广东省2014年中考数学试题及答案
广东省汕尾市2014年中考数学试题(有答案)115170
2014年汕尾市市初中毕业生学业考试数学试题一、选择题1.2-的倒数是( ) A .2 B .21 C .21- D .1- 2.下列电视台的台标,是中心对称图形的是( )A .B .C .D . 3.若y x >,则下列式子中错误..的是( ) A .33->-y x B .33yx > C .33+>+y x D .y x 33->- 4.在我国南海某海域探明可燃冰储量约有194亿立方米.数字19 400 000 000用科学记数法表示正确的是( )A .101094.1⨯ B .1010194.0⨯ C .9104.19⨯ D .91094.1⨯ 5.下列各式计算正确的是( )A .222)(b a b a +=+B .32a a a =⋅C .428a a a =÷ D .532a a a =+ 6.如图,能判定AC EB //的条件是( )A .ABE C ∠=∠B .EBD A ∠=∠C .ABC C ∠=∠D .ABE A ∠=∠ 7.在Rt ABC ∆中,︒=∠90C ,若53sin =A ,则B cos 的值是( ) A .54 B .53C .43D .348.汽车以60千米/时的速度在公路上匀速行驶,1小时后进入高速路,继续以100千米/时的速度匀速行驶,则汽车行驶的路程s (千米)与行驶的时间t (时)的函数关系的大致图象是( )9.如图是一个正方体展开图,把展开图折叠成正方体后,“你”字一面 相对面上的字是( )A .我B .中C .国D .梦10.已知直线b kx y +=,若5-=+b k ,6=kb ,那么该直线不经过...( )A .第一象限B .第二象限C .第三象限D .第四象限 二、填空题11.4的平方根是12.已知4=+b a ,3=-b a ,则=-22b a13.已知c b a ,,为平面内三条不同直线,若b a ⊥,b c ⊥,则a 与c 的位置关系是 14.小明在射击训练中,五次命中的环数分别为5,7,6,6,6,则小明命中环数的众数为 ,平均数为15.写出一个在三视图中俯视图与主视图完全相同的几何体 16.如图,把ABC ∆绕点C 按顺时针方向旋转︒35,得到C B A '''∆,B A ''交AC 于点D ,若︒='∠90DC A ,则=∠A °.三、解答题17.计算:1021|30sin 1|2)2(-⎪⎭⎫ ⎝⎛+︒--+π.18.已知反比例函数xky =的图象经过点M (2,1). (1)求该函数的表达式;(2)当42<<x 时,求y 的取值范围.(直接写出结果)19.如图,在Rt ABC ∆中,︒=∠90B ,分别以点A 、C 为圆心,大于AC 21长为半径画弧,两弧相交于点M 、N ,连结MN ,与AC 、BC 分别交于点D 、E ,连结AE . (1)求ADE ∠;(直接写出结果) (2)当AB =3,AC =5时,求ABE ∆的周长.四、解答题20、如图,在平行四边形ABCD中,E是AD边上的中点,连接BE,并延长BE交CD的延长线于点F.(1)证明:FD=AB;(2)当平行四边形ABCD的面积为8时,求△FED的面积.21.一个口袋中有3个大小相同的小球,球面上分别写有数字1、2、3.从袋中随机地摸出一个小球,记录下数字后放回,再随机地摸出一个小球.(1)请用树形图或列表法中的一种,列举出两次摸出的球上数字的所有可能结果;(2)求两次摸出的球上的数字和为偶数的概率.22.已知关于x 的方程022=-++a ax x .(1)若该方程的一个根为1,求a 的值及该方程的另一根; (2)求证:不论a 取何实数,该方程都有两个不相等的实数根.五、解答题23.某校为美化校园,计划对面积为1800m 2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400 m 2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m 2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不.超过..8万元,至少应安排甲队工作多少天?24.如图,在Rt ABC ∆中,︒=∠90ACB ,以AC 为直径的⊙O 与AB 边交于点D ,过点D 作⊙O 的切线,交BC 于E .(1)求证:点E 是边BC 的中点; (2)求证:BA BD BC ⋅=2;(3)当以点O 、D 、E 、C 为顶点的四边形是正方形时, 求证:△ABC 是等腰直角三角形.25.如图,已知抛物线343832--=x x y 与x 轴的交点为A 、D (A 在D 的右侧),与y 轴的交点为C .(1)直接写出A 、D 、C 三点的坐标;(2)若点M 在抛物线上,使得△MAD 的面积与△CAD 的面积相等,求点M 的坐标;(3)设点C 关于抛物线对称轴的对称点为B ,在抛物线上是否存在点P ,使得以A 、B 、C 、P 四点为顶点的四边形为梯形?若存在,请求出点P 的坐标;若不存在,请说明理由.2014年广东省汕尾市中考数学试卷参考答案一、选择题(共10小题,每小题4分,共40分)1.C.2.A3.D4.A5.B6.D7.B8.C9.D10.A二、填空题(共6小题,每小题5分,共30分)11.±2.12.12.13.平行.14.6,6.15.球或正方体.16.55°.三、解答题(一)(共3小题,每小题7分,共21分)17.解:原式=1﹣2×+2=1﹣1+2=2.18.解:(1)∵反比例函数y=的图象经过点M(2,1),∴k=2×1=2,∴该函数的表达式为y=;(2)∵y=,∴x=,∵2<x<4,∴2<<4,解得:<y<1.19.解:(1)∵由题意可知MN是线段AC的垂直平分线,∴∠ADE=90°;(2)∵在Rt△ABC中,∠B=90°,AB=3,AC=5,∴BC==4,∵MN是线段AC的垂直平分线,∴AE=CE,∴△ABE的周长=AB+(AE+BE)=AB+BC=3+4=7.四、解答题(二)(共3小题,每小题9分,共27分)20.(1)证明:∵在平行四边形ABCD中,E是AD边上的中点,∴AE=ED,∠ABE=∠F,在△ABE和△DFE中,∴△ABE≌△DFE(AAS),∴FD=AB;(2)解:∵DE∥BC,∴△FED∽△FBC,∵△ABE≌△DFE,∴BE=EF,S△FDE=S平行四边形ABCD,∴=,∴=,∴=,∴△FED的面积为:2.21.解:(1)画树状图得:则共有9种等可能的结果;(2)由(1)得:两次摸出的球上的数字和为偶数的有5种情况,∴两次摸出的球上的数字和为偶数的概率为:.22.解:(1)将x=1代入方程x2+ax+a﹣2=0得,1+a+a﹣2=0,解得,a=;方程为x2+x﹣=0,即2x2+x﹣3=0,设另一根为x1,则1x1=﹣,x1=﹣.(2)∵△=a2﹣4(a﹣2)=a2﹣4a+8=a2﹣4a+4+4=(a﹣2)2+4≥0,∴不论a取何实数,该方程都有两个不相等的实数根.点评:本题考查了根的判别式和根与系数的关系,要记牢公式,灵活运用.五、解答题(三)(共3小题,第23、24小题各11分,第25小题10分,共32分)23.解:(1)设乙工程队每天能完成绿化的面积是xm2,根据题意得:﹣=4,解得:x=50经检验x=50是原方程的解,则甲工程队每天能完成绿化的面积是50×2=100(m2),答:甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2;(2)设至少应安排甲队工作x天,根据题意得:0.4x+×0.25≤8,解得:x≥10,答:至少应安排甲队工作10天.24.证明:(1)如图,连接OD.∵DE为切线,∴∠EDC+∠ODC=90°;∵∠ACB=90°,∴∠ECD+∠OCD=90°.又∵OD=OC,∴∠ODC=∠OCD,∴∠EDC=∠ECD,∴ED=EC;∵AC为直径,∴∠ADC=90°,∴∠BDE+∠EDC=90°,∠B+∠ECD=90°,∴∠B=∠BDE,∴ED=DB.∴EB=EC,即点E为边BC的中点;(2)∵AC为直径,∴∠ADC=∠ACB=90°,又∵∠B=∠B∴△ABC∽△CDB,∴,∴BC2=BD•BA;(3)当四边形ODEC为正方形时,∠OCD=45°;∵AC为直径,∴∠ADC=90°,∴∠CAD=∠ADC﹣∠OCD=90°﹣45°=45°∴Rt△ABC为等腰直角三角形.点评:本题是几何证明题,综合考查了切线性质、圆周角定理、相似三角形、正方形、等腰直角三角形等知识点.试题着重对基础知识的考查,难度不大.25.解:(1)∵y=x2﹣x﹣3,∴当y=0时,x2﹣x﹣3=0,解得x1=﹣2,x2=4.当x=0,y=﹣3.∴A点坐标为(4,0),D点坐标为(﹣2,0),C点坐标为(0,﹣3);(2)∵y=x2﹣x﹣3,∴对称轴为直线x==1.∵AD在x轴上,点M在抛物线上,∴当△MAD的面积与△CAD的面积相等时,分两种情况:①点M在x轴下方时,根据抛物线的对称性,可知点M与点C关于直线x=1对称,∵C点坐标为(0,﹣3),∴M点坐标为(2,﹣3);②点M在x轴上方时,根据三角形的等面积法,可知M点到x轴的距离等于点C到x轴的距离3.当y=4时,x2﹣x﹣3=3,解得x1=1+,x2=1﹣,∴M点坐标为(1+,3)或(1﹣,3).综上所述,所求M点坐标为(2,﹣3)或(1+,3)或(1﹣,3);(3)结论:存在.如图所示,在抛物线上有两个点P满足题意:①若BC∥AP1,此时梯形为ABCP1.由点C关于抛物线对称轴的对称点为B,可知BC∥x轴,则P1与D点重合,∴P1(﹣2,0).∵P1A=6,BC=2,∴P1A≠BC,∴四边形ABCP1为梯形;②若AB∥CP2,此时梯形为ABCP2.∵A点坐标为(4,0),B点坐标为(2,﹣3),∴直线AB的解析式为y=x﹣6,∴可设直线CP2的解析式为y=x+n,将C点坐标(0,﹣3)代入,得b=﹣3,∴直线CP2的解析式为y=x﹣3.∵点P2在抛物线y=x2﹣x﹣3上,∴x2﹣x﹣3=x﹣3,化简得:x2﹣6x=0,解得x1=0(舍去),x2=6,∴点P2横坐标为6,代入直线CP2解析式求得纵坐标为6,∴P2(6,6).∵AB∥CP2,AB≠CP2,∴四边形ABCP2为梯形.综上所述,在抛物线上存在一点P,使得以点A、B、C、P四点为顶点所构成的四边形为梯形;点P的坐标为(﹣2,0)或(6,6).。
广东省东莞市2014年中考数学模拟试卷(含答案)
广东省东莞市2014年中考数学模拟试卷(时间:100分钟,满分120分)一、选择题(本大题共5小题,每小题3分,共15分;在每小题给出的四个选项中,只有一个是正确的) 1.64的立方根是( )A .2B .-2C .4D .-42.5月31日,参观东莞开幕式的游客约为505 000人.505 000用科学记数法表示为( )A .505×103B .5.05×103C .5.05×104D .5.05×105 3.下列计算正确的是( )A .a 4+a 2=a 6B .2a ·4a =8aC .a 5÷a 2=a 3D .(a 2)3=a 54.方程组⎩⎪⎨⎪⎧x +y =3x -y =-1的解是( )A.⎩⎪⎨⎪⎧ x =1y =2B.⎩⎪⎨⎪⎧ x =1y =-2C.⎩⎪⎨⎪⎧ x =2y =1D.⎩⎪⎨⎪⎧x =0y =-1 5.一个几何体的三视图如图所示.那么这个几何体是( )A B C D二、填空题(本大题共5小题,每小题4分,共20分)6.若x 、y 为实数,且x +3+|y -2|=0,则x +y = .7.如图,菱形ABCD 中,对角线AC 、BD 相交于点O ,H 为AD 边中点,菱形ABCD 的周长为24,则OH 的长等于 .(第7题) (第10题)8.一组数据1,6,x,5,9的平均数是5,那么这组数据的中位数是 . 9.双曲线y =2k -1x的图象经过第二、四象限,则k 的取值范围是 .10.如图,观察每一个图中黑色正六边形的排列规律,则第10个图中黑色正六边形有 个.三、解答题(本大题共5小题,每小题6分,共30分)11.计算:(-2 011)0+122-⎪⎪⎭⎫ ⎝⎛+||2-2-2cos60°.12.解方程:142-+x x =3x -1.13.先化简,再求值:⎝ ⎛⎭⎪⎫a -1a 2-4a +4-a +2a 2-2a ÷⎝⎛⎭⎫4a -1,其中a =2- 3.14.如图,已知二次函数y =-12x 2+bx +c 的图象经过A (2,0),B (0,-6)两点.(1)求这个二次函数的解析式;(2)设该二次函数的对称轴与x 轴交于点C ,连接BA 、BC ,求△ABC 的面积.15.某市为缓解城市交通压力,决定修建人行天桥,原设计天桥的楼梯长AB =6 m , ∠ABC =45°,后考虑到安全因素,将楼梯脚B 移到CB 延长线上点D 处,使∠ADC =30°(如图所示).(1)求调整后楼梯AD 的长; (2)求BD 的长(结果保留根号).四、解答题(本大题共4小题,每小题7分,共28分)16.日本福岛出现核电站事故后,我国国家海洋局高度关注事态发展,紧急调集海上巡逻的海检船,在相关海域进行现场监测与海水采样,针对核泄漏在极端情况下对海洋环境的影响及时开展分析评估.如图,上午9时,海检船位于A 处,观测到某港口城市P 位于海检船的北偏西67.5°方向,海检船以21海里/时的速度向正北方向行驶,下午2时海检船到达B 处,这时观察到城市P 位于海检船的南偏西36.9°方向,求此时海检船所在B 处与城市P 的距离?⎝⎛ 参考数据:sin 36.90≈35,tan 36.90≈34,⎭⎫sin 67.50≈1213,tan 67.50≈12517.2011年6月4日,李娜获得法网公开赛的冠军,圆了中国人的网球梦,也在国内掀起一股网球热.某市准备为青少年举行一次网球知识讲座,小明和妹妹都是网球球迷,要求爸爸去买门票,但爸爸只买回一张门票,那么谁去就成了问题,小明想到一个办法:他拿出一个装有质地、大小相同的2x 个红球与3x 个白球的袋子,让爸爸摸出一个球,如果摸出的是红球,妹妹去听讲座,如果摸出的是白球,小明去听讲座. (1)爸爸说这个办法不公平,请你用概率的知识解释原因;(2)若爸爸从袋中取出3个白球,再用小明提出的办法来确定谁去听讲座,请问摸球的结果是对小明有利还是对妹妹有利,说明理由.18.绵阳市“全国文明村”江油白玉村果农王灿收获枇杷20吨,桃子12吨.现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.(1)王灿有几种方案安排甲、乙两种货车可一次性地将水果运到销售地?(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王灿应选择哪种方案,使运输费最少?最少运费是多少?19.已知:如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.(1)以AB边上一点O为圆心,过A、D两点作⊙O(不写作法,保留作图痕迹),再判断直线BC与⊙O的位置关系,并说明理由;(2)若(1)中的⊙O与AB边的另一个交点为E,AB=6,BD=2 3,求线段BD、BE与劣弧DE所围成的图形面积(结果保留根号和π).五、解答题(本大题共3小题,每小题9分,共27分)20.对于任何实数,我们规定符号⎪⎪⎪ a c ⎪⎪⎪b d 的意义是⎪⎪⎪ a c⎪⎪⎪b d =ad -bc . (1)按照这个规定请你计算⎪⎪⎪ 57⎪⎪⎪68的值;(2)按照这个规定请你计算:当x 2-3x +1=0时,⎪⎪⎪⎪⎪⎪x +1x -23xx -1的值. 21.已知:如图,在△ABC 中,BC =AC ,以BC 为直径的⊙O 与边AB 相交于点D ,DE ⊥AC ,垂足为点E .(1)求证:点D 是AB 的中点;(2)判断DE 与⊙O 的位置关系,并证明你的结论;(3)若⊙O 的直径为18,cos B =13,求DE 的长.22.如图,已知二次函数y=-x2+bx+c的图象经过A(-2,-1),B(0,7)两点.(1)求该抛物线的解析式及对称轴;(2)当x为何值时,y>0?(3)在x轴上方作平行于x轴的直线l,与抛物线交于C、D两点(点C在对称轴的左侧),过点C、D作x轴的垂线,垂足分别为F、E.当矩形CDEF为正方形时,求C点的坐标.参考答案一、选择题1. A2. D3. C4. A5. C 二、填空题6. -17. 38. 59. k <12 10. 100三、解答题11.解:原式=1+2+2-2-1=212.解:方程两边同乘最简公分母x (x -1),得x +4=3x ,解得x =2.经检验:x =2是原方程的根. ∴原方程的解为x =2. 13.解:原式=⎣⎢⎡⎦⎥⎤a -1a -2 2-a +2a a -2 ÷4-a a=a a -1 -a -2 a +2 a a -2 2·a4-a=1a -2 2. 当a =2-3时,原式=13.14.解:(1)把A (2,0),B (0,-6)代入y =-12x 2+bx +c ,得⎩⎪⎨⎪⎧ -2+2b +c =0c =-6,解得⎩⎪⎨⎪⎧b =4c =-6. ∴这个二次函数的解析式为y =-12x 2+4x -6.(2)∵该抛物线对称轴为直线x =-42×⎝⎛⎭⎫-12=4,∴点C 的坐标为(4,0),∴AC =OC -OA =4-2=2, ∴S △ABC =12×AC ×OB =12×2×6=6.15.解:(1)已知AB =6 m ,∠ABC =45°,∴AC =BC =AB ·sin45°=6×22=3 2,∵∠ADC =30°,∴AD =2AC =6 2. 答:调整后楼梯AD 的长为6 2m.(2)CD =AD ·cos30°=6 2×32=3 6,∴BD =CD -BC =3 6-3 2. 答:BD 的长为(3 6-3 2)m.16.解:如图,过点P 作PC ⊥AB ,垂足为C ,设PC =x 海里,在Rt △APC 中,∵tan ∠A =PC AC, ∴AC =PC tan67.5°=5x12.在Rt △PCB 中,∵tan ∠B =PC BC, ∴BC =x tan36.9°=4x3.∵AC +BC =AB =21×5, ∴5x 12+4x3=21×5,解得 x =60. ∵sin ∠B =PCPB,∴PB =PC sin ∠B =60sin36.9°=60×53=100(海里).∴海检船所在B 处与城市P 的距离为100海里.17.解:(1)∵红球有2x 个,白球有3x 个,∴P (红球)=2x 2x +3x =25, P (白球)=3x 2x +3x =35,∴P (红球)< P (白球), ∴这个办法不公平.(2)取出3个白球后,红球有2x 个,白球有(3x -3)个, ∴P (红球)=2x5x -3,P (白球)=3x -35x -3,x 为正整数, ∴P (红球)- P (白球) =3-x5x -3.①当x <3时,则P (红球)> P (白球), ∴对小妹有利.②当x =3时,则P (红球)= P (白球), ∴对小妹、小明是公平的.③当x >3时,则P (红球)< P (白球),∴对小明有利.18.解:(1)设安排甲种货车x 辆,则安排乙种货车(8-x )辆,依题意得⎩⎪⎨⎪⎧4x +2 8-x ≥20x +2 8-x ≥12, 解此不等式组得2≤x ≤4. ∵x 是正整数,∴x 可取的值为2,3,4.因此安排甲、乙两种货车有三种方案:(2)方案一所需运费为方案二所需运费为300×3+240×5=2 100元; 方案三所需运费为300×4+240×4=2 160元.∴王灿应选择方案一运费最少,最少运费是2 040元. 19.解:(1)如图 (需保留线段AD 中垂线的痕迹).直线BC 与⊙O 相切.理由如下:连接OD ,∵OA =OD ,∴∠OAD =∠ODA . ∵AD 平分∠BAC ,∴∠OAD =∠DAC . ∴∠ODA =∠DAC . ∴OD ∥AC . ∵∠C =90°,∴∠ODB =90°,即OD ⊥BC . 又∵直线BC 过半径OD 的外端, ∴BC 为⊙O 的切线. (2)设OA =OD =r ,在Rt △BDO 中,OD 2+BD 2=OB 2, ∴r 2+(2 3)2=(6-r )2,解得r =2. ∵tan ∠BOD =BDOD =3,∴∠BOD =60°.∴S 扇形ODE =60π·22360=23π.∴所求图形面积为S △BOD -S 扇形ODE =2 3-23π.20.解:(1)⎪⎪⎪ 57⎪⎪⎪68=5×8-6×7=-2.(2)⎪⎪⎪ x +1x -2 ⎪⎪⎪3x x -1=()x +1()x -1-3x ()x -2 =x 2-1-3x 2+6x=-2x 2+6x -1.又∵x 2-3x +1=0,∴x 2-3x =-1,原式=-2(x 2-3x )-1=-2×(-1)-1=1.21.(1)证明:如图,连接CD ,则CD ⊥AB ,又∵AC =BC ,∴AD =BD , 即点D 是AB 的中点.(2)解:DE 是⊙O 的切线.理由是:连接OD ,则DO 是△ABC 的中位线,∴DO ∥AC .又∵DE ⊥AC ,∴DE ⊥DO ,又∵OD 是⊙O 的半径,∴DE 是⊙O 的切线.(3)∵AC =BC ,∴∠B =∠A ,∴cos ∠B =cos ∠A =13. ∵cos ∠B =BD BC =13,BC =18, ∴BD =6,∴AD =6.∵cos ∠A =AE AD =13, ∴AE =2.在Rt △AED 中,DE =AD 2-AE 2=4 2.22.解:(1)把A (-2,-1),B (0,7)两点的坐标代入y =-x 2+bx +c ,得⎩⎪⎨⎪⎧ -4-2b +c =-1c =7,解得⎩⎪⎨⎪⎧b =2c =7. 所以,该抛物线的解析式为y =-x 2+2x +7,又因为y =-x 2+2x +7=-(x -1)2+8,所以对称轴为直线x =1.(2)当函数值y =0时,-x 2+2x +7=0的解为x =1±2 2,结合图象,容易知道1-2 2<x <1+2 2时,y >0.(3)当矩形CDEF为正方形时,设C点的坐标为(m,n),则n=-m2+2m+7,即CF=-m2+2m+7.因为C、D两点的纵坐标相等,所以C、D两点关于对称轴x=1对称,设点D的横坐标为p,则1-m=p-1,所以p=2-m,所以CD=(2-m)-m=2-2m.因为CD=CF,所以2-2m=-m2+2m+7,整理,得m2-4m-5=0,解得m=-1或5.因为点C在对称轴的左侧,所以m只能取-1.当m=-1时,n=-m2+2m+7=-(-1)2+2×(-1)+7=4.于是,点C的坐标为(-1,4).。
2014年广东省中考数学模拟试题(二)
2014年广东省高中阶段学校招生考试数学预测卷(二)(时间:100分钟 满分:120分)班别: 姓名: 学号: 分数:说明:1.考试用时100分钟,满分120分.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、试室号、座位号. 用2B 铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡上的整洁. 考试结束时,将试卷和答题卡一并交回. 一、选择题(本大题共10小题,每小题3分,共30分)1.31-的绝对值是( ) A .3B .-3C .31D .31-2.在6×6方格中,将图①中的图形N 平移后位置如图②所示,则下列图形N 的平移方法中,正确的是( )A .向下移动1格B .向上移动1格C .向上移动2格D .向下移动2格 3.下列计算正确的是( ) A .224=- B① ②CD3=-4.五个数中:722-,﹣1,0,,,是无理数的有()A.0个 B.1个 C.2个 D.3个5.下列计算正确的是()A.1243aaa=⋅ B.743)(aa=C.3632)(baba= D.)0(43≠=÷aaaa6.不透明的袋子里装有2个红球和1个白球,这些球除了颜色外其他都相同.从中任意摸出一个,放回摇匀,再从中摸出一个,则两次摸到球的颜色相同的概率是( )A.94B.95C.21D.327.如图,在ABCD中,AD=8,点E,F分别是BD,CD的中点,则EF 等于( ) A.2 B.3 C.4 D.58.如图,已知D,E分别是△ABC的AB,AC边上的点,,DE BC//且:ADES△S四边形DBCE=1∶8,那么:AE AC等于( )A.1∶9 B.1∶3 C.1∶8 D.1∶29.如图,在Rt△ABC中,∠A=30°,DE垂直平分斜边AC,E为垂足,且交AB于点D,连接CD,若BD=1,则AC的长是()(第7题)(第8题)(第9题)A .23 B.2 C .43D .410.如图,点A 的坐标为(-2, 0), 点B 在直线y =x 上运动.当线段AB最短时,点B 的坐标为( )A . )2,2(- B. )22,22(-C . )22,22(--D . )2,2( 二、填空题(本大题共6小题,每小题4分, 共24分) 11.若∠α=42°,则∠α的余角的度数是 .12.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,CE ∥BD ,DE ∥AC ,若AC = 4 cm ,则四边形CODE 的周长为 .13.若直线y =2x +4与反比例函数的图象交于点P (a ,2),则反比例函数的解析式为 . 14.已知关于x 的一元二次方程2210kx x +-=有两个不相等的实数根,则实数k 的取值范围是 .15.不等式2x +9≥3(x +2)的正整数解是 .16.如图,三个小正方形的边长都为1,则图中阴影部分面积的和是__________. (结果保留π)三、解答题(一)(本大题共3小题,每小题6分,共18分)17.先化简,再求值:(x +y )(x -y )-(4x 3y -8x y 3)÷2x y ,其中x =-1,y =33.(第10题)18.为了提高产品的附加值,某公司计划将研发生产的1 200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两个工厂了解情况,获得如下信息:信息一,甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二,乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?19.如图,在△ABC 中,AB =AC ,∠CAB =30°.(1)用直尺和圆规作AC 边上的高线BD 交AC 于点D (保留作图痕迹,不要求写作法);(2)在(1)中作出AC 边上的高线BD 后,求∠DBC 的度数.四、解答题(二)(本大题共3小题,每小题7分,共21分)20.一测量爱好者在海边测量位于其正东方向的小岛高度AC .如图所示,他先在点B 测得小岛的顶点A的仰角是︒30,然后沿正东方向前行62 m 到达点D ,在点D 测得小岛的顶点A 的仰角为︒60(B ,C ,D 三点在同一水平面上,且测量仪的高度忽略不计).求小岛的高度AC .(结果精确到1 m ,参考数据:4.12≈,7.13≈)21. 如图,⊙O的直径AB=6 cm,D为⊙O上一点,∠BAD=30°,过点D的切线交AB的延长线于点C.求:(1)∠ADC的度数;(2)AC的长.22.四川雅安发生地震后,某校学生会向全校1 900名学生发起了“心系雅安”捐款活动.为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和图②.请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为,图①中m的值是;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.五.解答题(三)(本大题共3小题,每小题9分,共27分) 23. 阅读下面的例题,并回答问题.【例题】解一元二次不等式:0822>--x x .解:对822--x x 分解因式,得)4)(2(3)1(9)1(822222-+=--=--=--x x x x x x ,∴0)4)(2(>-+x x .由“两实数相乘,同号得正,异号得负”,可得⎩⎨⎧>->+,,0402x x ① 或⎩⎨⎧<-<+.0402x x ,② 解①得x >4;解②得x <-2.故0822>--x x 的解集是x >4或x <-2.(1)直接写出092>-x 的解是 ; (2)仿照例题的解法解不等式:02142<-+x x ;(3)求分式不等式:0214≤-+x x 的解集.① ②24.已知一张矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(11,0),B(0,6),点P为BC边上的动点(点P不与点B,C重合),经过点O,P折叠该纸片,得点B′和折痕OP.设BP =t.(1)如图①,当∠BOP=30°时,求点P的坐标;(2)如图②,经过点P再次折叠纸片,使点C 落在直线PB′上,得点C′和折痕PQ,若AQ=m,试用含有t的式子表示m;(3)在(2)的条件下,当点C′恰好落在边OA上时,求点P的坐标.(直接写出结果即可)①②25.如图,已知抛物线y=2x2-2与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.(1)写出以A,B,C为顶点的三角形的面积;(2)过点E(0,6)且与x轴平行的直线l1与抛物线相交于M,N两点(点M在点N的左侧),以MN为一边,抛物线上的任一点P为另一顶点作平行四边形.当平行四边形的面积为8时,求出点P的坐标;(3)过点D(m,0)(其中m>1)且与x轴垂直的直线l2上有一点Q(点Q在第一象限),使得以Q,D,B为顶点的三角形和以B,C,O为顶点的三角形相似,求线段QD的长.(用含m的代数式表示)。
近五年广东省中考数学真题及答案
