波谱解析之核磁共振2
(最新整理)核磁共振波谱分析法
磁共振最常用的核是氢原子核质子(1H),因为它 的信号最强,在人体组织内也广泛存在。影响磁共振影 像因素包括:(a)质子的密度;(b)弛豫时间长短;(c)血 液和脑脊液的流动;(d)顺磁性物质;(e)蛋白质。磁共振 影像灰阶特点是,磁共振信号愈强,则亮度愈大,磁共 振的信号弱,则亮度也小,从白色、灰色到黑色。各种 组织磁共振影像灰阶特点如下;脂肪组织,松质骨呈白 色;脑脊髓、骨髓呈白灰色;内脏、肌肉呈灰白色;液 体,正常速度流血液呈黑色;骨皮质、气体、含气肺呈 黑色。
各类有机化合物的化学位移
②烯烃
端烯质子:H=4.8~5.0ppm 内烯质子:H=5.1~5.7ppm 与烯基,芳基共轭:H=4~7ppm
③芳香烃
芳烃质子:H=6.5~8.0ppm 供电子基团取代-OR,-NR2 时:H=6.5~7.0ppm 吸电子基团取代-COCH3,-CN,-NO2 时:H=7.2~8.0ppm
1946年,Harvard 大学的Purcel和Stanford大学的Bloch各自 首次发现并证实NMR现象,并于1952年分享了Nobel奖;
1953年Varian开始商用仪器开发,并于同年做出了第一台高 分辨NMR仪。1956年,Knight发现元素所处的化学环境对 NMR信号有影响,而这一影响与物质分子结构有关。
二聚体形式(双分子的氢键)
0.5~5 10~13
2021/7/26
分子内氢键同样可以影响质子的共振吸收
2021/7/26
-二酮的烯醇式可以形成分子内氢键 该羟基质子的化学位移为11~16
介质的影响
不同溶剂,使样品分子所受的磁感强度不同;不同溶 剂分子对溶质分子有不同的作用,因此介质影响δ值。值得 指出的是,当用氘代氯仿作溶剂时,有时加入少量氘代苯, 利用苯的磁各向异性,可使原来相互重叠的峰组分开。这 是一项有用的实验技术.
第二章 核磁共振波谱法-本科生2
各种结构环境中质子的吸收位
特征质子的化学位移值
常用溶剂的质子 的化学位移值
D CHCl3 (7.27)
6—8.5 1.7—3 10.5—12 9—10 4.6—5.9 8 7 6 5 4 3 2 0.2—1.5 1 0 0.5(1)—5.5 2—4.7
OH NH2 NH
13
12
11
ห้องสมุดไป่ตู้
10
9
RCOOH
b.化学式为C3H4,确定其结构: 化学式为C 确定其结构: 化学式为
HC≡C-CH3 -
C3H6O2
IR NMR
3000cm-1
1700cm-1 2.3 (四重峰 2H) 四重峰
11.3 (单峰 1H) 单峰 1.2 (三重峰 3H) 三重峰
CH3CH2COOH
C7H8O IR 3300,3010,1500,1600,730,690cm-1 , , , , ,
c d a b Cl2CHCH(OCH2CH3)2 (B)
思考题与习题
5-1 下列哪个核没有自旋角动量? 7Li ,4He , 16C ,12O ,2D ,14N 3 2 6 6 1 7 5-2 氢核(1H)磁矩为2.79,磷核(31P)磁矩为1.13,试问 在相同磁场条件下,发生核跃迁时何者需要的能量较低。 5-3 何谓化学位移?它们有什么重要性,在1H—NMR中影响 化学位移的因素有哪些? 5-4 使用60MHz的仪器,TMS和化合物中某质子之间的频率 差为180Hz,如果使用90MHz仪器,则它们之间的频率差 是多少。 5-5 在下列化合物中,质子的化学位移有如下顺序:苯 (7.27)>乙烯(5.25)>乙炔(1.80)>乙烷(0.80), 试解释之。
2.常见的各类有机物的H-NMR: 常见的各类有机物的H-NMR: 例1.
