处)的拉力螺栓垫板,其计算中所取用的木材横纹承压强度设计值,应按“局部表面及齿面”一栏的数值采用。
木材树种归类说明见《木结构设计规范》附录五。
2.当采用原木时,若验算部位未经切削,其顺纹抗压和抗弯强度设计值和弹性模量可提高15%。
1因新的木结构设计规范尚未出版,此处仍按“木结构设计规范”(GBJ 5-88)编写。
3.当构件矩形截面短边尺寸不小于150mm时,其抗弯强度设计值可提高10%。
4.当采用湿材时,各种木材横纹承压强度设计值和弹性模量,以及落叶松木材的抗弯强度设计值宜降低10%。
5.在表2-99所列的使用条件下,木材的强度设计值及弹性模量应乘以该表中给出的调整系数。
木材强度设计值和弹性模量的调整系数表2-99验算。
2.当若干条件同时出现,表列各系数应连乘。
木材强度检验标准见表2-100。
木材强度检验标准表2-100注:1.检验时,应从每批木材的总根数中随机抽取3根为试材,在每根试材髓心以外部分切取3个试件为一组,根据各组平均值中最低的一个值确定该批木材的强度等级。
2.试验应按现行国家标准《木材物理力学性能试验方法》进行。
并应将试验结果换算到含水率为12%的数值。
3.按检验结果确定的木材强度等级,不得高于表2-98中同树种木材的强度等级。
对于树名不详的木材,应按检验结果确定的等级,采用表2-98中该等级B的设计指标。
3.新利用树种木材的强度设计值和弹性模量(表2-101)新利用树种木材的强度设计值和弹性模量(N/mm2)表2-101注:杨木和拟赤杨的顺纹强度设计值和弹性模量可按TB11级数值乘以0.9采用;横纹强度设计值可按TB11级数值乘以0.6采用。
地基变形计算技巧
地基变形计算技巧应用Excel 进行地基变形计算的技巧赵文廷一、概述国家标准《建筑地基基础设计规范》(GB500072—2002)规定:地基基础设计等级为甲级和乙级的建筑物应按地基变形设计,部分地基基础设计等级为丙级的建筑物应作地基变形验算。
国家标准《岩土工程勘察规范》(GB50021—2001)及国家行业标准《高层建筑岩土工程勘察规范》(JGJ72—2004 J366—2004)规定:岩土工程勘察应预测和评价天然地基变形量。
此外,对天然地基进行均匀性评价,也需要按地基变形计算方法确定钻孔的当量压缩模量。
因此,地基变形计算是岩土工程师必作的主要工作之一。
地基变形计算是一项较烦索的工作,以往手工计算,不仅重复工作量大,而且很容易出错。
如果采用电子表格进行地基变形计算,即可以提高计算效率,又可保证计算准性和精确性。
下面介绍一下应用Excel 进行地基变形计算的一些技巧。
二、地基变形计算原理及要求㈠ 地基变形计算原理地基变形计算方法有多种,国家现行标准《建筑地基基础设计规范》GB50007—2002(以下简称规范GB50007)规定:计算地基变形时,地基内的应力分布可采用各向同性均质线性变形体理论,其最终变形量可按下式计算:)(1110--=-='=∑i i i i n i sis s z z E p s s ααψψ 式中 s ——地基最终变形量(mm );s '——按分层总和法计算的地基变形量(mm ); 图一:地基沉降计算简图α系数 曲线s ψ——沉降计算经验系数,根据地基沉降观测资料及经验确定。
无地区经验时,可采用表1的数值;n ——地基变形计算深度范围内所划分的土层数(图一);0p ——对应于荷载效应准永久组合时,基础底面处的附加压力(kPa );si E ——基础底面下第i 层土的压缩模量(MPa ),应取土层自重压力至土层自重压力与附加压力之和压力段计算;i z 、1-i z ——基础底面至第i 土层、第1-i 土层底面的距离(m );i α、1-i α——基础底面计算点至第i 土层、第1-i 土层底面范围内平均附加应力系数,可按规范GB50007附录K 采用;s E ——地基变形计算深度范围内当量压缩模量(MPa ),应按下式计算:∑∑=sii i s E A AEi A ——第i 土层附加应力系数沿土层厚度的积分值(kN/m ),即:)(110---=i i i i i z z p A αα∑iA ——地基变形计算深度范围内所有土层的附加应力系数沿土层厚度的积分值之和(kN/m );∑si i E A ——按分层总和法计算出的地基变形量(mm ),即∑sii E A s '=。
地基基础工程的试验内容、方法和判断标准基本规定
(四)地基基础工程的试验内容、方法和判断标准1.试验内容(1)桩基工程包含下列主要检测项目:1) 单桩竖向抗压承载力;2) 单桩、带承台单桩水平承载力;3) 单桩抗拔承载力;4) 桩身完整性;5) 桩身混凝土强度;6)桩长、桩身倾斜度;7) 桩端持力层岩土鉴别和力学性能;8) 桩承台、承台梁、基础混凝土强度;9) 桩身内力,桩侧阻、端阻力;10)桩身混凝土原材料物理、化学性能。
(2)复合地基包含下列主要检测项目:1) 单桩、多桩复合地基竖向抗压承载力;2) 桩身完整性;3) 桩长:4)桩身或其它增强体材料强度及性能;5)桩间土竖向抗压承载力及力学性能;6)基础混凝土强度。
(3)天然地基,压实填土地基、预压地基、强夯地基、注浆地基及换填垫层等人工地基包含下列主要检测项目:1) 竖向抗压承载力及变形模量;2) 换填材料性能:3) 填土,换填材料预压地基的施工密实度及均勾性:4)基础混凝土强度。
