东北林大学报英文版 2004黑木耳超微粉制备技术_英文_
黑木耳微粉化
黑木耳微粉化黑木耳是“四大素山珍”之一,被誉为“素中之荤,素中之王”,在世界上被称为“中餐中的黑色瑰宝”,是中国餐桌上的一道美食。
黑木耳一直以来以传统泡发吃法为主,但是据科学研究,食用鲜木耳,人体对其的吸收率仅30%~40%,远远低于木耳本身真正的营养价值,对于人体来说,这是极大的浪费。
研究表明,如果将黑木耳打磨成粉,其在人体内的吸收率将大大增加。
随着食品工业的发展和人们生活水平的提高,人们对食品的要求也愈来愈高,不仅注重食品的营养成分,同时更注重食品中营养成分的吸收利用,功效大小,食品的口感以及摄入的方便程度等,而对一些具有特殊功效的食品和广泛食用的食品,进行微粒化、超微化处理可使其比表面积成倍的增加,提高其活性吸收率,并使食品的表面电荷粘着力发生奇妙的变化。
因此,超微粉己在食品中广泛应用。
研究表明,与常规粉碎相比,经超微粉碎后的食品,尤其是保健食品,更容易被机体所吸收,这是因为常规粉碎其细胞的破壁率较低,相应的有效成分(以水溶性成分为例)难以被人体吸收,一般粉粒进入胃中,有效成分不断地通过细胞壁及细胞膜释放出来,因颗粒的粒径较大,释放速度很慢,而颗粒在体内停留时间是有限的,相当一部分粒子的有效成分在未完全释放出来之前就被排出体外,使食品的生物利用率降低。
食品经过超微粉碎后,细胞内的有效成分充分暴露出来,其释放速度及释放量会大幅度提高,人体吸收则较为容易,而且吸收量也会增加。
对于固体食物而言,由于相当一部分为水不溶性物质,其粒度越细生物利用越高,提高物料细度,增大其比表面积,有利于提高体内的吸收量及吸收速度。
基于以上研究,对营养价值丰富的黑木耳的超微粉化应运而生。
超微木耳粉的吸收率可达98%,实现了对黑木耳的高效利用,其天然纯正的特性也打消了众多消费者的食品安全顾虑,木耳冲着喝的时尚养生新理念也迎合了广大白领的心理需求。
期待超微木耳粉会带来一场养生理念的新冲击。
黑木耳超微粉氨基酸和维生素含量变化及原因
黑木耳超微粉氨基酸和维生素含量变化及原因
杨春瑜;方迪;齐勇
【期刊名称】《中国食用菌》
【年(卷),期】2004(23)6
【摘要】采用F型高速万能粉碎机和JM-50胶体磨机械法结合真空冷冻干技术制备了黑木耳超微粉.比较了超微粉碎后黑木耳氨基酸和维生素含量变化,结果表明:超微粉碎后黑木耳氨基酸总量增加显著,在超微加工过程中维生素B2受到很大破坏.并分析了含量变化的原因.同时分析了超微粉碎后黑木耳的其他变化及产生的原因.【总页数】3页(P33-35)
【作者】杨春瑜;方迪;齐勇
【作者单位】东北林业大学,林学院食品与工程教研室,哈尔滨,150040;东北林业大学,机电工程学院,哈尔滨,150040;哈尔滨工业大学,科技园,哈尔滨,150001
【正文语种】中文
【中图分类】S646.6
【相关文献】
1.黑木耳液流超高压超微粉碎的试验 [J], 李成华;曹龙奎
2.超微粉碎对黑木耳多糖提取率的影响 [J], 杨春瑜;薛海晶
3.超声波协同超微粉技术辅助酸法提取黑木耳果胶 [J], 韦汉昌;梁锦叶;韦群兰;李若华
4.超微粉碎协同超声波法提取黑木耳多糖工艺的研究 [J], 闫凤超;李佳梅
5.振动磨超微粉碎黑木耳的试验研究 [J], 李成华;曹龙奎
因版权原因,仅展示原文概要,查看原文内容请购买。
ICP-AES测定超微木耳粉中微量元素及扫描电镜观察
smpepe aain N t ca i: ec lr cd 1 : ( ou t )T esmpe iet ndsov da 2 a l rp rt . i cd p rhoi a i= 01 v lmer i . h a lsdg si i le t 0℃ o i r c ao o s 1
检分 测析
霞品 研究与 开发
第1第 期 20 4 0年4 3 月 卷
8 9
I P A S 定超微木耳粉 中 C—E 测 微量元素及扫描 电镜观察
张 五 荣 侯 天 平 , 林 , 曹
(. 1 吉林大学 地球科学学 院 , 吉林 长春 10 6 ; . 3 0 1 2吉林 工程技 术师范学院 信息工程学 院, 吉林 长春 10 5 ; 30 2 3 . 北京科技大学 材料物理系, 北京 10 8 ) 0 0 3
( . ol g f e s ic , i nUnv ri , h n c u 0 , i n C i a 2 Jl e c esI s t t o n i e iga d 1 C l eo o cc e J i ie s y C a g h n 1 0 6 Jl , h n ; . i nT a h r n t ue f gn e n n e G l t 3 1 i i i E T c n lg , h n c u 3 0 2 Jl , h n ; . e a me t f tr l h sc , ie s yo ce c n e h oo y e h oo y C a g h n 1 0 5 , i n C i a 3 D p  ̄ n e i y is Un v r i f in ea d T c n l g i o Ma a P t S
超微粉碎对黑木耳多糖提取率的影响
超微粉碎对黑木耳多糖提取率的影响
杨春瑜;薛海晶
【期刊名称】《食品研究与开发》
【年(卷),期】2007(028)007
【摘要】通过酸法(柠檬酸-柠檬酸钠缓冲液)提取黑木耳多糖,并比较粗粉和超微粉多糖的提取率,分别通过正交试验确定了黑木耳粗粉与超微粉多糖的最佳提取因素.粗粉∶液料比为110,时间为5.5 h,温度为90℃,pH值为5.5;微粉:温度为85℃.时间为4.5 h,液料比为160,pH值为6.粗粉和超微粉多糖经过纯化冻干后得率分别为12.12%和15.78%.
【总页数】5页(P34-38)
【作者】杨春瑜;薛海晶
【作者单位】东北林业大学林学院,黑龙江,哈尔滨,150040;江南大学,江苏,无
锡,214122;东北林业大学林学院,黑龙江,哈尔滨,150040
【正文语种】中文
【中图分类】TS2
【相关文献】
1.提取方法对黑木耳多糖提取效果的影响 [J], 赵玉红;党媛;王振宇
2.黑木耳多糖提取工艺优化及其对小鼠巨噬细胞功能的影响 [J], 许海林;吴小勇;聂少平;黄延盛;唐青涛
3.超微粉碎在孔石莼多糖提取中的应用 [J], 綦慧敏;赵婷婷;张全斌;张虹;牛锡珍;赵增芹