2022年广东中考数学真题及答案一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.|2|-=()A.﹣2 B.2 C.12-D.122.计算22()A.1 B.2C.2 D.4 3.下列图形中有稳定性的是()A.三角形B.平行四边形C.长方形D.正方形4.如题4图,直线a//b,∠1=40°,则∠2=()A.30°B.40°C.50°D.60°5.如题5图,在△ABC中,BC=4,点D,E分别为AB,AC的中点,则DE=()A.14B.12C.1 D.26.在平面直角坐标系中,将点(1,1)向右平移2个单位后,得到的点的坐标是()A.(3,1)B.(﹣1,1)C.(1,3)D.(1,﹣1)7.书架上有2本数学书、1本物理书.从中任取1本书是物理书的概率为()A.14B.13C.12D.238.如题8图,在▱ABCD中,一定正确的是()A .AD=CDB .AC=BDC .AB=CD D .CD=BC9.点(1,1y ),(2,2y ),(3,3y ),(4,4y )在反比例函数4y x=图象上,则1y ,2y ,3y ,4y 中最小的是( )A .1yB .2yC .3yD .4y10.水中涟漪(圆形水波)不断扩大,记它的半径为r ,则圆周长C 与r 的关系式为C =2πr .下列判断正确的是( )A .2是变量B .π是变量C .r 是变量D .C 是常量参考答案: 题号 1 2 3 4 5 6 7 8 9 10 答案 BDABDABCDC二、填空题:本大题共5小题,每小题3分,共15分. 11.sin 30°=____________.12.单项式3xy 的系数为____________.13.菱形的边长为5,则它的周长为____________. 14.若x =1是方程220x x a -+=的根,则a =____________.15.扇形的半径为2,圆心角为90°,则该扇形的面积(结果保留π)为____________. 参考答案: 题号 11 12 13 14 15答案 123201π三、解答题(二):本大题共3小题,每小题8分,共24分 16.解不等式组:32113x x ->⎧⎨+<⎩参考答案:32113x x ->⎧⎨+<⎩①② 由①得:1x > 由②得:2x <∴不等式组的解集:12x <<17.先化简,再求值:211a a a -+-,其中a =5.参考答案:原式=(1)(1)1211a a a a a a a -++=++=+-将a =5代入得,2111a +=18.如题18图,已知∠AOC =∠BOC ,点P 在OC 上,PD ⊥OA ,PE ⊥OB ,垂足分别为D ,E . 求证:△OPD ≌△OPE . 参考答案:证明:∵PD ⊥OA ,PE ⊥OB ∴∠PDO =∠PEO=90° ∵在△OPD 和△OPE 中 PDO PEO AOC BOC OP OP ∠⎪∠⎧∠=⎩∠⎪⎨== ∴△OPD ≌△OPE (AAS )四、解答题(二):本大题共3小题,每小题9分,共27分.19.《九章算术》是我国古代的数学专著,几名学生要凑钱购买1本.若每人出8元,则多了3元;若每人出7元,则少了4元.问学生人数和该书单价各是多少? 参考答案:设学生人数为x 人8374x x -=+7x =则该书单价是8353x -=(元)答:学生人数是7人,该书单价是53元.20.物理实验证实:在弹性限度内,某弹簧长度y (cm )与所挂物体质量x (kg )满足看数关系y =kx +15.下表是测量物体质量时,该弹簧长度与所挂物体质量的数量关系.x 0 2 5 y151925(1)求y 与x 的函数关系式;(2)当弹簧长度为20cm 时,求所挂物体的质量. 参考答案:(1)将2x =和19y =代入y =kx +15得19=2k +15解得:2k =∴y 与x 的函数关系式:y =2x +15 (2)将20y =代入y =2x +15得20=2x +15解得: 2.5x =∴当弹簧长度为20cm 时,求所挂物体的质量是2.5kg .21.为振兴乡村经济,在农产品网络销售中实行目标管理,根据目标完成的情况对销售员给予适当的奖励,某村委会统计了15名销售员在某月的销售额(单位:万元),数据如下:10 4 7 5 4 10 5 4 4 18 8 3 5 10 8(1)补全月销售额数据的条形统计图.(2)月销售额在哪个值的人数最多(众数)?中间的月销售额(中位数)是多少?平均月销售额(平均数)是多少?(3)根据(2)中的结果,确定一个较高的销售目标给予奖励,你认为月销售额定为多少合适?参考答案:(1)月销售额数据的条形统计图如图所示:(2)3445378210318715x +⨯+⨯++⨯+⨯+==(万元)∴月销售额的众数是4万元;中间的月销售额是5万元;平均月销售额是7万元. (3)月销售额定为7万元合适.五、解答题(三):本大题共2小题,每小题12分,共24分.22.如题22图,四边形ABCD 内接于⊙O ,AC 为⊙O 的直径,∠ADB =∠CDB . (1)试判断△ABC 的形状,并给出证明; (2)若2AB =,AD =1,求CD 的长度.参考答案:(1)△ABC 是等腰直角三角形,理由如下:∵∠ADB =∠CDB ∴AB BC = ∴AB BC = ∵AC 是直径 ∴∠ABC 是90°∴△ABC 是等腰直角三角形 (2)在Rt △ABC 中222AC AB BC =+可得:2AC = ∵AC 是直径 ∴∠ADC 是90° ∴在Rt △ADC 中 222AC AD DC =+可得:3DC = ∴CD 的长度是323.如题23图,抛物线2y x bx c =++(b ,c 是常数)的顶点为C ,与x 轴交于A ,B 两点,A (1,0),AB =4,点P 为线段AB 上的动点,过P 作PQ //BC 交AC 于点Q . (1)求该抛物线的解析式;(2)求△CPQ 面积的最大值,并求此时P 点坐标. 参考答案:(1)∵A (1,0),AB =4∴结合图象点B 坐标是(﹣3,0)将(1,0),(﹣3,0)代入2y x bx c =++得 01093b c b c =++⎧⎨=-+⎩解得:23b c =⎧⎨=-⎩ ∴该抛物线的解析式:223y x x =+- (2)设点P 为(,0)m∵点C 是顶点坐标∴将1x =-代入223y x x =+-得4y =- ∴点C 的坐标是(1,4)--将点(1,4)--,(1,0)代入y kx b =+得 04k b k b =+⎧⎨-=-+⎩解得:22k b =⎧⎨=-⎩ ∴AC 解析式:22y x =-将点(1,4)--,(﹣3,0)代入y kx b =+得034k b k b =-+⎧⎨-=-+⎩解得:26k b =-⎧⎨=-⎩ ∴BC 解析式:26y x =-- ∵PQ //BC∴PQ 解析式:22y x m =-+ 2222y x m y x =-+⎧⎨=-⎩解得:121m x y m +⎧=⎪⎨⎪=-⎩ ∴点Q 坐标:1(,1)2mm +-(注意:点Q 纵坐标是负的) CPQ ABC APQ CPB S S S S =--△△△△11144(3)4(1)(1)222CPQ S m m m =⨯⨯-⨯+⨯-⨯-⨯-△21322CPQ S m m =--+△21(1)22CPQ S m =-++△当1m =-时,CPQ S △取得最大值2,此时点P 坐标是(﹣1,0) ∴△CPQ 面积最大值2,此时点P 坐标是(﹣1,0)2021年广东省中考数学真题及答案一、选择题(本大题共10题,每小题3分,满分30分)1.下列四个选项中,为负整数的是()A.0 B.﹣0.5 C.﹣D.﹣22.如图,在数轴上,点A、B分别表示a、b,且a+b=0,若AB=6,则点A表示的数为()A.﹣3 B.0 C.3 D.﹣63.方程=的解为()A.x=﹣6 B.x=﹣2 C.x=2 D.x=64.下列运算正确的是()A.|﹣(﹣2)|=﹣2 B.3+=3C.(a2b3)2=a4b6D.(a﹣2)2=a2﹣45.下列命题中,为真命题的是()(1)对角线互相平分的四边形是平行四边形(2)对角线互相垂直的四边形是菱形(3)对角线相等的平行四边形是菱形(4)有一个角是直角的平行四边形是矩形A.(1)(2)B.(1)(4)C.(2)(4)D.(3)(4)6.为了庆祝中国共产党成立100周年,某校举办了党史知识竞赛活动,在获得一等奖的学生中,有3名女学生,1名男学生,则从这4名学生中随机抽取2名学生,恰好抽到2名女学生的概率为()A.B.C.D.7.一根钢管放在V形架内,其横截面如图所示,钢管的半径是24cm,若∠ACB=60°,则劣弧AB的长是()A.8πcm B.16πcm C.32πcm D.192πcm8.抛物线y=ax2+bx+c经过点(﹣1,0)、(3,0),且与y轴交于点(0,﹣5),则当x=2时,y的值为()A.﹣5 B.﹣3 C.﹣1 D.59.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,将△ABC绕点A逆时针旋转得到△AB′C′,使点C′落在AB边上,连结BB′,则sin∠BB′C′的值为()A.B.C.D.10.在平面直角坐标系xOy中,矩形OABC的点A在函数y=(x>0)的图象上,点C在函数y=﹣(x <0)的图象上,若点B的横坐标为﹣,则点A的坐标为()A.(,2)B.(,)C.(2,)D.(,)二、填空题(本大题共6小题,每小题3分,满分18分)11.代数式在实数范围内有意义时,x应满足的条件是.12.方程x2﹣4x=0的实数解是.13.如图,在Rt△ABC中,∠C=90°,∠A=30°,线段AB的垂直平分线分别交AC、AB于点D、E,连结BD.若CD=1,则AD的长为.14.一元二次方程x2﹣4x+m=0有两个相等的实数根,点A(x1,y1)、B(x2,y2)是反比例函数y=上的两个点,若x1<x2<0,则y1y2(填“<”或“>”或“=”).15.如图,在△ABC中,AC=BC,∠B=38°,点D是边AB上一点,点B关于直线CD的对称点为B′,当B′D∥AC时,则∠BCD的度数为.16.如图,正方形ABCD的边长为4,点E是边BC上一点,且BE=3,以点A为圆心,3为半径的圆分别交AB、AD于点F、G,DF与AE交于点H.并与⊙A交于点K,连结HG、CH.给出下列四个结论.其中正确的结论有(填写所有正确结论的序号).(1)H是FK的中点(2)△HGD≌△HEC(3)S△AHG:S△DHC=9:16(4)DK=三、解答题(本大题共9小题,满分72分)17.解方程组.18.如图,点E、F在线段BC上,AB∥CD,∠A=∠D,BE=CF,证明:AE=DF.19.已知A=(﹣)•.(1)化简A;(2)若m+n﹣2=0,求A的值.20.某中学为了解初三学生参加志愿者活动的次数,随机调查了该年级20名学生,统计得到该20名学生参加志愿者活动的次数如下:3,5,3,6,3,4,4,5,2,4,5,6,1,3,5,5,4,4,2,4根据以上数据,得到如下不完整的频数分布表:次数 1 2 3 4 5 6人数 1 2 a 6 b 2 (1)表格中的a=,b=;(2)在这次调查中,参加志愿者活动的次数的众数为,中位数为;(3)若该校初三年级共有300名学生,根据调查统计结果,估计该校初三年级学生参加志愿者活动的次数为4次的人数.21.民生无小事,枝叶总关情,广东在“我为群众办实事”实践活动中推出“粤菜师傅”、“广东技工”、“南粤家政”三项培训工程,今年计划新增加培训共100万人次.(1)若“广东技工”今年计划新增加培训31万人次,“粤菜师傅”今年计划新增加培训人次是“南粤家政”的2倍,求“南粤家政”今年计划新增加的培训人次;(2)“粤菜师傅”工程开展以来,已累计带动33.6万人次创业就业,据报道,经过“粤菜师傅”项目培训的人员工资稳定提升,已知李某去年的年工资收入为9.6万元,预计李某今年的年工资收入不低于12.48万元,则李某的年工资收入增长率至少要达到多少?22.如图,在四边形ABCD中,∠ABC=90°,点E是AC的中点,且AC=AD.(1)尺规作图:作∠CAD的平分线AF,交CD于点F,连结EF、BF(保留作图痕迹,不写作法);(2)在(1)所作的图中,若∠BAD=45°,且∠CAD=2∠BAC,证明:△BEF为等边三角形.23.如图,在平面直角坐标系xOy中,直线l:y=x+4分别与x轴,y轴相交于A、B两点,点P(x,y)为直线l在第二象限的点.(1)求A、B两点的坐标;(2)设△PAO的面积为S,求S关于x的函数解析式,并写出x的取值范围;(3)作△PAO的外接圆⊙C,延长PC交⊙C于点Q,当△POQ的面积最小时,求⊙C的半径.24.已知抛物线y=x2﹣(m+1)x+2m+3.(1)当m=0时,请判断点(2,4)是否在该抛物线上;(2)该抛物线的顶点随着m的变化而移动,当顶点移动到最高处时,求该抛物线的顶点坐标;(3)已知点E(﹣1,﹣1)、F(3,7),若该抛物线与线段EF只有一个交点,求该抛物线顶点横坐标的取值范围.25.如图,在菱形ABCD中,∠DAB=60°,AB=2,点E为边AB上一个动点,延长BA到点F,使AF=AE,且CF、DE相交于点G.(1)当点E运动到AB中点时,证明:四边形DFEC是平行四边形;(2)当CG=2时,求AE的长;(3)当点E从点A开始向右运动到点B时,求点G运动路径的长度.参考答案与试题解析一.选择题(共10小题)1.下列四个选项中,为负整数的是()A.0 B.﹣0.5 C.﹣D.﹣2【分析】根据整数的概念可以解答本题.【解答】解:A、0是整数,但0既不是负数也不是正数,故此选项不符合题意;B、﹣0.5是负分数,不是整数,故此选项不符合题意;C、﹣是负无理数,不是整数,故此选项不符合题意;D、﹣2是负整数,故此选项符合题意.故选:D.2.如图,在数轴上,点A、B分别表示a、b,且a+b=0,若AB=6,则点A表示的数为()A.﹣3 B.0 C.3 D.﹣6【分析】根据相反数的性质,由a+b=0,AB=6得a<0,b>0,b=﹣a,故AB=b+(﹣a)=6.进而推断出a=﹣3.【解答】解:∵a+b=0,∴a=﹣b,即a与b互为相反数.又∵AB=6,∴b﹣a=6.∴2b=6.∴b=3.∴a=﹣3,即点A表示的数为﹣3.故选:A.3.方程=的解为()A.x=﹣6 B.x=﹣2 C.x=2 D.x=6【分析】求解分式方程,根据方程的解得结论.【解答】解:去分母,得x=2x﹣6,∴x=6.经检验,x=6是原方程的解.故选:D.4.下列运算正确的是()A.|﹣(﹣2)|=﹣2 B.3+=3C.(a2b3)2=a4b6D.(a﹣2)2=a2﹣4【分析】根据绝对值的定义、二次根式的运算法则、幂的乘方和积的乘方的运算法则,完全平方公式等知识进行计算即可.【解答】解:A、|﹣(﹣2)|=2,原计算错误,故本选项不符合题意;B、3与不是同类二次根式,不能合并,原计算错误,故本选项不符合题意;C、(a2b3)2=a4b6,原计算正确,故本选项符合题意;D、(a﹣2)2=a2﹣4a+4,原计算错误,故本选项不符合题意.故选:C.5.下列命题中,为真命题的是()(1)对角线互相平分的四边形是平行四边形(2)对角线互相垂直的四边形是菱形(3)对角线相等的平行四边形是菱形(4)有一个角是直角的平行四边形是矩形A.(1)(2)B.(1)(4)C.(2)(4)D.(3)(4)【分析】利用平行四边形、矩形及菱形的判定方法分别判断后即可确定正确的选项.【解答】解:(1)对角线互相平分的四边形是平行四边形,正确,为真命题,符合题意;(2)对角线互相垂直的平行四边形是菱形,故原命题错误,是假命题,不符合题意;(3)对角线相等的平行四边形是矩形,故原命题错误,为假命题,不符合题意;(4)有一个角是直角的平行四边形是矩形,正确,是真命题,符合题意,真命题为(1)(4),故选:B.6.为了庆祝中国共产党成立100周年,某校举办了党史知识竞赛活动,在获得一等奖的学生中,有3名女学生,1名男学生,则从这4名学生中随机抽取2名学生,恰好抽到2名女学生的概率为()A.B.C.D.【分析】画树状图,共有12种等可能的结果,恰好抽到2名女学生的结果有6种,再由概率公式求解即可.【解答】解:画树状图如图:共有12种等可能的结果,恰好抽到2名女学生的结果有6种,∴恰好抽到2名女学生的概率为=,故选:B.7.一根钢管放在V形架内,其横截面如图所示,钢管的半径是24cm,若∠ACB=60°,则劣弧AB的长是()A.8πcm B.16πcm C.32πcm D.192πcm【分析】首先利用相切的定义得到∠OAC=∠OBC=90°,然后根据∠ACB=60°求得∠AOB=120°,从而利用弧长公式求得答案即可.【解答】解:由题意得:CA和CB分别与⊙O分别相切于点A和点B,∴OA⊥CA,OB⊥CB,∴∠OAC=∠OBC=90°,∵∠ACB=60°,∴∠AOB=120°,∴=16π(cm),故选:B.8.抛物线y=ax2+bx+c经过点(﹣1,0)、(3,0),且与y轴交于点(0,﹣5),则当x=2时,y的值为()A.﹣5 B.﹣3 C.﹣1 D.5【分析】根据抛物线于x周两交点,及于y轴交点可画出大致图象,根据抛物线的对称性可求y=﹣5.【解答】解:如图∵抛物线y=ax2+bx+c经过点(﹣1,0)、(3,0),且与y轴交于点(0,﹣5),∴可画出上图,∵抛物线对称轴x==1,∴点(0,﹣5)的对称点是(2,﹣5),∴当x=2时,y的值为﹣5.故选:A.9.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,将△ABC绕点A逆时针旋转得到△AB′C′,使点C′落在AB边上,连结BB′,则sin∠BB′C′的值为()A.B.C.D.【分析】在Rt△ABC中,利用勾股定理可求AB,由旋转的性质可得AC=AC'=6,BC=B'C'=8,∠C=∠AC'B'=90°,在Rt△BB'C'中,由勾股定理可求BB'的长,即可求解.【解答】解:∵∠C=90°,AC=6,BC=8,∴AB===10,∵将△ABC绕点A逆时针旋转得到△AB′C′,∴AC=AC'=6,BC=B'C'=8,∠C=∠AC'B'=90°,∴BC'=4,∴B'B===4,∴sin∠BB′C′===,故选:C.10.在平面直角坐标系xOy中,矩形OABC的点A在函数y=(x>0)的图象上,点C在函数y=﹣(x <0)的图象上,若点B的横坐标为﹣,则点A的坐标为()A.(,2)B.(,)C.(2,)D.(,)【分析】如图,作AD⊥x轴于D,CE⊥x轴于E,通过证得△COE∽△OAD得到=,则OE =2AD,CE=2OD,设A(m,)(m>0),则C(﹣,2m),由OE=0﹣(﹣)=得到m﹣(﹣)=,解分式方程即可求得A的坐标.【解答】解:如图,作AD⊥x轴于D,CE⊥x轴于E,∵四边形OABC是矩形,∴∠AOC=90°,∴∠AOD+∠COE=90°,∵∠AOD+∠OAD=90°,∴∠COE=∠OAD,∵∠CEO=∠ODA,∴△COE∽△OAD,∴=()2,,∵S△COE=×|﹣4|=2,S△AOD==,∴=,∴OE=2AD,CE=2OD,设A(m,)(m>0),∴C(﹣,2m),∴OE=0﹣(﹣)=,∵点B的横坐标为﹣,∴m﹣(﹣)=,整理得2m2+7m﹣4=0,∴m1=,m2=﹣4(舍去),∴A(,2),故选:A.二.填空题(共6小题)11.代数式在实数范围内有意义时,x应满足的条件是x≥6 .【分析】二次根式中被开方数的取值范围为被开方数是非负数.【解答】解:代数式在实数范围内有意义时,x﹣6≥0,解得x≥6,∴x应满足的条件是x≥6.故答案为:x≥6.12.方程x2﹣4x=0的实数解是x1=0,x2=4 .【分析】方程利用因式分解法求出解即可.【解答】解:方程x2﹣4x=0,分解因式得:x(x﹣4)=0,可得x=0或x﹣4=0,解得:x1=0,x2=4.故答案为:x1=0,x2=4.13.如图,在Rt△ABC中,∠C=90°,∠A=30°,线段AB的垂直平分线分别交AC、AB于点D、E,连结BD.若CD=1,则AD的长为 2 .【分析】由线段垂直平分线的性质可得AD=BD,利用含30°角的直角三角形的性质可求解BD的长,进而求解.【解答】解:∵DE垂直平分AB,∴AD=BD,∵∠C=90°,∠A=30°,CD=1,∴BD=2CD=2,∴AD=2.故答案为2.14.一元二次方程x2﹣4x+m=0有两个相等的实数根,点A(x1,y1)、B(x2,y2)是反比例函数y=上的两个点,若x1<x2<0,则y1>y2(填“<”或“>”或“=”).【分析】由一元二次方程根的情况,求得m的值,确定反比例函数y=图象经过的象限,然后根据反比例函数的性质即可求得结论.【解答】解:∵一元二次方程x2﹣4x+m=0有两个相等的实数根,∴Δ=16﹣4m=0,解得m=4,∵m>0,∴反比例函数y=图象在一三象限,在每个象限y随x的增大而减少,∵x1<x2<0,∴y1>y2,故答案为>.15.如图,在△ABC中,AC=BC,∠B=38°,点D是边AB上一点,点B关于直线CD的对称点为B′,当B′D∥AC时,则∠BCD的度数为32°.【分析】先根据等腰三角形的性质得到∠A=∠B=38°,再利用平行线的性质得∠ADB′=∠A=38°,接着根据轴对称的性质得到∠CDB′=∠CDB,则可出∠CDB的度数,然后利用三角形内角和计算出∠BCD 的度数.【解答】解:∵AC=BC,∴∠A=∠B=38°,∵B′D∥AC,∴∠ADB′=∠A=38°,∵点B关于直线CD的对称点为B′,∴∠CDB′=∠CDB=(38°+180°)=109°,∴∠BCD=180°﹣∠B﹣∠CDB=180°﹣39°﹣109°=32°.故答案为32°.16.如图,正方形ABCD的边长为4,点E是边BC上一点,且BE=3,以点A为圆心,3为半径的圆分别交AB、AD于点F、G,DF与AE交于点H.并与⊙A交于点K,连结HG、CH.给出下列四个结论.其中正确的结论有(1)(3)(4)(填写所有正确结论的序号).(1)H是FK的中点(2)△HGD≌△HEC(3)S△AHG:S△DHC=9:16(4)DK=【分析】(1)先证明△ABE≌△DAF,得∠AFD+∠BAE=∠AEB+∠BAE=90°,AH⊥FK,由垂径定理,得:FH=HK,即H是FK的中点;(2)只要证明题干任意一组对应边不相等即可;(3)分别过H分别作HM⊥AD于M,HN⊥BC于N,由余弦三角函数和勾股定理算出了HM,HT,再算面积,即得S△AHG:S△DHC=9:16;(4)余弦三角函数和勾股定理算出了FK,即可得DK.【解答】解:(1)在△ABE与△DAF中,,∴△ABE≌△DAF(SAS),∴∠AFD=∠AEB,∴∠AFD+∠BAE=∠AEB+∠BAE=90°,∴AH⊥FK,由垂径定理,得:FH=HK,即H是FK的中点,故(1)正确;(2)如图,过H分别作HM⊥AD于M,HN⊥BC于N,∵AB=4,BE=3,∴AE==5,∵∠BAE=∠HAF=∠AHM,∴cos∠BAE=cos∠HAF=cos∠AHM,∴=,∴AH=,HM=,∴HN=4﹣=,即HM≠HN,∵MN∥CD,∴MD=CN,∵HD=,HC=,∴HC≠HD,∴△HGD≌△HEC是错误的,故(2)不正确;(3)由(2)知,AM==,∴DM=,∵MN∥CD,∴MD=HT=,∴==,故(3)正确;(4)由(2)知,HF==,∴,∴DK=DF﹣FK=,故(4)正确.三.解答题(共9小题)17.解方程组.【分析】用代入消元法解二元一次方程组即可.【解答】解:,将①代入②得,x+(x﹣4)=6,∴x=5,将x=5代入①得,y=1,∴方程组的解为.18.如图,点E、F在线段BC上,AB∥CD,∠A=∠D,BE=CF,证明:AE=DF.【分析】欲证AE=DF,可证△ABE≌DCF.由AB∥CD,得∠B=∠C.又因为∠A=∠D,BE=CF,所以△ABE ≌△DCF.【解答】证明:∵AB∥CD,∴∠B=∠C.在△ABE和△DCF中,∴△ABE≌DCF(AAS).∴AE=DF.19.已知A=(﹣)•.(1)化简A;(2)若m+n﹣2=0,求A的值.【分析】(1)根据分式的减法和除法可以化简A;(2)根据m+n﹣2=0,可以得到m+n=2,然后代入(1)中化简后的A,即可求得A的值.【解答】解:(1)A=(﹣)•===(m+n);(2)∵m+n﹣2=0,∴m+n=2,当m+n=2时,A=×2=6.20.某中学为了解初三学生参加志愿者活动的次数,随机调查了该年级20名学生,统计得到该20名学生参加志愿者活动的次数如下:3,5,3,6,3,4,4,5,2,4,5,6,1,3,5,5,4,4,2,4根据以上数据,得到如下不完整的频数分布表:次数 1 2 3 4 5 6人数 1 2 a 6 b 2 (1)表格中的a= 4 ,b= 5 ;(2)在这次调查中,参加志愿者活动的次数的众数为 4 ,中位数为 4 ;(3)若该校初三年级共有300名学生,根据调查统计结果,估计该校初三年级学生参加志愿者活动的次数为4次的人数.【分析】(1)由题中的数据即可求解;(2)根据中位数、众数的定义,即可解答;(3)根据样本估计总体,即可解答.【解答】解:(1)由该20名学生参加志愿者活动的次数得:a=4,b=5,故答案为:4,5;(2)该20名学生参加志愿者活动的次数从小到大排列如下:1,2,2,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,6,6,∵4出现的最多,由6次,∴众数为4,中位数为第10,第11个数的平均数=4,故答案为:4,4;(3)300×=90(人).答:估计该校初三年级学生参加志愿者活动的次数为4次的人数有90人.21.民生无小事,枝叶总关情,广东在“我为群众办实事”实践活动中推出“粤菜师傅”、“广东技工”、“南粤家政”三项培训工程,今年计划新增加培训共100万人次.(1)若“广东技工”今年计划新增加培训31万人次,“粤菜师傅”今年计划新增加培训人次是“南粤家政”的2倍,求“南粤家政”今年计划新增加的培训人次;(2)“粤菜师傅”工程开展以来,已累计带动33.6万人次创业就业,据报道,经过“粤菜师傅”项目培训的人员工资稳定提升,已知李某去年的年工资收入为9.6万元,预计李某今年的年工资收入不低于12.48万元,则李某的年工资收入增长率至少要达到多少?【分析】(1)设“南粤家政”今年计划新增加培训x万人次,则“粤菜师傅”今年计划新增加培训2x万人次,根据今年计划新增加培训共100万人次,即可得出关于x的一元一次方程,解之即可得出结论;(2)设李某的年工资收入增长率为m,利用李某今年的年工资收入=李某去年的年工资收入×(1+增长率),结合预计李某今年的年工资收入不低于12.48万元,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,再取其中的最小值即可得出结论.【解答】解:(1)设“南粤家政”今年计划新增加培训x万人次,则“粤菜师傅”今年计划新增加培训2x万人次,依题意得:31+2x+x=100,解得:x=23.答:“南粤家政”今年计划新增加培训23万人次.(2)设李某的年工资收入增长率为m,依题意得:9.6(1+m)≥12.48,解得:m≥0.3=30%.答:李某的年工资收入增长率至少要达到30%.22.如图,在四边形ABCD中,∠ABC=90°,点E是AC的中点,且AC=AD.(1)尺规作图:作∠CAD的平分线AF,交CD于点F,连结EF、BF(保留作图痕迹,不写作法);(2)在(1)所作的图中,若∠BAD=45°,且∠CAD=2∠BAC,证明:△BEF为等边三角形.【分析】(1)根据要求作出图形即可.(2)想办法证明EB=EF,∠BEF=60°,可得结论.【解答】(1)解:如图,图形如图所示.(2)证明:∵AC=AD,AF平分∠CAD,∴∠CAF=∠DAF,AF⊥CD,∵∠CAD=2∠BAC,∠BAC=45°,∴∠BAE=∠EAF=∠FAD=15°,∵∠ABC=∠AFC=90°,AE=EC,∵BE=AE=EC,EF=AE=EC,∴EB=EF,∠EAB=∠EBA=15°,∠EAF=∠EFA=15°,∴∠BEC=∠EAB+∠EBA=30°,∠CEF=∠EAF+∠EFA=30°,∴∠BEF=60°,∴△BEF是等边三角形.23.如图,在平面直角坐标系xOy中,直线l:y=x+4分别与x轴,y轴相交于A、B两点,点P(x,y)为直线l在第二象限的点.(1)求A、B两点的坐标;(2)设△PAO的面积为S,求S关于x的函数解析式,并写出x的取值范围;(3)作△PAO的外接圆⊙C,延长PC交⊙C于点Q,当△POQ的面积最小时,求⊙C的半径.【分析】(1)根据直线y=x+4分别与x轴,y轴相交于A、B两点,令x=0,则y=4;令y=0,则x =﹣8,即得A,B的坐标;(2)设P(x,),根据三角形面积公式,表示出S关于x的函数解析式,根据P在线段AB上得出x的取值范围;(3)将S△POQ表示为OP2,从而当△POQ的面积最小时,此时OP最小,而OP⊥AB时,OP最小,借助三角函数求出此时的直径即可解决问题.【解答】解:(1)∵直线y=x+4分别与x轴,y轴相交于A、B两点,∴当x=0时,y=4;当y=0时,x=﹣8,∴A(﹣8,0),B(0,4);(2)∵点P(x,y)为直线l在第二象限的点,∴P(x,),∴S△APO==2x+16(﹣8<x<0);∴S=2x+16(﹣8<x<0);(3)∵A(﹣8,0),B(0,4),∴OA=8,OB=4,在Rt△AOB中,由勾股定理得:AB=,在⊙C中,∵PQ是直径,∴∠PQO=90°,∵∠BAO=∠Q,∴tan Q=tan∠BAO=,∴,∴OQ=2OP,∴S△POQ=,∴当S△POQ最小,则OP最小时,∵点P在线段AB上运动,∴当OP⊥AB时,OP最小,∴S△AOB=,∴,∵sin Q=sin∠BAO,∴,∴,∴PQ=8,∴⊙C半径为4.24.已知抛物线y=x2﹣(m+1)x+2m+3.(1)当m=0时,请判断点(2,4)是否在该抛物线上;(2)该抛物线的顶点随着m的变化而移动,当顶点移动到最高处时,求该抛物线的顶点坐标;(3)已知点E(﹣1,﹣1)、F(3,7),若该抛物线与线段EF只有一个交点,求该抛物线顶点横坐标的取值范围.【分析】(1)当m=0时,抛物线为y=x2﹣x+3,将x=2代入得y=5,故点(2,4)不在抛物线上;(2)抛物线y=x2﹣(m+1)x+2m+3的顶点为(,),而=﹣(m﹣3)2+5,即得m=3时,纵坐标最大,此时顶点移动到了最高处,顶点坐标为:(2,5);(3)求出直线EF的解析式为y=2x+1,由得直线y=2x+1与抛物线y=x2﹣(m+1)x+2m+3的交点为:(2,5)和(m+1,2m+3),因(2,5)在线段EF上,由已知可得(m+1,2m+3)不在线段EF上,即是m+1<﹣1或m+1>3,或(2,5)与(m+1,2m+3)重合,可得抛物线顶点横坐标x顶点=<﹣或x顶点=>或x顶点=1.【解答】解:(1)当m=0时,抛物线为y=x2﹣x+3,将x=2代入得y=4﹣2+3=5,∴点(2,4)不在抛物线上;(2)抛物线y=x2﹣(m+1)x+2m+3的顶点为(,),化简得(,),顶点移动到最高处,即是顶点纵坐标最大,而=﹣(m﹣3)2+5,∴m=3时,纵坐标最大,即是顶点移动到了最高处,此时顶点坐标为:(2,5);(3)设直线EF解析式为y=kx+b,将E(﹣1,﹣1)、F(3,7)代入得:,解得,∴直线EF的解析式为y=2x+1,由得:或,∴直线y=2x+1与抛物线y=x2﹣(m+1)x+2m+3的交点为:(2,5)和(m+1,2m+3),而(2,5)在线段EF上,∴若该抛物线与线段EF只有一个交点,则(m+1,2m+3)不在线段EF上,或(2,5)与(m+1,2m+3)重合,∴m+1<﹣1或m+1>3或m+1=2(此时2m+3=5),∴此时抛物线顶点横坐标x顶点=<﹣或x顶点=>或x顶点===1.25.如图,在菱形ABCD中,∠DAB=60°,AB=2,点E为边AB上一个动点,延长BA到点F,使AF=AE,且CF、DE相交于点G.(1)当点E运动到AB中点时,证明:四边形DFEC是平行四边形;(2)当CG=2时,求AE的长;(3)当点E从点A开始向右运动到点B时,求点G运动路径的长度.