串联反馈式稳压电路
串联稳压电路的分析
简易串联稳压电源1、原理分析图4-1-1是简易串联稳压电源,T1是调整管,D1是基准电压源,R1是限流电阻,R2是负载。
由于T1基极电压被D1固定在UD1,T1发射结电压(UT1)BE在T1正常工作时基本是一个固定值(一般硅管为0.7V,锗管为0.3V),所以输出电压UO=UD1-(UT1)BE。
当输出电压远大于T1发射结电压时,可以忽略(UT1)BE,则UO≈UD1。
下面我们分析一下建议串联稳压电源的稳压工作原理:假设由于某种原因引起输出电压UO降低,即T1的发射极电压(UT1)E降低,由于UD1保持不变,从而造成T1发射结电压(UT1)BE上升,引起T1基极电流(IT1)B上升,从而造成T1发射极电流(IT1)E被放大β倍上升,由晶体管的负载特性可知,这时T1导通更加充分管压降(UT1)CE将迅速减小,输入电压UI更多的加到负载上,UO得到快速回升。
这个调整过程可以使用下面的变化关系图表示:UO↓→(UT1)E↓→UD1恒定→(UT1)BE↑→(IT1)B↑→(IT1)E↑→(UT1)CE↓→UO↑当输出电压上升时,整个分析过程与上面过程的变化相反,这里我们就不再重复,只是简单的用下面的变化关系图表示:UO↑→(UT1)E↑→UD1恒定→(UT1)BE↓→(IT1)B↓→(IT1)E↓→(UT1)CE↑→UO↓这里我们只分析了输出电压UO降低的稳压工作原理,其实输入电压UI降低等其他情况下的稳压工作原理都与此类似,最终都是反应在输出电压UO降低上,因此工作原理大致相同。
从电路的工作原理可以看出,稳压的关键有两点:一是稳压管D1的稳压值UD1 要保持稳定;二是调整管T1要工作在放大区且工作特性要好。
其实还可以用反馈的原理来说明简易串联稳压电源的工作原理。
由于电路是一个射极输出器,属于电压串联负反馈电路,电路的输出电压为UO=(UT1)E≈(UT1)B,由于(UT1)B保持稳定,所以输出电压UO也保持稳定。
串联反馈式稳压电路
例题:直流稳压电源电路如图所示。已知电阻 R = 100 Ω;稳压管DZ的稳定电压Uz = 6 V,允许耗散功 率为 240 mW, 最小稳定电流 Iz min = 5 mA;经电容 C 滤波后得到的直流电压为 12 V。 ③ 试求在稳定条件下 io的数值范围?
③ 流过限流电阻 R的电流大小 为:
-
调
VB
c
整
T
管
e
整流滤波后 得到的输出
电压
vi DR1
v2 R2
vo RL 取
样
串联反馈式稳压电路
R
(+)
vi DZ
基 准 电 压
VREF + A
(+)
vB c T
(+) e
R1
(+)
v2 R2
电压串联
负反馈 稳压原理:
vo↑ 取样电压v2↑ vd↓ → vo RL vB↓→
④ 电路不能空载工作,因为空载时稳压管流过的 最大电流为60mA,大于稳压二极管的最大稳定 电流Izmax (40mA)。
模拟电子技术
知识点: 串联反馈式稳压电路
vo↓
当负载、输入电压变化时,输出稳定。
串联反馈式稳压电路
R
VREF + A
vB c T
-
e
vi DZ
基 准 电 压
R1 v2 R2
满足深度负反馈, 根据虚短和虚断
求输出电压vo
vo RL
v2 VREF
v2 R2 vO R1 R2
vO
VREF(1
R1 ) R2
例题:直流稳压电源电路如图所示。已知电阻 R =
100 Ω;稳压管DZ的稳定电压Uz = 6 V,允许耗散功 率为 240 mW, 最小稳定电流 Iz min = 5 mA;经电容 C 滤波后得到的直流电压为 12 V。
南邮通达模电填空选择题整理
通达13级期末模电填空题选择题整理一、填空题整理1. 半导体的导电能力与温度、光照强度、掺杂浓度和材料性质有关。
2. 利用PN结击穿时的特性可制成稳压二极管,利用发光材料可制成发光二级管,利用PN结的光敏性可制成光敏(光电)二级管。
3.在本征半导体中加入__5价__元素可形成N型半导体,加入_3价_元素可形成P型半导体。
N型半导体中的多子是_自由电子_______;P型半导体中的多子是___空穴____。