(4)应拫据规范DB42/269-2003及有关规范的规定结合工程具体情况确定检测项目,并结合检测目的、要求及现场条件按规范DB42/269-2003规定选用检测方法。
处理检测数据时,应结合岩土工程条件、施工工艺、操作等情况,综合分析得出结论。
对重要工程或疑难问题,宜选取多种检测方法。
2.试验方法(1)建筑地基基础工程在检测前应取得下列资料:1) 检测的目的及要求;2) 场地的岩土工程勘察报告:3) 鉴定、施工及验收检测时的基础平面图及剖面图、桩位布置图等相关图纸及资料;4)桩型、桩径、桩长、配筋情况、桩顶标高、混凝土强度等级;5) 施工记录(包括成桩工艺,压、打入桩应了解压桩力及缍重等);6)场地环境、通道及电力等情况;7) 复合地基尚应取得面积置换率、复合土层厚度、复合土层增强体的材料性质等资料;8)与检测工作相关的其它资料。
(2)钻孔灌注桩、沉管灌注桩、夯扩桩、预制桩、人工挖孔桩的检测应执行以下规定:1) 为设计提供单桩竖向抗压承载力依据时,应采用竖向抗压静载荷试验的方法进行检测并宜加载至破坏:当单桩极限承载力大于15000kN时,对端承型桩或嵌岩桩,有条件时可采用深层平板静载荷试验(嵌岩桩可釆用岩基静载荷试验)进行检测。
2-2 建筑地基基础计算
2-2 建筑地基基础计算2-2-1 地基基础计算用表1.地基基础设计等级(表2-27)地基基础设计等级表2-27根据建筑物地基基础设计等级及长期荷载作用下地基变形对上部结构的影响程度,地基基础设计应符合下列规定:(1)所有建筑物的地基计算均应满足承载力计算的有关规定。
(2)设计等级为甲级、乙级的建筑物,均应按地基变形设计。
(3)表2-28所列范围内设计等级为丙级的建筑物可不作变形验算,如有下列情况之一时,仍应作变形验算:1)地基承载力特征值小于130kPa,且体型复杂的建筑;2)在基础上及其附近有地面堆载或相邻基础荷载差异较大,可能引起地基产生过大的不均匀沉降时;3)软弱地基上的建筑物存在偏心荷载时;4)相邻建筑距离过近,可能发生倾斜时;5)地基内有厚度较大或厚薄不均的填土,其自重固结未完成时。
(4)对经常受水平荷载作用的高层建筑、高耸结构和挡土墙等,以及建造在斜坡上或边坡附近的建筑物和构筑物,尚应验算其稳定性。
(5)基坑工程应进行稳定性验算。
(6)当地下水埋藏较浅,建筑地下室或地下构筑物存在上浮间题时,尚应进行抗浮验算。
可不作地基变形计算设计等级为丙级的建筑物范围表2-28注:1.地基主要受力层系指条形基础底面下深度为3b(b为基础底面宽度),独立基础下为1.5b,且厚度均不小于5m的范围(二层以下一般的民用建筑除外);2.地基主要受力层中如有承载力特征值小于130kPa的土层时,表中砌体承重结构的设计,应符合《建筑地基基础设计规范》(GB 50007-2002)中第7章的有关要求;3.表中砌体承重结构和框架结构均指民用建筑,对于工业建筑可按厂房高度、荷载情况折合成与其相当的民用建筑层数;4.表中吊车额定起重量、烟囱高度和水塔容积的数值系指最大值。
2.基础宽度和埋深的地基承载力修正系数(表2-29)承载力修正系数表2-29注:1.强风化和全风化的岩石,可参照所风化成的相应土类取值,其他状态下的岩石不修正;2.地基承载力特征值按地基基础设计规范附录D深层平板载荷试验确定时ηd取0。
基础计算
地基承载力特征值f a =0.33*9.945=3.28MPa单桩竖向承载力设计值 :N ≤A·f c ·ψc地基承载力特征值f ak =0.33*9.945=3.28MPa(4.2.3条)f a =(1+0.052·n)f ak(8.1.11条)ZJ1条基1800mm axb= 1.4x7.3N max =37125KN N kmax =30937.5KNM=2838kN·m M k =2365KN V=123KN V k =102.5KN10.22m23.50MPaγ0·p k =3127.15kpa 满足γ0·p kmax =3350.33kpa 满足N=24177KN N k =20147.5KN M max =11858kN·m M kmax =9881.6667KN V max =1384KN V kmax =1153.3333KN10.22m 23.49MPaγ0·p k =2071.38kpa 满足γ0·p kmax =3237.10kpa满足二) 桩身承载力计算A---桩身截面面积1. 本工程桩身承载力计算,《建筑地基基础设计规范》(DBJ50-047-2006)的8.3.4条。
2. 工作条件系数ψc =0.9 。
3. 桩混凝土等级:C30,f c =14.3 N/mm 2。
4.桩顶竖向力N 采用荷载效应的基本组合,采用 satwe 的底层墙柱最大内力组合值 。
R=β·f a ·A pγ0·N k ≤R ;6栋基础计算4.中风化泥岩的天然抗压强度标准值为11.70MPa ,地基极限承载力标准值f uk 为0.85*11.7=9.945MPa 桩基计算一) 桩基承载力计算1. 本工程桩基嵌岩段承载力计算,采用《建筑地基基础设计规范》(DBJ50-047-2006)的8.3.10条。
建筑地基基础设计规范(GB50007-2011)修订内容.