【分析】(1)利用平行四边形的判定定理:两边平行且相等的四边形是平行四边形,(2)利用三角形相似,求出此时FG的长,再借助直角三角形勾股定理求解,(3)利用图形法,判断G点轨迹为一条线段,在对应点处求解.【解答】解:(1)连接DF,CE,如图所示:,∵E为AB中点,∴AE=AF=AB,∴EF=AB,∵四边形ABCD是菱形,∴EF∥AB,∴四边形DFEC是平行四边形.(2)作CH⊥BH,设AE=FA=m,如图所示,,∵四边形ABCD是菱形,∴CD∥EF,∴△CDG∽△FEG,∴,∴FG=2m,在Rt△CBH中,∠CBH=60°,BC=2,sin60°=,CH=,cos60°=,BC=1,在Rt△CFH中,CF=2+2m,CH=,FH=3+m,CF²=CH²+FH²,即(2+2m)²=()²+(3+m)²,整理得:3m²+2m﹣8=0,解得:m1=,m2=﹣2(舍去),∴.(3)因H点沿线段AB直线运动,F点沿线段BA的延长线直线运动,并且CD∥AB,线段ED与线段CF的交点G点运动轨迹为线段AG,运动刚开始时,A、F、H、G四点重合,当H点与B点重合时,G点运动到极限位置,所以G点轨迹为线段AG,如图所示,作GH⊥AB,∵四边形ABCD为菱形,∠DAB=60°,AB=2,∴CD∥BF,BD=2,∴△CDG∽△FBG,∴,即BG=2DG,∵BG+DG=BD=2,∴BG=,在Rt△GHB中,BG=,∠DBA=60°,sin60°=,GH=,cos60°=,BH=,在Rt△AHG中,AH=2﹣=,GH=,AG²=()²+()²=,∴AG=.∴G点路径长度为.2020年广东中考数学真题及答案一、选择题(本大题10小题,每小題3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.9的相反数是( )A.-9B.9C.19D.19- 2.一组数据2,4,3,5,2的中位数是( )A.5B.35C.3D.253.在半面直角坐标系中,点(3,2)关于x 轴对称的点的坐标为( )A.(3,2)-B.(2,3)-C.(2,3)-D.(3,2)-4.若一个多边形的内角和是540°,则该多边形的边数为( )A.4B.5C.6D.75.24x -在实数范围内有意义,则x 的取值范围是( )A.2x ≠B.2x ≥C.2x ≤D.2x ≠-6.已知ABC ∆的周长为16,点D ,E ,F 分别为ABC ∆三条边的中点,则DEF ∆的周长为( )A.8B.22C.16D.4 7.把函数2(1)2y x =-+的图象向右平移1个单位长度,平移后图象的函数解析式为( )A.22y x =+B.2(1)1y x =-+C.2(2)2y x =-+D.2(1)3y x =-- 8.不等式组231,12(2)x x x -≥-⎧⎨-≥-+⎩的解集为( ) A.无解 B.1x ≤ C.1x ≥- D.11x -≤≤9.如图,在正方形ABCD 中,3AB =,点E ,F 分别在边AB ,CD 上,60EFD ∠=︒.若将四边形EBCF 沿EF 折叠,点B 恰好落在AD 边上,则BE 的长度为( )A.1B.2C.3D.2 10.如图,抛物线2y ax bx c =++的对称轴是1x =.下列结论:①0abc >;②240b ac ->;③80a c +<;④520a b c ++>,正确的有( )A.4个B.3个C.2个D.1个二、填空题(本大题7小題,每小题4分,共28分)请将下列各题的正确答案填写在答题卡相应的位置上.11.分解因式:xy x -=_________.12.如果单项式3m x y 与35nx y -是同类项,那么m n +=_________. 13.若2|1|0a b -++=,则2020()a b +=_________. 14.已知5x y =-,2xy =,计算334x y xy +-的值为_________.15.如图,在菱形ABCD 中,30A ∠=︒,取大于12AB 的长为半径,分别以点A ,B 为圆心作弧相交于两点,过此两点的直线交AD 边于点E (作图痕迹如图所示),连接BE ,BD ,则EBD ∠的度数为_________.16.如图,从一块半径为1m 的圆形铁皮上剪出一个圆周角为120°的扇形ABC ,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为_________m .17.有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,90ABC ∠=︒,点M ,N 分别在射线BA ,BC 上,MN 长度始终保持不变,4MN =,E 为MN 的中点,点D 到BA ,BC 的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE 的最小值为_________.三、解答题(一)(本大题3小题,每小题6分,共18分)18.先化简,再求价:22()()()2x y x y x y x +++--,其中2x =3y =19.某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,要求每名学生选且只能选其中一个等级.随机抽取了120名学生的有效问卷,数据整理如下: 等级非常了解 比较了解 基本了解 不太了解 人数(人)24 72 18 x(1)求x 的值;(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?20.如图,在ABC ∆中,点D ,E 分别是AB 、AC 边上的点,BD CE =,ABE ACD ∠=∠,BE 与CD 相交于点F ,求证:ABC ∆是等腰三角形.。
广东省东莞市2014年中考数学模拟试卷(含答案)
广东省东莞市2014年中考数学模拟试卷(含答案)(时间:100分钟,满分120分)一、选择题(本大题共5小题,每小题3分,共15分;在每小题给出的四个选项中,只有一个是正确的) 1.64的立方根是( )A .2B .-2C .4D .-42.5月31日,参观东莞开幕式的游客约为505 000人.505 000用科学记数法表示为( )A .505×103B .5.05×103C .5.05×104D .5.05×105 3.下列计算正确的是( )A .a 4+a 2=a 6B .2a ·4a =8aC .a 5÷a 2=a 3D .(a 2)3=a 54.方程组⎩⎪⎨⎪⎧x +y =3x -y =-1的解是( )A.⎩⎪⎨⎪⎧ x =1y =2B.⎩⎪⎨⎪⎧ x =1y =-2C.⎩⎪⎨⎪⎧ x =2y =1D.⎩⎪⎨⎪⎧x =0y =-1 5.一个几何体的三视图如图所示.那么这个几何体是( )A B C D二、填空题(本大题共5小题,每小题4分,共20分)6.若x 、y 为实数,且x +3+|y -2|=0,则x +y = .7.如图,菱形ABCD 中,对角线AC 、BD 相交于点O ,H 为AD 边中点,菱形ABCD 的周长为24,则OH 的长等于 .(第7题) (第10题)8.一组数据1,6,x,5,9的平均数是5,那么这组数据的中位数是 . 9.双曲线y =2k -1x的图象经过第二、四象限,则k 的取值范围是 .10.如图,观察每一个图中黑色正六边形的排列规律,则第10个图中黑色正六边形有 个.三、解答题(本大题共5小题,每小题6分,共30分)11.计算:(-2 011)0+122-⎪⎪⎭⎫ ⎝⎛+||2-2-2cos60°.12.解方程:142-+x x =3x -1.13.先化简,再求值:⎝ ⎛⎭⎪⎫a -1a 2-4a +4-a +2a 2-2a ÷⎝⎛⎭⎫4a -1,其中a =2- 3.14.如图,已知二次函数y =-12x 2+bx +c 的图象经过A (2,0),B (0,-6)两点.(1)求这个二次函数的解析式;(2)设该二次函数的对称轴与x 轴交于点C ,连接BA 、BC ,求△ABC 的面积.15.某市为缓解城市交通压力,决定修建人行天桥,原设计天桥的楼梯长AB =6 m , ∠ABC =45°,后考虑到安全因素,将楼梯脚B 移到CB 延长线上点D 处,使∠ADC =30°(如图所示).(1)求调整后楼梯AD 的长; (2)求BD 的长(结果保留根号).四、解答题(本大题共4小题,每小题7分,共28分)16.日本福岛出现核电站事故后,我国国家海洋局高度关注事态发展,紧急调集海上巡逻的海检船,在相关海域进行现场监测与海水采样,针对核泄漏在极端情况下对海洋环境的影响及时开展分析评估.如图,上午9时,海检船位于A 处,观测到某港口城市P 位于海检船的北偏西67.5°方向,海检船以21海里/时的速度向正北方向行驶,下午2时海检船到达B 处,这时观察到城市P 位于海检船的南偏西36.9°方向,求此时海检船所在B 处与城市P 的距离?⎝⎛ 参考数据:sin 36.90≈35,tan 36.90≈34,⎭⎫sin 67.50≈1213,tan 67.50≈12517.2011年6月4日,李娜获得法网公开赛的冠军,圆了中国人的网球梦,也在国内掀起一股网球热.某市准备为青少年举行一次网球知识讲座,小明和妹妹都是网球球迷,要求爸爸去买门票,但爸爸只买回一张门票,那么谁去就成了问题,小明想到一个办法:他拿出一个装有质地、大小相同的2x 个红球与3x 个白球的袋子,让爸爸摸出一个球,如果摸出的是红球,妹妹去听讲座,如果摸出的是白球,小明去听讲座. (1)爸爸说这个办法不公平,请你用概率的知识解释原因;(2)若爸爸从袋中取出3个白球,再用小明提出的办法来确定谁去听讲座,请问摸球的结果是对小明有利还是对妹妹有利,说明理由.18.绵阳市“全国文明村”江油白玉村果农王灿收获枇杷20吨,桃子12吨.现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.(1)王灿有几种方案安排甲、乙两种货车可一次性地将水果运到销售地?(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王灿应选择哪种方案,使运输费最少?最少运费是多少?19.已知:如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.(1)以AB边上一点O为圆心,过A、D两点作⊙O(不写作法,保留作图痕迹),再判断直线BC与⊙O的位置关系,并说明理由;(2)若(1)中的⊙O与AB边的另一个交点为E,AB=6,BD=2 3,求线段BD、BE与劣弧DE所围成的图形面积(结果保留根号和π).五、解答题(本大题共3小题,每小题9分,共27分)20.对于任何实数,我们规定符号⎪⎪⎪ a c ⎪⎪⎪b d 的意义是⎪⎪⎪ a c⎪⎪⎪b d =ad -bc . (1)按照这个规定请你计算⎪⎪⎪ 57⎪⎪⎪68的值;(2)按照这个规定请你计算:当x 2-3x +1=0时,⎪⎪⎪⎪⎪⎪x +1x -23xx -1的值.21.已知:如图,在△ABC 中,BC =AC ,以BC 为直径的⊙O 与边AB 相交于点D ,DE ⊥AC ,垂足为点E .(1)求证:点D 是AB 的中点; (2)判断DE 与⊙O 的位置关系,并证明你的结论;(3)若⊙O 的直径为18,cos B =13,求DE 的长.22.如图,已知二次函数y=-x2+bx+c的图象经过A(-2,-1),B(0,7)两点.(1)求该抛物线的解析式及对称轴;(2)当x为何值时,y>0?(3)在x轴上方作平行于x轴的直线l,与抛物线交于C、D两点(点C在对称轴的左侧),过点C、D作x轴的垂线,垂足分别为F、E.当矩形CDEF为正方形时,求C点的坐标.参考答案一、选择题1. A2. D3. C4. A5. C 二、填空题6. -17. 38. 59. k <12 10. 100三、解答题11.解:原式=1+2+2-2-1=212.解:方程两边同乘最简公分母x (x -1),得x +4=3x ,解得x =2.经检验:x =2是原方程的根. ∴原方程的解为x =2. 13.解:原式=⎣⎢⎡⎦⎥⎤a -1a -2-a +2aa -÷4-a a =aa --a -a +aa -2·a 4-a=1a -2. 当a =2-3时,原式=13.14.解:(1)把A (2,0),B (0,-6)代入y =-12x 2+bx +c ,得⎩⎪⎨⎪⎧ -2+2b +c =0c =-6,解得⎩⎪⎨⎪⎧b =4c =-6. ∴这个二次函数的解析式为y =-12x 2+4x -6.(2)∵该抛物线对称轴为直线x =-42×⎝⎛⎭⎫-12=4,∴点C 的坐标为(4,0),∴AC =OC -OA =4-2=2, ∴S △ABC =12×AC ×OB =12×2×6=6.15.解:(1)已知AB =6 m ,∠ABC =45°,∴AC =BC =AB ·sin45°=6×22=3 2,∵∠ADC =30°,∴AD =2AC =6 2. 答:调整后楼梯AD 的长为6 2m.(2)CD =AD ·cos30°=6 2×32=3 6,∴BD =CD -BC =3 6-3 2. 答:BD 的长为(3 6-3 2)m.16.解:如图,过点P 作PC ⊥AB ,垂足为C ,设PC =x 海里,在Rt △APC 中,∵tan ∠A =PC AC, ∴AC =PC tan67.5°=5x12.在Rt △PCB 中,∵tan ∠B =PC BC, ∴BC =x tan36.9°=4x3.∵AC +BC =AB =21×5, ∴5x 12+4x3=21×5,解得 x =60. ∵sin ∠B =PCPB,∴PB =PC sin ∠B =60sin36.9°=60×53=100(海里).∴海检船所在B 处与城市P 的距离为100海里.17.解:(1)∵红球有2x 个,白球有3x 个,∴P (红球)=2x 2x +3x =25, P (白球)=3x 2x +3x =35,∴P (红球)< P (白球), ∴这个办法不公平.(2)取出3个白球后,红球有2x 个,白球有(3x -3)个, ∴P (红球)=2x5x -3,P (白球)=3x -35x -3,x 为正整数, ∴P (红球)- P (白球) =3-x5x -3.①当x <3时,则P (红球)> P (白球), ∴对小妹有利.②当x =3时,则P (红球)= P (白球), ∴对小妹、小明是公平的.③当x >3时,则P (红球)< P (白球),∴对小明有利.18.解:(1)设安排甲种货车x 辆,则安排乙种货车(8-x )辆,依题意得⎩⎪⎨⎪⎧4x +-x x +-x ,解此不等式组得2≤x ≤4. ∵x 是正整数,∴x 可取的值为2,3,4.因此安排甲、乙两种货车有三种方案:(2)方案一所需运费为方案二所需运费为300×3+240×5=2 100元; 方案三所需运费为300×4+240×4=2 160元.∴王灿应选择方案一运费最少,最少运费是2 040元. 19.解:(1)如图 (需保留线段AD 中垂线的痕迹).直线BC 与⊙O 相切.理由如下:连接OD ,∵OA =OD ,∴∠OAD =∠ODA . ∵AD 平分∠BAC ,∴∠OAD =∠DAC . ∴∠ODA =∠DAC . ∴OD ∥AC . ∵∠C =90°,∴∠ODB =90°,即OD ⊥BC . 又∵直线BC 过半径OD 的外端, ∴BC 为⊙O 的切线. (2)设OA =OD =r ,在Rt △BDO 中,OD 2+BD 2=OB 2, ∴r 2+(2 3)2=(6-r )2,解得r =2. ∵tan ∠BOD =BDOD =3,∴∠BOD =60°.∴S 扇形ODE =60π·22360=23π.∴所求图形面积为S △BOD -S 扇形ODE =2 3-23π.20.解:(1)⎪⎪⎪ 57⎪⎪⎪68=5×8-6×7=-2.(2)⎪⎪⎪ x +1x -2 ⎪⎪⎪3x x -1=()x +1()x -1-3x ()x -2 =x 2-1-3x 2+6x=-2x 2+6x -1.又∵x 2-3x +1=0,∴x 2-3x =-1,原式=-2(x 2-3x )-1=-2×(-1)-1=1.21.(1)证明:如图,连接CD ,则CD ⊥AB ,又∵AC =BC ,∴AD =BD , 即点D 是AB 的中点.(2)解:DE 是⊙O 的切线.理由是:连接OD ,则DO 是△ABC 的中位线,∴DO ∥AC .又∵DE ⊥AC ,∴DE ⊥DO ,又∵OD 是⊙O 的半径,∴DE 是⊙O 的切线.(3)∵AC =BC ,∴∠B =∠A ,∴cos ∠B =cos ∠A =13. ∵cos ∠B =BD BC =13,BC =18, ∴BD =6,∴AD =6.∵cos ∠A =AE AD =13, ∴AE =2.在Rt △AED 中,DE =AD 2-AE 2=4 2.22.解:(1)把A (-2,-1),B (0,7)两点的坐标代入y =-x 2+bx +c ,得⎩⎪⎨⎪⎧ -4-2b +c =-1c =7,解得⎩⎪⎨⎪⎧b =2c =7. 所以,该抛物线的解析式为y =-x 2+2x +7,又因为y =-x 2+2x +7=-(x -1)2+8,所以对称轴为直线x =1.(2)当函数值y =0时,-x 2+2x +7=0的解为x =1±2 2,结合图象,容易知道1-2 2<x <1+2 2时,y >0.(3)当矩形CDEF为正方形时,设C点的坐标为(m,n),则n=-m2+2m+7,即CF=-m2+2m+7.因为C、D两点的纵坐标相等,所以C、D两点关于对称轴x=1对称,设点D的横坐标为p,则1-m=p-1,所以p=2-m,所以CD=(2-m)-m=2-2m.因为CD=CF,所以2-2m=-m2+2m+7,整理,得m2-4m-5=0,解得m=-1或5.因为点C在对称轴的左侧,所以m只能取-1.当m=-1时,n=-m2+2m+7=-(-1)2+2×(-1)+7=4.于是,点C的坐标为(-1,4).。
广东省2014年中考数学试卷(含解析)
2014年广东省中考数学试卷一、选择题(本大题10小题,每小题3分,共30分)1.(3分)(2014?广东)在1,0,2,﹣3这四个数中,最大的数是()A.1B.0C.2D.﹣3考点:有理数大小比较.分析:根据正数大于0,0大于负数,可得答案.解答:解:﹣3<0<1<2,故选:C.点评:本题考查了有理数比较大小,正数大于0,0大于负数是解题关键.2.(3分)(2014?广东)在下列交通标志中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、不是轴对称图形,不是中心对称图形.故此选项错误;B、不是轴对称图形,也不是中心对称图形.故此选项错误;C、是轴对称图形,也是中心对称图形.故此选项正确;D、是轴对称图形,不是中心对称图形.故此选项错误.故选C.点评:此题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.(3分)(2014?广东)计算3a﹣2a的结果正确的是()A.1B.a C.﹣a D.﹣5a考点:合并同类项.分析:根据合并同类项的法则,可得答案.解答:解:原式=(3﹣2)a=a,故选:B.点评:本题考查了合并同类项,系数相加字母部分不变是解题关键.4.(3分)(2014?广东)把x3﹣9x分解因式,结果正确的是()A.x(x2﹣9)B.x(x﹣3)2C.x(x+3)2D.x(x+3)(x﹣3)考点:提公因式法与公式法的综合运用.分析:先提取公因式x,再对余下的多项式利用平方差公式继续分解.解答:解:x3﹣9x,=x(x2﹣9),=x(x+3)(x﹣3).故选D.点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.5.(3分)(2014?广东)一个多边形的内角和是900°,这个多边形的边数是()A.4B.5C.6D.7考点:多边形内角与外角.分析:根据多边形的外角和公式(n﹣2)?180°,列式求解即可.解答:解:设这个多边形是n边形,根据题意得,(n﹣2)?180°=900°,解得n=7.故选D.点评:本题主要考查了多边形的内角和公式,熟记公式是解题的关键.6.(3分)(2014?广东)一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是()A.B.C.D.考点:概率公式.分析:直接根据概率公式求解即可.解答:解:∵装有7个只有颜色不同的球,其中3个红球,∴从布袋中随机摸出一个球,摸出的球是红球的概率=.故选B.点评:本题考查的是概率公式,熟知随机事件A的概率P(A)=事件A可能出现的结果数与所有可能出现的结果数的商是解答此题的关键.7.(3分)(2014?广东)如图,?ABCD中,下列说法一定正确的是()A.AC=BD B.AC⊥BD C.AB=CD D.AB=BC考点:平行四边形的性质.分析:根据平行四边形的性质分别判断各选项即可.解答:解:A、AC≠BD,故此选项错误;B、AC不垂直BD,故此选项错误;C、AB=CD,利用平行四边形的对边相等,故此选项正确;D、AB≠BC,故此选项错误;故选:C.点评:此题主要考查了平行四边形的性质,正确把握其性质是解题关键.8.(3分)(2014?广东)关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围为()A.B.C.D.考点:根的判别式.专题:计算题.分析:先根据判别式的意义得到△=(﹣3)2﹣4m>0,然后解不等式即可.解答:解:根据题意得△=(﹣3)2﹣4m>0,解得m<.故选B.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.9.(3分)(2014?广东)一个等腰三角形的两边长分别是3和7,则它的周长为()A.17 B.15 C.13 D.13或17考点:等腰三角形的性质;三角形三边关系.分析:由于未说明两边哪个是腰哪个是底,故需分:(1)当等腰三角形的腰为3;(2)当等腰三角形的腰为7;两种情况讨论,从而得到其周长.解答:解:①当等腰三角形的腰为3,底为7时,3+3<7不能构成三角形;②当等腰三角形的腰为7,底为3时,周长为3+7+7=17.故这个等腰三角形的周长是17.故选A.点评:本题考查的是等腰三角形的性质,在解答此题时要注意进行分类讨论.10.(3分)(2014?广东)二次函数y=ax2+bx+c(a≠0)的大致图象如图,关于该二次函数,下列说法错误的是()A.函数有最小值B.对称轴是直线x=C.当x<,y随x的增大而减小D.当﹣1<x<2时,y>0考点:二次函数的性质.分析:根据抛物线的开口方向,利用二次函数的性质判断A;根据图形直接判断B;根据对称轴结合开口方向得出函数的增减性,进而判断C;根据图象,当﹣1<x<2时,抛物线落在x轴的下方,则y<0,从而判断D.解答:解:A、由抛物线的开口向下,可知a<0,函数有最小值,正确,故本选项不符合题意;B、由图象可知,对称轴为x=,正确,故本选项不符合题意;C、因为a>0,所以,当x<时,y随x的增大而减小,正确,故本选项不符合题意;D、由图象可知,当﹣1<x<2时,y<0,错误,故本选项符合题意.故选D.点评:本题考查了二次函数的图象和性质,解题的关键是利用数形结合思想解题.二、填空题(本大题6小题,每小题4分,共24分)11.(4分)(2014?广东)计算2x3÷x=2x2.考点:整式的除法.分析:直接利用整式的除法运算法则求出即可.解答:解:2x3÷x=2x2.故答案为:2x2.点评:此题主要考查了整式的除法运算法则,正确掌握运算法则是解题关键.12.(4分)(2014?广东)据报道,截止2013年12月我国网民规模达618 000 000人.将618 000 000用科学记数法表示为 6.18×108.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将618 000 000用科学记数法表示为: 6.18×108.故答案为: 6.18×108.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.(4分)(2014?广东)如图,在△ABC中,D,E分别是边AB,AC的中点,若BC=6,则DE=3.考点:三角形中位线定理.分析:由D、E分别是AB、AC的中点可知,DE是△ABC的中位线,利用三角形中位线定理可求出DE.解答:解:∵D、E是AB、AC中点,∴DE为△ABC的中位线,∴ED=BC=3.故答案为3.点评:本题用到的知识点为:三角形的中位线等于三角形第三边的一半.14.(4分)(2014?广东)如图,在⊙O中,已知半径为5,弦AB的长为8,那么圆心O到AB的距离为3.考点:垂径定理;勾股定理.分析:作OC⊥AB于C,连结OA,根据垂径定理得到AC=BC=AB=3,然后在Rt△AOC中利用勾股定理计算OC即可.解答:解:作OC⊥AB于C,连结OA,如图,∵OC⊥AB,∴AC=BC=AB=×8=4,在Rt△AOC中,OA=5,∴OC===3,即圆心O到AB的距离为3.故答案为:3.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.15.(4分)(2014?广东)不等式组的解集是1<x<4.考点:解一元一次不等式组.专题:计算题.分析:分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.解答:解:,由①得:x<4;由②得:x>1,则不等式组的解集为1<x<4.故答案为:1<x<4.点评:此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.16.(4分)(2014?广东)如图,△ABC绕点A顺时针旋转45°得到△A′B′C′,若∠BAC=90°,AB=AC=,则图中阴影部分的面积等于﹣1.考点:旋转的性质.分析:根据题意结合旋转的性质以及等腰直角三角形的性质得出AD=BC=1,AF=FC′=AC′=1,进而求出阴影部分的面积.解答:解:∵△ABC绕点A顺时针旋转45°得到△A′B′C′,∠BAC=90°,AB=AC=,,∴BC=2,∠C=∠B=∠CAC′=∠C′=45°∴AD⊥BC,B′C′⊥AB,∴AD=BC=1,AF=FC′=AC′=1,∴图中阴影部分的面积等于:S△AFC′﹣S△DEC′=×1×1﹣×(﹣1)2=﹣1.故答案为:﹣1.点评:此题主要考查了旋转的性质以及等腰直角三角形的性质等知识,得出AD,AF,DC′的长是解题关键.三、解答题(一)(本大题3小题,每小题6分,共18分)17.(6分)(2014?广东)计算:+|﹣4|+(﹣1)0﹣()﹣1.考点:实数的运算;零指数幂;负整数指数幂.分析:本题涉及零指数幂、负指数幂、二次根式化简3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=3+4+1﹣2=6.点评:本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.(6分)(2014?广东)先化简,再求值:(+)?(x2﹣1),其中x=.考点:分式的化简求值.分析:先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.解答:解:原式=?(x2﹣1)=2x+2+x﹣1=3x+1,当x=时,原式=.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.19.(6分)(2014?广东)如图,点D在△ABC的AB边上,且∠ACD=∠A.(1)作∠BDC的平分线DE,交BC于点E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线DE与直线AC的位置关系(不要求证明).考点:作图—基本作图;平行线的判定.分析:(1)根据角平分线基本作图的作法作图即可;(2)根据角平分线的性质可得∠BDE=∠BDC,根据三角形内角与外角的性质可得∠A=∠BDE,再根据同位角相等两直线平行可得结论.解答:解:(1)如图所示:(2)DE∥AC∵DE平分∠BDC,∴∠BDE=∠BDC,∵∠ACD=∠A,∠ACD+∠A=∠BDC,∴∠A=∠BDC,∴∠A=∠BDE,∴DE∥AC.点评:此题主要考查了基本作图,以及平行线的判定,关键是正确画出图形,掌握同位角相等两直线平行.四、解答题(二)(本大题3小题,每小题7分,共21分)20.(7分)(2014?广东)如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C的仰角为30°,然后沿AD方向前行10m,到达B点,在B处测得树顶C的仰角高度为60°(A、B、D三点在同一直线上).请你根据他们测量数据计算这棵树CD的高度(结果精确到0.1m).(参考数据:≈1.414,≈1.732)考点:解直角三角形的应用-仰角俯角问题.分析:首先利用三角形的外角的性质求得∠ABC的度数,得到BC的长度,然后在直角△BDC 中,利用三角函数即可求解.解答:解:∵∠CBD=∠A+∠ACB,∴∠ACB=∠CBD﹣∠A=60°﹣30°=30°,∴∠A=∠ACB,∴BC=AB=10(米).在直角△BCD中,CD=BC?sin∠CBD=10×=5≈5×1.732=8.7(米).答:这棵树CD的高度为8.7米.点评:本题考查仰角的定义,要求学生能借助仰角构造直角三角形并解直角三角形.21.(7分)(2014?广东)某商场销售的一款空调机每台的标价是1635元,在一次促销活动中,按标价的八折销售,仍可盈利9%.(1)求这款空调每台的进价(利润率==).(2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元?考点:分式方程的应用.分析:(1)利用利润率==这一隐藏的等量关系列出方程即可;(2)用销售量乘以每台的销售利润即可.解答:解:(1)设这款空调每台的进价为x元,根据题意得:=9%,解得:x=1200,经检验:x=1200是原方程的解.答:这款空调每台的进价为1200元;(2)商场销售这款空调机100台的盈利为:100×1200×9%=10800元.点评:本题考查了分式方程的应用,解题的关键是了解利润率的求法.22.(7分)(2014?广东)某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有1000名;(2)把条形统计图补充完整;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校18 000名学生一餐浪费的食物可供多少人食用一餐?考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)用没有剩的人数除以其所占的百分比即可;(2)用抽查的总人数减去其他三类的人数,再画出图形即可;(3)根据这次被调查的所有学生一餐浪费的食物可以供200人用一餐,再根据全校的总人数是18000人,列式计算即可.