4.振动式超微粉碎处理时间对白毛木耳多糖提取率及体外抗氧化性质的影响 [J], 邵家威;郝征红;岳凤丽;付建鑫;刘莹;仇荟然
5.球磨超微粉碎对桦褐孔菌粉体颗粒特性及多糖提取效果的影响 [J], 李振江;刘莹;支莉;李天文;郎双静;王立东
因版权原因,仅展示原文概要,查看原文内容请购买。
黑木耳多糖与Fe(Ⅱ)螯合物的制备工艺及红外光谱研究
( ) ;i l o c nrt n f F (1 ,H n Ⅱ , nt c n e t i o e i a ao I)p a d
c ea e I O h r p r t n o AP— e e e h l i t me n I e p e a a i f A o F w r d e m ied etr n by orh on t s . Th pr t og al e t e epart n ai o c
一 பைடு நூலகம்
~
合 已 有 报 道 , 黑 木 耳 多 糖 的螯 合 还 未 见 报 道 。本 文 与
选 用黑 木 耳 多 糖作 为螯 合 剂 , 统 研 究 其 与 F Ⅱ) 系 e( 的 螫 台 条 件 , 并 对 螯 合 物 进 行 r傅 立 叶 红 外 光 谱 研
究 。 其 在 食 品 、 药 、 健 品 l 功 能 材 料 方 面 的 应 为 医 保 搜
岍
原 子吸 收 分 光光 度 计
T 一 8 型 ,北 京 普 析 AS 9 6
通 用 仪 器 有 限 公 司 ;雷 磁 精 密 p 计 P 一 C型 , H HS 3 上
c n e t t n o nt IF (I o c nr i fji e I)wa mg mLp f ao i a s 5 / .H O F ( s lt n w s 30 T e r p ro f A P I e Ⅱ)oui a . h po ot n o A o o i
活 性 功 能 , 可 将 其 作 为 一 种 补铁 剂 。 论 文 对 黑 木耳 多 又 本 ¨r. 研 一 探 糖 与 F (I 的-I- 艺 进 行 了, 究 , 讨 了 黑 木 耳 多糖 e I) 螯 合 工 L F (I初 始 浓 度 、 合 时 间 与 F(1 的 比 值 、 液 的 , P I) e1) 溶 p H、c 螯 、J
黑木耳粉及其制备方法和用途[发明专利]
专利名称:黑木耳粉及其制备方法和用途专利类型:发明专利
发明人:张振龙
申请号:CN03157513.7
申请日:20030923
公开号:CN1513364A
公开日:
20040721
专利内容由知识产权出版社提供
摘要:本发明涉及黑木耳粉及其制备方法和制作食品、保健品的用途。
所述黑木耳粉的颗粒大小为40目~1000目;生产工艺步骤是:1)浸泡消毒;2)粗选;3)水洗;4)精选;5)脱水、干燥;6)粉碎。
本发明的黑木耳粉可直接作为食品食用,还可以以任意比例与其它食品、保健品混合食用。
经实验证明,黑木耳制成粉后,吸收率可达98%左右,比不粉碎直接食用提高吸收率2倍以上。
申请人:张振龙
地址:157021 黑龙江省牡丹江市江南经济开发区牡丹江市三通绿色食品有限公司
国籍:CN
代理机构:北京海虹嘉诚知识产权代理有限公司
代理人:张涛
更多信息请下载全文后查看。
一种黑木耳配养料的配制方法[发明专利]
专利名称:一种黑木耳配养料的配制方法专利类型:发明专利
发明人:吴继高
申请号:CN200810025239.9
申请日:20080429
公开号:CN101570450A
公开日:
20091104
专利内容由知识产权出版社提供
摘要:一种黑木耳配养料的配制方法,棉籽壳35%-55%、木屑25%-45%、麸皮10%-16%、米糠粉1.5%- 2%、豆秸粉0.5%-1%、玉米芯1.5%-2%、过磷酸钙0.5%-1%、石膏0.5%-1%、增氧粉0.1%-0.3%、尿素0.1%-0.3%、可霉灵液0.1%-0.3%、多菌灵0.5%-
0.8%,所述的百分比为重量百分比。
按比例取棉籽壳、木屑、麸皮、米糠粉、豆秸粉、玉米芯全部组合到一起,倒入粉碎机中粉碎成60目左右的颗粒,取出后按比例加入过磷酸钙、石膏、增氧粉、尿素、可霉灵液,然后倒入搅拌机中搅拌60分钟取出放入发酵池内,按比例加入1∶1.2-1∶1.3的水拌匀堆成堆,用塑料布盖紧压死,发酵24小时即成合格配养料。
申请人:吴继高
地址:221100 江苏省铜山县徐庄镇菌种繁育场
国籍:CN
更多信息请下载全文后查看。
复合黑木耳粉的研制及其体外降脂功效分析
复合黑木耳粉的研制及其体外降脂功效分析包怡红;高培栋【期刊名称】《东北农业大学学报》【年(卷),期】2017(048)007【摘要】以黑木耳为主料,复配燕麦、薏苡仁、麦芽糊精、木糖醇、黄原胶制备黑木耳降脂粉.探讨黑木耳煮制时间、烘干温度、粉碎粒度对降血脂功效影响.通过单因素和正交试验确定最佳制粉工艺及黑木耳、燕麦、薏苡仁最佳配比.结合分散指数、沉淀率、分散时间、感官评价指标,通过单因素及响应面优化试验确定麦芽糊精、木糖醇、黄原胶添加量,获得黑木耳降脂粉最佳制备工艺及产品配方.结果表明,黑木耳粉最佳制备条件为黑木耳煮制20 min、80℃干燥、粉碎80目.最佳配方为黑木耳47.6%、燕麦17.3%、薏苡仁21.6%、麦芽糊精7.4%、木糖醇5.6%、黄原胶0.5%,制得冲调性优、感官评价好、营养价值高的复合黑木耳粉,其体外结合胆酸盐能力为1.18 μmol· 100 mg-1,胆固醇吸附量23.2 mg·g-1,具有良好降血脂功能.【总页数】14页(P41-54)【作者】包怡红;高培栋【作者单位】东北林业大学林学院,哈尔滨150040;东北林业大学林学院,哈尔滨150040【正文语种】中文【中图分类】TS205.1【相关文献】1.黑木耳复合饮料的研制及质量指标分析 [J], 李旺;李加兴;余兆硕;游湘淘2.金樱子降脂泡腾片研制及其降血脂功效研究 [J], 程金生;黄靖瑜;钟瑞敏;曾佛妹;黎嘉珠;陈义铝;林钡诗;莫艺萍;蔡浩强3.黑木耳黑枸杞复合饮料研制及其体外抗氧化性 [J], 秦丹丹; 曹慧馨; 白洋; 赵爽; 吴琼4.六堡茶茶褐素体外降脂功效研究 [J], 龚受基;滕翠琴;梁东姨;曹惠怡;蒙彦妃;张均伟;谢加仕5.仙草黑木耳果冻粉的研制与降糖作用分析 [J], 林爽;王志江;吴小勇;黄东阳因版权原因,仅展示原文概要,查看原文内容请购买。