扩展基础
1 锥形基础的边缘高度不宜小于200mm,且两个方向的坡度不宜大于1:3;阶梯形基础的每 阶高度,宜为300mm~500mm;
2 垫层的厚度不宜小于70mm,垫层混凝土强度等级不宜低于C10;
3 扩展基础受力钢筋最小配筋率不应小于0.15%,底板受力钢筋的最小直径不宜小于10mm, 间距不宜大于200mm,也不宜小于100mm。墙下钢筋混凝土条形基础纵向分布钢筋的直径不 宜小于8mm;间距不宜大于300mm;每延米分布钢筋的面积应不小于受力钢筋面积的15% 。 当有垫层时钢筋保护层的厚度不应小于40mm;无垫层时不应小于70mm;
2 不满足上述条件时,应考虑刚性下卧层的影响,按下式计算地基的变形:
sgz gzsz
sgz——具刚性下卧层时,地基土的变形计算值(mm); βgz——刚性下卧层对上覆土层的变形增大系数; sz——变形计算深度相当于实际土层厚度确定的地基最终变形计算值 (mm)。
岩石地基(新增)
岩石地基基础设计应符合下列规定: 1 置于完整、较完整、较破碎岩体上的建筑物可仅进行地基承载力计算; 2 地基基础设计等级为甲、乙级的建筑物,同一建筑物的地基存在坚硬程度不同,两种或 多种岩体变形模量差异达2 倍及2 倍以上,应进行地基变形验算; 3 地基主要受力层深度内存在软弱下卧岩层时,应考虑软弱下卧岩层的影响进行地基稳定 性验算; 4 桩孔、基底和基坑边坡开挖应控制爆破,到达持力层后,对软岩、极软岩表面应及时封 闭保护; 5 当基岩面起伏较大,且都使用岩石地基时,同一建筑物可以使用多种基础形式; 6 当基础附近有临空面时,应验算向临空面倾覆和滑移稳定性。存在不稳定的临空面时, 应将基础埋深加大至下伏稳定基岩;亦可在基础底部设置锚杆,锚杆应进入下伏稳定 岩体,并满足抗倾覆和抗滑移要求。同一基础的地基可以放阶处理,但应满足抗倾覆和抗 滑移要求; 7 对于节理、裂隙发育及破碎程度较高的不稳定岩体,可采用注浆加固和清爆填塞 等措施。 8对遇水易软化和膨胀、易崩解的岩石,应采取保护措施减少其对岩体承载力的影响。
《建筑地基基础设计规范》
《建筑地基基础设计规范》(GB50007-2002)新内容有关调整部分:新规范于2002年4月1日启用,原规范(GBJ7-89)于2002年12月31日废止;新规范规定必须严格执行的强制性条文共27条,具体分配为:第3章有2条、第5章有4条、第6章有3条、第7章有3条、第8章有9条、第9章有3条、第10章有4条;新规范主要修订内容是:明确了地基基础设计中承载力极限状态和正常使用极限状态的使用范围和计算方法;强调按变形控制设计的原则,满足建筑物使用功能的要求;细化岩石分类和地基土的冻胀分类;增加有限压缩层地基变形和回弹变形计算方法;增加岩石边坡支护设计方法;增加复合地基设计方法;增加基坑工程设计方法;增加地基基础检测与监测内容;取消了壳体基础设计的规定。
新规范第1.0.2条中明确规定:地基基础设计,必须坚持因地制宜、就地取材、保护环境和节约资源的原则;根据岩土工程勘察资料,综合考虑结构类型、材料情况与施工条件等因素,精心设计。
新规范第1.0.4条中明确规定:在设计时,荷载取值应符合现行国家标准《建筑结构荷载规范》(GB50009)的规定;基础的计算尚应符合现行国家标准《砼结构设计规范》(GB50010)和《砌体结构设计规范》(GB50003)的规定。
强制性条文部分:第3章“基本规定”之强制性条文:第3.0.2条:根据建筑物地基基础设计等级及长期荷载作用下地基变形对上部结构的影响程度,地基基础设计应符合下列规定:所有建筑物的地基计算均应满足承载力计算的有关规定;设计等级为甲级、乙级的建筑物(地基基础设计等级分类参见表 3.0.1),均应按地基变形设计;注:场地和地基条件简单、荷载分布均匀的七层及七层以下民用建筑及一般工业建筑物;次要的轻型建筑物,被定为丙级建筑物。
表3.0.2所列范围内设计等级为丙级的建筑物可不作变形验算,如有下列情况之一时,仍应作变形验算:地基承载力特征值小于130Kpa,且体型复杂的建筑;在基础上及其附近有地面堆载或相邻基础荷载差异较大,可能引起地基产生过大的不均匀沉降时;软弱地基上的建筑物存在偏心荷载时;相邻建筑距离过近,可能发生倾斜时;地基内有厚度较大或厚薄不均的填土,其自重固结未完成时。
《建筑地基基础设计方法及实例分析(第二版)》第1章
《岩土工程勘察规范》(GB50021-2001) 主要内容
(8)地下水 增加了地下水勘察的要求;删除了工程降水一节;提出了 抗浮设防水位的问题。 (9 )侧胀试验 扁铲侧胀试验(DM T )(Dilatomeler lesD)20世纪 70年代在意大利开始研究应用,美国ASTM和欧洲规范都 已经先后列入。侧胀试验可用于判别土类、确定粘性土的 状态、测定土的静止侧压力系数和基床系数等,在我国已 有产品,并已经过工程试用。