解答:解:(1)这次被调查的同学共有400÷40%=1000(名);故答案为:1000;(2)剩少量的人数是;1000﹣400﹣250﹣150=200,补图如下;(3)18000×=3600(人).答:该校18000名学生一餐浪费的食物可供3600人食用一餐.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.五、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)(2014?广东)如图,已知A(﹣4,),B(﹣1,2)是一次函数y=kx+b与反比例函数y=(m≠0,m<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m的值;(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.考点:反比例函数与一次函数的交点问题.分析:(1)根据一次函数图象在上方的部分是不等式的解,观察图象,可得答案;(2)根据待定系数法,可得函数解析式;(3)根据三角形面积相等,可得答案.解答:解:(1)由图象得一次函数图象在上的部分,﹣4<x<﹣1,当﹣4<x<﹣1时,一次函数大于反比例函数的值;(2)设一次函数的解析式为y=kx+b,y=kx+b的图象过点(﹣4,),(﹣1,2),则,解得一次函数的解析式为y=x+,反比例函数y=图象过点(﹣1,2),m=﹣1×2=﹣2;(3)连接PC、PD,如图,设P(x,x+)由△PCA和△PDB面积相等得(x+4)=|﹣1|×(2﹣x﹣),x=﹣,y=x+=,∴P点坐标是(﹣,).点评:本题考查了反比例函数与一次函数的交点问题,利用了函数与不等式的关系,待定系数法求解析式.24.(9分)(2014?广东)如图,⊙O是△ABC的外接圆,AC是直径,过点O作OD⊥AB 于点D,延长DO交⊙O于点P,过点P作PE⊥AC于点E,作射线DE交BC的延长线于F点,连接PF.(1)若∠POC=60°,AC=12,求劣弧PC的长;(结果保留π)(2)求证:OD=OE;(3)求证:PF是⊙O的切线.考点:切线的判定;弧长的计算.分析:(1)根据弧长计算公式l=进行计算即可;(2)证明△POE≌△ADO可得DO=EO;(3)连接AP,PC,证出PC为EF的中垂线,再利用△CEP∽△CAP找出角的关系求解.解答:(1)解:∵AC=12,∴CO=6,∴==2π;(2)证明:∵PE⊥AC,OD⊥AB,∠PEA=90°,∠ADO=90°在△ADO和△PEO中,,∴△POE≌△AOD(AAS),∴OD=EO;(3)证明:如图,连接AP,PC,∵OA=OP,∴∠OAP=∠OPA,由(1)得OD=EO,∴∠ODE=∠OED,又∵∠AOP=∠EOD,∴∠OPA=∠ODE,∴AP∥DF,∵AC是直径,∴∠APC=90°,∴∠PQE=90°∴PC⊥EF,又∵DP∥BF,∴∠ODE=∠EFC,∵∠OED=∠CEF,∴∠CEF=∠EFC,∴CE=CF,∴PC为EF的中垂线,∴∠EPQ=∠QPF,∵△CEP∽△CAP∴∠EPQ=∠EAP,∴∠QPF=∠EAP,∴∠QPF=∠OPA,∵∠OPA+∠OPC=90°,∴∠QPF+∠OPC=90°,∴OP⊥PF,∴PF是⊙O的切线.点评:本题主要考查了切线的判定,解题的关键是适当的作出辅助线,准确的找出角的关系.25.(9分)(2014?广东)如图,在△ABC中,AB=AC,AD⊥AB于点D,BC=10cm,AD=8cm.点P从点B出发,在线段BC上以每秒3cm的速度向点C匀速运动,与此同时,垂直于AD的直线m从底边BC出发,以每秒2cm的速度沿DA方向匀速平移,分别交AB、AC、AD于E、F、H,当点P到达点C时,点P与直线m同时停止运动,设运动时间为t秒(t>0).(1)当t=2时,连接DE、DF,求证:四边形AEDF为菱形;(2)在整个运动过程中,所形成的△PEF的面积存在最大值,当△PEF的面积最大时,求线段BP的长;(3)是否存在某一时刻t,使△PEF为直角三角形?若存在,请求出此时刻t的值;若不存在,请说明理由.考点:相似形综合题.分析:(1)如答图1所示,利用菱形的定义证明;(2)如答图2所示,首先求出△PEF的面积的表达式,然后利用二次函数的性质求解;(3)如答图3所示,分三种情形,需要分类讨论,分别求解.解答:(1)证明:当t=2时,DH=AH=2,则H为AD的中点,如答图1所示.又∵EF⊥AD,∴EF为AD的垂直平分线,∴AE=DE,AF=DF.∵AB=AC,AD⊥AB于点D,∴AD⊥BC,∠B=∠C.∴EF∥BC,∴∠AEF=∠B,∠AFE=∠C,∴∠AEF=∠AFE,∴AE=AF,∴AE=AF=DE=DF,即四边形AEDF为菱形.(2)解:如答图2所示,由(1)知EF∥BC,∴△AEF∽△ABC,∴,即,解得:EF=10﹣t.S△PEF=EF?DH=(10﹣t)?2t=﹣t2+10t=﹣(t﹣2)2+10∴当t=2秒时,S△PEF存在最大值,最大值为10,此时BP=3t=6.(3)解:存在.理由如下:①若点E为直角顶点,如答图3①所示,此时PE∥AD,PE=DH=2t,BP=3t.∵PE∥AD,∴,即,此比例式不成立,故此种情形不存在;②若点F为直角顶点,如答图3②所示,此时PE∥AD,PF=DH=2t,BP=3t,CP=10﹣3t.∵PF∥AD,∴,即,解得t=;③若点P为直角顶点,如答图3③所示.过点E作EM⊥BC于点M,过点F作FN⊥BC于点N,则EM=FN=DH=2t,EM∥FN∥AD.∵EM∥AD,∴,即,解得BM=t,∴PM=BP﹣BM=3t﹣t=t.在Rt△EMP中,由勾股定理得:PE2=EM2+PM2=(2t)2+(t)2=t2.∵FN∥AD,∴,即,解得CN=t,∴PN=BC﹣BP﹣CN=10﹣3t﹣t=10﹣t.在Rt△FNP中,由勾股定理得:PF2=FN2+PN2=(2t)2+(10﹣t)2=t2﹣85t+100.在Rt△PEF中,由勾股定理得:EF2=PE2+PF2,即:(10﹣t)2=(t2)+(t2﹣85t+100)化简得:t2﹣35t=0,解得:t=或t=0(舍去)∴t=.综上所述,当t=秒或t=秒时,△PEF为直角三角形.点评:本题是运动型综合题,涉及动点与动线两种运动类型.第(1)问考查了菱形的定义;第(2)问考查了相似三角形、图形面积及二次函数的极值;第(3)问考查了相似三角形、勾股定理、解方程等知识点,重点考查了分类讨论的数学思想.。
2014广东省中考数学卷(含标准答案)
2014年广东数学中考试卷年级姓名一、选择题(本大题10小题,每小题3分,共30分)1、在1,0,2,-3这四个数中,最大的数是()A、1B、0C、2D、-32、在下列交通标志中,既是轴对称图形,又是中心对称图形的是()A、B、C、D、3、计算3a-2a的结果正确的是()A、1B、aC、-a D、-5a4、把39x x-分解因式,结果正确的是()A、()29x x-B、()23x x-C、()23x x+D、()()33x x x+-5、一个多边形的内角和是900°,这个多边形的边数是()A、10B、9C、8D、76、一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是( )A、47B、37C、34D、137、如图7图,□ABCD中,下列说法一定正确的是()A、AC=BD B、AC⊥BDC、AB=CDD、AB=BC题7图8、关于x的一元二次方程230x x m-+=有两个不相等的实数根,则实数m的取值范围为()A、94m>B、94m<C、94m=D、9-4m<9、一个等腰三角形的两边长分别是3和7,则它的周长为( )A、17 B、15 C、13D、13或1710、二次函数()20y ax bx c a=++≠的大致图象如题10图所示,关于该二次函数,下列说法错误的是()ABD题10图A 、函数有最小值 B、对称轴是直线x =21 C 、当x <21,y 随x 的增大而减小 D、当 -1 < x < 2时,y>0 二、填空题(本大题6小题,每小题4分,共24分)11、计算32x x ÷= ;12、据报道,截止2013年12月我国网民规模达618 000 000人.将618 000 000用科学计数法表示为 ;13、如题13图,在△ABC 中,点D ,E 分别是AB,AC 的中点,若BC=6,则DE= ;题13图 题14图 14、如题14图,在⊙O 中,已知半径为5,弦AB 的长为8,那么圆心O 到AB 的距离为 ;15、不等式组2841+2x x x ⎧⎨-⎩<>的解集是 ; 16、如题16图,△AB C绕点A 顺时针旋转45° 得到△'''A B C ,若∠BAC=90°,AB=AC=2, 题16图则图中阴影部分的面积等于 。
2014年广东省广州市南村中学中考模拟数学试题及答案
2014年南村中学初三级数学模拟问卷初三备课组本试卷分为选择题与非选择题两部分,问卷共4页,答卷共4页,共150分。
考试时间为120分钟。
注意事项:1.本卷共三大题,请考生检查题数.2.答卷前,考生务必将自己的姓名、考生号、考试科目等用2 B 铅笔填涂在答题卡上.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.不能答在问卷上. 3. 非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4. 考生必须保持答题卡的整洁,考试结束后,将本试题卷和答题卡一并交回.一、选择题(本大题共10个小题,每小题只有一个正确选项,每小题5分,满分50分) 1、5的相反数是( ). (A )15 (B )5- (C )15- (D )5 2、由5个相同的立方体搭成的几何体如图所示,则它的主视图是( )3、下列运算正确的是( ). (A )632x x x =⋅ (B )236-=- (C )()235x x = (D )041=4、不等式组10324x x x ->⎧⎨>-⎩,的解集是( ).(A )1x < (B )4x >- (C )41x -<< (5、如图,在ABC △中,6733B C ==∠°,∠°,AD 是ABC △ 的角平分线,则CAD ∠的度数为( ). (A )40°(B )45° (C )50° (D )55°6、如图,AB CD 、是⊙O 的两条弦,连接AD BC 、.若60BAD =∠°,则B C D∠的度数为( ).(A )40° (B )50° (C )60° (D )70°7、云南省五个5A 级旅游景区门票票价如下表所示(单位:元)关于这五个旅游景区门票票价,下列说法中错误的是( ).(A )平均数是120 (B )中位数是105 (C )众数得80 (D )极差是958、若221142a b a b -=-=,,则a b +的值为( ). (A )12- (B )12(C )1 (D )29、已知一次函数1-=kx y 的图像与反比例函数xy 2=的图像的一个交点坐标为(2,1),那么另一个交点的坐标是( )A 、(-2,1)B 、(-1,-2)C 、(2,-1)D 、(-1,2)10、如图,在菱形纸片ABCD 中,60A ︒∠=,将纸片折叠,点A 、D 分别落在A '、D '处,且A D ''经过B ,EF 为折痕,当D F CD '⊥时,CFFD的值为( ). (A)12(B)6(C)16 (D)18二.填空题(每空3分,共18分)11x 的取值范围是________. 12、方程3202x x -=-的解是___________. 13、分解因式:2363x x -+= .14、已知扇形的圆心角为120°,半径为3cm ,则该扇形的面积为 cm 2.(结果保留π)15、已知下列函数 ①2y x =;②2y x =-;③()212y x =-+,其中,图象通过平移可以得到函数223y x x =+-的图象的有_________(填写所有正确选项的序号).16、在平面直角坐标系中,规定把一个三角形先沿x 轴翻折,再向右平移两个单位称为1次变换,如图,已知等边三角形ABC 的顶点B 、C 的坐标分别是,(11--,),(31--,),把ABC △经过连续9次这样的变换得到A B C '''△,则点A 的对应点A '的坐标是__________.第10题三、解答题(共102分)17、(本小题满分9分)请先将下式化简,再选择一个你喜欢又使原式有意义的数代入求值:.121)11(2+-÷--a a a a 18、(本小题满分9分)解不等式组,并把其解集在数轴上表示出来:23432x x x x +<+⎧⎪⎨->⎪⎩①②19.(本小题满分10分)在平面直角坐标系中,点A 关于y 轴的对称点为点B ,点A 关于原点O 的对称点为点C .(1)若点A 的坐标为(1,2),请你在给出的坐标系中画出ABC △.设AB 与y 轴的交点为D ,则ABOABCS S =△△________;(2)若点A 的坐标为()(0)a b ab ≠,,则ABC △的形状为________.20.(本小题满分10分)如图,在Rt ABC △中,90ABC ∠=︒,点D 在AB =,过点B 作BE AC ⊥,与BD 的垂线DE 交于点E , (1)求证:ABC BDE △≌△;(2)BDE △可由ABC △旋转得到,利用尺规作出旋转中心O (保留作图痕迹,不写作法).21.(本小题满分12分)甲、乙、丙、丁4名同学进行一次羽毛球单打比赛,要从中选2名同学打第一场比赛,求下列事件的概率.(1)已确定甲打第一场,再从其余3名同学中随机选取1名,恰好选中乙同学; (2)随机选取2名同学,其中有乙同学22.(本题满分12分)如图,水渠边有一棵大木瓜树,树干DO (不计粗细)上有两个木瓜A 、B(不计大小),树干垂直于地面,量得AB =2米,在水渠的对面与O 处于同一水平面的C 处测得木瓜A 的仰角为45°、木瓜B 的仰角为30°.求C 处到树干DO 的距离CO .(结果精确到131.7 1.41)CODAB第21题图23.(本小题满分12分)某公园出售的一次性使用门票,每张10元,为了吸引更多游客,新近推出购买“个人年票”的售票活动(从购买日起,可供持票者使用一年).年票分A 、B 两类:A 类年票每张100元,持票者每次进入公园无需再购买门票;B 类年票每张50元,持票者进入公园时需再购买每次2元的门票.问:某游客一年中进入该公园至少要超过多少次时,购买A 类年票最合算?24.(本小题满分14分)如图,O ⊙的直径4AB =,C 为圆周上一点,2AC =,过点C 作O⊙的切线DC ,点P 为优弧CBA 上一动点(不与A C 、重合). (1) 求APC ∠与ACD ∠的度数;(2)当点P 移动到CB 的中点时,求证:四边形ACPO 是菱形.(3)P 点移动到什么位置时,由点A P C 、、三点构成的三角形与ABC △全等,请说明理由.25.(本小题满分14分)如图,抛物线22y x =-+与x 轴交于C 、A 两点,与y 轴交于点B ,点O 关于直线AB 的对称点为D . (1)分别求出点A 、点B 的坐标; (2)求直线AB 的解析式;(3)若反比例函数xky =经过点D ,求k 的取值; (4)现有两动点P 、Q 同时从点A 出发,分别沿AB 、AO 方向向B 、O 移动,点P 每秒移动1个单位,点Q 每秒移动21个单位,设POQ △的面积为S ,移动时间为t ,问:在P Q 、移动过程中,S 是否存在最大值?若存在,求出这个最大值,并求出此时的t 值,若不存在,请说明理由.命题说明2014年南村中学初三级数学模拟卷答案二、填空题(本大题共6个小题,每小题3分,满分18分)三、解答题(本大题共9个小题,满分102分)17、(9分)解:原式=1-a ,把2=a 代入得1(除不能等于1外其它数都可以)18、(9分)3-<x19.(9分)解:(1)ABC △如图所示. ······· 3分14(或0.25). ················ 5分 (2)直角三角形. ··············· 7分20. (本题9分)(1)证明:在Rt ABC △中,909090ABC ABE DBE BE AC ABE A A DBE =∴+=⊥∴+=∴=∠,∠∠.,∠∠.∠∠.DE 是BD 的垂线,90D ∴=∠.在ABC △和BDE △中,A DBE AB BD ABCD ==∠=∠∠,,∠,ABC BDE ∴△≌△. ························· (5分) (2)作法一:如图①,点O 就是所求的旋转中心. ············· (8分)作法二:如图②,点O 就是所求的旋转中心. ··············· (8分)21. (本题10分)解:(1)已确定甲打第一场,再从其余3名同学中随机选取1名,恰好选中乙同学的概率是13. ································ (2分)(2)从甲、乙、丙、丁4名同学中随机选取2名同学,所有可能出现的结果有:(甲,乙)、(甲,丙)、(甲,丁)、(乙,丙)、(乙,丁)、(丙,丁),共有6种,它们出现的可能性 相同.所有的结果中,满足“随机选取2名同学,其中有乙同学”(记为事件A )的结果有3种,所以31()62P A ==.23.(10分)解:设某游客一年中进入该公园x 次,依题意得不等式组 ⎩⎨⎧>+>10025010010x x ·························· 4分解(1)得:10>x , 解(2)得:25>x .∴不等式组的解集为25x >. ···················· 6分 答:某游客一年进入该公园超过25次时,购买A 类年票合算.24.(1)2AC OA OC ===,ACO ∴△为等边三角形.60AOC ACO OAC ∴∠=∠=∠=︒.1302APC AOC ∴∠=∠=︒.又DC 切O ⊙于点C , OC DC ∴⊥. 90DCO ∴∠=︒.906030ACD DCO ACO ∴∠=∠-∠=︒-︒=︒. ·········· 4分(2)AB 为直径, ︒=∠60AOC , 120COB ∴∠=︒.当点P 移动到CB 的中点时60COP POB ∠=∠=︒. COP ∴△为等边三角形. AC CP OA OP ∴===.∴四边形AOPC 为菱形. ······················ 8分 (3)当点P 与B 重合时ABC △与APC △完全重合, ABC APC ∴△≌△.当点P 继续运动到CP 经过圆心时,也有ABC CPA ≅△△.因为此时,AB CP =,AC 边为公共边,︒=∠=∠90CAP ACB .根据直角三角形斜边直角边原理即得. 1025.(1)令0=y ,即023352=++-x x . 解得 331-=x ,322=x .(0)3C ∴-,A . ··················· 4分 (2)令AB 方程为21+=x k y,因为点A )在直线上, ∴23201+⋅=k .331-=∴k AB ∴的解析式为233+-=x y .·················· 6分 (3)D 点与O 点关于AB 对称,32==∴OA OD .D ∴3,即),(33D . ·········· 8分 因为ky x=过点D , 33k =∴,33=∴k . ······················ 9分(4)12AP t AQ t ==,,t OQ 2132-=∴.点P 到OQ 的距离为t 21,23)32(8121)2132(212+--=⋅-⋅=∴∆t t t S OPQ .依题意,4120t t t ⎧⎪⎪⎨⎪>⎪⎩≤,≤,04t <≤.∴当t =时,S 有最大值为32. ·················· 12分。
广东省深圳市2014年中考数学试题及答案【word版】
2014年广东省深圳市中考数学试卷一、选择题(共12小题,每小题3分,满分36分)1.(3分)(2014年广东深圳)9的相反数是()A.﹣9 B.9 C.±9 D.分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数.解答:解:9的相反数是﹣9,故选:A.点评:本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.(3分)(2014年广东深圳)下列图形中是轴对称图形但不是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,即可判断出答案.解答:解:A、此图形不是中心对称图形,也不是轴对称图形,故此选项错误;B、此图形不是中心对称图形,是轴对称图形,故此选项正确;C、此图形是中心对称图形,也是轴对称图形,故此选项错误;D、此图形是中心对称图形,不是轴对称图形,故此选项错误.故答案选:B.点评:此题主要考查了中心对称图形与轴对称的定义,关键是找出图形的对称中心与对称轴.3.(3分)(2014年广东深圳)支付宝与“快的打车”联合推出优惠,“快的打车”一夜之间红遍大江南北.据统计,2014年“快的打车”账户流水总金额达到47.3亿元,47.3亿用科学记数法表示为()A. 4.73×108B.4.73×109C.4.73×1010D.4.73×1011考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:47.3亿=47 3000 0000=4.73×109,故选:B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2014年广东深圳)由几个大小不同的正方形组成的几何图形如图,则它的俯视图是()A.B.C.D.考点:简单组合体的三视图.分析:根据从上面看得到的图形是俯视图,可得答案.解答:解:从上面看第一层右边一个,第二层三个正方形,故选:A.点评:本题考查了简单组合体的三视图,上面看得到的图形是俯视图.5.(3分)(2014年广东深圳)在﹣2,1,2,1,4,6中正确的是()A.平均数3 B.众数是﹣2 C.中位数是1 D.极差为8考点:极差;算术平均数;中位数;众数.分析:根据平均数、众数、中位数、极差的定义即可求解.解答:解:这组数据的平均数为:(﹣2+1+2+1+4+6)÷6=12÷6=2;在这一组数据中1是出现次数最多的,故众数是1;将这组数据从小到大的顺序排列为:﹣2,1,1,2,4,6,处于中间位置的两个数是1,2,那么由中位数的定义可知,这组数据的中位数是:(1+2)÷2=1.5;极差6﹣(﹣2)=8.故选D.点评:本题为统计题,考查平均数、众数、中位数、极差的意义.平均数是指在一组数据中所有数据之和再除以数据的个数;一组数据中出现次数最多的数据叫做众数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数;极差是一组数据中最大数据与最小数据的差.6.(3分)(2014年广东深圳)已知函数y=ax+b经过(1,3),(0,﹣2),则a﹣b=()A.﹣1 B.﹣3 C. 3 D.7考点:一次函数图象上点的坐标特征.分析:分别把函数y=ax+b经过(1,3),(0,﹣2)代入求出a、b的值,进而得出结论即可.解答:解:∵函数y=ax+b经过(1,3),(0,﹣2),∴,解得,∴a﹣b=5+2=7.故选D.点评:本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上点的坐标一定适合此函数的解析式是解答此题的关键.7.(3分)(2014年广东深圳)下列方程没有实数根的是()A.x2+4x=10 B.3x2+8x﹣3=0 C.x2﹣2x+3=0 D.(x﹣2)(x﹣3)=12考点:根的判别式.分析:分别计算出判别式△=b2﹣4ac的值,然后根据△的意义分别判断即可.解答:解:A、方程变形为:x2+4x﹣10=0,△=42﹣4×1×(﹣10)=56>0,所以方程有两个不相等的实数根;B、△=82﹣4×3×(﹣3)=100>0,所以方程有两个不相等的实数根;C、△=(﹣2)2﹣4×1×3=﹣8<0,所以方程没有实数根;D、方程变形为:x2﹣5x﹣6=0,△=52﹣4×1×(﹣6)=49>0,所以方程有两个不相等的实数根.故选:C.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.8.(3分)(2014年广东深圳)如图,△ABC和△DEF中,AB=DE、角∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF()A.AC∥DF B.∠A=∠D C.A C=DF D.∠ACB=∠F考点:全等三角形的判定.分析:根据全等三角形的判定定理,即可得出答.解答:解:∵AB=DE,∠B=∠DEF,∴添加AC∥DF,得出∠ACB=∠F,即可证明△ABC≌△DEF,故A、D都正确;当添加∠A=∠D时,根据ASA,也可证明△ABC≌△DEF,故B都正确;但添加AC=DF时,没有SSA定理,不能证明△ABC≌△DEF,故C都不正确;故选C.点评:本题考查了全等三角形的判定定理,证明三角形全等的方法有:SSS,SAS,ASA,AAS,还有直角三角形的HL定理.9.(3分)(2014年广东深圳)袋子里有4个球,标有2,3,4,5,先抽取一个并记住,放回,然后再抽取一个,所抽取的两个球数字之和大于6的概率是()A.B.C.D.考点:列表法与树状图法.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与抽取的两个球数字之和大于6的情况,再利用概率公式即可求得答案.解答:解:画树状图得:∵共有16种等可能的结果,抽取的两个球数字之和大于6的有10种情况,∴抽取的两个球数字之和大于6的概率是:=.故选C.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.10.(3分)(2014年广东深圳)小明去爬山,在山脚看山顶角度为30°,小明在坡比为5:12的山坡上走1300米,此时小明看山顶的角度为60°,求山高()A.600﹣250B.600﹣250 C.350+350D.500考点:解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.分析:构造两个直角三角形△ABE与△BDF,分别求解可得DF与EB的值,再利用图形关系,进而可求出答案.解答:解:∵BE:AE=5:12,=13,∴BE:AE:AB=5:12:13,∵AB=1300米,∴AE=1200米,BE=500米,设EC=x米,∵∠DBF=60°,∴DF=x米.又∵∠DAC=30°,∴AC=CD.即:1200+x=(500+x),解得x=600﹣250.∴DF=x=600﹣750,∴CD=DF+CF=600﹣250(米).答:山高CD为(600﹣250)米.故选:B.点评:本题考查俯角、仰角的定义,要求学生能借助坡比、仰角构造直角三角形并结合图形利用三角函数解直角三角形.11.(3分)(2014年广东深圳)二次函数y=ax2+bx+c图象如图,下列正确的个数为()①bc>0;②2a﹣3c<0;③2a+b>0;④ax2+bx+c=0有两个解x1,x2,x1>0,x2<0;⑤a+b+c>0;⑥当x>1时,y随x增大而减小.A. 2 B. 3 C. 4 D. 5考点:二次函数图象与系数的关系.分析:根据抛物线开口向上可得a>0,结合对称轴在y轴右侧得出b<0,根据抛物线与y轴的交点在负半轴可得c<0,再根据有理数乘法法则判断①;再由不等式的性质判断②;根据对称轴为直线x=1判断③;根据图象与x轴的两个交点分别在原点的左右两侧判断④;由x=1时,y<0判断⑤;根据二次函数的增减性判断⑥.解答:解:①∵抛物线开口向上,∴a>0,∵对称轴在y轴右侧,∴a,b异号即b<0,∵抛物线与y轴的交点在负半轴,∴c<0,∴bc>0,故①正确;②∵a>0,c<0,∴2a﹣3c>0,故②错误;③∵对称轴x=﹣<1,a>0,∴﹣b<2a,∴2a+b>0,故③正确;④由图形可知二次函数y=ax2+bx+c与x轴的两个交点分别在原点的左右两侧,即方程ax2+bx+c=0有两个解x1,x2,当x1>x2时,x1>0,x2<0,故④正确;⑤由图形可知x=1时,y=a+b+c<0,故⑤错误;⑥∵a>0,对称轴x=1,∴当x>1时,y随x增大而增大,故⑥错误.综上所述,正确的结论是①③④,共3个.故选B.点评:主要考查图象与二次函数系数之间的关系,二次函数的性质,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换.12.(3分)(2014年广东深圳)如图,已知四边形ABCD为等腰梯形,AD∥BC,AB=CD,AD=,E为CD中点,连接AE,且AE=2,∠DAE=30°,作AE⊥AF交BC于F,则BF=()A. 1 B.3﹣C.﹣1 D. 4﹣2考点:等腰梯形的性质.分析:延长AE交BC的延长线于G,根据线段中点的定义可得CE=DE,根据两直线平行,内错角相等可得到∠DAE=∠G=30°,然后利用“角角边”证明△ADE和△GCE全等,根据全等三角形对应边相等可得CG=AD,AE=EG,然后解直角三角形求出AF、GF,过点A作AM⊥BC于M,过点D作DN⊥BC于N,根据等腰梯形的性质可得BM=CN,再解直角三角形求出MG,然后求出CN,MF,然后根据BF=BM﹣MF计算即可得解.解答:解:如图,延长AE交BC的延长线于G,∵E为CD中点,∴CE=DE,∵AD∥BC,∴∠DAE=∠G=30°,在△ADE和△GCE中,,∴△ADE≌△GCE(AAS),∴CG=AD=,AE=EG=2,∴AG=AE+EG=2+2=4,∵AE⊥AF,∴AF=AGtan30°=4×=4,GF=AG÷cos30°=4÷=8,过点A作AM⊥BC于M,过点D作DN⊥BC于N,则MN=AD=,∵四边形ABCD为等腰梯形,∴BM=CN,∵MG=AG•cos30°=4×=6,∴CN=MG﹣MN﹣CG=6﹣﹣=6﹣2,∵AF⊥AE,AM⊥BC,∴∠FAM=∠G=30°,∴FM=AF•sin30°=4×=2,∴BF=BM﹣MF=6﹣2﹣2=4﹣2.故选D.点评:本题考查了等腰梯形的性质,解直角三角形,全等三角形的判定与性质,熟记各性质是解题的关键,难点在于作辅助线构造出全等三角形,过上底的两个顶点作出梯形的两条高.二、填空题(共4小题,每小题3分,满分12分)13.(3分)(2014•怀化)分解因式:2x2﹣8=2(x+2)(x﹣2).考点:提公因式法与公式法的综合运用.专题:常规题型.分析:先提取公因式2,再对余下的多项式利用平方差公式继续分解.解答:解:2x2﹣8=2(x2﹣4)=2(x+2)(x﹣2).故答案为:2(x+2)(x﹣2).点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.(3分)(2014年广东深圳)在Rt△ABC中,∠C=90°,AD平分∠CAB,AC=6,BC=8,CD= 3.考点:角平分线的性质;勾股定理.