核磁共振波谱扫描方式
核磁共振波谱扫描方式核磁共振波谱扫描方式是一种广泛应用于化学、生物和物理领域的高效分析方法。
通过这种方法,可以揭示物质中特定原子的结构与性质。
核磁共振波谱扫描主要依赖于外加磁场和射频信号的相互作用,以获取有关原子核的信息。
在本篇文章中,我们将详细讨论核磁共振波谱扫描的几种主要方式。
1.氢谱(1H-NMR):氢谱是核磁共振波谱中最常用的一种扫描方式。
它通过检测氢原子的信号来获取有关化合物结构的信息。
氢谱图中的信号强度与氢原子的数量成正比,因此,可以通过分析氢谱来确定化合物中氢原子的种类和相对数量。
2.碳谱(13C-NMR):碳谱用于检测化合物中的碳原子信号。
与氢谱相比,碳谱具有更高的分辨率,可以提供更详细的结构信息。
碳谱图中的信号强度与碳原子的数量成正比,因此,可以通过分析碳谱来确定化合物中碳原子的种类和相对数量。
3.氟谱(19F-NMR):氟谱用于检测化合物中的氟原子信号。
由于氟原子具有较小的原子尺寸和较高的电负性,氟谱在有机化合物结构分析中具有较高的灵敏度和分辨率。
氟谱图中的信号强度与氟原子的数量成正比,因此,可以通过分析氟谱来确定化合物中氟原子的种类和相对数量。
4.磷谱(31P-NMR):磷谱用于检测化合物中的磷原子信号。
磷谱在生物大分子和有机磷化合物分析中具有重要应用价值。
磷谱图中的信号强度与磷原子的数量成正比,因此,可以通过分析磷谱来确定化合物中磷原子的种类和相对数量。
5.二维核磁共振波谱(2D-NMR):二维核磁共振波谱是一种高级的核磁共振技术,可以在两个相互垂直的频率轴上同时获取有关原子核的信息。
二维核磁共振波谱广泛应用于蛋白质结构分析、代谢物指纹图谱构建等领域。
6.固体核磁共振波谱(Solid-State NMR):固体核磁共振波谱主要用于分析固态材料中的原子核信息。
与液态核磁共振波谱相比,固体核磁共振波谱具有更高的分辨率和灵敏度。
固体核磁共振波谱应用于材料科学、地质学和生物物理等领域。
有机化学第11章 波谱(核磁)
一般有机物中质子的δ值在0 ~ 10之间(见P462表11-8)。
4、影响化学位移的因素 1)δ伯H < δ仲H < δ叔H; 2) δ值随邻近原子电负性的增加而增加,随电负性大的 原子数目的增多而增加;
E
h
2
H0
E h
2
H0
实现核磁共 振的条件
CH3CH2OH
二、化学位移 1、定义
CH3CH2OH
由于化学环境的不同而引起的NMR吸收峰位置的不同,
称为化学位移。
2、化学位移的产生原因——屏蔽效应
屏蔽效应是有机化合物分子中的氢核与独立质子相比较, 由于分子中的电子对氢核有屏蔽作用,其核磁共振信号 出现在高磁场。
1HNMR谱图s(3H)为CH3
q(2H)为CH2
O CH3 CH2 C CH3
由于屏蔽效应,外加磁场的强度要略为增加,才能产生 核磁共振信号。显然,核周围的电子云密度越大,屏蔽 效应亦愈大,共振信号将移向高磁场区。
3、化学位移的表示方法——δ值 由于屏蔽效应所造成的磁场强度的改变数量很小,通常
难以准确地测出其绝对值,因此需要一个参考标准来对比。 常用的标准物质是四甲基硅烷,(CH3)4Si,简写为TMS, 它只有一个峰,而且一般质子的吸收峰都出现在它的左边
第十一章 有机波谱分析(2)
11.4 核磁共振谱(Nuclear Magnetic Resonance 简称 NMR)
一、基本原理
核磁共振是由原子核的自旋运动引起的。目前应用广
泛的是氢原子核(质子)的核磁共振谱,称为1HNMR。
核磁共振波谱法
核磁共振波谱法一、概述早在1924年Pauli就预见某些原子核具有自旋和磁矩的性质,它们在磁场中可以发生能级的分裂。
1946年美国科学家布洛赫(Bloch,斯坦福大学)和珀塞尔(Purcell,哈佛大学)分别发现在射频区(频率0.1~100MHz,波长1~1000m)的电磁波能与暴露在强磁场中的磁性原子核(或称磁性核或自旋核)相互作用,引起磁性原子核在外磁场中发生核自旋能级的共振跃迁,从而产生吸收信号,他们把这种原子对射频辐射的吸收称为核磁共振(nuclear magnetic resonance spectroscopy,NMR),他们也因此分享了1952年的诺贝尔物理奖。
所产生的波谱,叫核磁共振(波)谱。
通过研究核磁共振波谱获得相关信息的方法,称为核磁共振波谱法。
NMR和红外光谱、紫外—可见光谱相同之处是微观粒子吸收电磁波后发生能级上的跃迁,但引起核磁共振的电磁波能量很低,不会引起振动或转动能级跃迁,更不会引起电子能级跃迁。
.1949年,Kight第一次发现了化学环境对核磁共振信号的影响,并发现了信号与化合物结构有一定的关系。
而1951年Arnold等人也发现了乙醇分子由三组峰组成,共振吸收频率随不同基团而异,揭开了核磁共振与化学结构的关系。
1953年出现了世界上第一台商品化的核磁共振波谱仪。
1956年,曾在Block实验室工作的Varian制造出第一台高分辩率的仪器,从此,核磁共振波谱法成了化学家研究化合物的有力工具,并逐步扩大其应用领域。
七十年代以后,由于科学技术的发展,科学仪器的精密化、自动化,核磁共振波谱法得到迅速发展,在许多领域中已得到广泛应用,特别在有机化学、生物化学领域中的研究和应用发挥着巨大的作用。
八十年代以来,又不断出现新仪器,如高强磁场的超导核磁共振波谱仪,脉冲傅里叶变换核磁共振波谱仪,大大提高灵敏度和分辨率,使灵敏度小的原子核能被测定;计算机技术的应用和多脉冲激发方法的采用,产生二维谱,对判断化合物的空间结构起重大作用。
第二章 核磁共振氢谱2
7 .1 5 0
7 .1 0 0
7 .0 5 0
7 .0 0 0
6 .9 5 0
6 .9 0 0
6 .8 5 0
6 .8 0 0
6 .7 5 0
6 .7 0 0
6 .6 5 0
6 .6 0 0
Jo 两主峰间的距离, 8Hz Jm 两侧峰间的距离的1/2, 2Hz.
