高一数学必修四综合测试题附答案优秀名师资料

合集下载

(完整版)高中数学必修4综合测试题含答案,推荐文档

(完整版)高中数学必修4综合测试题含答案,推荐文档

高中数学必修4综合测试题、选择题(50 分)1 •将分针拨慢5分钟,则分钟转过的弧度数是B.——3A. 1或一1 B . C.-6D .——62 •已知角的终边过点P 4m,3m ,m 0,贝U 2 sin COS 的值是(8.设i=(1,0),j=(0,1),a=2i+3j,b=ki —4j,若a丄b,则实数k的值为()A. —6B. —3 C . 3 D . 69.函数y 3sin(―43x) 3cos(—43x)的最小正周期为( )A.乙3B.-3C . 8D . 43、若点P(sin )在第一象限,则在[0,2 )内的取值范围是(A.(2,34)U(,:) B.3 5 3、C.(「-)U,)D24 4 25 口严盲) (-,3-)U(3-,)2 4 4(A) —(B)- (C) —6435.已知函数y Asin( x ) B的一部分图象如1右图所示,如果A0, 0,| | -, 则( )2A. A4B. 1C.4 …,则tan 66 .已知x( ,0), cos x2x25( )A.B. 7C.24 24247D. 247n②图象关于直线x=n寸称;③在[—n, n上是增函数”的一个函数是()x n n A. y= sin(尹 6) B. y= cos(2x + 3)nC. y = si n(2x —§)D. y= cos(2x—6)4.若|a| 2 , |b| 2 且(a b )丄a ,贝U a与b的夹角是7.同时具有以下性质:“①最小正周期实(D) 510. 2002年8月,在北京召开的国际数学家大会会标如图所示,它是由中间的小正方形拼成的一大正方形,若直角三角形中较小的锐角为正方形的面积是丄则sin225’24A. 1B. ——2577 C. D . -------252512.已知|a|=3,|b|=5,且向量a在向量b方向上的投影为12,贝卩a b= _________________ 513. 已知向量OP (2,1),OA (1,7),OB (5,1),设X是直线OP上的一点(O为坐标原点),那么XA XB的最小值是______________________14. 给出下列6种图像变换方法:一、一一1 一、①图像上所有点的纵坐标不变,横坐标缩短到原来的:②图像上所有点的纵坐标不变,横坐22 标伸长到原来的2倍;③图像向右平移—个单位;④图像向左平移—个单位;⑤图像向右平移—3 3 32个单位;⑥图像向左平移个单位。

(word版)高一数学必修4试题附答案详解

(word版)高一数学必修4试题附答案详解

高一数学必修4试题附答案详解第I卷一、选择题:(每题5分,共计60分)1 .以下命题中正确的选项是〔〕A.第一象限角必是锐角B.终边相同的角相等C.相等的角终边必相同D.不相等的角其终边必不相同2.角的终边过点P4m,3m,m0,那么2sin cos的值是〔〕A.1或-1B.2或2C.1或2D.-1或255553 .以下命题正确的选项是〔〕A假设a·b=a·c,那么b=c B假设|ab||a b|,那么a·b=0C 假设a//b,b//c,那么a//cD假设a与b是单位向量,那么a·b=14 .计算以下几个式子,①tan25tan353tan25tan35,②2(sin35cos25+sin55cos65),1tan15tan63③,④,结果为的是〔〕1tan1521tan6A.①②B.①③C.①②③D.①②③④5 .函数y=cos(4-2x)的单调递增区间是〔〕A.[kπ+,kπ+5π]B.[kπ-3π,kπ+]8888C.[2kπ+,2kπ+5π]D.[2kπ-3π,2kπ+]〔以上k∈Z〕88886 .△ABC中三个内角为A、B、C,假设关于x的方程x2xcosAcosBcos2C0有一根为1,2那么△ABC一定是〔〕A.直角三角形B.等腰三角形C.锐角三角形D.钝角三角形7.将函数f(x)sin(2x )的图像左移,再将图像上各点横坐标压缩到原来的1,那么所332得到的图象的解析式为〔〕1Aysinx Bysin(4x)Cysin(4x 2Dysin(x) )3338.化简1sin10+1sin10,得到〔〕A-2sin5B-2cos5C2sin5D2cos59 .函数f(x)=sin2x·cos2x是()A周期为π的偶函数B周期为π的奇函数C周期为的偶函数D周期为的奇函数.2210.假设|a|2,|b|2且〔a b〕⊥a ,那么a与b的夹角是〔〕〔A〕6〔B〕〔C〕〔D〕5 431211.正方形ABCD的边长为1,记AB=a,BC=b,AC=c,那么以下结论错误的选项是..A.(a-b cB.(a+b-c a)·=0)·=0C.(|a-c|-|b|)a=0D.|a+b+c|=212.2002年8月,在北京召开的国际数学家大会会标如下列图,它是由4个相同的直角三角形与中间的小正方形拼成的一大正方形,假设直角三角形中较小的锐角为,大正方形的面积是1,小正方形的面积是1,那么sin2cos2的值等于〔〕25A.124C.77 B.D.-252525二、填空题〔本大题共4小题,每题4分,共16分〕13.曲线 y=Asin( x+ )+k〔A>0, >0,||<π〕在同一周期内的最高点的坐标为(,4),最低点的坐标为(5。