分析:过点D作DE⊥AB于E,利用勾股定理列式求出AB,再根据角平分线上的点到角的两边距离相等可得CD=DE,然后根据△ABC的面积列式计算即可得解.解答:解:如图,过点D作DE⊥AB于E,∵∠C=90°,AC=6,BC=8,∴AB===10,∵AD平分∠CAB,∴CD=DE,∴S△ABC=AC•CD+AB•DE=AC•BC,即×6•CD+×10•CD=×6×8,解得CD=3.故答案为:3.点评:本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质并利用三角形的面积列出方程是解题的关键.15.(3分)(2014年广东深圳)如图,双曲线y=经过Rt△BOC斜边上的点A,且满足=,与BC交于点D,S△BOD=21,求k=8.考点:反比例函数系数k的几何意义;相似三角形的判定与性质.分析:过A作AE⊥x轴于点E,根据反比例函数的比例系数k的几何意义可得S四边形AECB=S△BOD,根据△OAE∽△OBC,相似三角形面积的比等于相似比的平方,据此即可求得△OAE的面积,从而求得k的值.解答:解:过A作AE⊥x轴于点E.∵S△OAE=S△OCD,∴S四边形AECB=S△BOD=21,∵AE∥BC,∴△OAE∽△OBC,∴==()2=,∴S△OAE=4,则k=8.故答案是:8.点评:本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.本知识点是中考的重要考点,同学们应高度关注.16.(3分)(2014年广东深圳)如图,下列图形是将正三角形按一定规律排列,则第5个图形中所有正三角形的个数有485.考点:规律型:图形的变化类.分析:由图可以看出:第一个图形中5个正三角形,第二个图形中5×3+2=17个正三角形,第三个图形中17×3+2=53个正三角形,由此得出第四个图形中53×3+2=161个正三角形,第五个图形中161×3+2=485个正三角形.解答:解:第一个图形正三角形的个数为5,第二个图形正三角形的个数为5×3+2=17,第三个图形正三角形的个数为17×3+2=53,第四个图形正三角形的个数为53×3+2=161,第五个图形正三角形的个数为161×3+2=485.故答案为:485.点评:此题考查图形的变化规律,找出数字与图形之间的联系,找出规律解决问题.三、解答题17.(2014年广东深圳)计算:﹣2tan60°+(﹣1)0﹣()﹣1.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:原式第一项化为最简二次根式,第二项利用特殊角的三角函数值计算,第三项利用零指数幂法则计算,最后一项利用负指数幂法则计算即可得到结果.解答:解:原式=2﹣2+1﹣3=﹣2.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(2014年广东深圳)先化简,再求值:(﹣)÷,在﹣2,0,1,2四个数中选一个合适的代入求值.考点:分式的化简求值.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将x=1代入计算即可求出值.解答:解:原式=•=2x+8,当x=1时,原式=2+8=10.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.(2014年广东深圳)关于体育选考项目统计图项目频数频率A 80 bB c 0.3C 20 0.1D 40 0.2合计 a 1(1)求出表中a,b,c的值,并将条形统计图补充完整.表中a=200,b=0.4,c=60.(2)如果有3万人参加体育选考,会有多少人选择篮球?考点:频数(率)分布直方图;用样本估计总体;频数(率)分布表.分析:(1)用C的频数除以频率求出a,用总数乘以B的频率求出c,用A的频数除以总数求出b,再画图即可;(2)用总人数乘以A的频率即可.解答:解:(1)a=20÷0.1=200,c=200×0.3=60,b=80÷200=0.4,故答案为:200,0.4,60,补全条形统计图如下:(2)30000×0.4=12000(人).答:3万人参加体育选考,会有12000人选择篮球.点评:此题考查了条形统计图和统计表,用到的知识点是频率、频数、用样本估计总体,关键是掌握频率、频数、总数之间的关系.20.(2014年广东深圳)已知BD垂直平分AC,∠BCD=∠ADF,AF⊥AC,(1)证明ABDF是平行四边形;(2)若AF=DF=5,AD=6,求AC的长.考点:平行四边形的判定;线段垂直平分线的性质;勾股定理.分析:(1)先证得△ADB≌△CDB求得∠ADDF=∠BAD,所以AB∥FD,因为BD⊥AC,AF⊥AC,所以AF∥BD,即可证得.(2)先证得平行四边形是菱形,然后根据勾股定理即可求得.解答:(1)证明:∵BD垂直平分AC,∴AB=BC,AD=DC,在△ADB与△CDB中,,∴△ADB≌△CDB(SSS)∴∠BCD=∠BAD,∵∠BCD=∠ADF,∴∠BAD=∠ADF,∴AB∥FD,∵BD⊥AC,AF⊥AC,∴AF∥BD,∴四边形ABDF是平行四边形,(2)解:∵四边形ABDF是平行四边形,AF=DF=5,∴▱ABDF是菱形,∴AB=BD=5,∵AD=6,设BE=x,则DE=5﹣x,∴AB2﹣BE2=AD2﹣DE2,即52﹣x2=62﹣(5﹣x)2解得:x=,∴=,∴AC=2AE=.点评:本题考查了平行四边形的判定,菱形的判定和性质以及勾股定理的应用.21.(2014年广东深圳)某“爱心义卖”活动中,购进甲、乙两种文具,甲每个进货价高于乙进货价10元,90元买乙的数量与150元买甲的数量相同.(1)求甲、乙进货价;(2)甲、乙共100件,将进价提高20%进行销售,进货价少于2080元,销售额要大于2460元,求由几种方案?考点:分式方程的应用;一元一次不等式组的应用.分析:(1)由甲每个进货价高于乙进货价10元,设乙进货价x元,则甲进货价为(x+10)元,根据90元买乙的数量与150元买甲的数量相同列出方程解决问题;(2)由(1)中的数值,求得提高20%的售价,设进甲种文具m件,则乙种文具(100﹣m)件,根据进货价少于2080元,销售额要大于2460元,列出不等式组解决问题.解答:解:(1)设乙进货价x元,则甲进货价为(x+10)元,由题意得=解得x=15,则x+10=25,经检验x=15是原方程的根,答:甲进货价为25元,乙进货价15元.(2)设进甲种文具m件,则乙种文具(100﹣m)件,由题意得解得55<m<58所以m=56,57则100﹣m=44,43.有两种方案:进甲种文具56件,则乙种文具44件;或进甲种文具57件,则乙种文具43件.点评:本题考查了分式方程及一元一次不等式组的应用,重点在于准确地找出关系式,这是列方程或不等式组的依据.22.(2014年广东深圳)如图,在平面直角坐标系中,⊙M过原点O,与x轴交于A(4,0),与y轴交于B(0,3),点C为劣弧AO的中点,连接AC并延长到D,使DC=4CA,连接BD.(1)求⊙M的半径;(2)证明:BD为⊙M的切线;(3)在直线MC上找一点P,使|DP﹣AP|最大.考点:圆的综合题.分析:(1)利用A,B点坐标得出AO,BO的长,进而得出AB的长,即可得出圆的半径;(2)根据A,B 两点求出直线AB表达式为:y=﹣x+3,根据B,D 两点求出BD 表达式为y=x+3,进而得出BD⊥AB,求出BD为⊙M的切线;(3)根据D,O两点求出直线DO表达式为y=x 又在直线DO 上的点P的横坐标为2,所以p(2,),此时|DP﹣AP|=DO=.解答:(1)解:∵由题意可得出:OA2+OB2=AB2,AO=4,BO=3,∴AB=5,∴圆的半径为;(2)证明:由题意可得出:M(2,)又∵C为劣弧AO的中点,由垂径定理且MC=,故C(2,﹣1)过D 作DH⊥x 轴于H,设MC 与x 轴交于K,则△ACK∽△ADH,又∵DC=4AC,故DH=5KC=5,HA=5KA=10,∴D(﹣6,﹣5)设直线AB表达式为:y=ax+b,,解得:故直线AB表达式为:y=﹣x+3,同理可得:根据B,D两点求出BD的表达式为y=x+3,∵K AB×K BD=﹣1,∴BD⊥AB,BD为⊙M的切线;(3)解:取点A关于直线MC的对称点O,连接DO并延长交直线MC于P,此P点为所求,且线段DO的长为|DP﹣AP|的最大值;设直线DO表达式为y=kx,∴﹣5=﹣6k,解得:k=,∴直线DO表达式为y=x又∵在直线DO上的点P的横坐标为2,y=,∴P(2,),此时|DP﹣AP|=DO==.点评:此题主要考查了勾股定理以及待定系数法求一次函数解析式以及两直线垂直系数的关系等知识,得出直线DO,AB,BD的解析式是解题关键.23.(2014年广东深圳)如图,直线AB的解析式为y=2x+4,交x轴于点A,交y轴于点B,以A为顶点的抛物线交直线AB于点D,交y轴负半轴于点C(0,﹣4).(1)求抛物线的解析式;(2)将抛物线顶点沿着直线AB平移,此时顶点记为E,与y轴的交点记为F,①求当△BEF与△BAO相似时,E点坐标;②记平移后抛物线与AB另一个交点为G,则S△EFG与S△ACD是否存在8倍的关系?若有请直接写出F点的坐标.考点:二次函数综合题.分析:(1)求出点A的坐标,利用顶点式求出抛物线的解析式;(2)①首先确定点E为Rt△BEF的直角顶点,相似关系为:△BAO∽△BFE;如答图2﹣1,作辅助线,利用相似关系得到关系式:BH=4FH,利用此关系式求出点E的坐标;②首先求出△ACD的面积:S△ACD=8;若S△EFG与S△ACD存在8倍的关系,则S△EFG=64或S△EFG=1;如答图2﹣2所示,求出S△EFG的表达式,进而求出点F的坐标.解答:解:(1)直线AB的解析式为y=2x+4,令x=0,得y=4;令y=0,得x=﹣2.∴A(﹣2,0)、B(0,4).∵抛物线的顶点为点A(﹣2,0),∴设抛物线的解析式为:y=a(x+2)2,点C(0,﹣4)在抛物线上,代入上式得:﹣4=4a,解得a=﹣1,∴抛物线的解析式为y=﹣(x+2)2.(2)平移过程中,设点E的坐标为(m,2m+4),则平移后抛物线的解析式为:y=﹣(x﹣m)2+2m+4,∴F(0,﹣m2+2m+4).①∵点E为顶点,∴∠BEF≥90°,∴若△BEF与△BAO相似,只能是点E作为直角顶点,∴△BAO∽△BFE,∴,即,可得:BE=2EF.如答图2﹣1,过点E作EH⊥y轴于点H,则点H坐标为:H(0,2m+4).∵B(0,4),H(0,2m+4),F(0,﹣m2+2m+4),∴BH=|2m|,FH=|﹣m2|.在Rt△BEF中,由射影定理得:BE2=BH•BF,EF2=FH•BF,又∵BE=2EF,∴BH=4FH,即:4|﹣m2|=|2m|.若﹣4m2=2m,解得m=﹣或m=0(与点B重合,舍去);若﹣4m2=﹣2m,解得m=或m=0(与点B重合,舍去),此时点E位于第一象限,∠BEF为钝角,故此情形不成立.∴m=﹣,∴E(﹣,3).②假设存在.联立抛物线:y=﹣(x+2)2与直线AB:y=2x+4,可求得:D(﹣4,﹣4),∴S△ACD=×4×4=8.∵S△EFG与S△ACD存在8倍的关系,∴S△EFG=64或S△EFG=1.联立平移抛物线:y=﹣(x﹣m)2+2m+4与直线AB:y=2x+4,可求得:G(m﹣2,2m).∴点E与点M横坐标相差2,即:|x G|﹣|x E|=2.如答图2﹣2,S△EFG=S△BFG﹣S△BEF=BF•|xG|﹣BF|xE|=BF•(|x G|﹣|x E|)=BF.∵B(0,4),F(0,﹣m2+2m+4),∴BF=|﹣m2+2m|.∴|﹣m2+2m|=64或|﹣m2+2m|=1,∴﹣m2+2m可取值为:64、﹣64、1、﹣1.当取值为64时,一元二次方程﹣m2+2m=64无解,故﹣m2+2m≠64.∴﹣m2+2m可取值为:﹣64、1、﹣1.∵F(0,﹣m2+2m+4),∴F坐标为:(0,﹣60)、(0,3)、(0,5).综上所述,S△EFG与S△ACD存在8倍的关系,点F坐标为(0,﹣60)、(0,3)、(0,5).点评:本题是二次函数压轴题,涉及运动型与存在型问题,难度较大.第(2)①问中,解题关键是确定点E为直角顶点,且BE=2EF;第(2)②问中,注意将代数式表示图形面积的方法、注意求坐标过程中方程思想与整体思想的应用.。
2014年广东省广州市石碁第四中学中考模拟数学试题及答案
2014年石碁第四中学中考模拟题本试卷分选择题和非选择题两部分,共三大题25小题,满分150分.考试时间为120分钟. 注意事项:1.本试卷共4页,全卷满分150分,考试时间为120分钟.考生应将答案全部填(涂)在答题卡相应位置上,写在本试卷上无效.考试时允许使用计算器;2.答题前考生务必将自己的姓名、考试证号等填(涂)写到答题卡的相应位置上;3.作图必须用2B 铅笔,并请加黑加粗,描写清楚.第一部分 选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中只有一项是符合题目要求的.)1.四个数1-,0,12) A .1- B .0 C .12D2.已知∠A=60°,则∠A 的补角是( )A .160°B .120°C .60°D .30°3.如下图是由四个相同的小正方体组合而成的立体图形,则它的俯视图是( )4.计算正确的是( )A .2a a a += B .236a a a =· C .326()a a -=- D .752a a a ÷=5.下列图形,既是中心对称图形,又是轴对称图形的是( )A .等边三角形B .平行四边形C .正五边形D .正六边形 6.我们把十位上的数字比个位和百位上的数字都大的三位数称为凸数,如:786,465,则由2,3,4这三个数字构成的,数字不重复的三位数是“凸数”的概率是( ) A .13 B .12 C .23 D .61 7.据调查,2011年5月某市的房价均价为7600元/m 2,2013年同期将达到8200元/m 2,假设这两年该市房价的平均增长率为x ,根据题意,所列方程为( ) A .8200%)1(76002=+x B .8200%)1(76002=-x C .8200)1(76002=+x D .8200)1(76002=-x第3题8.如果代数式1x -有意义,那么x 的取值范围是( ) A .x ≥0 B .1x ≠ C .0x > D .x ≥0且1x ≠ 9.如图,菱形ABCD 的两条对角线相交于O ,若AC=6,BD=4,则菱形ABCD 的周长是( )A .24B .16C .134D .3210.二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,则下列结论中正确的是( ) A .0>acB .当1>x 时,y 随x 的增大而减小C .02=-a bD .3=x 是关于x 的方程02=++c bx ax ()0≠a 的一个根第二部分 非选择题(共120分)二、填空题(本大题共6小题,每小题3分,满分18分.) 11.9的算术平方根是12.过度包装既浪费资源又污染环境.据测算,如果全国每年减少10%的过度包装纸用量,那么可减排二氧化碳3120000吨,把数3120000用科学记数法表示为 . 13.分解因式:222-x =14.如图,已知AB 为⊙O 的直径,∠CAB =30°,则sin D = .15.已知圆锥的底面直径和母线长都是10cm ,则圆锥的侧面积为 .16.如图,已知M 为平行四边形ABCD 的边AB 的中点,CM 交BD 于点E ,则图中阴影部分的面积与平行四边形ABCD 面积的比是。
2014广州中考数学试卷含详细答案
2014年广东省广州市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)(2014?广州)a(a≠0)的相反数是()A.﹣a B.a2C.|a| D.2.(3分)(2014?广州)下列图形中,是中心对称图形的是()A.B.C.D.3.(3分)(2014?广州)如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tanA=()A.B.C.D.4.(3分)(2014?广州)下列运算正确的是()A.5ab﹣ab=4 B.+=C.a6÷a2=a4D.(a2b)3=a5b35.(3分)(2014?广州)已知⊙O1和⊙O2的半径分别为2cm和3cm,若O1O2=7cm,则⊙O1和⊙O2的位置关系是()A.外离B.外切C.内切D.相交6.(3分)(2014?广州)计算,结果是()A.x﹣2 B.x+2 C.D.7.(3分)(2014?广州)在一次科技作品制作比赛中,某小组八件作品的成绩(单位:分)分别是7,10,9,8,7,9,9,8,对这组数据,下列说法正确的是()A.中位数是8 B.众数是9 C.平均数是8 D.极差是78.(3分)(2014?广州)将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变,当∠B=90°时,如图1,测得AC=2,当∠B=60°时,如图2,AC=()A.B.2C.D.29.(3分)(2014?广州)已知正比例函数y=kx(k<0)的图象上两点A(x1,y1)、B(x2,y2),且x1<x2,则下列不等式中恒成立的是()A.y1+y2>0 B.y1+y2<0 C.y1﹣y2>0 D.y1﹣y2<010.(3分)(2014?广州)如图,四边形ABCD、CEFG都是正方形,点G在线段CD上,连接BG、DE,DE和FG 相交于点O,设AB=a,CG=b(a>b).下列结论:①△BCG≌△DCE;②BG⊥DE;③=;④(a﹣b)2?S△EFO=b2?S△DGO.其中结论正确的个数是()A.4个B.3个C.2个D.1个二、填空题(共6小题,每小题3分,满分18分)11.(3分)(2014?广州)△ABC中,已知∠A=60°,∠B=80°,则∠C的外角的度数是_________°.12.(3分)(2014?广州)已知OC是∠AOB的平分线,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为点D、E,PD=10,则PE的长度为_________.13.(3分)(2014?广州)代数式有意义时,x应满足的条件为_________.14.(3分)(2014?广州)一个几何体的三视图如图,根据图示的数据计算该几何体的全面积为_________.(结果保留π)15.(3分)(2014?广州)已知命题:“如果两个三角形全等,那么这两个三角形的面积相等.”写出它的逆命题:_________,该逆命题是_________命题(填“真”或“假”).16.(3分)(2014?广州)若关于x的方程x 2+2mx+m2+3m﹣2=0有两个实数根x1、x2,则x1(x2+x1)+x22的最小值为_________.三、解答题(共9小题,满分102分)17.(9分)(2014?广州)解不等式:5x﹣2≤3x,并在数轴上表示解集.18.(9分)(2014?广州)如图,?ABCD的对角线AC、BD相交于点O,EF过点O且与AB,CD分别相交于点E、F,求证:△AOE≌△COF.19.(10分)(2014?广州)已知多项式A=(x+2)2+(1﹣x)(2+x)﹣3.(1)化简多项式A;(2)若(x+1)2=6,求A的值.20.(10分)(2014?广州)某校初三(1)班50名学生需要参加体育“五选一”自选项目测试,班上学生所报自选项目的情况统计表如下:自选项目人数频率立定跳远9 0.18三级蛙跳12 a一分钟跳绳8 0.16投掷实心球 b 0.32推铅球 5 0.10合计50 1(1)求a,b的值;(2)若将各自选项目的人数所占比例绘制成扇形统计图,求“一分钟跳绳”对应扇形的圆心角的度数;(3)在选报“推铅球”的学生中,有3名男生,2名女生,为了了解学生的训练效果,从这5名学生中随机抽取两名学生进行推铅球测试,求所抽取的两名学生中有一名女生的概率.21.(12分)(2014?广州)已知一次函数y=kx﹣6的图象与反比例函数y=﹣的图象交于A、B两点,点A的横坐标为2.(1)求k的值和点A的坐标;(2)判断点B所在象限,并说明理由.22.(12分)(2014?广州)从广州到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的 1.3倍.(1)求普通列车的行驶路程;(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的 2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.23.(12分)(2014?广州)如图,△ABC中,AB=AC=4,cosC=.(1)动手操作:利用尺规作以AC为直径的⊙O,并标出⊙O与AB的交点D,与BC的交点E(保留作图痕迹,不写作法);(2)综合应用:在你所作的图中,①求证:=;②求点D到BC的距离.24.(14分)(2014?广州)已知平面直角坐标系中两定点A(﹣1,0)、B(4,0),抛物线y=ax 2+bx﹣2(a≠0)过点A,B,顶点为C,点P(m,n)(n<0)为抛物线上一点.(1)求抛物线的解析式和顶点C的坐标;(2)当∠APB为钝角时,求m的取值范围;(3)若m>,当∠APB为直角时,将该抛物线向左或向右平移t(0<t<)个单位,点C、P平移后对应的点分别记为C′、P′,是否存在t,使得首位依次连接A、B、P′、C′所构成的多边形的周长最短?若存在,求t的值并说明抛物线平移的方向;若不存在,请说明理由.25.(14分)(2014?广州)如图,梯形ABCD中,AB∥CD,∠ABC=90°,AB=3,BC=4,CD=5.点E为线段CD上一动点(不与点C重合),△BCE关于BE的轴对称图形为△BFE,连接CF.设CE=x,△BCF的面积为S1,△CEF的面积为S2.(1)当点F落在梯形ABCD的中位线上时,求x的值;(2)试用x表示,并写出x的取值范围;(3)当△BFE的外接圆与AD相切时,求的值.2014年广东省广州市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)(2014?广州)a(a≠0)的相反数是()A.﹣a B.a2C.|a| D.考点:相反数.分析:直接根据相反数的定义求解.解答:解:a的相反数为﹣a.故选:A.点评:本题考查了相反数:a的相反数为﹣a,正确掌握相反数的定义是解题关键.2.(3分)(2014?广州)下列图形中,是中心对称图形的是()A.B.C.D.考点:中心对称图形.分析:根据中心对称的定义,结合所给图形即可作出判断.解答:解:A、不是中心对称图形,故A选项错误;B、不是中心对称图形,故B选项错误;C、不是中心对称图形,故C选项错误;D、是中心对称图形,故D选项正确;故选:D.点评:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.3.(3分)(2014?广州)如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tanA=()A.B.C.D.考点:锐角三角函数的定义.专题:网格型.分析:在直角△ABC中利用正切的定义即可求解.解答:解:在直角△ABC中,∵∠ABC=90°,∴tanA==.故选:D.点评:本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.4.(3分)(2014?广州)下列运算正确的是()A .5ab ﹣ab=4B .+=C .a 6÷a 2=a4D .(a 2b )3=a 5b3考点:同底数幂的除法;合并同类项;幂的乘方与积的乘方;分式的加减法.专题:计算题.分析:A 、原式合并同类项得到结果,即可做出判断;B 、原式通分并利用同分母分式的加法法则计算得到结果,即可做出判断;C 、原式利用同底数幂的除法法则计算得到结果,即可做出判断;D 、原式利用幂的乘方与积的乘方运算法则计算得到结果,即可做出判断.解答:解:A 、原式=4ab ,故A 选项错误;B 、原式=,故B 选项错误;C 、原式=a 4,故C 选项正确;D 、原式=a 6b 3,故D 选项错误.故选:C .点评:此题考查了同底数幂的乘除法,合并同类项,以及完全平方公式,熟练掌握公式及法则是解本题的关键.5.(3分)(2014?广州)已知⊙O 1和⊙O 2的半径分别为2cm 和3cm ,若O 1O 2=7cm ,则⊙O 1和⊙O 2的位置关系是()A .外离B .外切C .内切D .相交考点:圆与圆的位置关系.分析:由⊙O 1与⊙O 2的半径分别为3cm 、2cm ,且圆心距O 1O 2=7cm ,根据两圆位置关系与圆心距d ,两圆半径R ,r 的数量关系间的联系即可得出两圆位置关系.解答:解:∵⊙O 1与⊙O 2的半径分别为3cm 、2cm ,且圆心距O 1O 2=7cm ,又∵3+2<7,∴两圆的位置关系是外离.故选:A .点评:此题考查了圆与圆的位置关系.解题的关键是掌握两圆位置关系与圆心距d ,两圆半径R ,r 的数量关系间的联系.6.(3分)(2014?广州)计算,结果是()A .x ﹣2B .x+2C .D .考点:约分;因式分解-提公因式法.专题:计算题;因式分解.分析:首先利用平方差公式分解分子,再约去分子分母中得公因式.解答:解:==x+2,故选:B .点评:此题主要考查了约分,关键是正确把分子分解因式.7.(3分)(2014?广州)在一次科技作品制作比赛中,某小组八件作品的成绩(单位:分)分别是7,10,9,8,7,9,9,8,对这组数据,下列说法正确的是()A.中位数是8 B.众数是9 C.平均数是8 D.极差是7考点:极差;加权平均数;中位数;众数.专题:计算题.分析:由题意可知:总数个数是偶数的,按从小到大的顺序,取中间两个数的平均数为中位数,则中位数为8.5;一组数据中,出现次数最多的数就叫这组数据的众数,则这组数据的众数为9;这组数据的平均数=(7+10+9+8+7+9+9+8)÷8=8.375;一组数据中最大数据与最小数据的差为极差,据此求出极差为3.解答:解:A、按从小到大排列为:7,7,8,8,9,9,9,10,中位数是:(8+9)÷2=8.5,故A选项错误;B、9出现了3次,次数最多,所以众数是9,故B选项正确;C、平均数=(7+10+9+8+7+9+9+8)÷8=8.375,故C选项错误;D、极差是:10﹣7=3,故D选项错误.故选:B.点评:考查了中位数、众数、平均数与极差的概念,是基础题,熟记定义是解决本题的关键.8.(3分)(2014?广州)将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变,当∠B=90°时,如图1,测得AC=2,当∠B=60°时,如图2,AC=()A.B.2C.D.2考点:等边三角形的判定与性质;勾股定理的应用;正方形的性质.分析:图1中根据勾股定理即可求得正方形的边长,图2根据有一个角是60°的等腰三角形是等边三角形即可求得.解答:解:如图1,∵AB=BC=CD=DA,∠B=90°,∴四边形ABCD是正方形,连接AC,则AB2+BC2=AC2,∴AB=BC===,如图2,∠B=60°,连接AC,∴△ABC为等边三角形,∴AC=AB=BC=.点评:本题考查了正方形的性质,勾股定理以及等边三角形的判定和性质,利用勾股定理得出正方形的边长是关键.9.(3分)(2014?广州)已知正比例函数y=kx(k<0)的图象上两点A(x1,y1)、B(x2,y2),且x1<x2,则下列不等式中恒成立的是()A.y1+y2>0 B.y1+y2<0 C.y1﹣y2>0 D.y1﹣y2<0考点:一次函数图象上点的坐标特征;正比例函数的图象.分析:根据k<0,正比例函数的函数值y随x的增大而减小解答.解答:解:∵直线y=kx的k<0,∴函数值y随x的增大而减小,∵x1<x2,∴y1>y2,∴y1﹣y2>0.故选:C.点评:本题考查了正比例函数图象上点的坐标特征,主要利用了正比例函数的增减性.10.(3分)(2014?广州)如图,四边形ABCD、CEFG都是正方形,点G在线段CD上,连接BG、DE,DE和FG 相交于点O,设AB=a,CG=b(a>b).下列结论:①△BCG≌△DCE;②BG⊥DE;③=;④(a﹣b)2?S△EFO=b2?S△DGO.其中结论正确的个数是()A.4个B.3个C.2个D.1个考点:相似三角形的判定与性质;全等三角形的判定与性质;正方形的性质.分析:由四边形ABCD和四边形CEFG是正方形,根据正方形的性质,即可得BC=DC,CG=CE,∠BCD=∠ECG=90°,则可根据SAS证得①△BCG≌△DCE;然后延长BG交DE于点H,根据全等三角形的对应角相等,求得∠CDE+∠DGH=90°,则可得②BH⊥DE.由△DGF与△DCE相似即可判定③错误,由△GOD与△FOE相似即可求得④.解答:证明:①∵四边形ABCD和四边形CEFG是正方形,∴BC=DC,CG=CE,∠BCD=∠ECG=90°,∴∠BCG=∠DCE,在△BCG和△DCE中,,∴△BCG≌△DCE(SAS),故①正确;②延长BG交DE于点H,∵△BCG≌△DCE,∴∠CBG=∠CDE,又∵∠CBG+∠BGC=90°,∴∠CDE+∠DGH=90°,∴∠DHG=90°,∴BH⊥DE;∴BG⊥DE.故②正确;③∵四边形GCEF是正方形,∴GF∥CE,∴=,∴=是错误的.故③错误;④∵DC∥EF,∴∠GDO=∠OEF,∵∠GOD=∠FOE,∴△OGD∽△OFE,∴=()2=()2=,∴(a﹣b)2?S△EFO=b2?S△DGO.故④正确;故选:B.点评:此题考查了正方形的性质,全等三角形的判定与性质,相似三角形的判定和性质,直角三角形的判定和性质.二、填空题(共6小题,每小题3分,满分18分)11.(3分)(2014?广州)△ABC中,已知∠A=60°,∠B=80°,则∠C的外角的度数是140°.考点:三角形的外角性质.分析:根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.解答:解:∵∠A=60°,∠B=80°,∴∠C的外角=∠A+∠B=60°+80°=140°.故答案为:140.点评:本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.12.(3分)(2014?广州)已知OC是∠AOB的平分线,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为点D、E,PD=10,则PE的长度为10.考点:角平分线的性质.分析:根据角平分线上的点到角的两边距离相等可得PE=PD.解答:解:∵OC是∠AOB的平分线,PD⊥OA,PE⊥OB,∴PE=PD=10.故答案为:10.点评:本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键,作出图形更形象直观.13.(3分)(2014?