《岩土工程勘察规范》的历史沿革 《岩土工程勘察规范》(GB50021-2001)
建设部1998 年发文修订这本规范。 1999 年完成调研、专题研究报告初稿和修订初稿; 2000年完成征求意见稿、征求意见和送审稿; 2001年一季度开审查会,二季度完成报批稿,完成规 范的修订工作。
《岩土工程勘察规范》(GB50021-2001)的性质和作用
《岩土工程勘察规范》的历史沿革
70年代前期和中期蕴育着一批岩土工程规范的诞生和修改。 《工业与民用建筑工程地质勘察规范》(TJ21-77)就是其中一本重要 规范,标志着我国开始有了岩土工程勘察的全国标准。
《工业与民用建筑工程地质勘察规范》(TJ21-77)
《岩土工程勘察规范》的历史沿革
《工业与民用建筑工程地质勘察规范》(TJ21-77) 时代局限性 技术路线盲目排外:既企图消除前苏联技术的影响
勘察主要任务是摸清主要受力层范围内的问题, 承载力、变形。
2
第一章 建筑工程地基勘察要求 《岩土工程勘察规范》的历史沿革
20世纪50年代,我国工程程建设主要按前苏联规范的规定 进行勘察设计,在引用前苏联规范的过程中我国的工程师 积累了许多工程经验。
《岩土工程勘察规范》的历史沿革
60年代是我国岩土工程标准化的初创时期。虽然限于当时条件,内 容比较朴实、简要,但毕竟是我国自己编制的最初的岩土工程标准 ,标志着我国岩土工程技术在大规模的工程建设中从无到有,并开 始走向成熟,也反映了当时我国岩土工程技术队伍的水平。
建筑地基基础设计规范
1总则1.0.1 为了在地基基础设计中贯彻执行国家的技术经济政策,做到安全适用、技术先进、经济合理、确保质量、保护环境,制定本规范。
1.0.2 本规范适用于工业与民用建筑(包括构筑物)的地基基础设计。
对于湿陷性黄土、多年冻土、膨胀土以及在地震和机械振动荷载作用下的地基基础设计,尚应符合国家现行相应专业标准的规定。
1.0.3 地基基础设计,应坚持因地制宜、就地取材、保护环境和节约资源的原则;根据岩土工程勘察资料,综合考虑结构类型、材料情况与施工条件等因素,精心设计。
1.0.4 建筑地基基础的设计除应符合本规范的规定外,尚应符合国家现行有关标准的规定。
2 术语和符号2.1 术语2.1.1 地基 Subgrade, Foundation soils支承基础的土体或岩体。
2.1.2 基础 Foundation将结构所承受的各种作用传递到地基上的结构组成部分。
2.1.3 地基承载力特征值 Characteristic value of subgrade bearing capacity由载荷试验测定的地基土压力变形曲线线性变形段内规定的变形所对应的压力值,其最大值为比例界限值。
2.1.4 重力密度(重度) Gravity density, Unit weight单位体积岩土体所承受的重力,为岩土体的密度与重力加速度的乘积。
2.1.5 岩体结构面 Rock discontinuity structural plane岩体内开裂的和易开裂的面,如层面、节理、断层、片理等,又称不连续构造面。
2.1.6 标准冻结深度 Standard frost penetration在地面平坦、裸露、城市之外的空旷场地中不少于10年的实测最大冻结深度的平均值。
2.1.7 地基变形允许值 Allowable subsoil deformation为保证建筑物正常使用而确定的变形控制值。
2.1.8 土岩组合地基 Soil-rock composite subgrade在建筑地基的主要受力层范围内,有下卧基岩表面坡度较大的地基;或石芽密布并有出露的地基;或大块孤石或个别石芽出露的地基。
建筑地基基础设计规范(2)
8.4 高层建筑筏形基础8.4.1 筏形基础分为梁板式和平板式两种类型,其选型应根据地基土质、上部结构体系、柱距、荷载大小、使用要求以及施工条件等因素确定。
框架-核心筒结构和筒中筒结构宜采用平板式筏形基础。
【条文说明】 筏形基础分为平板式和梁板式两种类型,其选型应根据工程具体条件确定。
与梁板式筏基相比,平板式筏基具有抗冲切及抗剪切能力强的特点,且构造简单,施工便捷,经大量工程实践和部分工程事故分析,平板式筏基具有更好的适应性。
8.4.2筏形基础的平面尺寸,应根据工程地质条件、上部结构的布置、地下结构底层平面以及荷载分布等因素按本规范第五章有关规定确定。
对单幢建筑物,在地基土比较均匀的条件下,基底平面形心宜与结构竖向永久荷载重心重合。
当不能重合时,在作用的准永久组合下,偏心距e 宜符合下式规定:e ≤0.1W /A (8.4.2)式中:W ——与偏心距方向一致的基础底面边缘抵抗矩(m 3); A ——基础底面积(m 2)。