黑木耳多糖—大豆蛋白复合物的制备及其功能物性研究
黑木耳多糖—大豆蛋白复合物的制备及其功能物性研究包怡红;邓启;伊文慧【期刊名称】《食品与机械》【年(卷),期】2014(030)006【摘要】为研究黑木耳多糖—大豆蛋白复合物的最佳制备工艺及其功能特性.利用Maillard反应原理制备黑木耳多糖—大豆蛋白复合物,采用Box-Behnken模型对黑木耳多糖—大豆蛋白复合物制备条件进行优化,并比较分析黑木耳多糖—大豆蛋白复合物与普通大豆蛋白的功能特性.结果表明:复合物最佳制备条件为pH 9.21、温度92.88℃、糖与蛋白质量比4.18∶1、料液比40∶1(m∶V),该条件下氨基酸结合率为21.94%.黑木耳多糖—大豆分离蛋白复合物较普通大豆蛋白的乳化活性、乳化稳定性明显提高,分别提高了18.46%,10.33%;溶解度特性、热稳定性也有所提高.说明黑木耳多糖—大豆蛋白复合物具有更好的功能特性.【总页数】7页(P47-53)【作者】包怡红;邓启;伊文慧【作者单位】东北林业大学林学院,黑龙江哈尔滨 150040;林下经济资源研发与利用协同创新中心,黑龙江哈尔滨 150040;东北林业大学林学院,黑龙江哈尔滨150040;东北林业大学林学院,黑龙江哈尔滨 150040【正文语种】中文【相关文献】1.大豆蛋白-阴离子多糖共价复合物性能研究 [J], 王允华;郭兴凤2.大豆蛋白-壳聚糖共价复合物制备研究 [J], 郭兴凤;王延青;胡婷婷;贾祥祥3.白鲢鱼糜-大豆蛋白复合物性能改良的研究 [J], 周颖越;蔡盛捷;须晓萍;陈仁玮4.大豆蛋白-多糖干热制备复合物及其反应机理研究(Ⅰ)共价复合物的制备及生成机理探讨 [J], 齐军茹;杨晓泉;廖劲松;彭志英5.大豆蛋白-多糖干热制备复合物及其反应机理研究(Ⅱ)功能性质的改善 [J], 齐军茹;杨晓泉;廖劲松;彭志英因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Journal of Forestry Research, 15(2): 150-152 (2004) 150Preparation technology of ultra-fine powders of Auricularia auricularYANG Chun-yu1,2, FANG Di1, WANG Ping2, MA Yan11 Engineering Technology Center of Forestry and Wood Working Machinery, Northeast Forestry University, Harbin 150040, P. R. China2 Department of Food Science and Engineering, Northeast Forestry University, Harbin 150040, P. R. ChinaAbstract: Conventional mechanical method and mechanical method combined with vacuum freeze-drying technology were used to make the ultra-fine powders of edible fungus (Auricularia auricular). The content of basic nutrients, amino acid, micro structure and their properties of raw edible fungus and the edible fungus powders obtained with the two methods were analyzed and compared. The granularity size and micro-structure of the pulverized samples were analyzed by SEM and TEM technology.The average granularity size of the edible fungus powder obtained with mechanical method was 1-5 ìm, while that obtained with mechanical method combined with vacuum freeze-drying process was 0.5-1 ìm. The ultra-fine powders of edible fungus ob-tained with the two methods had better water recovery capability and quality, and their preserving time was longer than that of raw edible fungus. All the properties of the ultra-fine powders of edible fungus obtained with the vacuum freeze-drying technol-ogy were evidently superior to that of the conventional mechanical method.Keywords:Auricularia auricula; Edible fungus; Ultra-fine powders; Vacuum freeze-dryingCLC number: TS205 Document code: B Article ID: 1007-662X(2004)02-0150-03IntroductionAuricularia auricula (L.exHook.), called Jew’s ear, black fungus and wood ear, is an edible fungus with full of nutri-tion such as amino acid, protein, iron, calcium and amylase. The edible fungus has high medical value in d ecreasing blood