广州)代数式有意义时,x应满足的条件为x≠±1.考点:分式有意义的条件.分析:根据分式有意义,分母等于0列出方程求解即可.解答:解:由题意得,|x|﹣1≠0,解得x≠±1.故答案为:x≠±1.点评:本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义?分母为零;(2)分式有意义?分母不为零;(3)分式值为零?分子为零且分母不为零.14.(3分)(2014?广州)一个几何体的三视图如图,根据图示的数据计算该几何体的全面积为24π.(结果保留π)考点:圆锥的计算;由三视图判断几何体.分析:根据圆锥侧面积公式首先求出圆锥的侧面积,再求出底面圆的面积,即可得出表面积.解答:解:∵如图所示可知,圆锥的高为4,底面圆的直径为6,∴圆锥的母线为:5,∴根据圆锥的侧面积公式:πrl=π×3×5=15π,底面圆的面积为:πr2=9π,∴该几何体的表面积为24π.故答案为:24π.点评:此题主要考查了圆锥侧面积公式,根据已知得母线长,再利用圆锥侧面积公式求出是解决问题的关键.15.(3分)(2014?广州)已知命题:“如果两个三角形全等,那么这两个三角形的面积相等.”写出它的逆命题:如果两个三角形的面积相等,那么这两个三角形全等,该逆命题是假命题(填“真”或“假”).考点:命题与定理.分析:交换原命题的题设和结论即可得到该命题的逆命题.解答:解:“如果两个三角形全等,那么这两个三角形的面积相等.”写成它的逆命题:如果两个三角形的面积相等,那么这两个三角形全等,该逆命题是假命题,故答案为:如果两个三角形的面积相等,那么这两个三角形全等;假.点评:本题考查逆命题的概念,以及判断真假命题的能力以及全等三角形的判定和性质.16.(3分)(2014?广州)若关于x的方程x 2+2mx+m2+3m﹣2=0有两个实数根x1、x2,则x1(x2+x1)+x22的最小值为.考点:根与系数的关系;二次函数的最值.专题:判别式法.分析:由题意可得△=b2﹣4ac≥0,然后根据不等式的最小值计算即可得到结论.解答:解:由题意知,方程x2+2mx+m2+3m﹣2=0有两个实数根,则△=b2﹣4ac=4m2﹣4(m2+3m﹣2)=8﹣12m≥0,∴m≤,∵x1(x2+x1)+x22=(x2+x1)2﹣x1x2=(﹣2m)2﹣(m2+3m﹣2)=3m 2﹣3m+2=3(m 2﹣m+﹣)+2=3(m﹣)2+;∴当m=时,有最小值;∵<,∴m=成立;∴最小值为;故答案为:.点评:本题考查了一元二次方程根与系数关系,考查了一元二次不等式的最值问题.总结一元二次方程根的情况与判别式△的关系:(1)△>0?方程有两个不相等的实数根;(2)△=0?方程有两个相等的实数根;(3)△<0?方程没有实数根.三、解答题(共9小题,满分102分)17.(9分)(2014?广州)解不等式:5x﹣2≤3x,并在数轴上表示解集.考点:解一元一次不等式;在数轴上表示不等式的解集.分析:移项,合并同类项,系数化成1即可.解答:解:5x﹣2≤3x,移项,得5x﹣3x≤2,合并同类项,得2x≤2,系数化成1,x≤1,在数轴上表示为:.点评:本题考查了解一元一次不等式,在数轴上表示不等式的解集的应用,注意:解一元一次不等式的步骤是:去分母,去括号,移项,合并同类项,系数化成1.18.(9分)(2014?广州)如图,?ABCD的对角线AC、BD相交于点O,EF过点O且与AB,CD分别相交于点E、F,求证:△AOE≌△COF.考点:平行四边形的性质;全等三角形的判定.专题:证明题.分析:根据平行四边形的性质得出OA=OC,AB∥CD,推出∠EAO=∠FCO,证出△AOE≌△COF即可.解答:证明:∵四边形ABCD是平行四边形,∴OA=OC,AB∥CD,∴∠EAO=∠FCO,在△AOE和△COF中,,∴△AOE≌△COF(ASA).点评:本题考查了平行四边形的性质,平行线的性质,全等三角形的判定的应用,关键是根据平行四边形的性质得出AO=CO.19.(10分)(2014?广州)已知多项式A=(x+2)2+(1﹣x)(2+x)﹣3.(1)化简多项式A;(2)若(x+1)2=6,求A的值.考点:整式的混合运算—化简求值;平方根.专题:计算题.分析:(1)先算乘法,再合并同类项即可;(2)求出x+1的值,再整体代入求出即可.解答:解:(1)A=(x+2)2+(1﹣x)(2+x)﹣3=x 2+4x+4+2+x﹣2x﹣x2﹣3=3x+3;(2)∵(x+1)2=6,∴x+1=±,∴A=3x+3=3(x+1)=±3.∴A=±3.点评:本题考查了整式的混合运算和求值的应用,主要考查学生的化简和计算能力,题目比较好.20.(10分)(2014?广州)某校初三(1)班50名学生需要参加体育“五选一”自选项目测试,班上学生所报自选项目的情况统计表如下:自选项目人数频率立定跳远9 0.18三级蛙跳12 a一分钟跳绳8 0.16投掷实心球 b 0.32推铅球 5 0.10合计50 1(1)求a,b的值;(2)若将各自选项目的人数所占比例绘制成扇形统计图,求“一分钟跳绳”对应扇形的圆心角的度数;(3)在选报“推铅球”的学生中,有3名男生,2名女生,为了了解学生的训练效果,从这5名学生中随机抽取两名学生进行推铅球测试,求所抽取的两名学生中有一名女生的概率.考点:游戏公平性;简单的枚举法;扇形统计图.专题:图表型.分析:(1)根据表格求出a与b的值即可;(2)根据表示做出扇形统计图,求出“一分钟跳绳”对应扇形的圆心角的度数即可;(3)列表得出所有等可能的情况数,找出抽取的两名学生中至多有一名女生的情况,即可求出所求概率.解答:解:(1)根据题意得:a=1﹣(0.18+0.16+0.32+0.10)=0.24;b=×0.32=16;(2)作出扇形统计图,如图所示:根据题意得:360°×0.16=57.6°;(3)男生编号为A、B、C,女生编号为D、E,由枚举法可得:AB、AC、AD、AE、BC、BD、BE、CD、CE、DE共10种,其中DE为女女组合,∴抽取的两名学生中至多有一名女生的概率为:.点评:此题考查了游戏公平性,扇形统计图,列表法与树状图法,弄清题意是解本题的关键.21.(12分)(2014?广州)已知一次函数y=kx﹣6的图象与反比例函数y=﹣的图象交于A、B两点,点A的横坐标为2.(1)求k的值和点A的坐标;(2)判断点B所在象限,并说明理由.考点:反比例函数与一次函数的交点问题.分析:(1)先把x=2代入反比例函数解析式得到y=﹣k,则A点坐标表示为(2,﹣k),再把A(2,﹣k)代入y=kx﹣6可计算出k,从而得到A点坐标;(2)由(1)得到一次函数与反比例函数的解析式分别为y=2x﹣6,y=﹣,根据反比例函数与一次函数的交点问题,解方程组即可得到B点坐标.解答:解:(1)把x=2代入y=﹣,得:y=﹣k,把A(2,﹣k)代入y=kx﹣6,得:2k﹣6=k,解得k=2,所以一次函数与反比例函数的解析式分别为y=2x﹣6,y=﹣,则A点坐标为(2,﹣2);(2)B点在第四象限.理由如下:一次函数与反比例函数的解析式分别为y=2x﹣6,y=﹣,解方程组,得:或,所以B点坐标为(1,﹣4),所以B点在第四象限.点评:本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.22.(12分)(2014?广州)从广州到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的 1.3倍.(1)求普通列车的行驶路程;(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的 2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.考点:分式方程的应用.专题:行程问题.分析:(1)根据高铁的行驶路程是400千米和普通列车的行驶路程是高铁的行驶路程的 1.3倍,两数相乘即可得出答案;(2)设普通列车平均速度是x千米/时,根据高铁所需时间比乘坐普通列车所需时间缩短3小时,列出分式方程,然后求解即可;解答:解:(1)根据题意得:400×1.3=520(千米),答:普通列车的行驶路程是520千米;(2)设普通列车平均速度是x千米/时,则高铁平均速度是 2.5x千米/时,根据题意得:﹣=3,解得:x=120,经检验x=120是原方程的解,则高铁的平均速度是120×2.5=300(千米/时),答:高铁的平均速度是300千米/时.点评:此题考查了分式方程的应用,关键是分析题意,找到合适的数量关系列出方程,解分式方程时要注意检验.23.(12分)(2014?广州)如图,△ABC中,AB=AC=4,cosC=.(1)动手操作:利用尺规作以AC为直径的⊙O,并标出⊙O与AB的交点D,与BC的交点E(保留作图痕迹,不写作法);(2)综合应用:在你所作的图中,①求证:=;②求点D到BC的距离.考点:作图—复杂作图;勾股定理的应用;相似三角形的应用.专题:作图题;证明题.分析:(1)先作出AC的中垂线,再画圆.(2)边接AE,AE是BC的中垂线,∠DAE=∠CAE,得出=;(3)利用△BDE∽△BCA求出BD,再利用余弦求出BM,用勾股定理求出DM.解答:解:(1)如图(2)如图,连接AE,∵AC为直径,∴∠AEC=90°,∵AB=AC,∴∠DAE=∠CAE,∴=;(3)如图,连接AE,DE,作DM⊥BC交BC于点M,∵AC为直径,∴∠AEC=90°,∵AB=AC=4,cosC=.∴EC=BE=4,∴BC=8,∵点A、D、E、C共圆∴∠ADE+∠C=180°,又∵∠ADE+∠BDE=180°,∴∠BDE=∠C,∴△BDE∽△BCA,∴=,即BD?BA=BE?BC∴BD×4=4×8∴BD=,∵∠B=∠C∴cos∠C=cos∠B=,∴=,∴BM=,∴DM===.点评:本题主要考查了复杂的作图,相似三角形以及勾股定理的应用,解题的关键是运用△BDE∽△BCA求出线段的长.24.(14分)(2014?广州)已知平面直角坐标系中两定点A(﹣1,0)、B(4,0),抛物线y=ax 2+bx﹣2(a≠0)过点A,B,顶点为C,点P(m,n)(n<0)为抛物线上一点.(1)求抛物线的解析式和顶点C的坐标;(2)当∠APB为钝角时,求m的取值范围;(3)若m>,当∠APB为直角时,将该抛物线向左或向右平移t(0<t<)个单位,点C、P平移后对应的点分别记为C′、P′,是否存在t,使得首位依次连接A、B、P′、C′所构成的多边形的周长最短?若存在,求t的值并说明抛物线平移的方向;若不存在,请说明理由.考点:二次函数综合题.专题:代数几何综合题;待定系数法.分析:(1)待定系数法求解析式即可,求得解析式后转换成顶点式即可.(2)因为AB为直径,所以当抛物线上的点P在⊙C的内部时,满足∠APB为钝角,所以﹣1<m<0,或3<m<4.(3)左右平移时,使A′D+DB″最短即可,那么作出点C′关于x轴对称点的坐标为C″,得到直线P″C″的解析式,然后把A点的坐标代入即可.解答:解:(1)∵抛物线y=ax2+bx﹣2(a≠0)过点A,B,∴,解得:,∴抛物线的解析式为:y=x2﹣x﹣2;∵y=x2﹣x﹣2=(x﹣)2﹣,∴C(,﹣).(2)如图1,以AB为直径作圆M,则抛物线在圆内的部分,能使∠APB为钝角,∴M(,0),⊙M的半径=.∵P是抛物线与y轴的交点,∴OP=2,∴MP==,∴P在⊙M上,∴P的对称点(3,﹣2),∴当﹣1<m<0或3<m<4时,∠APB为钝角.(3)存在;抛物线向左或向右平移,因为AB、P′C′是定值,所以A、B、P′、C′所构成的多边形的周长最短,只要AC′+BP′最小;第一种情况:抛物线向右平移,AC′+BP′>AC+BP,第二种情况:向左平移,如图2所示,由(2)可知P(3,﹣2),又∵C(,﹣)∴C'(﹣t,﹣),P'(3﹣t,﹣2),∵AB=5,∴P″(﹣2﹣t,﹣2),要使AC′+BP′最短,只要AC′+AP″最短即可,点C′关于x轴的对称点C″(﹣t,),设直线P″C″的解析式为:y=kx+b,,解得∴直线y=x+t+,点A在直线上,∴﹣+t+=0∴t=.故将抛物线向左平移个单位连接A、B、P′、C′所构成的多边形的周长最短.点评:本题考查了待定系数法求解析式,顶点坐标,二次函数的对称性,以及距离之和最小的问题,涉及考点较多,有一定的难度.25.(14分)(2014?广州)如图,梯形ABCD中,AB∥CD,∠ABC=90°,AB=3,BC=4,CD=5.点E为线段CD上一动点(不与点C重合),△BCE关于BE的轴对称图形为△BFE,连接CF.设CE=x,△BCF的面积为S1,△CEF的面积为S2.(1)当点F落在梯形ABCD的中位线上时,求x的值;(2)试用x表示,并写出x的取值范围;(3)当△BFE的外接圆与AD相切时,求的值.考点:四边形综合题.专题:几何综合题;压轴题.分析:(1)利用梯形中位线的性质,证明△BCF是等边三角形;然后解直角三角形求出x的值;(2)利用相似三角形(或射影定理)求出线段EG与BE的比,然后利用=求解;(3)依题意作出图形,当△BFE的外接圆与AD相切时,线段BE的中点O成为圆心.作辅助线,如答图3,构造一对相似三角形△OMP∽△ADH,利用比例关系列方程求出x的值,进而求出的值.解答:解:(1)当点F落在梯形ABCD中位线上时,如答图1,过点F作出梯形中位线MN,分别交AD、BC于点M、N.由题意,可知ABCD为直角梯形,则MN⊥BC,且BN=CN=BC.由轴对称性质,可知BF=BC,∴BN=BF,∴∠BFN=30°,∴∠FBC=60°,∴△BFC为等边三角形.∴CF=BC=4,∠FCB=60°,∴∠ECF=30°.设BE、CF交于点G,由轴对称性质可知CG=CF=2,CF⊥BE.在Rt△CEG中,x=CE===.∴当点F落在梯形ABCD的中位线上时,x的值为.(2)如答图2,由轴对称性质,可知BE⊥CF.∵∠GEC+∠ECG=90°,∠GEC+∠CBE=90°,∴∠GCE=∠CBE,又∵∠CGE=∠ECB=90°,∴Rt△BCE∽Rt△CGE,∴,∴CE2=EG?BE ①同理可得:BC2=BG?BE ②①÷②得:==.∴====.∴=(0<x≤5).(3)当△BFE的外接圆与AD相切时,依题意画出图形,如答图3所示.设圆心为O,半径为r,则r=BE=.设切点为P,连接OP,则OP⊥AD,OP=r=.过点O作梯形中位线MN,分别交AD、BC于点M、N,则OM为梯形ABED的中位线,∴OM=(AB+DE)=(3+5﹣x)=(8﹣x).过点A作AH⊥CD于点H,则四边形ABCH为矩形,∴AH=BC=4,CH=AB=3,∴DH=CD﹣CH=2.在Rt△ADH中,由勾股定理得:AD===2.∵MN∥CD,∴∠ADH=∠OMP,又∵∠AHD=∠OPM=90°,∴△OMP∽△ADH,∴,即,化简得:16﹣2x=,两边平方后,整理得:x2+64x﹣176=0,解得:x1=﹣32+20,x2=﹣32﹣20(舍去)∵0<﹣32+20≤5∴x=﹣32+20符合题意,∴==139﹣80.点评:本题是几何综合题,考查了直角梯形、相似、勾股定理、等边三角形、矩形、中位线、圆的切线、解方程、解直角三角形等知识点,考查了轴对称变换与动点型问题,涉及考点较多,有一定的难度.。
广东省广州市2014年中考数学真题试题(含答案解析)
秘密★启用前广州市2014年初中毕业生学业考试数学本试卷分选择题和非选择题两部分,共三大题25小题,满分150分.考试时间120分钟.注意事项:1.答卷前,考生务必在答题卡第1面、第3面、第5面上用黑色字迹的钢笔或签字笔填写自己的考生号、姓名;填写考场试室号、座位号,再用2B铅笔把对应这两个号码的标号涂黑.2 •选择题每小题选出答案后,用2B铅笔把答题卡上对应题同的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;不能答在试卷上.3•非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B铅笔画图•答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域•不准使用铅笔、圆珠笔和涂改液•不按以上要求作答的答案无效.4 •考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回.第一部分选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1. .;■(二二「)的相反数是( ).1(A)一盘(B) (C) ( D)-边【考点】相反数的概念【分析】任何一个数诃的相反数为-.【答案】A2.下列图形是中心对称图形的是( ).(A) (B) (C) (D)【考点】轴对称图形和中心对称图形.【分析】旋转180。
后能与完全重合的图形为中心对称图形.【答案】D5.已知和[:「.的半径分别为2cm 和3cm,若-i ,则匚「和 「的位置关系是().(A )外离(B )外切(C )内切(D )相交【考点】圆与圆的位置关系.【分析】两圆圆心距大于两半径之和,两圆外离. 【答案】A宀46 .计算,结果是().n n2-4 2(A ;:_ _(B )工一一(C )(D ) ——i工【考点】分式、因式分解- 4 仗+2)仃-2]【分析】一j-2x- 2【答案】B7.在一次科技作品制作比赛中,某小组八件作品的成绩(单位:分)分别是: 7, 10, 9, 8, 7 , 9, 9,、3 、4、3 (A )(B )(C)554【考点】正切的定义.【分析】 BC 4.AB 3【答案】D4 .卜列运算正确的是().(A )匚工:一土:=二(B ) 1 1 2—十一=----------a b d + b【考点】整式的加减乘除运算.【分析】5.7^? - L ;.-: = 4;;:: , A 错误;_ J 'aal.<■ .;■ 一丿,C正确;」r L,3.如图1,在边长为1的小正方形组成的网格中,,B 错误;D 错误.【答案】C的三个顶点均在格点上,贝上二上=(&对这组数据,下列说法正确的是( ).(A)中位数是8 (B)众数是9 (C)平均数是8 (D)极差是7【考点】数据【分析】中位数是 8.5 ;众数是9;平均数是8.375 ;极差是3. 【答案】B&将四根长度相等的细木条首尾相接,用钉子钉成四边形.咗:二,转动这个四边形,使它形状改变,当:时,如图.:_:,测得小二=:,当二 -.j=时,如图.二、,上().对角线等于边长,故答案为 .【答案】A9 •已知正比例函数j -(:-[)的图象上两点上(:〔i ,山)等式中恒成立的是()•【考点】反比例函数的增减性【分析】反比例函数:- 中「:;:[,所以在每一象限内F 随:「的增大而减小,且当工二〕时八 -,:;匸 r 时J •」,•••当时,二心,故答案为二-.1【答案】C10 •如图3,四边形丘二、二Ed 都是正方形,点 匸在线段:二C 上,连接弓m 三丘,和口]相交于 点匸•设 兰f(二门:)•下列结论:①./ J1-'“二:②已丁丄三耳;③{.trC GE④I- <■- •其中结论正确的个数是( )•【考点】三角形全等、相似三角形(B )2【考点】正方形、有 工二内角的菱形的对角线与边长的关系 【分析】由正方形的对角线长为 2可知正方形和菱形的边长为、三(工1 , ),且则下列不(A ) 4 个(B ) 3 个(C ) 2 个 (D ) 1 个图2-① (C )<■.图2-②「.,当—三=60°时,菱形较短的【分析】①由一__ _i可证故①正确;②延长BG交DE于点H由①可得_叮芒三=二:匸二:,二二三上1上疋芒(对顶角)•••三二—匸;GL=90 °,故②正确;③由'■■._■■■.- ■ 可得. ',故③不正确;■" DC CE£S EF iz1④'-55? 等于相似比的平方,即: .、血8兀記DG O—» -「二上,故④正确.【答案】B第二部分非选择题(共120分)二、填空题(共6小题,每小题3分,满分18分)11. 3C中,已知厶=册,公二卿,则上C的外角的度数是____________________ •【考点】三角形外角【分析】本题主要考察三角形外角的计算,_二-』,则」厂的外角为/::-4?3 = :4?=【答案】:4::12.已知 g 是/ AOB的平分线,点P在OCh, PDL OA PEI OB垂足分别为点◎ 童,PD=10,贝U PE的长度为_____ .【考点】角平线的性质【分析】角平分线上的点到角的两边距离相等.【答案】10113.代数式一有意义时,忑应满足的条件为____________ .r —1【考点】分式成立的意义,绝对值的考察【分析】由题意知分母不能为0,即忖二,则工=±:【答案】?. = +:14.一个几何体的三视图如图4,根据图示的数据计算该几何体的全面积为______________ (结果保留卅).【考点】三视图的考察、圆锥体全面积的计算方法【分析】从三视图得到该几何体为圆锥体,全面积=侧面积+底面积,底面积为圆的面积为:侧面积为扇形的面积- ,首先应该先求出扇形的半径R由勾股定理得,—“十,则2侧面积一・■ 1^- ■■- T|,全面积1匕一」:7=;二匚.2【答案】>715•已知命题:“如果两个三角形全等,那么这两个三角形的面积相等.”写出它的逆命题: ________ 该逆命题是____ 命题(填“真”或“假”).【考点】命题的考察以及全等三角形的判定【分析】本题主要考察命题与逆命题的转换,以及命题真假性的判断【答案】如果两个三角形的面积相等,那么这两个三角形全等•假命题.16.若关于X的方程『+亦工+护+加一2二(]有两个实数根两、心,则珀遍+石)+谥的最小值为.【考点】一元二次方程根与系数的关系,最值的求法【分析】该题主要是考察方程思想与函数思想的结合,由根与系数的关系得到:二」川.,- … •,原式化简一弋•因为方程有实数根,2 25•••「二|一,厂.当'■-,时,_血亠| .最小值为:.【答案】斗三、解答题(本大题共9小题,满分102分,解答应写出文字说明、证明过程或演算步骤).17.(本小题满分9分)解不等式:% - H二,并在数轴上表示解集•【考点】不等式解法【分析】利用不等式的基本性质,将两边不等式同时减去]上,再同时加上],再除以2 ,不等号的方向不变.注意在数轴上表示时,此题是小于等于号,应是实心点且方向向左【答案】解:移项得,:心-以三2!,合并同类项得,m系数化为i得,工乞:,在数轴上表示为:18.(本小题满分9分)如图5,平行四边形七匚二的对角线e二E二相交于点匚,过点二且与■三、二二分别交于点5. 5,求证:丄1匚W .B C图5 【考点】全等三角形的性质与判定、平行四边形的性质【分析】根据平行四边形的性质可知,去匚=「「,二.工^<7,又根据对顶角相等可知,—丄,再根据全等三角形判定法则一心,’•」丄,得证.【答案】证明:•••平行四边形止二的对角线上;三匸相交于点二•••上亠/,•••」「—一二’在、[丄和■ ■ J.?中,皿二力AAOE^^COF"0E 二"OF19 .(本小题满分10分)已知多项式' 'I ' ■- I r | ;.(1 )化简多项式上;(2)若-I I r,,求上的值.【考点】(1)整式乘除(2)开方,正负平方根【分析】(1)没有公因式,直接去括号,合并同类型化简(2)由第一问答案,对照第二问条件,只需求出---,注意开方后有正负【答案】解:(1)一 - I •「-=x2十4兀十4+ 2—2尤+工-;? —了——X s)+ (4工—2x+工)+@ + 2- 3)=強+3(2——冇,则工■ 一二”「£=3尤十3二?0 + 1) = 土$&20 .(本小题满分10分)某校初三(1 )班50名学生需要参加体育“五选一”自选项目测试,班上学生所报自选项目的情况统计表如下:(1 )求「勺的值;(2)若将各自选项目的人数所占比例绘制成扇形统计图,求“一分钟跳绳”对应扇形的圆心角的度数;(3)在选报“推铅球”的学生中,有3名男生,2名女生,为了了解学生的训练效果,从这5名学生中随机抽「取两名学生进行推铅球测试,求所抽取的两名学生中至多..有一名女生的概率.【考点】(1)频率(2)①频率与圆心角;②树状图,概率【分析】(1)各项人数之和等于总人数50 ;各项频率之和为1 (2)所占圆心角=频率*360 (3)画出列表图,至多有一名女生包括有一个女生和一个女生都没有两种情况.【答案】(1)|1: + ' -F _I ■ ii>=l-(C 18+0.1(54 0.324 0 10)= 0.24 (2)“ 一分钟跳绳”所占圆心角(3)至多有一名女生包括两种情况有1个或者0个女生列表图:男A 男B 男c 女D 女E男A (A, B) (A C) (A, D (A,日男B (B, A(B, C) (B, D (B,日男C (c, A(C, B) (C, D (C,日女D (D A(D, B) (D C) (D日女E (E, A(E, B) (E, C) (E, D有1个女生的情况:12种有0个女生的情况:6种至多有一名女生包括两种情况18种13 9至多有一名女生包括两种情况二一==0.90卯1U21.(本小题满分12分)2片已知一次函数r」-的图像与反比例函数’的图像交于二三两点,点上的横坐标为2.I(1 )求I的值和点上的坐标;(2)判断点弓的象限,并说明理由.【考点】1 一次函数;2反比例函数;3函数图象求交点坐标【分析】第(1 )问根据一点是两个图象的交点,将一代入联立之后的方程可求出[,再将一点的横坐标代入函数表达式求出纵坐标;第( 2 )问根据一次函数与反比例函数的解析式分析两图像经过的象限,得出两图像交点所在象限•此题主要考查反比例函数与一次函数的性质【答案】解:(1 )将.* -与『一—'联立得:2k y-—2ky~-一T__点是两个函数图象交点,将工=1带入1式得:“, 2k解得:--故一次函数解析式为」•| ,反比例函数解析式为丁 -'将工二2代入| ■''得,/—- ' 1■.丄|的坐标为广=»-2)-(2)三点在第四象限,理由如下:一次函数j ■.经过第一、三、四象限,反比例函数经过第二、四象限,因此它们的交点都是在第四象限•22、(本小题满分12分)从广州某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.(1)求普通列车的行驶路程;(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.【考点】行程问题的应用【分析】路程=速度X时间,分式方程的实际应用考察【解析】(1)依题意可得,普通列车的行驶路程为400X 1.3=520 (千米)(2)设普通列车的平均速度为二千米/时,则高铁平均速度为】士:千米/时.依题意有:可得:耳=1::r 2.5工答:高铁平均速度为2.5 X 120=300千米/时.23、(本小题满分12分)如图6, ^5:中,—.f 二(1)动手操作:利用尺规作以二匚为直径的、一「,并标出与二三的交点匸•,与巫二的交点E (保留作图痕迹,不写作法):(2 )综合应用:在你所作的圆中,①求证:亠;②求点匚到王的距离.【考点】(1)尺规作图;(2)①圆周角、圆心角定理;②勾股定理,等面积法【分析】(1)先做出中点0,再以O为圆心,创为半径画圆.(2)①要求爾=丽,根据圆心角定理,同圆中圆心角相等所对的弧也相等,只需证出37= 即可,再根据等腰三角形中的边角关系转化②首先根据已知条件可求出EC = ^,依题意作出高OH 求高则用勾股定理或面积法,注意到上匚•为直径,所以想到连接二二,构造直角三角形,进而用勾股定理可求出 M二,二3的长度,那么在一V;T中,求其高,就只需用面积法即可求出高二石.【答案】(1)如图所示,圆匸为所求(2)①如图连接「匚二匚,设二卫=二,又」—丄豆 _J-Z.OEC=AC = ZB=a = -2a则—丄「一■ '■ L r - . ■ I I ' ■;I I : r. -I ■ I ■.ZSCC= :_耘=纭②连接1二,过三作以f _ F T于」丫 ,过匸作LU「于H又二匚为直径ZADC = ^BDU=^设王匸;》,贝则二」_二十_严在.勺丄F3C和兄_七£二中,有厂『丄:丄」丄即| ■ . :'•••:;':解得:---]即:- [又二—' '又"一_!日J史口口1 8^5血即•■■■2 1 5 5r.;D^=24 .(本小题满分14分)已知平面直角坐标系中两定点A ( -1 , 0), B( 4, 0),抛物线-(二=[)过点A B,顶点为C.点P ( m n )( n <0)为抛物线上一点.(1) 求抛物线的解析式与顶点 C 的坐标.(2) 当/ APB 为钝角时,求 m 的取值范围.3S(3)若7 •,当/ APB 为直角时,将该抛物线向左或向右平移t)个单位,点 P 、C 移动后对2 2应的点分别记为匸、:二,是否存在t ,使得首尾依次连接 A B 匸、T 所构成的多边形的周长最 短?若存在,求t 值并说明抛物线平移的方向;若不存在,请说明理由. 【考点】动点问题.(1)二次函数待定系数法;(2) 存在性问题,相似三角形;(3) 最终问题,轴对称,两点之间线段最短a-b-2 = 016^ + 43-4=0;解得:"1 3 36■-抛物线解析式为.■■■ . T-:■-顶点横坐标_ -一,将「_代入抛物线得;■■'2a i2⑵如图,当_」亠:;.时,设r... .则 ED=坷 +1 DF= 4-^,2?^ = -2过二作直线.■轴,一A'—"」—•:.MED-^BFD .AE _DF(注意用整体代入法)【答案】(1)解:依题意把占,占的坐标代入得:£ 2b = -~2当二在门.厂之间时,_」二.■::- u < :或3 :::记C 」时,—'!?三为钝角. ⑶ 依题意:二:::3 ,且_」匚.-,■:设「移动f (「:向右,:处向左)-P (3+Q -2)C G+:-£)io连接 则干— 又」』的长度不变四边形周长最小,只需上一 -_[[最小即可 将八4沿二轴向右平移5各单位到二「处 丁沿廿轴对称为f1325 •••当且仅当「、B 、丁三点共线时,丄「I最小,且最小为,此时LL8—41 _284141〔如〕① L 41(3+;) 尸 屈 28b - - - +2 L 28将丄.…」代入,得:’,解得:'2S2S4115•当,P 、C 向左移动二7单位时,此时四边形 ABP C'周长最小。
2014年广东省广州市中考数学试卷(附答案与解析)