δAA′,δBB′ˊ近似估计或经验计算。
间和对-硝基苯乙酸的核磁共振氢 谱
• 由于苯环上两个取代基不同,苯环上四 个氢至少被分成两组。对于对硝基苯乙 酸,苯环上四个氢分成对称的两组,因 而谱图上是对称的两组双峰。而间硝基 苯甲酸,苯环上四个氢不再对称,因而 谱图上峰的分裂也是不规则的。另外, 硝基苯甲酸分子中除了苯环氢外,还有 羧基中羟基氢和一个亚甲基氢,3.8ppm 的单峰是亚甲基氢
• 数,因而Eu3+位移试剂使用比较普遍。 最常见的商品位移试剂是Eu(DPM)3 (Dipivalomethanato Europium),其对 不同类型有机物分子中的特定氢分子位 移的影响有显著差异(表9.2)。 Eu(DPM)3能将胺基和羟基氢的化学位移 增加到100ppm以上,而对其它有机基团 氢的位移分别从3ppm增加到30ppm。对 硝基和卤化物、烯类和酚等酸性有机 物,位移试剂将被分解而不可用。
四旋系统
4个质子间的相互偶合, 常见的有 AX3, A2X2, A2B2, AA′ BB ′ AX3 A2B2, A2X2 一级谱
AA′BB′ˊ二级谱
例如:CH3CHO, CH3CHX-, -OCH2CH2CO- 等 一级谱处理。
A2B2系统
A2B2系统理论上18条峰,常见14条峰,A、B各自为 7条峰,峰形对称。vA = v5,v
核磁共振波谱解析的主要参数
核磁共振波谱解析的主要参数核磁共振(Nuclear Magnetic Resonance, NMR)波谱是一种高分辨无损的分析技术,广泛应用于化学、生物化学、药学、材料科学等领域。
核磁共振波谱解析的主要参数包括信号强度、化学位移、偶合常数、弛豫时间以及分辨率等。
下面将对这些参数进行详细介绍。
1. 信号强度(Signal Intensity):信号强度反映了溶液中特定核的相对丰度或浓度。
在NMR波谱中,信号强度通常用积分面积或峰高度表示。
2. 化学位移(Chemical Shift):化学位移是核磁共振波峰在频率轴上的位置。
它是相对于参考物质(通常是四氢呋喃或二甲基硫醚)定义的,并且与共振核周围的电子环境有关。
化学位移通常以δ值表示,以部分百万分之一(ppm)为单位。
3. 偶合常数(Coupling Constant):偶合常数是描述磁共振核之间相互作用的参数。
它反映了不同核自旋之间的耦合程度。
在NMR波谱中,可以通过峰间的分裂模式来确定偶合常数。
4. 弛豫时间(Relaxation Time):弛豫时间是核磁共振过程中,自旋系统从高能态向低能态返回的速度。
主要有纵向弛豫时间(T1)和横向弛豫时间(T2)两个参数。
T1反映了自旋系统恢复到热平衡所需的时间,而T2则是自旋之间能量转移和相干性的衰减时间。
5. 分辨率(Resolution):分辨率是指NMR波谱中两个峰之间的最小频率差。
它取决于核磁共振仪的仪器分辨率和样品的纯度。
较高的分辨率意味着可以分辨更多的峰并提供更多的结构信息。
除了以上主要参数外,还有一些其他与NMR波谱解析相关的参数:6. 强度归一化(Normalization):强度归一化用于将不同波峰的信号强度标准化,以便比较不同实验的结果。
7. 脉冲宽度(Pulse Width):脉冲宽度是指核磁共振仪在激发和检测过程中所施加的射频脉冲的宽度。
脉冲宽度的选择将影响到信号的强度和分辨率。
核磁共振波谱解析
核磁共振波谱解析
核磁共振波谱解析是通过研究配合物中金属离子与配体的相互作用,从微观层次上阐明配合物的性质与结构的关系。
对于有机合成反应机理的研究,核磁共振波谱解析可以从产物结构、动力学数据等方面进行推测。
在核磁共振波谱解析中,一般先确定孤立甲基及类型,以孤立甲基峰面积的积分高度计算出氢分布。
其次是解析低场共振吸收峰,如醛基氢、羰基氢等,根据化学位移确定归属。
最后解析谱图上的高级偶合部分,根据偶合常数、峰分裂情况及峰型推测取代位置、结构异构、立体异构等二级结构信息。
对于碳谱的解析,一般先查看全去偶碳谱上谱线数与分子式中所含碳数是否相同,数目相同说明每个碳的化学环境都不同,分子无对称性;数目不相同说明有碳的化学环境相同,分子有对称性。
然后由偏共振谱确定与碳偶合的氢数,最后由各碳的化学位移确定碳的归属。
核磁共振波谱解析在化学、生物学、医学等领域都有广泛的应用,对于研究有机化合物的结构、反应机理、动力学等具有重要意义。
二维核磁共振谱全解
一、1D-NMR 到2D-NMR的技术变化 (一)一维核磁共振谱及脉冲序列 基本脉冲序列 :
3
(二)二维核磁共振谱及基本脉冲序列 基本脉冲序列 :
二维谱实验通常分为 4个阶段:
d
t1
tm
t2
预备期
演化期
混合期
检测期
1、预备期: 预备期在时间轴上通常是一个较长
的时期,使核自旋体系回复到热平衡状态,
H1 H2 H3 H4
—C1 —C2 —C3—C4 —
HMQC(异核多量子相干谱 )的优点脉冲序列较 简单,参数设置容易。反式检测氢维 (f2)分辨 率较高,灵敏度较高。缺点碳维 (f1)分辨率低.