4. PN结外加正向电压时导通外加反向电压时截止这种特性称为PN结的单向导电性。
5. 通常情况下硅材料二极管的正向导通电压为0.7v ,锗材料二极管的正向导通电压为0.2v 。
6..理想二极管正向电阻为0,反向电阻为(你猜),这两种状态相当于一个___开关____。
7..晶体管的三个工作区分别为放大区、截止区和饱和区。
8.. 稳压二极管是利用PN结的反向击穿特性特性制作的。
9.. 三极管从结构上看可以分成PNP 和NPN 两种类型。
10. 晶体三极管工作时有自由电子和空穴两种载流子参与导电,因此三极管又称为双极型晶体管。
11.设晶体管的压降UCE不变,基极电流为20μA时,集电极电流等于2mA,则β=__100__。
12. 场效应管可分为绝缘栅效应管和结型两大类,目前广泛应用的绝缘栅效应管是MOS管,按其工作方式分可分为耗尽型和增强型两大类,每一类中又分为N 沟道和P沟道两种。
13.晶体管工作在放大区时,具有发射结正偏、集电结反偏的特点。
14.晶体管工作在饱和区时,具有发射结正偏、集电结正偏的特点。
15. 饱和失真和截止失真属于非线性失真,频率失真属于线性失真。
16.共集电极放大器又叫射极输出器,它的特点是:输入电阻高(高、低);输出电阻低(高、低);电压放大倍数约为 1 。
17.多级放大器由输入级、____中间级_____和输出级组成;其耦合方式有__阻容耦合____和直接耦合、变压器耦合三种;集成运算放大器运用的是直接耦合耦合方式。
稳压电路简介
稳压电路简介交流电网电压的波动和负载电流的变化都会使整流电源的输出电压和电流随之变动,因此要求较高的电子电路必须使用稳压电源。
(1 )稳压管并联稳压电路用一个稳压管和负载并联的电路是最简单的稳压电路。
图中 R 是限流电阻。
这个电路的输出电流很小,它的输出电压等于稳压管的稳定电压值 V Z 。
(2 )串联型稳压电路有放大和负反馈作用的串联型稳压电路是最常用的稳压电路。
它的电路和框图见图 4 ( b )、( c )。
它是从取样电路( R3 、 R4 )中检测出输出电压的变动,与基准电压( V Z )比较并经放大器( VT2 )放大后加到调整管( VT1 )上,使调整管两端的电压随着变化。
如果输出电压下降,就使调整管管压降也降低,于是输出电压被提升;如果输出电压上升,就使调整管管压降也上升,于是输出电压被压低,结果就使输出电压基本不变。
在这个电路的基础上发展成很多变型电路或增加一些辅助电路,如用复合管作调整管,输出电压可调的电路,用运算放大器作比较放大的电路,以及增加辅助电源和过流保护电路等。
( 3 )开关型稳压电路近年来广泛应用的新型稳压电源是开关型稳压电源。
它的调整管工作在开关状态,本身功耗很小,所以有效率高、体积小等优点,但电路比较复杂。
开关稳压电源从原理上分有很多种。
它的基本原理框图见图 4( d )。
图中电感 L 和电容 C 是储能和滤波元件,二极管 VD 是调整管在关断状态时为 L 、 C 滤波器提供电流通路的续流二极管。
开关稳压电源的开关频率都很高,一般为几~几十千赫,所以电感器的体积不很大,输出电压中的高次谐波也不多。
它的基本工作原理是 : 从取样电路( R3 、 R4 )中检测出取样电压经比较放大后去控制一个矩形波发生器。
矩形波发生器的输出脉冲是控制调整管( VT )的导通和截止时间的。
如果输出电压 U 0 因为电网电压或负载电流的变动而降低,就会使矩形波发生器的输出脉冲变宽,于是调整管导通时间增大,使 L 、 C 储能电路得到更多的能量,结果是使输出电压 U 0 被提升,达到了稳定输出电压的目的。
稳压电路
若要提高电路的电压调节能力,则可以用提高比较放大器的放大倍 数来实现。图9-10中用集成运放作比较放大器,调整管采用复合管。
【例9.2】串联型稳压电路如图9.2.4所示。已知稳压管的稳定电压VZ=6 V, R1=2 kΩ, R2=1 kΩ,R3=1 kΩ。试问 (1) 输出电压Vo的调节范围? (2) 若VI为30 V,RL的变化范围为100~300 Ω,限流电阻R为400 Ω, 则调整管VT在什么时刻功耗最大?其值为多少?