数学试卷 第1页(共46页) 数学试卷 第2页(共46页)绝密★启用前广东省广州市2014年初中毕业生学业考试数 学本试卷满分150分,考试时间120分钟.第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.(0)a a ≠的相反数是( ) A .a -B .2aC .||aD .1a 2.下列图形中,是中心对称图形的是( )AB C D3.如图,在边长为1的小正方形组成的网格中,ABC △的三个顶点均在格点上,则tan A =( )A .35B .45C .34D .43 4.下列运算正确的是( )A .54ab ab -=B .112a b a b +=+ C .624a a a ÷= D .2353()a b a b =5.已知1O 和2O 的半径分别为2 cm 和3 cm ,若12O O =7 cm ,则1O 和2O 的位置关系是( ) A .外离B .外切C .内切D .相交6.计算242x x --,结果是( )A .2x -B .2x +C .42x - D .2x x+ 7.在一次科技作品制作比赛中,某小组八件作品的成绩(单位:分)分别是:7,10,9,8,7,9,9,8.对这组数据,下列说法正确的是( ) A .中位数是8B .众数是9C .平均数是8D .极差是78.将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD ,转动这个四边形,使它形状改变.当90B ∠=时,如图1,测得2AC =.当60B ∠=时,如图2,AC =( )AB .2CD.9.已知正比例函数(0)y kx k =<的图象上两点11(,)A x y ,22(,)B x y ,且12x x <,则下列不等式中恒成立的是( ) A .120y y +> B .120y y +< C .120y y ->D .120y y -<10.如图,四边形ABCD ,CEFG 都是正方形,点G 在线段CD 上,连接BG ,DE ,DE 和FG 相交于点O .设AB a =,()CG b a b =>.下列结论:①BCG DCE ≅△△;②BG DE ⊥;③DG GOGC CE=; ④22()EFO DGO a b S b S -=△△.1cm其中结论正确的个数是()毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共46页) 数学试卷 第4页(共46页)A .4个B .3个C .2个D .1个第Ⅱ卷(非选择题 共120分)二、填空题(本大题共6小题,每小题3分,共18分.请把答案填在题中的横线上)11.已知ABC △中,60A ∠=,80B ∠=,则C ∠的外角的度数是.12.已知OC 是AOB ∠的平分线,点P 在OC 上,PD OA ⊥,PE OB ⊥,垂足分别为点D ,E ,10PD =,则PE 的长度为 .13.代数式1|1|x -有意义时,x 应满足的条件为 .14.一个几何体的三视图如图所示,根据图示的数据计算该几何体的全面积...为 (结果保留π).15.已知命题:“如果两个三角形全等,那么这两个三角形的面积相等”.写出它的逆命题: ,该逆命题是 命题(填“真”或“假”).16.若关于x 的方程222320x mx m m +++-=有两个实数根1x ,2x ,则21212()x x x x ++的最小值为 .三、解答题(本大题共9小题,共102分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分9分)解不等式:523x x -≤,并在数轴上表示解集.18.(本小题满分9分)如图,□ABCD 的对角线AC ,BD 相交于点O ,EF 过点O 且与AB ,CD 分别交于点E ,F ,求证:AOE COF ≅△△.19.(本小题满分10分)已知多项式2(2)(1)(2)3A x x x =++-+-. (1)化简多项式A ;(2)若2(1)6x +=,求A 的值.20.(本小题满分10分)某校初三(1)班50名学生需要参加体育“五选一”自选项目测试,班上学生所报自选项目的情况统计表如下:(1)(2)若将各自选项目的人数所占比例绘制成扇形统计图,求“一分钟跳绳”对应扇形的圆心角的度数;(3)在选报“推铅球”的学生中,有3名男生,2名女生.为了了解学生的训练效果,从这5名学生中随机抽取两名学生进行推铅球测试,求所抽取的两名学生中至多有一名女生的概率.21.(本小题满分12分)数学试卷 第5页(共46页) 数学试卷 第6页(共46页)已知一次函数6y kx =-的图象与反比例函数2ky x=-的图象交于A ,B 两点,点A 的横坐标为2.(1)求k 的值和点A 的坐标;(2)判断点B 所在的象限,并说明理由.22.(本小题满分12分)从广州到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍. (1)求普通列车的行驶路程;(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.23.(本小题满分12分)如图,ABC △中,AB AC ==cos C =(1)动手操作:利用尺规作以AC 为直径的O ,并标出O 与AB 的交点D ,与BC 的交点E (保留作图痕迹,不写作法); (2)综合应用:在你所作的图中, ①求证:DE CE =; ②求点D 到BC 的距离.24.(本小题满分14分)已知平面直角坐标系中两定点(1,0)A -,(40)B ,,抛物线22(0)y ax bx a =+-≠过点,,A B 顶点为C ,点(,)(0)P m n n <为抛物线上一点.(1)求抛物线的解析式和顶点C 的坐标; (2)当APB ∠为钝角时,求m 的取值范围;(3)若3,2m >当APB ∠为直角时,将该抛物线向左或向右平移5(0)2t t <<个单位,点C ,P 平移后对应的点分别记为,C P '',是否存在t ,使得首尾依次连接,,,A B P C ''所构成的多边形的周长最短?若存在,求t 的值并说明抛物线平移的方向;若不存在,请说明理由.25.(本小题满分14分)如图,梯形ABCD 中,AB CD ∥,90ABC ∠=,3AB =,4BC =,5CD =,点E 为线段CD 上一动点(不与点C 重合),BCE △关于BE 的轴对称图形为BFE △,连接CF ,设CE x =,BCF △的面积为1S ,CEF △的面积为2S . (1)当点F 落在梯形ABCD 的中位线上时,求x 的值;(2)试用x 表示21SS ,并写出x 的取值范围;(3)当BFE △的外接圆与AD 相切时,求21S S 的值.数学试卷 第7页(共46页)数学试卷 第8页(共46页)广东省广州市2014年初中毕业生学业考试数学答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】因为任何一个数a 的相反数都为a -,故选A . 2.【答案】D 【考点】相反数.【解析】判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;判断中心对称图形是寻找对称中心,旋转180度后与原图重合.选项A ,B 既不是轴对称图形也不是中心对称图形;选项C 是轴对称图形,不是中心对称图形;选项D 是中心对称图形不是轴对称图形,故选D. 【考点】轴对称图形,中心对称图形. 3.【答案】D【解析】由图可知,在Rt ABC △中,4tan 3BC A AB ==,故选D. 【考点】正切 4.【答案】C【解析】因为54ab ab ab -=,A 错误;11a ba b ab++=,B 错误;62624a a a a -÷==,C 正确;2363()a b a b =,D 错误,故选C. 【考点】整式运算 5.【答案】A【解析】因为2357+=<,根据两圆圆心距大于两半径之和,两圆外离,故选A. 【考点】圆,圆的位置关系. 6.【答案】B【解析】先将分式的分子因式分解,再约分,即原式(2)(2)22x x x x +-==+-,故选B.【考点】分式的化简. 7.【答案】B【解析】中位数是将一组数据按从大到小或从小到大的顺序排列后,最中间的一个数据或中间两个数据的平均数;众数是一组数据中出现次数最多的数;求平均数的方法是将这组数据的总和除以这组数据的5 / 23个数;求极差的方法是用最大值减去最小值.故这组数据的中位数是8.5;众数是9;平均数是8.375;极差是3,故选B.【考点】中位数,众数,平均数,极差. 8.【答案】A【解析】由正方形的对角线长为2可知正方形和菱形的边长为AB 当60B ∠=°时,ABC △是等边三角形,所以AC AB == A.【考点】正方形,有60°内角的菱形的对角线与边长的关系. 9.【答案】C【解析】正比例函数y kx =,当0k <时,y 随x 的增大而减小,因为12x x <,故12y y >,所以120y y ->,故选C.【考点】正比例函数. 10.【答案】B【解析】①由BC DC =,CG CE =,BCG DCE ∠=∠可证(SAS)BCG DCG △≌△,故①正确;②延长BG交DE 于点H ,由①可得CDE CBG ∠=∠,DGH BGC ∠=∠(对顶角相等),∴90BCG DHG ∠=∠=°,即BG DE ⊥,故②正确;③由DGO DCE △∽△可得DG GODC CE=,故③不正确;④EFO DGO △∽△,∴222()()EFO DGO S EF b S DG a b ==-△△,∴22()EFO DGO a b S b S -=△△,故④正确.所以正确的结论有3个,故选B. 【考点】正方形的性质,全等三角形,相似三角形.第Ⅱ卷二、填空题 11.【答案】140°【解析】根据三角形的一个外角等于它不相邻的两个内角的和,因此C ∠的外角6080=140A B =∠+∠=+°°°,故答案是140°. 【考点】三角形外角的计算. 12.【答案】10【解析】根据角平分线的点到角的两边距离相等,所以10PE PD ==,故答案是10. 【考点】角平分线的性质. 13.【答案】1x ≠±数学试卷 第11页(共46页)数学试卷 第12页(共46页)【解析】由题意知分母不能为0,即||10x -≠,解得1x ≠±,故答案是1x ≠±. 【考点】绝对值,分式成立的意义. 14.【答案】24π【解析】从三视图得到该几何体为圆锥,全面积=侧面积+底面积,由三视图得圆锥的底面半径3r =,底面周长2π6πl r ==,圆锥的母线长为R ,根据勾股定理5R ==,底面积为圆的面积22ππ39πr ==g ,侧面积为扇形的面积116π515π22lR =⨯⨯=,全面积为9π15π24π+=,故答案是24π.【考点】三视图,圆锥面积的计算.15.【答案】如果两个三角形的面积相等,那么这两个三角形全等; 假【解析】将命题的条件与结论互换可得到它的逆命题;判断该逆命题的真假可举一个反例,如同底等高的三角形面积相等,却不一定全等. 【考点】命题与逆命题的转换,判断真假命题. 16.【答案】54【解析】由根与系数的关系得122x x m +=-,21232x x m m =+-,原式222212121212121212()2()x x x x x x x x x x x x x x =++=++-=+-, 代入得原式222215(2)(32)3323()24m m m m m m =--+-=-+=-+, 因为方程有实数根,∴0∆≥,即22(2)4(32)0m m m -+-≥,解得23m ≤,因为1223<,所以当12m =时,2153()24m -+取到最小值,最小值是54.【考点】一元二次方程根与系数的关系,最值的求法.【提示】本题应利用根与系数的关系解题,利用根的判别式求最值;不少考生找不到解题思路,另外计算也易错误. 三、解答题17.【答案】移项得532x x -≤. 合并同类项得22x ≤. ∴ 1x ≤解集在数轴上表示如下:7 / 23【考点】一元一次不等式的解法,数轴,代数运算能力. 18.【答案】证法一:在平行四边形ABCD 中,AB CD ∥, ∴EAO FCO ∠=∠,AEO CFO ∠=∠.∵EAO FCO ∠=∠,AEO CFO ∠=∠,AO CO =. ∴(AAS)AOE COF △≌△.证法二:在平行四边形ABCD 中,AB CD ∥, ∴AEO CFO ∠=∠.∵AEO CFO ∠=∠,AOE COF ∠=∠,AO CO =. ∴(AAS)AOE COF △≌△.证法三:在平行四边形ABCD 中,AB CD ∥, ∴EAO FCO ∠=∠.∵EAO FCO ∠=∠,AO CO =,AOE COF ∠=∠. ∴(AAS)AOE COF △≌△.【考点】平行四边形的性质,全等三角形的判定,考查几何推理能力和空间观念.19.【答案】(1)解法一:2(2)(1)(2)3A x x x =++-+-2244223x x x x x =++++---33x =+.解法二:2(2)(1)(2)3A x x x =++-+-(2)(21)3x x x =+++-- 3(2)3x =+-33x =+(2)解法一:∵2(1)6x +=,∴1x +=∴333(1)A x x =+=+=±解法二:∵2(1)6x +=,∴1x =-±,数学试卷 第15页(共46页)数学试卷 第16页(共46页)∴333(13A x =+=-+=±.【考点】整式的运算,完全平方公式,一元二次方程解法等.20.【答案】(1)解法一:10.180.160.320.100.24a =----=,501285916b =----=. 解法二:∵9120.18a=, ∴0.24a =, ∵90.180.32b =, ∴16b =.(2)“一分钟跳绳”对应的扇形的圆心角度数为3600.1657.6°°⨯=. (3)解法一:分别用男1、男2、男3、女1、女2表示这5位同学.从中抽取2名,所有可能出现的结果有(男1,男2),(男1,男3),(男1,女1),(男1,女2),(男2,男3),(男2,女1),(男2,女2),(男3,女1),(男3,女2),(女1,女2),共有10种,它们出现的可能性相同.所有的结果中,满足抽取两名,至多有一名女生的结果有9种. ∴9()=10P 至多有一名女生.由表知所有出现等可能的结果有20种,其中满足条件的结果有8种. ∴9()=10P 至多有一名女生 【考点】统计,概率等.21.【答案】(1)解法一:∵两个函数图像相交于A ,B ,且点A 的横坐标为2, ∴把2x =分别代入两个函数解析式,得26,2,2y k k y =-⎧⎪⎨=-⎪⎩9 / 23解得2,2,k y =⎧⎨=-⎩∴k 的值为2,点A 坐标为(2,2)-. 解法二:依题意,得2262kk -=-, 解得2k =,∴一次函数的解析式为26y x =-. 再将2x =代入得2y =-, ∴点A 坐标为(2,2)-.(2)由(1)得,一次函数的解析式为26y x =-,反比例函数的解析式为4y x=-,判断点B 所在象限有以下两种解法:解法一:∵一次函数26y x =-的图像经过第一、三、四象限,反比例函数4y x=-的图像经过第二、四象限,∴它们的交点只能在第四象限,即点B 在第四象限.解法二:解方程组26,4,y x y x =-⎧⎪⎨=-⎪⎩,得112,2,x y =⎧⎨=-⎩221,4,x y =⎧⎨=-⎩ ∴点B 坐标为(1,4)-. ∴交点B 在第四象限.【考点】一次函数,反比例函数的图像及性质等,待定系数法,数形结合. 22.【答案】(1)400 1.3520⨯=, 答:普通列车的行驶路程是520千米.(2)解法一:设普通列车的平均速度为/x 千米时,则高铁的平均速度为2.5/x 千米时,根据题意列方程得52040032.5x x-=, 解得120x =.经检验,120x =是原方程的解且符合题意, 所以2.5300x =.答:高铁的平均速度为300/千米时. 解法二:设普通列车的行驶时间为y 小时,数学试卷 第19页(共46页)数学试卷 第20页(共46页)则高铁的行驶时间为(3)y -小时,根据题意列方程得5204002.53y y ⨯=-, 解得143y =.经检验,143y =是原方程的解且符合题意, 所以4003003y =-. 答:高铁的平均速度为300/千米时. 解法三:设高铁的平均速度为/z 千米时,依题意,得52040032.5z z-=, 解得300z =.经检验,300z =是原方程的解且符合题意. 答:高铁的平均速度为300/千米时. 【考点】行程问题,解分式方程. 23.【答案】(1)如图1,⊙O 为所求.图1(2)①证明:如图2,连接AE ,图2∵AC 为⊙O 的直径,点E 在⊙O 上,∴90AEC ∠=°,∵AB AC =,∴BAE CAE ∠=∠,∴DE CE =.②如图3,过点D 作DF BC ⊥,垂足为F ,连接CD ,图3∵在Rt ACE △中,cos CE ACB AC ∠==,AC =∴cos 45CE AC ACB =∠==g . ∵AB AC =,90AEC ∠=°,∴4BE CE ==,B ACB ∠=∠,∵AC 为⊙O 的直径,点D 在⊙O 上,∴90ADC ∠=°. 求点D 到BC 的距离DF 有以下两种解法:解法一:在Rt BCD △中,cos BD B BC ∠=,∵cos cos B ACB ∠=∠=,8BC =,数学试卷 第23页(共46页)∴cos 8BD BC B =∠==g ∵在Rt BDF △中,cos BF B BD ∠=,∴8cos 5BF BD B =∠==g ,∴165DF ==. 解法二:∵90BDC AEC ∠=∠=°,=B ACB ∠∠,∴CDB AEC △∽△. ∴BD CB CD CE AC AE==,即4BD ==,∴BD =,CD . 在Rt BCD △中,利用面积法可得1122BD CD BC DF =g g ,8DF =g , 解得165DF =. 【考点】尺规作图,等腰三角形性质,圆的有关性质,三角函数等基础知识.24.【答案】(1)把(1,0)A -,(4,0)B 分别代入22y ax bx =+-得02,01642,a b a b =--⎧⎨=+-⎩解得1,23.2a b ⎧=⎪⎪⎨⎪=-⎪⎩∴抛物线的解析式为213222y x x =--. 求顶点C 的坐标有以下三种解法: 解法一:∵221313252()22228y x x x =--=--, ∴顶点C 的坐标为325(,)28-. 解法二:由对称性可得,顶点C 的横坐标为14322-+=.当32x =时,2133325()222228y =--=-g g . ∴点C 的坐标为325(,)28-. 解法三:顶点C 的横坐标为33212222b a --=-=⨯. 纵坐标为22134(2)()4252214842ac b a ⨯⨯----==-⨯. ∴点C 的坐标为325(,)28-. (2)解法一:证明DM =半径.如图1,设AB 的中点为点M ,图1∵5AB =, ∴52AM =, ∴点M 的坐标为3(,0)2. ∵抛物线213222y x x =--与y 轴交于点(0,2)D -,连接DM ,AD ,BD , ∴在Rt ODM △中,52DM AM ===, ∴点D 在以AB 为直径的⊙M 上,这时90ADB ∠=°. 根据抛物线的对称性可知抛物线上还存在点D 关于直线32x =的对称点(3,2)E -,也在以AB 为直径的⊙M数学试卷 第27页(共46页)上,这时90AEB ∠=°. ∵点P m n (,)在抛物线上.∴当APB ∠为钝角时,m 的取值范围是10M -<<或34m <<.解法二:证明ADB △是直角三角形.如图2,∵抛物线213222y x x =--与y 轴交于点(0,2)D -, 连接AD ,BD ,又∵x 轴y ⊥轴,∴22222125AD OA OD =+=+=,222224220BD OB OD =+=+=, 222AB AD BD =+,∴90ADB ∠=°根据抛物线的对称性可知抛物线上还存在点D 关于直线32x =的对称点(3,2)E -,也在以AB 为直径的⊙M 上,这时90AEB ∠=°. ∵点P m n (,)在抛物线上. ∴当APB ∠为钝角时,m 的取值范围是10M -<<或34m <<.图2解法三:证明AOD DOB △∽△是直角三角形.如图2, ∵抛物线213222y x x =--与y 轴交于点(0,2)D -, 连接AD ,BD , ∴12OA OD =,2142OD OB ==, ∴OA OD OD OB =, 又∵90AOD DOB ∠=∠=°,∴AOD DOB △∽△,∴ADO DBO ∠=∠,又∵ODB DBO ∠=∠,∴90ODB ADO ∠+∠=°,即=90ADB ∠°. 根据抛物线的对称性可知抛物线上还存在点D 关于直线32x =的对称点(3,2)E -,也在以AB 为直径的⊙M 上,这时90AEB ∠=°. ∵点P m n (,)在抛物线上. ∴当APB ∠为钝角时,m 的取值范围是10M -<<或34m <<.(3)存在t .求t 有以下三种解法: 解法一:若32m <,且APB ∠为直角时,3m =, ∴点P 的坐标为(3,2)P -. ① 当抛物线向左平移t 个单位时,得325(,)28C t '--,(3,2)P t '--,连接AC ',C P '',BP ',图3在四边形AC P B ''中,由于线段AB ,C P ''(即CP )都是定值,则当AC P B ''+最短时,该四边形的周长最小.如图3,把线段AC '向右平移1个单位长度得线段OC '',把线段P B '向左平移4个单位长度得线段OP '',则有525(,)28C t ''--,(1,2)P t ''---, 以x 轴为对称轴作点P ''的对称点(1,2)P t '''--,当AC P B ''+最短时,即OC OP ''''+最短,则点C '',O ,P '''三点共线.设正比例函数y kx =经过点C '',O ,P '''三点,数学试卷 第31页(共46页)则分别代入点C '',P '''两点的坐标得255(),822(1),t k t k ⎧-=-⎪⎨⎪=--⎩解得1541t =. ∴当抛物线向左平移1541个单位时,存在由A ,B ,P ',C '四点构成的多边形的周长最短. ②当抛物线向右平移t 个单位时,得325(,)28C t '+-,(36,2)P '+-, 与①的解法相同,可解得1541t =-, 因为502t <<,所以抛物线向右平移时,t 不存在. 综上所述,当抛物线向左平移1541个单位时,存在由A ,B ,P ',C '四点构成的多边形的周长最短. 解法二:由(2)知,若32m >,当APB ∠为直角时,(3,2)P -,所求多边形周长为AB BP P C C A ''''+++,而5AB =,52P C ''==,这两边长均为定值.所以只需BP C A ''+最小时,周长最短.如图4,设将点P '向左平移5个单位长度得到P '',则恒有AP BP '''=.图4反设抛物线不动,将点A 在x 轴上左右平移,由“将军饮马”模型,(2,2)P ''--关于x 轴对称的点(2,2)P '''-,连接CP ''',交x 轴于点F ,过P '''作x 轴于点G ,则可得P G GF CE FE '''=,即225582GF GF =-, 解得5641GF =,1GA GF =<, 所以点F 在点A 的右侧561514141-=处,即,抛物线向左平移1541, 故1541t =,方向向左. 解法三:由(2)知,若32m >,当APB ∠为直角时,(3,2)P -, ①当抛物线向左平移5(0)2t t <<个单位时, 得325(,)28C t '--,(3,2)P t '--, 如图5,连接AC ',C P '',BP ',在四边形AC P B ''中,由于线段AB ,C P CP ''=都是定值,则当AC P B''+最短时,该四边形的周长最小.图5325(t,)28C '--关于x 轴对称的点为325(t,)28C ''-, 则AC AC '''=,由“将军饮马”模型,当AC P B '''∥时,AC P B ''+最短, ∴25283112t t =+-+, 解得1541t =,符合题意. ②当抛物线向右平移5(0t )2t <<个单位时, 得325(,)28C t '+-,(3,2)P t '+-, 连接AC ',C P '',BP ',在四边形AC P B ''中,由于线段AB ,C P CP ''=都是定值, 则当AC P B ''+最短时,该四边形的周长最小.325(t,)28C '--关于x 轴对称的点为325(t,)28C ''-,则AC AC '''=,数学试卷 第35页(共46页)由“将军饮马”模型,当AC P B '''∥时,AC P B ''+最短, ∴25283112t t =-++, 解得1541t =-. 因为502t <<, 所以抛物线向右平移时,t 不存在. 综上所述,当抛物线向左平移1541个单位时,存在由A ,B ,P '',C '四点构成的多边形的周长最短. 【考点】二次函数的有关知识,图形的平移与坐标的变化,“将军饮马”模型求周长最小值问题. 25.【答案】(1)解法一:∵ AB CD ∥,∴90BCD ABC ∠=∠=°,∵BCE △以BE 为对称轴的对称图形是BFE △,∴BCE BFE △≌△,∴4BF BC ==,CE EF x ==,CBE FBE ∠=∠,如图1,设点G 为BC 的中点,点F 在梯形ABCD 的中位线上,图1∴GF CD ∥,122BG BC ==, ∴90BGF BCD ∠=∠=°, ∴21cos 42BG GBF BF ∠===, ∴60CBF ∠=°,则30CBF ∠=°. ∵在Rt BCE △中,tan CE CBE BC ∠=,即tan304x =°,∴x =. 解法二:∵ AB CD ∥,∴90BCD ABC ∠=∠=°,∵BCE △以BE 为对称轴的对称图形是BFE △,∴BCE BFE △≌△,∴4BF BC ==,CE EF x ==,CBE FBE ∠=∠,如图1,设点G 为BC 的中点,点F 在梯形ABCD 的中位线上,图2 ∴22BC CG BG ===,4BF BC ==.∴GF ===过点F 作FH CD ⊥于点H ,则2FH =,EF x =.在Rt EFH △中,222)2x x +=,解得x =. (2)解法一:如图3,∵点C ,F 关于BE 成对称点, ∴BE CF ⊥,垂足H ,数学试卷 第39页(共46页)图3又∵90BCD ∠=°,∴90BCH ECH CEH ECH ∠+∠=∠+∠=°, ∴BCH CEH ∠=∠,∴BCH CEH △∽△, ∴222()()416CEH BCH S CE x x S BC ===△△, 由对称性可知22CEH S S =△,12BCH S S =△, ∴221(05)16S x x S =<≤. 解法二:设CF 与BE 的交点为H ,由对称性可得21CEH CBH S S EH S S HB ==△△,90EHC ∠=°. ∵222216BE BC CE x =+=+,BC CE CH BE ==g ∴22222221625641616x BH BC HC x x =-=-=++, ∴24222222161616x x HE CE CH x x x =-=-=++.∴221(0x 5)16S EH x S HB ===<≤. (3)解法一:∵90AFE ∠=°,∴AFE △的外接圆圆心为AE 的中点O ,则O 必过梯形中位线, 如图4,作OP AD ⊥,垂足为P ,连接OA ,OD ,21 / 23图4设⊙O 半径为r ,则有OB OE OP r ===,∴在Rt BCE △中,222BE BC CE =+,即222(2)4r x =+, 化简得2244x r =+,① 过点D 作DQ AB ⊥,交AB 的延长线于点Q ,∴4QD BC ==,5BQ CD ==,∴532AQ BQ AB =-=-=,∴在Rt ADQ △中,AD =∵OAD BCE OAB ODE ABCD S S S S S =---△△△△梯形,∴11111(35)4432(5)222222r x x ⨯=⨯+⨯-⨯-⨯⨯--⨯g g g ,化简得8x =-,②把②代入①得2641760x x +-=,解得132x =-+232x =--.∴22113916S x S ===-解法二:∵90AFE ∠=°,∴AFE △的外接圆圆心为AE 的中点O ,则O 必过梯形中位线, 如图5,中位线长35422AB CD MN ++===.数学试卷 第43页(共46页)数学试卷 第44页(共46页)图5 ∴42x ON MN MO =-=-. 过点O 作OR AD ⊥于点R ,因为圆O 与AD 相切,∴12OR BE =. 2sin 42OR RNO x ON ∠===-,sin BC D AD ∠==, 易知RNO D ∠=∠,则85x =-, 化简得2641760x x +-=.解得132x =-+232x =--.∴2221(321391616S x S -+===-解法三:∵90AFE ∠=°,∴AFE △的外接圆圆心为AE 的中点O ,则O 必过梯形中位线, 如图6,中位线长35422AB CD MN ++===.23 / 23图6 ∴42x ON MN MO =-=-. 过点A 作AK NO ⊥于点K ,则2AK =,过点O 作OR AD ⊥于点R ,因为圆O 与AD 相切,∴OR r =,12AN AD =22ANO AK NO OR AN S ==△g g .∴2(4)2x -g ,化简得8x =-.在Rt CBE △中,222(2)4x r =-,(*)将8x =代入(*)得22(8)416r =-.解得1r =2r =.将1r =8x =-得832x ==-+∴22113916S x S ===-【考点】梯形的概念,轴对称,直线与圆相切,三角形相似,勾股定理.。
2014年广东省珠海实验中学中考数学四模试卷及参考答案