人教A版必修四高一数学必修4综合考试卷(人教A版附答案.docx

人教A版必修四高一数学必修4综合考试卷(人教A版附答案.docx

高中数学学习材料唐玲出品高一数学必修4综合考试卷(人教A 版附答案)第I 卷注意事项:本次考试试卷分为试题和答题卷两部分,学生应把试题中的各个小题答在第II 卷中相应的位置上,不能答在试题上,考试结束后,只交答题卷。

一、选择题:本大题共10题,每小题3分,共30分。

在每一题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在...........第.II ..卷的选择题答案表中.........。

1.将-300o 化为弧度为( ) A .-;34π B .-;35π C .-;67π D .-;47π2.若角α的终边过点(sin30o ,-cos30o ),则sin α等于( ) A .;21 B .-;21 C .-;23 D .-;33 3.下列四式不能化简为AD 的是( )A .;)++(BC CD AB B .);+)+(+(CM BC M B ADC .;-+BM AD M B D .;+-CD OA OC 4.oooo26sin 19sin -26cos 71sin 的值为( ) A .;21B .1;C .-;22 D .;22 5.函数)23cos(3x y π+=的图象是把y=3cos3x 的图象平移而得,平移方法是( )A .向左平移2π个单位长度; B .向左平移6π个单位长度; C .向右平移2π个单位长度; D .向右平移6π个单位长度; 6.在下列四个函数中,在区间),(20π上为增函数,且以π为最小正周期的偶函数是( ) A .y=x 2; B .y=|sinx|; C .y=cos2x; D .y=sinxe ;7.在∆ABC 中,若sinAsinB<cosAcosB ,则∆ABC 一定是( ) A .锐角三角形; B .直角三角形; C .钝角三角形; D .不能确定;8.已知)(),点=(),,-=(-21x,P 1,1ON 32OM 在线段NM 的中垂线上, 则x 等于( )A .;-25B .;-23C .;-27 D .-3;9.在平面直角坐标系中,已知两点A (cos80o ,sin80o ),B(cos20o ,sin20o ),则|AB |的值是( ) A .;21 B .;22 C .;23 D .1; 10.平面直角坐标系中,已知两点A (3,1),B (-1,3),若点C 满足,+=OB OA OC βα 1R =+,且、其中βαβα∈,则点C 的轨迹方程是( )A .3x+2y -11=0;B .(x -1)2+(y -2)2=5;C .2x -y=0;D .x+2y -5=0;二、填空题:本大题共有5小题,每小题3分,满分15分。

(完整版)高中数学必修四(综合测试题+详细答案)(可编辑修改word版)

(完整版)高中数学必修四(综合测试题+详细答案)(可编辑修改word版)

232a -b 2 a - b 2a - ba - b一、选择题(12 道)必修四综合复习1.已知 AB = (6,1), BC = (x , y ), C D = (-2,-3),且BC ∥ DA ,则 x+2y 的值为( )1 A .0B. 2C.D. -222. 设0 ≤< 2,已知两个向量OP 1 = (cos , sin ), OP 2 = (2 + sin , 2 - cos ),则向量 P 1 P 2 长度的最大值是( ) A. B. C. 3 D. 23.已知向量 a , b 满足 a = 1, b = 4, 且 a ⋅ b = 2 则 a 与b 的夹角为A.B .C .D .64 3 24. 如图 1 所示,D 是△ABC 的边 AB 上的中点,则向量CD = ()A. - BC + 1 1BA2B. - BC - 1BA 21C. BC - BA 2D. BC + BA25. 设 a 与b 是两个不共线向量,且向量 a +b 与-(b - 2a )共线,则=( )A .0B .-1C .-2D .0.56. 已知向量 a =( 3,1), b 是不平行于 x 轴的单位向量,且a ⋅ b =,则b =()A. ⎛ 3 1 ⎫B.⎛ 1 3 ⎫C.⎛ 1 3 3 ⎫ D .(1,0), ⎪, ⎪ , ⎪⎝ 2 2 ⎭ ⎝ 2 2 ⎭⎝ 4 4 ⎭7.在∆OAB 中, = a , = b , OD 是 AB 边上的高,若 =,则实数等 于( )OAA. a ⋅ (b - a )OB B. a ⋅ (a - b )C. a ⋅ (b - a ) AD ABD. a ⋅ (a - b )8.在∆ABC 中, a , b , c 分别为三个内角 A 、B 、C 所对的边,设向量 m = (b - c , c - a ), n = (b , c + a ) ,若向量 m ⊥ n ,则角 A 的大小为 ( )2A.B .C .D .632 39.设∠BAC 的平分线 AE 与 BC 相交于 E ,且有 BC = CE , 若 AB = 2 A C 则等于()1 1 A 2BC -3D -2310.函数 y = sin x cos x + 3 cos 2x -的图象的一个对称中心是()A. ( , 33 3 , - 3)2 , -3 )B. ( 5 ,- 3 ) C. (- 23 ) D. ( 3 2 62 3 233 2 b 11. (1+ tan 210 )(1+ tan 220 )(1+ tan 230 )(1+ tan 240 ) 的值是()A. 16B. 8C. 4D. 2cos 2 x12.当0 < x <时,函数 f (x ) = 41cos x sin x - sin 2x1 的最小值是( )A. 4B.C . 2D .24二、填空题(8 道) 13.已知向量 a = (cos , s in ) ,向量= ( 3, -1) ,则 2a - 的最大值是.b b14.设向量 a 与 的夹角为,且 a= (3,3) , 2b - a = (-1,1) ,则cos=.15.在∆AOB 中, O A = (2 c os,2 s in ), OB = (5 c os,5sin ) ,若OA ⋅ O B = -5 ,则∆AOB 的面积为.16. tan 20 + tan 40 + tan 20tan 40 的值是 .3 517. ABC 中, sin A = 5 , cos B =13,则cos C =.18. 已知sin + c os = 1, s in - c os = 3 1 ,则sin(- ) =.2⎡ ⎤19. 函数 y = sin x + cos x 在区间 ⎢⎣0, 2 ⎥⎦上的最小值为 .20. 函数 y = (a cos x + b sin x ) cos x 有最大值2 ,最小值-1,则实数 a =, b =.三、解答题(3 道)21. 已知|a|= ,|b|=3,向量 a 与向量 b 夹角为45 ,求使向量 a+b 与a+b 的夹角是锐角时,的取值范围3dongguan XueDa Personalized Education Development Center22 .已知向量 a = (sin ,-2) 与b = (1, c os ) 互相垂直,其中∈(0, ) .2(1)求sin 和cos 的值;(2)若sin(-) =, 0 <<,求cos的值.10223.)已知向量 a = (sin , cos - 2 sin ), b = (1, 2).若| a |=| b |, 0 << , 求的值。