三端固定集成稳压电路的输出电压是固定的,78XX/79XX系列中的符号ⅩⅩ表 示集成稳压器的输出电压的数值,以V为单位。 每类稳压器电路输出电压有5V, 6V,7V,8V,9V,10V,12V,15V,18V, 20V和24V共11个档次。该系列的输出电流分5档,7800系列是1.5A,78M00是0.5A, 78 L00是0.1 A,78T00是3A,78H00是5A。
比较放大可以是单管放大电路、 差动放大电路、集成运算放大器。
调整元件可以是单个功率管, 复合管或用几个功率管并联。
取样电路取出输出电压VO的一部分和基准电压VREF比较。
2. 工作原理
可以看出,串联型稳压 电路是一种典型的串联电压 负反馈调节系统,利用了引 入深度电压串联负反馈可以 稳定输出电压的原理。
因此,输出电压Uo的调节范围为12~24 V。
(2) 调整管的最大功耗。
调整管功耗可表示
I R1
PC=VCEIC≈(VI-Vo)(IR1+Io) V VO IO O RL min R1 R2 R3
VO V d (VI VO ) O R R R RL min 2 3 1 0 dVO
串联型直流稳压电源工作原理
串联型直流稳压电源工作原理串联型直流稳压电源是一种常见的电源类型,用于为电子设备提供稳定的直流电源。
其工作原理主要分为三个方面:整流、滤波和稳压。
首先,整流是通过将交流电转换为直流电的过程。
通常采用整流桥电路来完成,整流桥电路由四个二极管组成,可以将交流电的正、负半波分别变换为直流电的正、负半波。
交流电经过整流后变为含有较大的纹波的直流电。
接下来是滤波,主要是对经过整流后的直流电进行滤波处理,去除或减小其中的纹波。
一般采用电容滤波器来实现。
电容滤波器利用电容的充放电特性,对纹波进行平滑滤波。
在电容滤波器中,电容充电时可以吸收纹波电压,而充电电流间歇供应到输入负载上;而电容放电则通过输出负载的从电容电阻式滤波电路中获得电流。
最后是稳压,稳压主要是通过反馈控制的方式,对滤波后的直流电进行稳定输出。
其中最常见的稳压控制方式是采用反馈电路,以及一些稳压元件,如稳压二极管、稳压器等。
当负载发生变化时,反馈电路可以感知到输出电压的变化,并通过电子元件将变化传递到稳压器中,使稳压器对输出电压进行调整,以保持输出电压稳定不变。
整流、滤波和稳压是串联型直流稳压电源工作的三个关键环节,它们相互配合,共同实现了对交流电的转换、纹波的滤波和输出电压的稳定。
在整个过程中,稳压器起到了至关重要的作用,它通过不断调整输出电压的方式,实现了对电子设备需要的稳定输出。
然而,串联型直流稳压电源并非没有缺点。
首先,由于采用了整流和滤波技术,稳压电源的成本相对较高。
其次,滤波器的电容具有容量限制,当输出电流较大时,可能无法满足对纹波的完全滤波。
此外,稳压电源对输入电源的稳定程度要求较高,对功率因数的要求也较高。
总的来说,串联型直流稳压电源是一种常用的电源类型,可以为电子设备提供稳定的直流电源。
其工作原理主要包括整流、滤波和稳压三个步骤。
尽管存在一些缺点,但串联型直流稳压电源在广泛的电子设备中得到了广泛应用。
线性串联型稳压电路的工作原理
线性串联型稳压电路的工作原理
⑴. 线性串联型稳压电源的构成
线性串联型稳压电源的工作原理可以用图1加以说明。
图1 串联稳压电源示意图显然,VO = VI - VR,当VI增加时,R 受控制而增加,使VR增加,从而在一定程度上抵消了VI增加对输出电压的影响。
若负载电流IL增加,R 受控制而减小,使VR减小,从而在一定程度上抵消了因IL增加,使VI减小,对输出电压减小的影响。
在实际电路中,可变电阻 R 是用一个三极管来替代的,控制基极电
位,从而就控制了三极管的管压降VCE,VCE相当于VR。
要想输出电压稳定,必须按电压负反馈电路的模式来构成串联型稳压电路。
典型的串联型稳压电路如图2所示。
它由调整管、放大环节、比较环节、基准电压源几个部分组成。