【条文说明】 对单幢建筑物,在均匀地基的条件下,基础底面的压力和基础的整体倾斜主要取决于作用的准永久组合下产生的偏心距大小。
对基底平面为矩形的筏基,在偏心荷载作用下,基础抗倾覆稳定系数KF 可用下式表示:式中:B ——与组合荷载竖向合力偏心方向平行的基础边长;e ——作用在基底平面的组合荷载全部竖向合力对基底面积形心的偏心距;y ——基底平面形心至最大受压边缘的距离,γ为y 与B 的比值。
从式中可以看出e/B 直接影响着抗倾覆稳定系数K F ,K F 随着e/B 的增大而降低,因此容易引起较大的倾斜。
表16三个典型工程的实测证实了在地基条件相同时,e/B 越大,则倾斜越大。
表16 e/B 值与整体倾斜的关系高层建筑由于楼身质心高,荷载重,当筏形基础开始产生倾斜后,建筑物总重对基础底面形心将产生新的倾复力矩增量,而倾复力矩的增量又产生新的倾斜增量,倾斜可能随时间而增长,直至地基变形稳定F y B K e e e B γγ===为止。
GB50007-2002-建筑地基基础设计规范
建筑地基基础设计规范标准第1章总则第1.0.1条为了在地基基础设计中贯彻执行国家的技术经济政策,做到安全适用,技术先进,经济合理,确保质量,保护环境.制定本规范.第1.0.2条地基基础设计,必须坚持因地制宜,说地取材,保护环境和节约资源的原则;根据岩土工程勘察资料,综合考虑结构类型,材料情况与施工条件等因素,精心设计.第1.0.3条本规范适用于工业与民用建筑(包括构筑物)的地基基础设计.对于湿陷性黄土,多年冻土,膨胀土以及在地震和机械振动荷载作用下的地基基础设计,尚应符合现行有关标准,规范的规定.第1.0.4条采用本规范设计时,荷载取值应符合现行国家标准《建筑结构荷载规范》GB50009的规定;基础的计算尚应符合现行国家标准<<混凝土结构设计规范>>GB50010和<<砌体结构设计规范>>GB50003的规定.当基础处于侵蚀性环境或受温度影响时,尚应符合国家且行的有关强性规范的规定,采取相应的防护措施.第2章术语和符号2.1 术语第2.1.1条地基subgrade foundation soils为支承基础的土体或岩体.第2.1.2条基础foundation将结构所承受的各种作用传递到地基上的结构组成部分.第2.1.3条地基承载力特征值characteristic value of subgrade bearing capacity指由载荷试验测定的地基土压力变形曲线线性变形内规定的变形所对应的压力值,其最大值为比例界限值.第2.1.4条重力密度(重度)gravity dansity unit weight单位体积岩土所承受的重力,为岩土的密度与重力加速度的乘积.第2.1.5条岩体结构面rock disconrinuity structural plane岩体内开裂的和易开裂的面.如层面,节理,断层等.又称不连续构造面.第2.1.6条标准冻深standard forst penetration在地面平坦,裸露,城市外的空旷场地中不少于10年的实测最大冻深的平均值.第2.1.7条地基变形允许值allowable subsoil deformation为保证建筑物正常使用而确定的变形控制值.第2.1.8条土岩组合地基soil-rock composite subgrade在建筑地基(或被沉降缝分隔区段的建筑地基)的主要受力层范围内,有下卧基岩表面坡度较大的地基;或石密布并有出露的地基;或大块孤石或个别石出露的地基.第2.1.9条地基处理ground treatment指为提高地基土的承载力,改善其变形性质或渗透性质而采取的人工方法.第2.1.10条复合地基composite subgrade composite foundation部分土体被增强或被置换,而形成的由地基土和增强体共同承担荷载的人工地基.第2.1.11条扩展基础spread foundation将上部结构传来的荷载,通过向侧边扩展成一定底面积,使作用在基底的压应力等于或小于地基土的允许承载力,而基础内部的应力应同时满材料本身的强度要求,这种起到压力扩散作用的基础称为扩展基础.第2.1.12条无筋扩展基础non-reinforced spread foundation由砖,毛石,混凝土或毛石混凝土,灰土和三合土等材料组成的,且不需配置钢筋的墙下条形基础或柱下独立基础.第2.1.13条桩基础pile foundation由设置于岩土中的桩和联接于桩顶端的承台组成的基础.第2.1.14条支挡结构retaining structure使岩土边坡保持稳定,控制位移而建造的结构物.第2章术语和符号2.1 术语第2.1.1条地基subgrade foundation soils为支承基础的土体或岩体.第2.1.2条基础foundation将结构所承受的各种作用传递到地基上的结构组成部分.