38
90 180 90 90
180
d2 1H:
d2 d3
d2 t1 / 2
180
90
90
t1 / 2 d2 90
2DJ 分解谱中只显示9个点。 5位甲基没有受到偶合,因 此只在F1=0轴上显示单峰。
19
(二)碳、氢异核二维 J分解谱 在异核13C,1H -2D J分解谱中,被测定的核为
13C核,分解谱的 F2轴为13C化学位移δ C,F1轴为1H 与13C的偶合(1JCH)多重峰,为 1/2JCH。
出峰情况是 CH为二重峰, CH2为三重峰, CH3为 四重峰,季碳单峰或不出峰。Fra bibliotek291H:
CPD
90
180
90
90
?
?
t1
13C:
+2 +1
2D- 01INADEQUATE 谱图有两种形式,第一种形 式水,平- 2连F2轴线是表1明3C一的对化偶学合位碳移具,有F1相为同双的量双子量跃子迁跃频迁率, 频率,可以判断它们是直接相连的碳。另一种形 式核,作为F2轴一F对1轴双都峰是出1现3C在的对化角学线位两移侧,对相称互的偶位合置的上碳。 依此类推可以找出化合物中所有 13C原子连接顺 序。
核磁共振波谱分析法
2.为什么用TMS作为基准?
(1) 12个氢处于完全相同的化学环境,只产生一个尖峰; (2)屏蔽强烈,位移最大。与有机化合物中的质子峰不重迭; (3)化学惰性;易溶于有机溶剂;沸点低,易回收。
位移的表示方法
与裸露的氢核相比, TMS的化学位移最大,但规
定 TMS=0,其他种类氢核的
δ 7.3芳环上氢,单峰烷基单取代
O C CH3
正确结构:
ab
Oc
CH2CH2 O C CH3
δ3.0 δ 4.30
δ2.1
谱图解析与结构确定(2)
C7H16O3,推断其结构
9
δ 5.30 1
δ 3.38 δ 1.37 6
结构确定(2)
C7H16O3, u=1+7+1/2(-16)=0 a. δ3.38和δ 1.37 四重峰和三重峰
偶数 奇数
1,2,3….
奇数 奇数或偶数 1/2;3/2;5/2….
其中I=1/2的核是研究与测定的主要对象
由于原子核是带正电荷的粒子,因此在自旋时会产生 磁矩,角动量和核磁矩都是矢量,其方向平行。
若原子核存在自旋,产生核磁矩:
自旋角动量: p h I (I 1)
2
I:自旋量子数; h:普朗克常数;
h 0 ΔE
2
H0
讨 论:
共振条件: 0 = H0 / (2 ) (1)对于同一种核 ,磁旋比 为定值, H0变,射频频率变。 (2)不同原子核,磁旋比 不同,产生共振的条件不同,需 要的磁场强度H0和射频频率不同。 (3) 固定H0 ,改变(扫频) ,不同原子核在不同频率处 发生共振(图)。也可固定0 ,改变H0 (扫场)。扫场方式
核磁共振波谱解析的主要参数
核磁共振波谱解析的主要参数1. 化学位移(Chemical Shift)化学位移是核磁共振谱上信号相对于参比物的位置。
它是由核磁共振体系中不同核的环境所决定的。
化学位移的测量可以提供化学组成、分子结构等信息。
在核磁共振谱图上,化学位移以ppm(parts per million)为单位来表示。
常用参比物有TMS(二甲基硅烷),其化学位移定为0 ppm。
2. 积分强度(Integral Intensity)积分强度是指核磁共振谱上信号的峰面积,它与信号分子的数量成正比。
通过测量积分强度可以计算出各个组分在样品中的相对含量。
积分强度是定量分析的重要参数。
3. 耦合常数(Coupling Constants)耦合常数是指核磁共振谱上两个磁共振峰的距离,即两个信号的分裂程度。
耦合常数的测量可以提供关于分子之间相互作用的信息,包括分子的平面结构、键长等。
耦合常数的大小和形态可以帮助研究分子的化学性质。
4. 旋转速率(Spin-Spin Relaxation Time)旋转速率(T2)是指核磁共振谱上信号的半高宽(FWHM),它反映了样品中分子之间的自旋-自旋耦合强度。
旋转速率的测量可以为表征样品的物理性质(如分子流动速度、粘滞效应等)提供重要的信息。
5. 解析峰形(Line Shape)解析峰形是指核磁共振谱上信号的峰形状,通常为高斯型或洛伦兹型。
解析峰形的位置和形状可以提供信号的分辨率和灵敏性。
不同的峰形对信号参数的解析有不同的影响。
6. 离域效应(Chemical Exchange)核磁共振谱解析还可以通过观察离域效应来获取关于分子间和分子内动力学过程的信息。
离域效应是指分子或官能团中的动态过程对核磁共振信号的影响。
可以通过观察峰形的形变、峰的强度、位置和化学位移的变化来分析离域效应。
总之,核磁共振波谱解析的主要参数包括化学位移、积分强度、耦合常数、旋转速率、解析峰形和离域效应。
这些参数的测量和解析可以提供分子结构、组成、动力学等信息,对于化学、生物、材料等领域的研究具有重要的意义。