fat and preventing cancel. Although more and more preparation methods for improving the nutrition absorption of edible fungus have been developed, the preparation methods for enhancing medical value of edible fungus are rarely studied.Ultra-fine powders preparation technology has been widely applied in food industry. Many edible animals, edible plants and food as medicine can be processed to ultra-fine powders, but their physical properties and microstructures are changed after this processing (Makio et al. 1993;Sheng 2003). Many of their properties such as surface absorb-ability, surface affinity, dispersion uniformity, solvency and fragrance preserving ability can be greatly i m proved. The nutrition absorption of edible fungus can also be improved after this processing, which increases the effect of medicine, improves utilization of effective component and increases the extraction efficiency (Chen 2002; Wang et al. 2000;Wei et al. 2003).Mechanical method is a commonly traditional processing method for ultra-fine powders preparation, but few studies were carried out on the effect of processing on ingredient and efficacy of the material. In this paper, the advantages and disadvantages of both methods were analyzed on Biography: YANG Chun-yu (1975), female, Ph. D. in Engineering Technol-ogy Center of Forestry and Wood Working Machinery, Northeast Forestry University, Harbin 150040, P. R. China. E-mail: yaynefu@ Received date: 2004-04-12Responsible editor: Zhu Hong ingredient and efficacy of the edible fungus powders. Experiment methodsKey operation procedures of mechanical method for making ultra-fine powdersThe cleaned raw edible fungus was put into a high speed pulverizer for pre-pulverizing treatment. The average granularity size of the edible fungus was 280-300 ìm after treated. In F-170 pulverizer, the material was cut with high speed carbide knives, without producing heat and minor metallic particles, and the average size was 180-200 ìm. Under negative pressure, the rough powder was pulverized by TF-160 vortex at extremely high speed. The average size of the pulverized material was 80-100 ìm. Based on vibration principle, the striking acceleration speed of the ZM series ultra-fine pulverizer was 6 times that of conventional ball miller. The granularity size of the pulverized material can reach less than 10 ìm. The procedure of mechanical method for making ultra-fine powders is as follows:Raw material→Preparation of edible fungus→Rough grinding→Further pulverizing→Vortex self-cooling pulver-izing→Ultra-fine pulverizing→sampleKey operation procedures of mechanical method com-bined with vacuum freeze-drying technologyIn the first pulverizing, water was added