第2.1.3条地基承载力特征值characteristic value of subgrade bearing capacity 指由载荷试验测定的地基土压力变形曲线线性变形内规定的变形所对应的压力值,其最大值为比例界限值.第2.1.4条重力密度(重度)gravity dansity unit weight单位体积岩土所承受的重力,为岩土的密度与重力加速度的乘积.第2.1.5条岩体结构面rock disconrinuity structural plane岩体内开裂的和易开裂的面.如层面,节理,断层等.又称不连续构造面.第2.1.6条标准冻深standard forst penetration在地面平坦,裸露,城市外的空旷场地中不少于10年的实测最大冻深的平均值.第2.1.7条地基变形允许值allowable subsoil deformation为保证建筑物正常使用而确定的变形控制值.第2.1.8条土岩组合地基soil-rock composite subgrade在建筑地基(或被沉降缝分隔区段的建筑地基)的主要受力层范围内,有下卧基岩表面坡度较大的地基;或石密布并有出露的地基;或大块孤石或个别石出露的地基.第2.1.9条地基处理ground treatment指为提高地基土的承载力,改善其变形性质或渗透性质而采取的人工方法.第2.1.10条复合地基composite subgrade composite foundation部分土体被增强或被置换,而形成的由地基土和增强体共同承担荷载的人工地基.第2.1.11条扩展基础spread foundation将上部结构传来的荷载,通过向侧边扩展成一定底面积,使作用在基底的压应力等于或小于地基土的允许承载力,而基础内部的应力应同时满材料本身的强度要求,这种起到压力扩散作用的基础称为扩展基础.第2.1.12条无筋扩展基础non-reinforced spread foundation由砖,毛石,混凝土或毛石混凝土,灰土和三合土等材料组成的,且不需配置钢筋的墙下条形基础或柱下独立基础.第2.1.13条桩基础pile foundation由设置于岩土中的桩和联接于桩顶端的承台组成的基础.第2.1.14条支挡结构retaining structure使岩土边坡保持稳定,控制位移而建造的结构物.第3章基本规定第3.0.1条根据地基复杂程度,建筑物规模和功能特征以及由于地基问题可能造成建筑物破坏或影响正常使作的程度,将地基础设计分为三个设计等级,设计时应根据具体情况,按表3.0.1选用.地基基础设计等级表3.0.1第3.0.2条根据建筑物地基基础设计等级及长期荷载作用下地基变形对上部结构的影响程度,地基基础设计应符合下列规定:1.所有建筑物的地基计算均应满足承载力计算的有关规定;2.所有建筑物为甲级,乙级的建筑物,均应按地基变形规定;3.表3.0.2所列范围内设计等级为丙级的建筑物可不作变形验算,如有下列情况时,仍应作变形验算;1)地基承载力标准值小于130kPa,且体型复杂的建筑;2)在基础上及其附近有地面堆载或相邻基础荷载差异较大,引起地基产生过大的不均匀沉降时;3)软弱地基上的相邻建筑如距离过近,可能发生倾斜时;4)相邻建筑距离过近,可能发生倾斜;5)地基内有厚度较大或厚薄不均的填土,其自重固结未完成时。
建筑基础使用层数计算公式
建筑基础使用层数计算公式在建筑设计和施工中,建筑基础的设计是非常重要的一环。
建筑基础的设计不仅关系到建筑物的稳定性和安全性,还直接影响到建筑物的使用寿命和整体结构。
而建筑基础使用层数的计算公式则是确定建筑基础设计的关键因素之一。
建筑基础使用层数计算公式是根据建筑物的结构和荷载来确定的。
在进行基础设计时,需要考虑建筑物的总重量、地下水位、土壤的承载能力等因素。
下面我们将介绍建筑基础使用层数计算公式的具体内容和应用方法。
建筑基础使用层数计算公式的具体内容如下:建筑基础使用层数 = 建筑物总重量 / 地基土壤的承载能力。
其中,建筑物总重量是指建筑物的自重和荷载的总和,包括建筑物的结构、设备、人员、家具等。
地基土壤的承载能力是指土壤能够承受的最大荷载,通常以单位面积承受的最大荷载来表示,单位为kN/m²。
在实际应用中,建筑基础使用层数计算公式需要根据具体的建筑物结构和地基土壤条件进行调整和修正。
一般来说,建筑物的结构越复杂,荷载越大,地基土壤的承载能力越低,建筑基础使用层数就越多。
在进行建筑基础使用层数计算时,需要首先确定建筑物的总重量。
建筑物的总重量包括建筑物的自重和荷载,其中建筑物的自重可以通过建筑物的结构设计参数来计算,荷载可以通过建筑物的使用用途和设计规范来确定。
其次,需要确定地基土壤的承载能力。
地基土壤的承载能力可以通过地质勘察和土壤力学试验来确定。
通常,地基土壤的承载能力是根据土壤的类型、密实度、含水量等因素来确定的。