二维核磁共振波谱名词解释
二维核磁共振波谱名词解释
二维核磁共振(2D NMR)波谱是一种用于研究分子结构和动态过程的强大工具。
它通过测量和分析原子核在磁场中的自旋状态,可以提供关于分子内部结构、化学环境以及分子之间的相互作用的详细信息。
核磁共振是原子核在磁场中的行为。
当原子核吸收或发射能量时,其自旋状态会发生改变,这种改变可以通过磁场检测到。
在核磁共振波谱中,我们主要关注的是1H核(即氢原子核),因为它在许多化合物中都存在,且其信号容易检测。
二维核磁共振波谱是在一维核磁共振波谱的基础上发展起来的。
一维核磁共振波谱只能提供关于分子中不同种类的氢原子的信息,而二维核磁共振波谱则可以提供更多的信息。
它通过将一维实验进行多次,每次改变一个参数(如脉冲宽度、延迟时间等),然后将得到的数据进行关联和解析,可以得到关于分子结构的更多信息。
二维核磁共振波谱的主要类型有HSQC(异核单量子相干)和HMBC(异核多量子相干)。
HSQC是通过比较同一时间点上不同氢原子的信号来实现的,因此它可以提供关于这些氢原子之间化学键的信息。
HMBC则是通过比较不同时间点上相同氢原子的信号来实现的,因此它可以提供关于这些氢原子之间空间关系的信息。
除了HSQC和HMBC之外,还有许多其他的二维核磁共振
技术,如COSY(相干光谱)、TOCSY(全相关光谱)和ROESY (远程相关光谱)等,它们各有各的特点和应用领域。
二维核磁共振波谱是一种非常强大的工具,它可以提供关于分子结构和动态过程的详细信息。
然而,由于它的复杂性,需要专门的知识和技能才能正确解释和应用它。
核磁共振波谱法详细解析
TMS 60MHz
10
9.0
(低3.场0 )
2.0
8.0
7.0
6.0
1.0
0ppm (δ)
ν0 固定
5.0
4.0
(高场)
✓ 左端为低场高频,右端为高场低频
精品课件
二、化学位移
1. 定义:由于屏蔽效应的存在,不同化学环境
H核共振频率不同
2. 表示方法
样 标 160 16,0= H 样 H 标 160
核磁共振波谱法 ( NMR )
精品课件
♫概述
一、核磁共振和核磁共振波谱法 1.核磁共振(NMR):
在外磁场的作用下,具有磁矩的原子核 存在着不同能级,当用一定频率的射频照射 分子时,可引起原子核自旋能级的跃迁,即 产生核磁共振。
精品课件
♫概述
2.核磁共振波谱:以核磁共振信号强度对照 射频率(磁场强度)作图,所得图谱。
自旋-自旋驰豫:处于高能态的核自旋体系将能量传 递给邻近低能态同类磁性核的过程
精品课件
*2. 共振吸收条件
1)h0Eh2 H 0h ν0=ν
➢ 即照射的无线电波的频率必须等于核进动频率, 才能发生核自旋能级跃迁。
➢ 实现核磁共振就是改变照射频率或磁场强度。
例:氢(1H)核:H0=1.4092T, ν=60MHz,吸收 ν0=60MHz无线电波,核磁矩由顺磁场 (m=1/2) 跃迁至逆磁场(m=-1/2) →共振吸收。
感应磁场方向
核
H0
绕核电子在外加磁场 的诱导下产生与外加 磁场方向相反的感应 磁场(次级磁场、抗 磁场)
屏蔽效应:由于感应磁场的存在,使原子核实受磁
场强度稍有降低
精品课件
一、屏蔽效应
核磁共振波谱法详细解析
I=1 氢核磁矩的取向
核磁矩在外磁场空间的取向不是任意的,是量
子化的,这种现象称为空间量子化。
用μZ表示不同取向核磁矩在外磁场方向的投影。
h μz m 2π
核磁矩的能量与μz和外磁场强度H0有关:
h E Z H 0 m H0 2
二、化学位移 例: CH3Br, 标准物:四甲基硅烷TMS
①H0=1.4092T, νCH3=60MHz+162Hz,
νTMS=60MHz
162 Hz 6 10 2.70 ppm 6 60 10 Hz
二、化学位移
② H0=2.3487T, νCH3=100MHz+270Hz,
νTMS=100MHz
原子核自旋能级跃迁
2.测定方法不同: UV、IR--测定A(T) NMR --共振吸收法 共振吸收法:利用原子核在磁场中,核 自旋能级跃迁时核磁矩方向改变产生感应 电流来得到NMR信号。
♫概述
三、核磁共振波谱法的应用
1.测定有机物结构:化学及立体结构(构型、构像、 互变异构)
2.医学:核磁共振成像技术(医疗诊断)
共有 2I+1 个取向; 每一种取向用磁量子数m表示,则m=I, I-1, I2,…, -I+1, -I。
1 1 1 m 例:I=1/2时, 2 1 2 即: , m 2 2 2
顺磁场 低能量
逆磁场 高能量
氢核磁矩的取向
例:I=1时,
2 1 1 3 个取向,
2
h H0 2 11 h h E2 ) h H0 H E 2 (( 1 ) ) E ( H 0
(二)原子核的共振吸收 1. 进动
核磁共振波谱法--2D
3、NOESY和HMBC的应用领域主要有哪些?