图2 串联型稳压电路方框图
⑵. 线性串联型稳压电源的工作原理
根据图2,分两种情况来加以讨论。
1.输入电压变化,负载电流保持不变
输入电压VI的增加,必然会使输出电压VO有所增加,输出电压经过取样电路取出一部分信号VF与基准源电压VREF比较,获得误差信号ΔV。
误差信号经放大后,用VO1去控制调整管的管压降VCE增加,
从而抵消输入电压增加的影响。
2.负载电流变化,输入电压保持不变
负载电流IL的增加,必然会使输入电压VI有所减小,输出电压VO 必然有所下降,经过取样电路取出一部分信号VF与基准电压源VREF 比较,获得的误差信号使VO1增加,从而使调整管的管压降VCE下降,从而抵消因IL增加使输入电压减小的影响。
3.输出电压调节范围的计算
根据图2可知
VF≈VREF
调节R2显然可以改变输出电压。
串联稳压电路
R1
R2 R3
R3 UZ
一般可以将串联式稳压电路分成由基准电压、 比较放大、取样电路和调整元件四部分组成。
调整元件
+
+
T
UI
+ _
基
比 较
取
准
UR
放 大
FUO
样
+ _C2
RL UO
–
–
调整元件
+
+
T
UI
+ _
基
比 较
取
准 UR
放 大 FUO
样
+ _C2
RL UO
–
–
调整元件T:与负载串联,通过全部负载电流。可以是单个功 率管,复合管或用几个功率管并联。
三、一种实际的串联式稳压电源
+
R3
UI _
T1 R
R1
T2
RW1 RW2
RW
UZ UB2 R2
+
RL UO _
1)稳压原理 当 UI 增加或输出电流减小使 Uo升高时
Uo
UB2
UBE2( = UB2-UZ)
Uo
UC2
+
R3
UI _
T1 R
R1
T2
RW1 RW2
RW
UZ UB2 R2
+
RL UO _
能带间隙基准电压电路)。
该电路输出电压较低但温度稳定性好,故常用 于低电压电源电路中。常用的有: LM285(1.2V)、LM236(1.2V)、MC1403 (2.5V)、LM336(2.5V)、LM385(2.5V)等。
这类基准电压电路还可方便地转换成1.2V~10V 的基准电压电路,使之广泛应用于集成稳压器;数 据转换(A/D、D/A)及集成传感器中。
串联型稳压电路
当 R2 的滑动端调至最上端时,
UO 为最小值
U Omin
当 R2 的滑动端调至最下端时,
UO 为最大值,
U Omax
R1
R2 R2 R3 R3U NhomakorabeaZ
R1
R2 R3
R3
UZ
4.调整管的选择
一、集电极最大允许电流 ICM
I CM ≥
I Lm ax
二、集电极和发射极之间的最大允许电压 U(BR)CEO
如W7805 ,输出+5V;W7809 ,输出+9V 输出电流有三个等级:1.5A、0.5A(M)和0.1A(L)。
如W7805 ,输出+5V;最大输出电流为1.5A; W78M05 ,输出+5V;最大输出电流为0.5A; W78L05 ,输出+5V;最大输出电流为0.1A。
W79XX系列 —— 稳定负电压
过热保护
比较放大
10.5.3 集成稳压器电路
从外形上看,集成串联型稳压电路有三个引脚, 分别为输入端、输出端和公共端,因而称为三 端稳压器。
固定式稳压电路:W78XX、W79XX。
可调式稳压电路:W117、W217、W317。
一、W78XX三端稳压器—— 稳定正电压
输出电压有七个等级:5V、6V、9V、12V、15V、 18V和24V。
)
REF
BE 3
R
I
3
2
U
UR T2
ln(
R 2
)
BE 3
R
R
3
1
=U
T
UR T2
ln(
R 2
)
go
R
R
3
1
串联型稳压电路PPT
线性串联型稳压电路
ቤተ መጻሕፍቲ ባይዱ
这种稳压电路的主回路由调整管T与负载相串联构成,且T工 作在线性状态,故称为线性串联式稳压电路。
集成线性稳压电路