into rough-pulverized edible fungus powder by 180-200 ìm. Then, the powder with water was grinded for twice respec-tively when the clearance between the rotator and the sta-tor of the grinder was adjusted to the maximum and the minimum respectively. In this process, if excessive water is added, material will be difficult to condense before vacuum freeze-drying, still insufficient water will also affect theYANG Chun-yu et al.151grinding result. Repeated tests proved that the best result can be obtained when the volume of the added water is 2 times that of the volume of edible fungus powder. The granularity size of powders can be less than 50 ìm. At last, in wet pulverizer, the granularity size of the treated powder of edible fungus can be less than 5 ìm. After the powder was condensed in a vacuum rotary evaporator at 80 °C for 1.5 h, it was pre-freezed in refrigerator at -40 °C for 8 h and dried-freezed in vacuum freeze-drier for 5 h, after the u l-tra-fine powder of edible fungus was obtained. Procedure of mechanical method combined with vacuum Freeze-drying technology is as follows:Raw material → Edible fungus preparation →Rough grind-ing → High speed pounding →Gelatine grinding→Wet ul-tra-fine pulverizing →Condensed (Vacuum freeze-drying (sampleWater recovery capability testThe samples obtained with both methods were soaked in two separate beakers for observing water absorbing state and speed.Analysis of amino acid and vitaminGranularity sizes and micro-structures of edible fungus samples obtained with both methods and raw edible fungus can not be described clearly through the optic microscope, and they were further researched through TEM analysis. The amino acid and vitamin contents of the samples o b-tained with both methods and raw material were analyzed with Model 835 amino acid analyzer and Model 10A high pressure liquid chromatography analyzer.Results and discussionWater recovery capabilityWater recovery speed of the samples obtained with both methods was higher than that of the raw edible fungus. The reason is that edible fungus mainly relies on the gelatine between the mycelial cytoplasm and cell stroma for water absorption, while most gelatine exists in the middle part between the compact layers of the belly side and back side of the edible fungus. Thus, water of raw edible fungus can not be largely absorbed by the gelatine until it goes through the compact layers. The average cell diameters of the sample powder obtained with two methods were 1-5 ìm (90%) and 0.5-1 ìm (90%) respectively. On the contrary, the diameter of basidium cell of raw edible fungus was mostly 9-12 ìm; the diameter of mycelial cell in raw edible fungus was usually less than 