核磁共振的 NOESY以及HMBC是检测化合物结构 的独特利器。许多异购物在各种谱图中无法分辨出来, 例如 IR,UV,MS,元素分析,氢谱,碳谱等都无法 区别,最后就得靠 NOESY与HMBC的信息加以辨别。
g2 d1
a
d1
b g11 g12
g2 g1
b
a
a b g2 g11 d g12 d
2D COSY of isoleucine in D2O
Total Correlation Spectroscopy (TOCSY)
In a TOCSY experiment, signals are dispersed over a complete spin-system of a molecule by successive scalar coupling interactions. In a TOCSY spectrum, each proton correlates with all other protons in the same spin-system although some protons are apart more than 3 bonds.
126.1
1 1 8 .0
OH
7.45
3.16 2.78
H
H
H H 3.61
1 1 8 .8
1 2 6 .1
2 3 .2
5 7 .6
7.00 H
OH
121.4 136.4 1 1 1 .2
核磁共振氢谱2
例如:60兆赫兹的谱图中属于ABC系统,但 220兆赫兹的谱图可用AMX系统处理。
(3)重氢交换
• 如果化合物中含有与O,N,S相连的氢,在溶液中可以进行重水交 换,相应的峰消失。其顺序是OH >NH >SH.这样可以简化图谱。 通 NH常、溶-S剂H是和D-C2OO.O重H氢等交活换性是氢用原氘子代有试机剂物中分的子D中取的代H含,有这-一OH技、术-是 向 振已摇测后定再核测磁定共核振磁氢共谱振的。有若机有物核样磁品共管振中峰,消加失少或量减重少水现(象D,2就O)可, 以推断相应的化学位移处是有-OH、-NH、-SH或-COOH活性氢 原子的。同样,用氘氧化钠(NaOD)等试剂可以将一些有机物 分子中的甲基或亚甲基上的H换成D,这样就使原本能自旋偶合 的相邻H被D阻隔而相互不再发生峰分裂。从而不仅确定了重氢 交换处相关氢的位置,而且也对重氢交换相邻处氢的判断提供了 依据。重氢交换方法非常简单易行,因此,在核磁共振氢谱的测 定过程中经常被运用。
7 .1 5 0
7 .1 0 0
7 .0 5 0
7 .0 0 0
6 .9 5 0
6 .9 0 0
6 .8 5 0
6 .8 0 0
6 .7 5 0
6 .7 0 0
6 .6 5 0
6 .6 0 0
Jo 两主峰间的距离, 8Hz
Jm 两侧峰间的距离的1/2, 2Hz.
δAA′,δBB′ˊ近似估计或经验计算。
7 .4 5 0
7 .4 0 0
7 .3 5 0
7 .3 0 0
7 .2 5 0
7 .2 0 0
7 .1 5 0
7 .1 0 0
7 .0 5 0
7 .0 0 0
P-CH3OC6H4CH2Cl 芳氢核磁共振吸收的展开图
核磁共振波谱法详细解析
♫概述
二、NMR与UV、IR的区别
1.照射的电磁辐射频率不同,引起的跃迁类型不同
UV-Vis 200-760nm 紫外可见光 价电子跃迁 IR 2.5-25µm 红外线 振动-转动能级跃迁
NMR 0.6-30m 无线电波 原子核自旋能级跃迁
2.测定方法不同:
UV、IR--测定A(T) NMR --共振吸收法
三、化学位移的影响因素
➢ 内部因素(分子结构因素):局部屏蔽效 应、磁各向异性效应和杂化效应等
➢ 外部因素:分子间氢键和溶剂效应等。
三、化学位移的影响因素
1. 局部屏蔽效应:氢核核外成键电子云产生的抗磁 屏蔽效应(相邻基团的电负性影响)。
• 电负性↑,吸电子能力↑ ,H核电子云密度↓,↓
(去磁屏蔽效应),δ↑
1H-NMR:
⑴质子类型(-CH3, -CH2,=CH,Ar-H)和所处 的化学环境;
⑵ H分布情况 ; ⑶ 核间的关系。 ✓ 缺点:不含H基团无 NMR信号, 化学环境相近
的烷烃,难区别
13C-NMR:丰富的C骨架信息
第一节 基本原理
一 、原子核的自旋 1.自旋分类
原子核:质子和中子组成的带正电荷的粒子。
例:I=1/2时, 2 1 1 2 即:m1, m1
2
2
2
顺磁场 低能量
逆磁场 高能量
氢核磁矩的取向
例:I=1时,
2113个取向,
即: m = 1,0,-1
I=1 氢核磁矩的取向
➢ 核磁矩在外磁场空间的取向不是任意的,是量子 化的,这种现象称为空间量子化。
➢ 用μZ表示不同取向核磁矩在外磁场方向的投影。
• 对于同一核,H0不同时,ν不同,不便于比较,采 用相对值δ与H0无关。
核磁共振波谱-二维谱(研)
25
•