如果将前述的串联型稳压电源电路全部集成在一块硅片上,加以封装后引出三端 引脚,就成了三端集成稳压电源了。 3.1系列三端集成稳压器内部电路框图
基本调整稳压管电路
串 联 型 稳 压 电 路
串联型稳压电路
串联型稳压电路方框图
串联型稳压电路工作原理
串联型稳压电路是最常用的电子电路之一,它被广泛地应用在各种电子电路中,它有三种 表现形式。般二极管都是正向导通,反向截止;加在二极管上的反向电压、如果超过二极 管的承受能力,二极管就要击穿损毁。但是有一种二极管,它的正向特性与普通二极管相 同,而反向特性却比较特殊:当反向电压加到一定程度时,虽然管子呈现击穿状态,通过 较大电流,却不损毁,并且这种现象的重复性很好;反过来着,只要管子处在击穿状态, 尽管流过管子的电在变化很大,而管子两端的电压却变化极小起到稳压作用。这种特殊的 二极管叫稳压管。
串联型稳压电路的作用
在实际的稳压电路中,则是用晶体三极管来代替可变电阻R,利用负反馈的原理,以 输出电压的变化量控制三极管集射极间的电阻值,以维持输出电压的基本不变。 最简单的 串联型稳压电路如图Z0719 所示。晶体管T在电路中起电压调整作用,故称调整管,因它 与负载RL是串联联接的,故称串联型稳压电路。图中DZ与R组成硅稳压管稳压电路,给晶 体管基极提供一个稳定的电压,叫基准电压UZ 。R又是晶体管的偏流电阻,使晶体管工作 于合适的工作状态,由电路可知 UL = Ui - UCE UBE = UB - UE= UZ - UL 该电路的稳压原理如下:当输入电压Ui 增加或负载电流 IL减小,使输出电压UL 增大 时,则三极管的UBE减小,从而使IB、IC都减小,UCE增加(相当于RCE增大)结果使 UL基本不变。这一稳压过程可表示为Ui↑(或IL↓) →UL↑→UBE↓→IB↓→IC↓→UCE↑→UL↓ 同理,当Ui减小或IL增大,使UL减小时,通过与上述相反的调整过程,也可维持UL基本 不变。 从放大电路的角度看,该稳压电路是一射极输出器(RL接于T的射极),其输出电压UL是 跟随输入电压UB=UZ变化的,因UB 是一稳定值,故UL 也是稳定的,基本上不受Ui 与IL 变化的影响。 该稳压电路,由于直接用输出电压的微小变化量去控制调整管,其控制作用较小,所以, 稳压效果不好。如果在电路中增加一级直流放大电路,把输出电压的微小变化加以放大, 再去控制调整管,其稳压性能便可大大提高,这就是带放大环节的串联型稳压电路。
串联可调稳压电源
附图一(1) 方框图(2) 电路图串 联 可 调 稳 压 电 源各种电子设备都需要直流电源提供能量,多数情况是利用交流电网提供的交流电,由变压器变压后,经整流,滤波和稳压后得到的,电子设备对直流电源的要求主要是输出电压稳定,脉动成分小。
根据国家标准,供电电网允许的电压波动范围为±10﹪,因此整流,滤波后的电压也会由此而可能出现±10﹪的变化,并且当负载电阻(电流)变化时,也会影响电压变动,在一些要求工作电压稳定度比较高的电子设备中,该问题必需要解决。
一般情况下都是采取稳压进行处理。
稳压可以是交流稳压或直流稳压,直流稳压又可分为开关式稳压电路和线性稳压电路。
在线性稳压电路里有稳压管稳压电路(属并联型,调整管与负载并联)和串联型稳压电路。
下面实习的直流稳压电源,属于线性稳压电源中的带放大环节串联型稳压电源(调整管与负载串联)。
带放大环节串联型稳压电源电路,主要包括有:调整管,取样电路,取样放大电路和基准电压四个部分(见附图一的方框图),电路中靠引入电压负反馈,因而可以抑制外界因素所引起的输出电压的波动。
串联稳压电源具有电路简单,输出电压稳定、脉动成分小等优点。
(参考《模拟电子技术基础》354页)。
带有放大环节的串联可调稳压电源,(见附图一)带放大环节的串联型稳压电路输出电压的稳定度可以达到很高的程度,而且放大电路的放大倍数越大,输出电压的稳定度也越高。