最后,根据建筑基础使用层数计算公式,可以得出建筑基础的设计要求。
根据计算结果,可以确定建筑基础的尺寸和深度,以满足建筑物的稳定性和安全性要求。
需要注意的是,建筑基础使用层数计算公式是根据理论计算得出的结果,实际设计中还需要考虑到一些实际情况的影响因素,如地下水位的变化、土壤的沉降等。
因此,在进行建筑基础设计时,需要综合考虑多种因素,确保建筑基础的设计符合实际要求。
总之,建筑基础使用层数计算公式是建筑基础设计的重要依据之一,通过合理的计算和设计,可以确保建筑物的稳定性和安全性。
基础工程设计计算案例题
设计计算案例题1. 某建筑物基础底面尺寸为3m×4m ,基础理深d =1.5m ,拟建场地地下水位距地表1.0m ,地基土分布:第一层为填土,层厚为1米,γ=18.0kN/m 3;第二层为粉质粘土,层厚为5米,γ=19.0kN/m 3,φk =22º,C k =16kPa ;第三层为淤泥质粘土,层厚为6米,γ=17.0kN/m 3,φk =11º,C k =10kPa ;。
按《地基基础设计规范》(GB50007-2002)的理论公式计算基础持力层地基承载力特征值f a ,其值最接近下列哪一个数值?(A) 184kPa ; (B) 191kPa ; (C) 199 kPa ; (D) 223kPa 。
2. 某沉箱码头为一条形基础,在抛石基床底面处的有效受压宽度Be ˊ =12m,墙前基础底面以上边载的标准值为q k =18kPa,抛石基床底面以下地基土的指标标准值为:内摩擦角k ϕ=30º,粘聚力c k =0,天然重度γ=19kN/m 3·抛石基床底面合力与垂线间夹角δˊ=11.3º。
不考虑波浪力的作用,按《港口工程地基规范》(1T7250-98 )算得的地基极限承载力的竖向分力标准值最接近下列哪一个数值?(k ϕ=30º时,承载力系数N γB =8.862, N qB =12.245)(A) 7560.5kN/m ; (B) 7850.4kN/m ; (C) 8387.5kN/m ; (D) 8523.7kN/m 。
3. 某建筑物的箱形基础宽9m ,长20m ,埋深d =5m ,地下水位距地表2.0m ,地基土分布:第一层为填土,层厚为1.5米,γ=18.0kN/m 3;第二层为粘土,层厚为10米,水位以上γ=18.5kN/m 3、水位以下γ=19.5kN/m 3,L I =0.73,e =0.83由载荷试验确定的粘土持力层承载力特征值f ak =190kPa 。
建筑地基与基础钢筋量计算
建筑地基与基础钢筋量计算建筑地基是建筑物的基础,承受建筑物重量并将其传递到地下的土壤中。
地基的设计和施工是建筑工程中非常重要的一部分,其中包括计算地基的尺寸和基础钢筋量。
下面将介绍一些常用的方法来计算建筑地基和基础钢筋的量。
1.确定地基的类型和尺寸:地基的类型和尺寸取决于建筑物的类型和重量。
常见的地基类型包括浅基础和深基础。
浅基础用于轻型建筑物,深基础用于重型建筑物。
确定地基尺寸的方法通常是根据建筑物的重量和土壤的承载力来计算。
2.计算地基的尺寸:地基尺寸的计算通常遵循以下几个步骤:a.确定土壤的承载力:土壤的承载力是指在不发生陷落或沉降的情况下能够承受的最大重量。
要确定土壤的承载力,可以进行现场勘测或参考地质资料。
b.确定建筑物的重量:建筑物的重量包括自身重量和受荷载引起的重量。
要确定建筑物的重量,可以参考建筑设计文件或进行结构分析。
c.计算地基面积:根据土壤的承载力和建筑物的重量,可以计算出所需的地基面积。
这通常通过将建筑物的重量除以土壤的承载力来计算得出。
d.确定地基的深度:地基的深度取决于土壤类型和所需的承载能力。
一般来说,地基的深度应该超过冻土层或松土层。
3.计算基础钢筋量:基础钢筋是为了增强地基的承载能力而加入的钢筋。
基础钢筋的计算通常遵循以下几个步骤:a.确定地基底面积:地基底面积是指地基的投影面积。
要计算地基底面积,可以将地基尺寸投影在水平面上。
b.确定基础钢筋的配筋率:基础钢筋的配筋率是指钢筋的面积与地基底面积之比。
一般来说,基础钢筋的配筋率应在0.5%到1.5%之间,具体取决于设计要求和土壤性质。
c.计算基础钢筋的总量:基础钢筋的总量等于基础钢筋的配筋率乘以地基底面积。
例如,如果地基底面积为100平方米,基础钢筋的配筋率为1%,则基础钢筋的总量为100平方米乘以1%等于1平方米。
需要注意的是,以上所述的方法只是一种简化的计算方法,实际的计算方法可能更加复杂和细致。
在进行真实的建筑地基和基础钢筋计算时,应该参考相关的建筑设计规范和标准,并且最好由经验丰富的工程师进行计算和设计。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2-2 建筑地基基础计算