①识别溶剂峰: 化合物1H中共有12组氢的信号峰,其中δ 7.26为溶剂CDCl3未被 完全氘代的质子信号峰。在二维COSY谱中可以看到该溶剂峰不与其它任何质子 相关(红色方框标注)。 ②识别杂质峰: δ 6.30, 5.50, 4.95, 2.35, 2.15的谱线矮小且与其它谱线的 峰面积无比例关系,二维COSY谱中可以看到δ 2.49, 2.47两处的质子信号未见 与其它任何质子相关(绿色方框标注),因此可认为这些信号是杂质峰引起的 。 ③化学位移分区:扣除溶剂峰和杂质峰后,剩余的7组氢信号的峰面积比从低场 至高场分别为1:1:2:2:2:2:12。低场部分(δ 7.0-8.0)共有三组质子信 号峰,应该属于芳环上的质子信号。低场区三条谱线较难进行归属,可借助二 维1H-1H-COSY进行识别。高场部分(δ 2.0-5.0)有四组质子信号峰,应该属于 饱和碳上的质子信号。其中δ 2.25为单峰,含有12个质子,应该是与杂原子相 连的甲基(CH3),可以确定为氮原子上的两个甲基的质子H(7)信号;δ 2.45, 2.75处的谱线均裂分为双重峰,J=18Hz,应该是与杂原子相连的亚甲基质子(X-CH2-),可以确定为与氮原子相连的亚甲基质子H(6)信号。由于亚甲基的两 个质子为化学不等价,发生同碳质子的耦合裂分,故耦合常数较大(J=18Hz) ,表现出两组dd峰;δ 4.50为单峰,含有2个质子,应该是与杂原子相连的亚甲 基质子(-X-CH2-),可以确定为与氧原子相连的亚甲基质子H(5)信号。
有机波谱解析 | 核磁共振波谱 | 氢谱 |
二维核磁共振谱:是两个独立频率变量的信号函数,记为S(ω1,ω2)。采用不 同的脉冲序列技术,得到图谱中一个坐标表示化学位移,另一个坐标 表示偶合常数,或另一个坐标表示同核或异核化学位移,这类核磁图 谱称作二维核磁共振谱。
核磁共振波谱法--2D
We can do a second Fourier transformation in the t1 domain (the first one was in the t2 domain), and obtain a two-dimensional w spectrum: We have a cross-peak where the two lines intercept in the 2D map, in this case on the w F diagonal (correlation with 1 itself). F
1H
CH3
g2 a g1 b g11 g12
d1
d1
b a
g2
a b g2 g11 d g12 d
2D COSY of isoleucine in D2O
Total Correlation Spectroscopy (TOCSY)
In a TOCSY experiment, signals are dispersed over a complete spin-system of a molecule by successive scalar coupling interactions. In a TOCSY spectrum, each proton correlates with all other protons in the same spin-system although some protons are apart more than 3 bonds. CH3 CH3 C – Hb – N – C – CO –
Two-Dimensional (2D) NMR Spectroscopy
F
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Cl H2C Cl 5.33
Cl HC Cl Cl 7..24
影响化学位移的因素2—磁各向异性效应
若核外电子产生的感应磁场与外加磁场方向相同,核 所感受到的实际磁场 H有效 大于外磁场,这种效应称去屏蔽 效应 (deshielding effect)。这是由π体系的抗磁各向异性 (diamagnetic anisotropy)所导致的。
23:30:03
(3)位移的表示方法
与裸露的氢核相比,TMS 的化学位移最大,但规定 TMS=0,其他种类氢核的位 移为负值,负号不加。
小,屏蔽强,共振需
要的磁场强度大,在高场出 现,图右侧;
大,屏蔽弱,共振需
要的磁场强度小,在低场出 现,图左侧;
= [( 样 - TMS) / TMS ] 106 (ppm)
23:30:03
3. 化学位移的表示方法
(1)位移的标准 没有完全裸露的氢核,没 有绝对的标准。 相对标准:四甲基硅烷 Si(CH3)4 (TMS)(内标)
位移常数 σTMS=0
(2) 为什么用TMS作为基准? a. 12个氢处于完全相同的化学环境,只产生一个尖峰; b.屏蔽强烈,位移最大。与有机化合物中的质子峰不重迭; c.化学惰性;易溶于有机溶剂;沸点低,易回收。
第四章 核磁共振波谱
nuclear magnetic resonance spectroscopy
一、核磁共振与化学位移
nuclear magnetic resonance and chemical shift
二、影响化学位移的因素
factors influenced chemical shi源自t第二节 核磁共振与化学位移