对于带放大环节的串联型稳压电路,稳压过程实际上是通过电压负反馈,使电路输出电压保持稳定的过程,可以把附图一所示电路看成以放大电路A 为核心,采样电路为负反馈网络。
以基准电压为输入电压的串联负反馈放大电路,即同相比例放大电路。
附图一(2)电路除了能输出稳定度很高的直流电压以外,还能通过调节W 使输出电压的大小在一定的范围内进行调节。
根据附图一(2)电路所示的同相比例放大电路,(参考《模拟电子电路技术基础》232页)可以得到如下关系:Uo =( 1 +212231R W W R +--+) Ud 当W 的滑动端的位置转到2端时,输出电压最小,即 Uo =( 1 +21R W R +) Ud当W 的滑动端的位置转到3端时,输出电压最大,即Uo =( 1 +21R WR ) Ud对应《模拟电子电路技术基础》232页的图5.2.3同相比例运算电路,附图一电路图中的R1 + W 3-2相当于R F ,R2 + W 2-1相当于R 。
串联反馈型线性稳压电路
u_1
u2
_ D3
D1 C
D2
+ UZ
DZ RL UO
UZ
A
_ IZ Q
uZ 0
IZ
B
UO=UZ
电路只适合输出电压不变和负载电流小场合。
模拟电子技术
10. 直流稳压电源
进一步增大负载电流,可以加入晶体管。
TR
+
+ D4
u_1
u2
_ D3
D1 C
D2
RZ
+ UI DZ –
T iO
+ RL UO
_
晶体管 T 组成共集电极电路
UO≈UZ iO 增大
模拟电子技术
10. 直流稳压电源
串联反馈型线性稳压电路的工作原理
1.电路组成
调整环节
+
基准环节
UI
比较放大环节
–
R
UREF
+– A
DZ
UB T
取样环节
R1 +
UF
RW UO RL
R2 –
模拟电子技术
10. 直流稳压电源
2.稳压原理
+R UREF +–A
UI
DZ
–
UB T
UF
–
R2 –
例如:R1=R2=RW=330 Ω, UZ=6V 则 Uomin = 9 V, Uomax = 18 V
模拟电子技术
谢 谢!
模拟电子技术
R1 +
RWUO RL
R2 –
UI (或 RL ) UO UF UB
模拟电子技术
10. 直流稳压电源
3.输出电压
第26讲 串联型稳压电路 并联型稳 压电路【精选】
输出电压调节范围
UB2
RW 2 R2 R 1Rw R2
UO
U BE 2
UZ
B2
Uo
R1 RW R2 RW 2 R2
(U BE 2
UZ
)
当Rw滑动端调至最上端时, Rw2=Rw,Uo为最小。
U o min
R1 RW R2 RW R2
(U BE2 U Z )
定义为
Sr
=
U O U I
/UO /UI
RL 常数
一般特指Δ Ui/Ui=±10%时的Sr
Su
=
U O UO
100%
IL =0
ro =
U O I O
U I 常数
当输出电流从零变化到最大额定值时,
输出电压的相对变化值。
(4)电流调整率Si
Si =
U O UO
100%
Ui =0
R UImin U Z IZmin ILmax
(2)电网电压UI最高且负载电流IL最小时,稳压管的电流最大。
IZ
UImax UZ R
I Lmin
I Zmax
R UImax U Z IZmax ILmin
哈尔滨工程大学
模拟电子技术
实际R取值
UImax U Z R UImin U Z
R3
R3 R4
U
' o
Uo
UP
R2 R1 R2
Uo
输出电压可调的稳压电路
由UN=UP求得
Uo
(1
R2 ) R1
R3 R3 R4
模拟电子技术模电之串联反馈稳压电路讲解
例
VI A + D3 ~220V 50Hz v1 D1 DZ2 R1 T1 v2 +C 2000μF R0 D4 D2 - DZ1 E + A - C D T2 R2 R3 300Ω +C RP 1000μF 300Ω R4 300Ω - T3 B +
RL VO
例
(类似习题10.2.3) (1)设变压器副边电压的有效值V2=20 V,求VI