10 ìm, mostly 1-3 ìm, and the diameter of thinnest was 0.5 ìm (Yang 2002; Yang 2003). The results showed that the cell structure has been destroyed; the substances composing cell have been r e-leased and become micro-particles. Thus the gelatine can absorb water directly and very quickly. Compared with the powder obtained with mechanical method, the powder ob-tained with mechanical method combined with ultra-fine pulverizing and vacuum freeze-drying absorbed water more quickly. The reason is that part of combined water in the freeze-dried sample had been removed and the water content of powder is lower than that of the powder obtained with mechanical method. When raw edible fungus ab-sorbed sufficient water and was kept in natural condition, one and a half days later, viscous gelatine come out, but after 3 days, its quality went bad. Comparatively, when ultra-fine powder of edible fungus absorbed sufficient water and was kept in natural condition for more than 15 days, it had only slight delaminating. Another different point is that the ultra-fine powder of edible fungus has a performance of long tasting fragrance. The results of long time further ob-servation showed when the water was vaporized naturally; the gelatine in the ultrafine-pulverized powder could make the particles of edible fungus integrate without quality dete-rioration.It is obvious that ultrafine-pulverized powder of edible fungus has better preserving water and fragrance capability and its quality can be maintained for much longer time. The reason is that after granularity size is much reduced, rela-tive surface area is significantly i n creased and the water content is reduced, which is conducive to dry storage. TEM analysisThe biggest granularity size of powder obtained with mechanical method was less than 10 ìm and the smallest is 0.5 ìm, with an average granularity size of 1-5 ìm(90%). The biggest granularity size of powder obtained with m e-chanical method combined with ultra-fine pulverizing and vacuum freeze-drying technology was less than 5 ìm and the smallest is only 0.1 ìm, with an average granularity size of 0.5-1 ìm (90%).The structure of the smallest cell scrap is shown in Fig.1 and Fig.2. TEM analysis indicates that there are a large number of irregular cell scraps in both samples, which means that most of the mycelial cells and basidium cells have been destroyed. In the visual field there are many irregular protein particles, celluloses and vacuoles, it is proved that the cell structure has been destroyed and the substances inside the cells have been released.Fig. 1 The smallest irregular cell scrap obtained with twotreating methods (×10,000)A: conventional mechanical method; B: mechanical method com-bined with vacuum freeze-drying technologyA BJournal of Forestry Research, 15(2): 150-152 (2004) 152Amino acid and vitamin analysisAfter the raw edible fungus was processed with two methods, the total amino acid content in the edible fungus powder was increased (Table 1). The reason is that much more protein inside the cells was partly broken into small pieces while all protein could not be hydrolyzed completely in acid condition. In addition, the content of amino acid in the vacuum freeze-drying sample was higher than that in the sample obtained with mechanical method.Vitamin test results showed that the content of VB1 and VB2 in ultra-fine pulverized powders was 4.1 mg/kg and 0.0073 mg/kg, while in raw edible fungus the average con-tent of VB1 was 2-4 mg/kg, VB2 was 3-6 mg/kg (Table 2). It is obvious that the content of VB1 kept unchanged, but the content of VB2was significantly reduced, which indicated that most VB2 was destroyed after the edible fungus was superfine-pulverized.Table 1. Analysis results of amino acid in edible fungus (%) Type Lys His Thr Arg Asp Tyr Glu Pro Gly Ala Cys Val Met Ile Leu Phe Ser TotalA 0.72 0.36 0.52 0.7 0.89 0.5 0.84 0.55 0.45 0.66 0 0.48 0.16 0.39 0.72 0.42 0.2 8.47B 0.54 0.27 0.67 0.41 1.1 0.42 1.22 0.46 0.53 0.86 0.29 0.65 0.16 1.1 1.0 0.69 0.63 11.0C 0.65 0.37 0.90 0.65 1.38 0.48 1.68 0.38 0.82 1.23 0.45 0.95 0.20 1.12 1.02 0.59 0.9 13.7 Notes: *Test data provided by Heilongjiang Agricultural Science Academy Quality Supervision and Test Center for Cereal and Cereal Products.A----Amino acid content in raw raw edible fungus; B---- Amino acid content in Auricularia auricula powders obtained with mechanical method; C---- Amino acid content in edible fungus powders obtained with mechanical method combined with vacuum freeze-drying technology.Table 2. Analysis of vitamin content in edible fungusVitamin contentVitamintype Ultra-fine pulverizededible fungus /mg·kg-1Raw edible fungus /mg·kg-1V B1 4.1 2-4V B20.0073 3-6 Comparison between the two methodsEdible fungus powders had better dispersing ability and better properties compared with the raw edible fungus. While the powders obtained with mechanical method com-bined with vacuum freeze-drying had better water recovery capability, smaller granularity size, longer preserving time and more amino acid content, compared with the powders obtained with only mechanical method, but the process is more complicated. Comparatively, the method of me-chanical method combined with vacuum freeze-drying technology is better than mechanical method. ConclusionsThe ultra-fine edible fungus powders obtained with two methods has better water recovery capability and quality. Their