F CH 3 Cl CH 3 4.26 3.05
H3C Br 2.68
2.5 C CH3 0.77-1.88
Br CH 3 2.68
I CH 3 2.60
CH3(CH2)3 Br 0.90
碳杂化轨道电负性:SP>SP2>SP3
H3CH2C Br CH3(CH2)2 Br 1.65 1.04
H3C Cl 3.05
苯环上的6个电子产生较强的诱导磁场,质子位于其磁 力线上,与外磁场方向一致,去屏蔽。
23:30:03
影响化学位移的因素3—氢键效应
①氢键可以削弱氢键质子的屏蔽,使共振吸收移向低场。 ②分子内氢键受环境影响较小,所以与样品浓度、温度变 化不大; ③分子间氢键受环境影响较大,当样品浓度、温度发生变 化时,氢键质子的化学位移会发生变化 – 用惰性溶剂稀释时,δ↓ – -OH:0.5~5;-CONH2:5~8;-COOH:10~13
nuclear magnetic resonance and chemical shift
23:30:03
一、核磁共振与化学位移 1.屏蔽作用与化学位移
理想化的、裸露的氢核;满足共振条件: 0 = H0 / (2 ) 产生单一的吸收峰; 实际上,氢核受周围不断运动着的电子影响。在外磁场作 用下,运动着的电子产生相对于外磁场方向的感应磁场,起 到屏蔽作用,使氢核实际受到的外磁场作用减小: H=(1- )H0 :屏蔽常数。 越大,屏蔽效应越大。 0 = [ / (2 ) ](1- )H0 屏蔽的存在,共振需更强的外磁场(相对于裸露的氢核)。
2.40
δ 4.68 HbHa OH
δ
0.88
HC
HbHO
δ
3.92
Ha
(A)
(B)
H =4.68ppm H =2.40ppm H =1.10ppm
a b c
23:30:03
H =3.92ppm H =3.55ppm H =0.88ppm
a b c
4.各类有机化合物的化学位移
①饱和烃
-CH3: CH3=0.791.10ppm -CH2: CH2 =0.981.54ppm -CH: CH= CH3 +(0.5 0.6)ppm
O CH3 N CH3 C C CH3 O C CH3 CH3
23:30:03
H=3.2~4.0ppm H=2.2~3.2ppm H=1.8ppm
H=2.1ppm
H=2~3ppm
各类有机化合物的化学位移 ②烯烃
端烯质子:H=4.8~5.0ppm
内烯质子:H=5.1~5.7ppm
与烯基,芳基共轭:H=4~7ppm
23:30:03
常见结构单元化学位移范围
O ~2.1 H3C C
~3.0 H 3C
H
N
~.8 1 HC C C 3
~3.7 H3C O H C
~0.9 H3C C
O C OH
H C O
C
15 14 13 12 11 10 9
8
7
6
5
4
3
2
1
0
¯ §» Æ » Ñ Î Ò
23:30:03
Ä (ppm) ¦
23:30:03
影响化学位移的因素2—磁各向异性效应
成键价电子产生诱 导磁场,质子位于其磁 力线上,与外磁场方向 一致,去屏蔽。
23:30:03
影响化学位移的因素2—磁各向异性效应
成键电子产生诱导
磁场,质子位于其磁力
线上,与外磁场方向一 致,去屏蔽。
23:30:03
影响化学位移的因素2—磁各向异性效应
23:30:03
二、影响化学位移的因素1—电负性(去屏蔽效应)
与质子相连元素的电负性越强,吸电子作用越强,价电 子偏离质子,屏蔽作用减弱,信号峰在低场出现。
-CH3 , =1.6~2.0,高场;
-O-H,
-C-H,
-CH2I, =3.0~ 3.5, 低场
大
低场
小
高场
23:30:03
电负性对化学位移的影响 3.0 3.5 N CH3 O CH3 3.42-4.02 2.12-3.10
23:30:03
2.化学位移(chemical shift ) :
0 = [ / (2 ) ](1- )H0
由于屏蔽作用的存在,氢核产生 共振需要更大的外磁场强度(相对 于裸露的氢核),来抵消屏蔽影响。
在有机化合物中,各 种氢核周围的电子云密度 不同(结构中不同位置) 共振频率有差异,即引起 共振吸收峰的位移,这种 现象称为化学位移。
③芳香烃
芳烃质子:H=6.5~8.0ppm 供电子基团取代-OR,-NR2 时:H=6.5~7.0ppm 吸电子基团取代-COCH3,-CN,-NO2 时:H=7.2~8.0ppm
23:30:03
各类有机化合物的化学位移
-COOH:H=10~13ppm
-OH: (醇)H=1.0~6.0ppm (酚)H=4~12ppm -NH2:(脂肪)H=0.4~3.5ppm (芳香)H=2.9~4.8ppm (酰胺)H=9.0~10.2ppm -CHO:H=9~10ppm
23:30:03
乙醇的羟基随浓度增加,分子间氢键增强,化学位移增大
23:30:03
3.空间效应
δ 1.77
O H 3C C H
δ 2.31
H O C CH3
δ 3.55
H OH
δ 3.75
HO H
23:30:03
空间效应—Van der Waals效应
去屏蔽效应
δ
3.55
δ 1.10 δ HC