10.1.2 滤波电路
VL 随负载电流的变化
Tr a D4 D1
VL
2 V2
C 型滤波
v1
v2
b
D3 D2
S2 + C
S1 RL
+
0.9V2 纯电阻负载 O IL
vL
end
10.2 串联反馈式稳压电路
10.2.1 稳压电源质量指标 10.2.2 串联反馈式稳压电路工作原理 10.2.3 三端集成稳压器
VI A + D3 ~220V 50Hz v1 D1 DZ2 R1 T1 v2 +C 2000μF R0 D4 D2 - DZ1 E + A - C D T2 R2 R3 300Ω +C RP 1000μF 300Ω R4 300Ω - T3 B +
RL VO
例
解:
(1)设变压器副边电压的有效值V2=20 V,求VI=?说明电路中T1、
整流电路 vR
滤波电路 vF
稳压电路 VO
vR t t
vF t
VO t
各部分功能 变压器:降压 整流:交流变脉动直流 滤波:滤除脉动
稳压: 进一步消除纹波,提高电压的稳定性和带载能力 end
10.1 小功率整流滤波电路
10.1.1 单相桥式整流电路
10.1.2 滤波电路
pspice运算放大器反馈放大串联稳压电路
1运算放大器利用运放设计一个反相加法器,要求有4个输入端,输出信号为4个输入端信号的比例求和并反相输出,并要其中两路比例为20和35原理图2利历时域分析和交流扫描观看并记录输出波形,分析放大倍率和频率响应,并用公式法验算正确性2.1静态工作点及公式法公式法2.2时域分析60mV40mV20mV-0mV-20mV-40mV-60mV0s10ms20ms30ms40ms50ms60ms70ms80ms90ms100ms V(vin2)V(vout)V(vin2)V(vin3)V(vin4)Time2.3交流扫描1201008060402010mHz100mHz 1.0Hz10Hz100Hz 1.0KHz10KHz100KHz 1.0MHz10MHz100MHz 1.0GHz V(vout) / V(vin1)Frequency3测试不同负载时的输出波形3.1当R=1时原理图波形图50mV0V-50mV0s10ms20ms30ms40ms50ms60ms70ms80ms90ms100ms V(vin1)V(vout)Time3.2当R=1000k原理图波形图60mV40mV20mV-0mV-20mV-40mV-60mV0s10ms20ms30ms40ms50ms60ms70ms80ms90ms100ms V(vin1)V(vout)Time4测试上下限截止频率4.1原理图波形图由图,此电路是一个低通滤波器,没有下限截止频率,能够由输出下降到原先的0.7倍读出上限截止频率fH=9k2反馈放大电路1利用三极管实现电压并联负反馈电路,要求利用3个三极管级联并联放大电路原理图2.1时域分析2.2交流扫描2.3公式法和静态工作点3测试不同负载时的输出波形3.1当R=1时原理图波形图3.2当R=1M时原理图波形图3测试上下限截止频率原理图波形图由图,此电路是一个低通滤波器,没有下限截止频率,能够由输出下降到原先的0.7倍读出上限截止频率fH=124k串联稳压电路设计并实现串联稳压电路1原理图2.1时域分析2.2交流扫描由图,此电路是一个低通滤波器2.3测试上限截止频率其上限截止频率fH=190k 2.4静态工作点和公式法3利用直流扫描分析稳压进程原理图波形图如图当Vin<14V时,Vout随Vin线性增加,这是因为稳压管未到稳压值,其电压也是随输入增加而增加。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
串联反馈式稳压电路
图XX_01
图XX_01是串联反馈式稳压电路的一般结构图,图中V
I
是整流滤波电路的输出电压,T为调整管,A为比较放
大电路,V
REF 为基准电压,它由稳压管D
Z