2014年广东省珠海实验中学中考数学四模试卷及参考答案一、选择题(本大题5小题,每小题3分,共15分)1.(3分)实数16的平方根是()A.﹣2 B.4C.±2 D.±4考点:平方根.分析:根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.解答:解:∵(±4)2=16,∴16的平方根是±4.故答案为:±4.点评:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2.(3分)如图,AB∥CD,AD平分∠BAC,若∠BAD=70°,那么∠ACD的度数为()A.40°B.35°C.50°D.45°考点:平行线的性质.分析:根据角平分线定义求出∠BAC,根据平行线性质得出∠ACD+∠BAC=180°,代入求出即可.解答:解:∵AD平分∠BAC,∠BAD=70°,∴∠BAC=2∠BAD=140°,∵AB∥CD,∴∠ACD=180°﹣∠BAC=40°,故选:A.点评:本题考查了角平分线定义和平行线的性质的应用,关键是求出∠BAC的度数,再结合∠ACD+∠BAC=180°.3.一组数据:﹣1、0、1、2、3,则平均数和中位数分别是()A.1,0 B.2,1 C.1,2 D.1,1考点:中位数;算术平均数.分析:根据平均数和中位数的概念求解.解答:解:这组数据按照从小到大的顺序排列为:﹣1、0、1、2、3,则平均数为:=1,中位数为:1.故选D.点评:本题考查了中位数和平均数的概念:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数;平均数是指在一组数据中所有数据之和再除以数据的个数.4.(3分)函数(k≠0)的图象如图所示,那么函数y=kx﹣k的图象大致是()考点:一次函数的图象;反比例函数的图象.分析:首先由反比例函数y=的图象位于第二、四象限,得出k<0,则﹣k>0,所以一次函数图象经过第二四象限且与y轴正半轴相交.解答:解:∵反比例函数y=的图象位于第二、四象限,∴k<0,﹣k>0.∵k<0,∴函数y=kx﹣k的图象过二、四象限.又∵﹣k>0,∴函数y=kx﹣k的图象与y轴相交于正半轴,∴一次函数y=kx﹣k的图象过一、二、四象限.故选C.点评:本题考查的知识点:(1)反比例函数y=的图象是双曲线,当k<0时,它的两个分支分别位于第二、四象限.(2)一次函数y=kx+b的图象当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限.5.(3分)如图,P是⊙O外一点,PA是⊙O的切线,PO=13cm,PA=12cm,则⊙O的周长为()A.25πcm B.5πcm C.20πcm D.10πcm考点:切线的性质;勾股定理.分析:首先连接OA,由PA是⊙O的切线,PO=13cm,PA=12cm,根据切线的性质,利用勾股定理即可求得OA的长,继而求得答案.解答:解:连接OA,∵PA是⊙O的切线,∴OA⊥PA,∵PO=13cm,PA=12cm,∴OA==5(cm),∴⊙O的周长为:10πcm.故选D.点评:此题考查了切线的性质以及勾股定理.此题难度不大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.二、填空题(本大题5小题,每小题4分,共20分)6.(4分)分解因式:2b2﹣8b+8=2(b﹣2)2.考点:提公因式法与公式法的综合运用.分析:先提取公因式2,再根据完全平方公式进行二次分解.完全平方公式:a2﹣2ab+b2=(a﹣b)2.解答:解:原式=2(b2﹣4b+4)=2(b﹣2)2.故答案为:2(b﹣2)2.点评:本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.7.(4分)在﹣2,2,这三个实数中,最大的是2.考点:实数大小比较.分析:利用实数的大小比较方法,正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小进而得出即可.解答:解:由题意可得:2>>﹣2,故最大的是2,故答案为:2.点评:此题主要考查了实数比较大小,正确掌握比较方法是解题关键.8.(4分)函数y=中自变量x的取值范围是x>3.考点:函数自变量的取值范围;分式有意义的条件;二次根式有意义的条件.专题:计算题.分析:根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,列不等式即可求解.解答:解:依题意,得x﹣3>0,解得x>3.点评:本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数是非负数.9.(4分)不等式组的解集是1<x<7.考点:解一元一次不等式组.分析:首先分别计算出两个不等式的解集,再根据大小小大中间找确定不等式组的解集.解答:解:,由①得:x>1,由②得:x<7,不等式组的解集为:1<x<7.故答案为:1<x<7.点评:此题主要考查了解一元一次不等式组,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.10.(4分)用同样大小的黑色棋子按如图所示的规律摆放,则第2014个图共有6043枚棋子.考点:规律型:图形的变化类.分析:根据图形中点的个数得到有关棋子个数的通项公式,然后代入数值计算即可.解答:解:观察图形知:第1个图形有3+1=4个棋子,第2个图形有3×2+1=7个棋子,第3个图形有3×3+1=10个棋子,第4个图形有3×4+1=13个棋子,…第n个图形有3n+1个棋子,当n=2014时,3×2014+1=6043个,故答案为:6043.点评:本题考查了图形的变化类问题,能够根据图形得到通项公式是解决本题的关键.三、解答题(本大题5小题,每小题6分,共30分)11.(6分)计算:|﹣|﹣(π﹣3.1)0+(﹣)﹣2﹣2sin60°.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.分析:本题涉及零指数幂、负整数指数幂、特殊角的三角函数值、绝对值四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=﹣1+4﹣2×=﹣1+4﹣=3.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.12.(6分)(先化简,再求值:(﹣4)÷,其中x=﹣1.考点:分式的化简求值.专题:计算题.分析:首先把括号里的通分,然后能分解因式的分解因式,进行约分,最后代值计算,注意把除法运算转化为乘法运算.解答:解:原式=÷(3分)=×(5分)=x﹣2,(8分)当x=﹣1时,原式=﹣1﹣2=﹣3.(10分)点评:分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解;除法要统一为乘法运算.13.(6分)公路同侧有A、B两个村庄,相距千米,A村到公路最短距离是1千米;B村到公路最短距离是2千米;公交公司准备在公路上的某个位置设置站台,如果要求站台到两个村庄的距离之和最短,请尺规作图找出站台应该设置在何处,并直接写出这个最短距离.考点:作图—应用与设计作图.分析:作点A关于公路的对称点A′,连接A′B交公路于点P,点P就是设置的站台,利用勾股定理求出AF,再运用在直角△BA′E中的勾股定理求出A′B即可.解答:解:如图,作点A关于公路的对称点A′,连接A′B交公路于点P,点P就是设置的站台,作BE垂直公路,A′E平行公路.∵AB=千米,BF=BD﹣AC=2﹣1=1千米,∴AF===4千米,∴A′B===5千米.点评:本题主要考查了作图﹣应用与设计作图,解题的关键是利用轴对称性作出最短距离.14.(6分)解方程:x2+4x=2x+3.考点:解一元二次方程-因式分解法.分析:利用十字相乘法因式分解进而求出方程的根即可.解答:解:x2+4x=2x+3整理得:x2+2x﹣3=0,则(x+3)(x﹣1)=0,解得:x1=﹣3,x2=1.点评:此题主要考查了因式分解法解方程,熟练利用十字相乘法分解因式是解题关键.15.(6分)某校为了创建书香校园,去年又购进了一批图书.经了解,科普书的单价比文学书的单价多4元,用1200元购进的科普书与用800元购进的文学书本数相等.(1)求去年购进的文学书和科普书的单价各是多少元?(2)若今年文学书和科普书的单价和去年相比保持不变,该校打算用1000元再购进一批文学书和科普书,问购进文学书55本后至多还能购进多少本科普书?考点:分式方程的应用.分析:(1)设文学书的单价是x元,则科普书的单价是(x+4)元,根据用1200元购进的科普书与用800元购进的文学书本数相等,可列方程求解.(2)根据用1000元再购进一批文学书和科普书,得出不等式求出即可.解答:解:(1)设文学书的单价是x元,则科普书的单价是(x+4)元,根据题意,得=,解得x=8.经检验得:(x+4)x=12×8=96≠0,∴x=8是方程的根,x+4=12.答:文学书的单价是8元,则科普书的单价是12元.(2)设购进文学书55本后还能购进y本科普书,则8×55+12y≤1000,解得:y≤46.答:购进文学书55本后至多还能购进46本科普书.点评:本题考查理解题意的能力,设出单价,根据购进的数量相等做为等量关系列方程求解.四、解答题(二)(本大题4小题,每小题7分,共28分)16.(7分)如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.(1)求证:四边形BCEF是平行四边形;(2)若∠ABC=90°,∠BCA=60°,BC=3,当AF为何值时,四边形BCEF是菱形?考点:菱形的判定;平行四边形的判定.分析:(1)由AB=DE,∠A=∠D,AF=DC,易证得△ABC≌DEF,即可得BC=EF,且BC∥EF,即可判定四边形BCEF是平行四边形;(2)由四边形BCEF是平行四边形,可得当BE⊥CF时,四边形BCEF是菱形,所以连接BE,交CF与点G,证得△ABC∽△BGC,由相似三角形的对应边成比例,即可求得AF的值.解答:(1)证明:∵AF=DC,∴AF+FC=DC+FC,即AC=DF.在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴BC=EF,∠ACB=∠DFE,∴BC∥EF,∴四边形BCEF是平行四边形.(2)解:连接BE,交CF于点G,∵四边形BCEF是平行四边形,∴当BE⊥CF时,四边形BCEF是菱形,∵∠ABC=90°,∠BCA=60°,BC=3,∴AC=2BC=6,∵∠BGC=∠ABC=90°,∠ACB=∠BCG,∴△ABC∽△BGC,∴=,即=,∴CG=,∵FG=CG,∴FC=2CG=3,∴AF=AC﹣FC=6﹣3=3,∴当AF=3时,四边形BCEF是菱形.点评:此题考查了相似三角形的判定与性质、全等三角形的判定与性质、平行四边形的判定与性质、菱形的判定与性质以及勾股定理等知识.此题综合性较强,难度适中,注意数形结合思想的应用,注意掌握辅助线的作法.17.(7分)如图,在平面直角坐标系中,四边形ABCD为矩形,BC平行于x轴,AB=6,点A的横坐标为2,反比例函数y=的图象经过点A、C.(1)求点A的坐标;(2)求经过点A、C所在直线的函数关系式;(3)请直接写出AD长4.考点:反比例函数图象上点的坐标特征;待定系数法求一次函数解析式.分析:(1)把点A的横坐标代入反比例函数解析式计算即可求出点A的纵坐标,从而得解;(2)先求出点B的纵坐标,即为点C的纵坐标,然后代入反比例函数解析式求出点C的横坐标,再利用待定系数法求一次函数解析式解答;(3)根据矩形的对边相等,AD=BC.解答:解:(1)∵点A在反比例函数y=的图象上,∴y==9,∴点A的坐标是(2,9);(2)∵BC平行于x轴,且AB=6,∴点B纵坐标为9﹣6=3,点C纵坐标为3,∵点C在反比例函数y=的图象上,∴x==6,∴点C的坐标是(6,3),设经过点A、C所在直线的函数关系式为y=kx+b,可得,解得,∴y=﹣x+12,即,经过点A、C所在直线的函数关系式为y=﹣x+12;(3)BC=6﹣2=4,∵四边形ABCD是矩形,∴AD=BC=4.点评:本题考查了反比例函数图象上点的坐标特征,待定系数法求一次函数解析式,矩形的对边相等的性质,比较简单.18.(7分)(某校举行以“助人为乐,乐在其中”为主题的演讲比赛,比赛设一个第一名,一个第二名,两个并列第三名.前四名中七、八年级各有一名同学,九年级有两名同学,小蒙同学认为前两名是九年级同学的概率是,你赞成他的观点吗?请用列表法或画树形图法分析说明.考点:列表法与树状图法.分析:首先记七、八年级两名同学为A,B,九年级两名同学为C,D,然后根据题意画出树状图,由树状图求得所有等可能的结果与前两名是九年级同学的情况,再利用概率公式即可求得答案.解答:解:不赞成小蒙同学的观点.(1分)记七、八年级两名同学为A,B,九年级两名同学为C,D.画树形图分析如下:由上图可知所有的结果有12种,它们出现的可能性相等,满足前两名是九年级同学的结果有2种(CD,DC),所以前两名是九年级同学的概率为.(9分)点评:此题考查的是用树状图法求概率.注意树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.19.(7分)如图,某工程队准备在山坡(山坡视为直线l)上修一条路,需要测量山坡的坡度,即tanα的值.测量员在山坡P处(不计此人身高)观察对面山顶上的一座铁塔,测得塔尖C的仰角为37°,塔底B的仰角为26.6°.已知塔高BC=80米,塔所在的山高OB=220米,OA=200米,图中的点O、B、C、A、P在同一平面内.求:(1)P到OC的距离.(2)山坡的坡度tanα.(参考数据sin26.6°≈0.45,tan26.6°≈0.50;sin37°≈0.60,tan37°≈0.75)考点:解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.分析:(1)过点P作PD⊥OC于D,PE⊥OA于E,则四边形ODPE为矩形,先解Rt△PBD,得出BD=PD•tan26.6°;解Rt△CPD,得出CD=PD•tan37°;再根据CD﹣BD=BC,列出方程,求出PD=320即可求得点P到OC的距离;(2)利用求得的线段PD的长求出PE=60,AE=120,然后在△APE中利用三角函数的定义即可求解.解答:解:(1)如图,过点P作PD⊥OC于D,PE⊥OA于E,则四边形ODPE为矩形.在Rt△PBD中,∵∠BDP=90°,∠BPD=26.6°,∴BD=PD•tan∠BPD=PD•tan26.6°;在Rt△CPD中,∵∠CDP=90°,∠CPD=37°,∴CD=PD•tan∠CPD=PD•tan37°;∵CD﹣BD=BC,∴PD•tan37°﹣PD•tan26.6°=80,∴0.75PD﹣0.50PD=80,解得PD=320(米),∴P到OC的距离为320米;(2)在Rt△PBD中,BD=PD•tan26.6°≈320×0.50=160(米),∵OB=220米,∴PE=OD=OB﹣BD=60米,∵OE=PD=320米,∴AE=OE﹣OA=320﹣200=120(米),∴tanα===,∴坡度为1:2.点评:本题考查了解直角三角形的应用﹣仰角俯角问题、坡度坡角问题,难度适中,通过作辅助线,构造直角三角形,利用三角函数求解是解题的关键.五、解答题(三)(本大题3小题,每小题9分,共27分)20.(9分)请阅读下列材料:问题:已知方程x2+x﹣1=0,求一个一元二次方程,使它的根分别是已知方程根的2倍.解:设所求方程的根为y,则y=2x所以x=.把x=代入已知方程,得()2+﹣1=0化简,得y2+2y﹣4=0故所求方程为y2+2y﹣4=0.这种利用方程根的代换求新方程的方法,我们称为“换根法”.请用阅读村料提供的“换根法”求新方程(要求:把所求方程化为一般形式):(1)已知方程x2+x﹣2=0,求一个一元二次方程,使它的根分别为己知方程根的相反数,则所求方程为:y2﹣y﹣2=0;(2)己知关于x的一元二次方程ax2+bx+c=0有两个不等于零的实数根,求一个一元二次方程,使它的根分别是己知方程根的倒数.考点:一元二次方程的应用.专题:计算题;压轴题.分析:根据所给的材料,设所求方程的根为y,再表示出x,代入原方程,整理即可得出所求的方程.解答:解:(1)设所求方程的根为y,则y=﹣x所以x=﹣y.把x=﹣y代入已知方程,得y2﹣y﹣2=0,故所求方程为y2﹣y﹣2=0;(2)设所求方程的根为y,则y=(x≠0),于是x=(y≠0)把x=代入方程ax2+bx+c=0,得a()2+b•+c=0去分母,得a+by+cy2=0.若c=0,有ax2+bx=0,即x(ax+b)=0,可得有一个解为x=0,不符合题意,因为题意要求方程ax2+bx+c=0有两个不为0的根.故c≠0,故所求方程为cy2+by+a=0(c≠0).点评:本题是一道材料题,考查了一元二次方程的应用,以及解法,是一种新型问题,要熟练掌握.21.(9分)如图,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.(1)求证:CD是⊙O的切线;(2)过点B作⊙O的切线交CD的延长线于点E,若BC=6,tan∠CDA=,求BE的长.考点:切线的判定与性质;圆周角定理;相似三角形的判定与性质.专题:几何综合题;压轴题.分析:(1)连OD,OE,根据圆周角定理得到∠ADO+∠1=90°,而∠CDA=∠CBD,∠CBD=∠1,于是∠CDA+∠ADO=90°;(2)根据切线的性质得到ED=EB,OE⊥BD,则∠ABD=∠OEB,得到tan∠CDA=tan∠OEB==,易证Rt△CDO∽Rt△CBE,得到===,求得CD,然后在Rt△CBE中,运用勾股定理可计算出BE的长.解答:(1)证明:连OD,OE,如图,∵AB为直径,∴∠ADB=90°,即∠ADO+∠1=90°,又∵∠CDA=∠CBD,而∠CBD=∠1,∴∠1=∠CDA,∴∠CDA+∠ADO=90°,即∠CDO=90°,∴CD是⊙O的切线;(2)解:∵EB为⊙O的切线,∴ED=EB,OE⊥DB,∴∠ABD+∠DBE=90°,∠OEB+∠DBE=90°,∴∠ABD=∠OEB,∴∠CDA=∠OEB.而tan∠CDA=,∴tan∠OEB==,∵Rt△CDO∽Rt△CBE,∴===,∴CD=×6=4,在Rt△CBE中,设BE=x,∴(x+4)2=x2+62,解得x=.即BE的长为.点评:本题考查了切线的判定与性质:过半径的外端点与半径垂直的直线是圆的切线;也考查了圆周角定理的推论以及三角形相似的判定与性质.22.(9分)(如图1,已知矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3;抛物线y=﹣x2+bx+c经过坐标原点O和x轴上另一点E(4,0)(1)当x取何值时,该抛物线取最大值?该抛物线的最大值是多少?(2)将矩形ABCD以每秒1个单位长度的速度从图1所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向B匀速移动.设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图2所示).①当t=时,判断点P是否在直线ME上,并说明理由;②以P、N、C、D为顶点的多边形面积是否可能为5?若有可能,求出此时N点的坐标;若无可能,请说明理由.考点:二次函数综合题.专题:压轴题;分类讨论.分析:(1)根据O、E的坐标即可确定抛物线的解析式,进而求出其顶点坐标,即可得出所求的结论;(2)①当t=时,OA=AP=,由此可求出P点的坐标,将其代入抛物线的解析式中进行验证即可;②此题要分成两种情况讨论:一、PN=0时,即t=0或t=3时,以P、N、C、D为顶点的多边形是△PCD,以CD为底AD长为高即可求出其面积;二、PN≠0时,即0<t<3时,以P、N、C、D为顶点的多边形是梯形PNCD,根据抛物线的解析式可表示出N点的纵坐标,从而得出PN的长,根据梯形的面积公式即可求出此时S、t的函数关系式,令S=5,可得到关于t的方程,若方程有解,根据求得的t值即可确定N点的坐标,若方程无解,则说明以P、N、C、D为顶点的多边形的面积不可能为5.解答:解:(1)因抛物线y=﹣x2+bx+c经过坐标原点O(0,0)和点E(4,0),故可得c=0,b=4,所以抛物线的解析式为y=﹣x2+4x(1分),由y=﹣x2+4x,y=﹣(x﹣2)2+4,得当x=2时,该抛物线的最大值是4;(2分)(2)①点P不在直线ME上;已知M点的坐标为(2,4),E点的坐标为(4,0),设直线ME的关系式为y=kx+a;于是得,,解得:,所以直线ME的关系式为y=﹣2x+8;(3分)由已知条件易得,当t=时,OA=AP=,P(,)(4分)∵P点的坐标不满足直线ME的关系式y=﹣2x+8;∴当t=时,点P不在直线ME上;(5分)②以P、N、C、D为顶点的多边形面积可能为5∵点A在x轴的非负半轴上,且N在抛物线上,∴OA=AP=t;∴点P、N的坐标分别为(t,t)、(t,﹣t2+4t)(6分)∴AN=﹣t2+4t(0≤t≤3),∴AN﹣AP=(﹣t2+4t)﹣t=﹣t2+3t=t(3﹣t)≥0,∴PN=﹣t2+3t(7分)(ⅰ)当PN=0,即t=0或t=3时,以点P,N,C,D为顶点的多边形是三角形,此三角形的高为AD,∴S=DC•AD=×3×2=3;(ⅱ)当PN≠0时,以点P,N,C,D为顶点的多边形是四边形∵PN∥CD,AD⊥CD,∴S=(CD+PN)•AD=[3+(﹣t2+3t)]×2=﹣t2+3t+3(8分)当﹣t2+3t+3=5时,解得t=1、2(9分)而1、2都在0≤t≤3范围内,故以P、N、C、D为顶点的多边形面积为5综上所述,当t=1、2时,以点P,N,C,D为顶点的多边形面积为5,当t=1时,此时N点的坐标(1,3)(10分)当t=2时,此时N点的坐标(2,4).(11分)说明:(ⅱ)中的关系式,当t=0和t=3时也适合,(故在阅卷时没有(ⅰ),只有(ⅱ)也可以,不扣分)点评:本题是二次函数的综合题型,其中涉及的知识点有抛物线的顶点坐标的求法、图形的面积求法以及二次函数的应用.在求有关动点问题时要注意分析题意分情况讨论结果.。
2014年广东省中考数学模拟试题(一)
最新中考数学全真模拟试题一、选择题(共10小题,每小题3分,满分30分) 1.-5的相反数是 ( ) A .51 B.5 C. 5- D.51- 2. 图中的几何体是由7个大小相同的小正方体组成的,该几何体的俯视图为( )6. 如图,直线a 与直线b 被直线c 所截,a ∥b ,若 ,则的度数为 ( )A .B .C .D .7. 下列等式中正确的是()8.不等式的解集在数轴上表示正确的是()A. B. C. D.9. 下列图形中,是中心对称图形但不是轴对称图形的是()A. B. D.10. 已知k1<0<k2,则函数y=k1x和的图象大致是().A. B. C. D.二、填空题(本大题6小题,每小题4分,共24分)11. 分解因式:x2+2xy+y2-4=___________.12. 若a+b=2011,a-b=1,z则a2-b2=_________________.13. 一个边形的每一个外角都是,则这个边形的内角和是。
14. 在Rt△ABC中,∠C=90°,3a=,则sinA= .15. 如图,点D是等边△ABC的边BC上一点,△ABD绕点A逆时针旋转到△ACE的位置,则∠DAE=_________________16. 如图,方格纸中4个小正方形的边长均为1,则图中阴影部分三个小扇形的面积和为(结果保留π).三、解答题(一)(本大题3小题,每小题5分,共15分)17.解方程组:..18. 在三个整式x2-1,x2+2x+1,x2+x中,请你从中任意选择两个,将其中一个作为分子,另一个作为分母组成一个分式,并将这个分式进行化简,再求当x=2时分式的值.19. 如图,四边形ABCD是平行四边形.(1)用尺规作图作∠ABC的平分线交AD于E(保留作图痕迹,不要求写作法,不要求证明)(2)求证:AB=AE.四、解答题(二)(本大题3小题,每小题8分,共24分)20. 为了解某中学全校学生对排球、乒乓球、篮球、羽毛球、足球五项体育运动的喜爱情况,从中随机调查了若干名学生,并将调查结果绘制成统计表和统计图(不完整).请根据图中提供信息,解答下列问题:(1)补全统计表和统计图.22.如图,在平行四边形ABCD中,过B作BE⊥CD,垂足为点E,连接AE,F为AE 上一点,且∠BFE=∠C.(1)求证:△ABF∽△EAD;(2)若AB=4,(2)∠BAE=30°,求AE的长;四、解答题(三)(本大题3小题,每小题9分,共27分)23如图,半径为2的⊙O内有互相垂直的两条弦AB、CD相交于P点.(1)求证:PA・PB=PC・PD;(2)设BC的中点为F,连结FP并延长交AD于E,求证:EF⊥AD:(3)若AB=8,CD=6,求OP的长.25. 如图1,一副直角三角板满足AB=BC,AC=DE,∠ABC=∠DEF=90°∠EDF=30°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年广东省初中毕业生学业考试
数学试卷
1.全卷共4页,考试用时100分钟,满分为120分.
2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号,姓名.考场号.座位号.用2B 铅笔把对应号码的标号涂黑.
3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦擦干净后,再选涂其他答案标号;不能答在试卷上.
4.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图.答案必须写在答题卡各题目指定区域内的相应位置上;如需要改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域.不准使用铅笔.圆珠笔和涂改液.不按以上要求作答的答案无效.
5.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回.
一.选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1. 在1,0,2,-3这四个数中,最大的数是( )
A.1
B.0
C.2
D.-3
2. 在下列交通标志中,既是轴对称图形,又是中心对称图形的是( )
A. B. C. D. 3. 计算3a -2a 的结果正确的是( )
A.1
B.a
C.-a
D.-5a 4. 把39x x -分解因式,结果正确的是( )
A.()29x x -
B.()2
3x x - C.()2
3x x + D.()()33x x x +-
5. 一个多边形的内角和是900°,这个多边形的边数是( ) A.10 B.9 C.8 D.7
6. 一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是( ) A.
47 B.37 C.34
D.13
7. 如图7图,□ABCD 中,下列说法一定正确的是(
A.AC=BD
B.AC ⊥BD
C.AB=CD
D.AB=BC 题7图
D
8. 关于x 的一元二次方程230x x m -+=有两个不相等的实数根,则实数m 的取值范围为( )
A.94m >
B.94m <
C.94m =
D.9-4
m <
9. 一个等腰三角形的两边长分别是3和7,则它的周长为( ) A.17 B.15 C.13 D.13或17
10. 二次函数()20y ax bx c a =++≠的大致图象如题10图所示, 关于该二次函数,下列说法错误的是( )
A.函数有最小值
B.对称轴是直线x =2
1
C.当x <2
1
,y 随x 的增大而减小 D.当 -1 < x < 2时,y >0
二. 填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.
11. 计算32x x ÷= ;
12. 据报道,截止2013年12月我国网民规模达618 000 000人.将618 000 000用科学计数法表示为 ;
13. 如题13图,在△ABC 中,点D ,E 分别是AB ,AC 的中点,若BC=6,则DE= ;
题13图 题14图
14. 如题14图,在⊙O 中,已知半径为5,弦AB 的长为8, 那么圆心O 到AB 的距离为 ;
15. 不等式组28
41+2x x x ⎧⎨-⎩<>的解集是 ;
16. 如题16图,△ABC 绕点A 顺时针旋转45°
得到△C B A ''若∠BAC=90°,AB=AC=2, 题16图 则图中阴影部分的面积等于 .
B
B
三.解答题(一)(本大题3小题,每小题6分,共18分)
17.
()1
1412-⎛⎫-+-- ⎪⎝⎭
18. 先化简,再求值:()22
1111x x x ⎛⎫+⋅- ⎪-+⎝⎭
,其中x =
19. 如题19图,点D 在△ABC 的AB 边上,且∠ACD=∠A. (1)作∠BDC 的平分线DE ,交BC 于点E
(2)在(1)的条件下,判断直线DE 与直线 AC 的位置关系(不要求证明).
题19图
四.解答题(二)(本大题3小题,每小题7分,共21分)
20. 如题20图,某数学兴趣小组想测量一棵树CD 的高度,他们先在点A 处测得树顶C 的仰角为30°,然后沿AD 方向前行10m ,到达B 点,在B 处测得树顶C 的仰角高度为60°(A.B.D 三点在同一直线上)。
请你根据他们测量数据计算这棵树CD 的高度(结果精确到0.1m )。
(参考数据:2≈1.414,3≈1.732)
题20图
21. 某商场销售的一款空调机每台的标价是1635元,再一次促销活动中,按标价的八折销售,仍可盈利9%.
B
A
(1)求这款空调机每台的进价;-==⎛
⎫ ⎪⎝⎭
利润售价进价利润率进价进价 (2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元?
22. 某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如题22-1图和题22-2图所示的不完整的统计图。
题22-1图 题22-2图 (1) 这次被调查的同学共有 名; (2) 把条形统计图(题22-1图)补充完整;
(3) 校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐。
据此估算,该校18 000名学生一餐浪费的食物可供多少人食用一餐?
五.解答题(三)(本大题3小题,每小题9分,共27分)
23.如题23图,已知A 14,2⎛
⎫- ⎪⎝
⎭,B (-1,2)是一次函数y kx b =+(k ≠0)与反比例函数m y x =
(0,0m m ≠<)图象的两个交点,AC ⊥x 轴于点C ,BD ⊥y 轴于点D 。
300500剩大量
剩一半
类型
(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值? (2)求一次函数解析式及m的值;
(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB的面积相等,求点P的坐
F
题23图题24图
24.如题24图,⊙O是△ABC的外接圆,AC是直径,过点O作线段OD⊥AB于点D,延长DO交⊙O于点P,过点P作PE⊥AC于点E,作射线DE交BC的延长线于点F,连接PF。
(1)若∠POC=60°,AC=12,求劣弧PC的长;(结果保留π)
(2)求证:OD=OE;
(3)求证:PF是⊙O的切线。
25. 如题25-1图,在△ABC中,AB=AC,AD⊥BC于点D,BC=10cm,AD=8cm,点P从点B出发,在线段BC上以每秒3cm的速度向点C匀速运动,与此同时,垂直于AD的直线m从底边BC出发,以每秒2cm的速度沿DA方向匀速平移,分别交AB.AC.AD于点E、F、H,当点P到达点C时,点P与直线m同时停止运动,设运动时间为t秒(t>0)。
(1)当t=2时,连接DE.DF,求证:四边形AEDF为菱形;
(2)在整个运动过程中,所形成的△PEF的面积存在最大值,当△PEF的面积最大时,求线段BP的长;
(3)是否存在某一时刻t ,使△PEF 是直角三角形?若存在,请求出此时刻t 的值,若不存在,请说明理由。
题25-1图 题25备用图
B
2014年广东省中考数学试题及其答案。