2-2-1 地基基础计算用表
1.地基基础设计等级(表2-27)
地基基础设计等级表2-27
根据建筑物地基基础设计等级及长期荷载作用下地基变形对上部结构的影响程度,地基基础设计应符合下列规定:
(1)所有建筑物的地基计算均应满足承载力计算的有关规定。
(2)设计等级为甲级、乙级的建筑物,均应按地基变形设计。
(3)表2-28所列范围内设计等级为丙级的建筑物可不作变形验算,如有下列情况之一时,仍应作变形验算:
1)地基承载力特征值小于130kPa,且体型复杂的建筑;
2)在基础上及其附近有地面堆载或相邻基础荷载差异较大,可能引起地基产生过大的不均匀沉降时;
3)软弱地基上的建筑物存在偏心荷载时;
4)相邻建筑距离过近,可能发生倾斜时;
5)地基内有厚度较大或厚薄不均的填土,其自重固结未完成时。
(4)对经常受水平荷载作用的高层建筑、高耸结构和挡土墙等,以及建造在斜坡上或边坡附近的建筑物和构筑物,尚应验算其稳定性。
(5)基坑工程应进行稳定性验算。
(6)当地下水埋藏较浅,建筑地下室或地下构筑物存在上浮间题时,尚应进行抗浮验算。
可不作地基变形计算设计等级为丙级的建筑物范围表2-28
注:1.地基主要受力层系指条形基础底面下深度为3b(b为基础底面宽度),独立基础下为1.5b,且厚度均不小于5m的范围(二层以下一般的民用建筑除外);
2.地基主要受力层中如有承载力特征值小于130kPa的土层时,表中砌体承重结构的设计,应符合《建筑地基基础设计规范》(GB 50007-2002)中第7章的有关要求;
3.表中砌体承重结构和框架结构均指民用建筑,对于工业建筑可按厂房高度、荷载情况折合成与其相当的民用建筑层数;
4.表中吊车额定起重量、烟囱高度和水塔容积的数值系指最大值。
2.基础宽度和埋深的地基承载力修正系数(表2-29)
承载力修正系数表2-29
注:1.强风化和全风化的岩石,可参照所风化成的相应土类取值,其他状态下的岩石不修
正;
2.地基承载力特征值按地基基础设计规范附录D深层平板载荷试验确定时ηd取0。
3.建筑物的地基变形允许值(表2-30)
建筑物的地基变形允许值表2-30
g
24<H g≤60 0.003
60<H g≤100 0.0025
注:1.本表数值为建筑物地基实际最终变形允许值;
2.有括号者仅适用于中压缩性土;
3.l为相邻柱基的中心距离(mm);H g为自室外地面起算的建筑物高度(m);
4.倾斜指基础倾斜方向两端点的沉降差与其距离的比值;
5.局部倾斜指砌体承重结构沿纵向6~10m内基础两点的沉降差与其距离的比值。
4.压实填土的质量控制(表2-31)
压实填土的质量控制表2-31
注:1.压实系数λc 为压实填土的控制干密度ρd 与最大干密度ρdmax 的比值,w op 为最优含水量;
2.地坪垫层以下及基础底面标高以上的压实填土,压实系数不应小于0.94。
5.房屋沉降缝宽度(表2-32)和相邻建筑物基础间的净距(表2-33
)
房屋沉降缝的宽度 表2-32
相邻建筑物基础间的净距(m ) 表2-33
注:1.表中L 为建筑物长度或沉降缝分隔的单元长度(m );H f 为自基础底面标高算起的建筑物高度(m );
2.当被影响建筑的长高比为1.5<L/H f <2.0时,其间净距可适当缩小。
6.无筋扩展基础台阶宽高比的允许值(表2-34)
无筋扩展基础台阶宽高比的允许值 表2-34
注:1.p k为荷载效应标准组合时基础底面处的平均压力值(kPa);
2.阶梯形毛石基础的每阶伸出宽度,不宜大于200mm;
3.当基础由不同材料叠合组成时,应对接触部分作抗压验算;
4.基础底面处的平均压力值超过300kPa的混凝土基础,尚应进行抗剪验算。
2-2-2 地基及基础计算
2-2-2-1 基础埋置深度
基础埋置深度,应按下列条件确定:
1.建筑物的用途,有无地下室、设备基础和地下设施,基础的型式和构造;
2.作用在地基上的荷载大小和性质;
3.工程地质和水文地质条件;
4.相邻建筑物和基础埋深;
5.地基土冻胀和融陷的影响。
在满足地基稳定和变形要求的前提下,基础宜试埋。
除岩石地基处,基础埋深不宜小于0.5m。
筏形和箱形基础的埋置深度,应满足地基承载力、变形和稳定性要求。
天然地基上的箱形和筏形基础的埋置深度不宜小于建筑物高度的1/15;桩箱或桩筏基础的埋置深度(不计桩长)不宜小于建筑物高度的1/18~1/20。
当存在相邻建筑物时,新建建筑物的基础埋深不宜大于原有建筑基础。
当埋深大于原有建筑基础时,两基础间应保持一定净距。
否则应采取分段施工,设支护结构,或加固原有建筑物基础。
确定基础埋深尚应考虑地基的冻胀性。
2-2-2-2 地基计算
地基计算见表2-35。
地基计算表2-35
2-2-2-3 基础计算
基础计算见表2-36。
基础计算表2-36
淘文库。