与限流电阻R串联所构成的简单稳压电路获得(见齐纳二极管一节),R
1
与R
2
组成反馈网络,是用来反映输出电压变化的取样环节。
这种稳压电路的主回路是起调整作用的BJT T与负载串联,故称为串联式稳压电路。
输出电压的变化量由反馈
网络取样经放大电路(A)放大后去控制调整管T的c-e极间的电压降,从而达到稳定输出电压V
O
的目的。
稳压原
理可简述如下:当输入电压V
I 增加(或负载电流I
O
减小)时,导致输出电压V
O
增加,随之反馈电压V
F
=R
2
V
O
/(R
1
+R
2
)
=F V V O也增加(F V为反馈系数)。
V F与基准电压V REF相比较,其差值电压经比较放大电路放大后使V B和I C减小,调
整管T的c-e极间电压V
CE 增大,使V
O
下降,从而维持V
O
基本恒定。
同理,当输入电压V
I 减小(或负载电流I
O
增加)时,亦将使输出电压基本保持不变。
从反馈放大电路的角度来看,这种电路属于电压串联负反馈电路。
调整管T连接成电压跟随器。
因而可得
或
式中A V是比较放大电路的电压增益,是考虑了所带负载的影响,与开环增益A
VO
不同。
在深度负反馈条件下,
时,可得
上式表明,输出电压V
O 与基准电压V
REF
近似成正比,与反馈系数F V成反比。
当V
REF
及F V已定时,V
O
也就确定了,
因此它是设计稳压电路的基本关系式。
值得注意的是,调整管T的调整作用是依靠V
F 和V
REF
之间的偏差来实现的,必须有偏差才能调整。
如果V
O
绝对
不变,调整管的V
CE 也绝对不变,那么电路也就不能起调整作用了。
所以V
O
不可能达到绝对稳定,只能是基本稳定。
因此,图10.2.1所示的系统是一个闭环有差调整系统。
由以上分析可知,当反馈越深时,调整作用越强,输出电压V
O 也越稳定,电路的稳压系数g和输出电阻R
o
也越
小。
基准电压V
REF
是稳压电路的一个重要组成部分,它直接影响稳压电路的性能。
为此要求基准电压输出电阻小,温度稳定性好,噪声低。
目前用稳压管组成的基准电压源虽然电路简单,但它的输出电阻大。
故常采用带隙基准电压源,其电路如图XX_01所示。
由图可知,基准电压为
从原理上说,BJT T
3的发射结电压V
BE3
可用作基准电压源,但它具
有较高的负温度系数(–2mV/℃),因而必须增加一个具有正温度系数的电压I
C2R
2
来补偿。
I
C2
是由T
1
、T
2
和R
e2
构成
的微电流源电路提代。
其值为
故基准电压V
REF 可表示为
如果合理地选择I
C1/ I
C2
和R
c1
/ R
c2
的值,即可利用具有正温度系数的电压I
C2
R
c2
补偿具有负温度系数的电压V
BE3
,
使得基准电压为
那么基准电压V
REF 的温度系数恰好为零。
式中的q为电子电荷,E
G
为硅的禁带宽度。
因此,上述电路常称为带隙
基准电压源电路。
这种基准电压源的电压值较低,温度稳定性好,故适用于低电压的电源中。
市场上已有这类集成组件可供使用,国产型号有CJ336、CJ329,国外型号有MC1403、AD580等。
这类带隙基准电压源还能方便地转换成1.2V~10V等多档稳定性极高的基准电压,温度系数可达2mV/℃,输出电阻极低,而且近似零温漂及微伏级的热噪声,它广泛用于集成稳压器、数据转换器(A/D、D/A)和集成传感器中。
目前,电子设备中常使用输出电压固定的集成稳压器。
由于它只有输入、输出和公共引出端,故称之为三端式稳压器。
这类集成稳压器的外形图如图XX_01所示。
78××系列输出为正电压,输出电流可达1A,如78L××系列和78M××系列的输出电流分别为0.1A和0.5A。
它们的输出电压分别为5V、6V、9V、12V、15V、18V和24V等7档。
和78××系列对应的有79××系列,它输出为负电压,如79M12表示输出电压为–12V和输出电流为0.5A。
图
XX_01。