preserving time is longer than that of raw edible fun-gus.When edible fungus is pulverized to the granularity size of less than 5 ìm, the cells are destroyed and ingredients such as protein, cellulose and amylase, etc., are released, and the nutrition can be absorbed directly or extracted more easily and quickly.The average granularity size of the edible fungus powder obtained with mechanical method is 1-5 ìm (90%), of which the smallest is 0.5 ìm. The average granularity size of the edible fungus powder obtained with mechanical method combined with vacuum freeze-drying process after grinding is 0.5-1 ìm (90%), of which the smallest is 0.1 ìm.After being ultra-fine pulverized, the total content of amino acid in the edible fungus is increased significantly, and 0.003% dissociative lysine is examined out, while VB2 is largely destroyed.The mechanical method combined with vacuum freeze-drying process is better than mechanical method. ReferencesChen Xu. 2002. Primary research on effect of ultra-fine powders pseudo-ginseng on body’s absorbing [J]. Journal of Northwest Medi-cine, 17(5): 203-204.Makio Naito and Akira Kondo. 1993. Applications of combination tech-niques for the surface modification of powder materials [J]. ISIJ I n-ternational, 33(9): 915-924.Sheng Yong and Liu Caibing. 2003. Applied advantage and outlook of modern production for Chinese herbal medicine using superfine communication technique [J]. China Powder Science and Technology, 9(3): 28-31.Wang Aiwu and Lu Wenhai. 2000. Applied generalization and outlook of superfine-pulverizing in Chinese herbal medicine [J]. Journal of Shizhen National Medicine, 11(7): 669.Wei Xiaohui, Jin Qing and Zhao wenying. 2003. Extraction of polysac-charides Tricholoma Matsutake and Termitomycs Albuminosus using the ultra micro- method [J]. Journal of Qingdao Scientific and Tech-nology University, 24(2): 117-119Yang Chunyu, Ma Yan, Zhai X in, et al. 2003. Research on variation rules of micro structure of pre-and post-compressed Auricularia auricula [J]. Journal of Northeast Forestry University, 31(6): 30-32. Yang Chunyu, Shen Shibin and Ma Yan. 2002. Research on micro structure of Auricularia auricula and processing technology of Auri-cularia auricula paper [J]. Chinese Forestry Byproduct, 60(1): 34-36.Journal of Forestry Research, 2004, 15(2) 3CLC number: S791.25; S727.2 Document code: A Article ID: 1007-662X(2004)02-0127-0804-02-009健康黑松幼苗中的电波传递/郭建(海口市林业局,海南中国),赵博光(南京林业大学森林资源与环境学院,南京210037),周开亚(南京师范大学生命科学学院,南京210099)//Journal of Forestry Research.-2004, 15(2): 135-137.以健康黑松(Pinus thunbergii)幼苗为材料,用非伤害性刺激,如冷冻和伤害性刺激,如:烧伤、刺伤、化学伤害等引发了植物体内的波形的变化,研究表明,非伤害性刺激能在幼苗体内引起动作电波的传递,伤害性刺激除了能引起动作电波的传递外,还能引起较为复杂的变异电波的传递并对这种现象进行了讨论。