(完整word版)高一数学必修4试题附答案详解

(完整word版)高一数学必修4试题附答案详解

高一数学必修4试题附答案详解第I 卷一、选择题:(每小题5分,共计60分) 1. 下列命题中正确的是( )A .第一象限角必是锐角B .终边相同的角相等C .相等的角终边必相同D .不相等的角其终边必不相同2.已知角α的终边过点()m m P 34,-,()0≠m ,则ααcos sin 2+的值是( ) A .1或-1 B .52或 52- C .1或52- D .-1或52 3. 下列命题正确的是( )A 若→a ·→b =→a ·→c ,则→b =→c B 若||||b -=+,则→a ·→b =0 C 若→a //→b ,→b //→c ,则→a //→c D 若→a 与→b 是单位向量,则→a ·→b =1 4. 计算下列几个式子,①οοοο35tan 25tan 335tan 25tan ++,②2(sin35︒cos25︒+sin55︒cos65︒), ③οο15tan 115tan 1-+ , ④ 6tan 16tan 2ππ-,结果为3的是( ) A.①② B. ①③ C. ①②③ D. ①②③④5. 函数y =cos(4π-2x )的单调递增区间是 ( ) A .[k π+8π,k π+85π] B .[k π-83π,k π+8π]C .[2k π+8π,2k π+85π]D .[2k π-83π,2k π+8π](以上k ∈Z )6. △ABC 中三个内角为A 、B 、C ,若关于x 的方程22cos cos cos 02Cx x A B --=有一根为1,则△ABC 一定是( )A. 直角三角形B. 等腰三角形C. 锐角三角形D. 钝角三角形7. 将函数)32sin()(π-=x x f 的图像左移3π,再将图像上各点横坐标压缩到原来的21,则所得到的图象的解析式为( )A x y sin =B )34sin(π+=x yC )324sin(π-=x y D )3sin(π+=x y8. 化简10sin 1++10sin 1-,得到( )A -2sin5B -2cos5C 2sin5D 2cos59. 函数f(x)=sin2x ·cos2x 是 ( )A 周期为π的偶函数B 周期为π的奇函数C 周期为2π的偶函数 D 周期为2π的奇函数. 10. 若|2|= ,2||= 且(-)⊥ ,则与的夹角是 ( )(A )6π (B )4π (C )3π(D )π125 11. 正方形ABCD 的边长为1,记→-AB =→a ,→-BC =→b ,→-AC =→c ,则下列结论错误..的是 A .(→a -→b )·→c =0 B .(→a +→b -→c )·→a =0C .(|→a -→c | -|→b |)→a =→0 D .|→a +→b +→c |=212. 2002年8月,在北京召开的国际数学家大会会标如图所示,它是由4个相同的直角三角形与中间的小正方形拼成的一大正方形,若直角三角形中较小的锐角为θ,大正方形的面积是1,小正方形的面积是θθ22cos sin ,251-则的值等于( )A .1B .2524-C .257D .-257二、填空题(本大题共4小题,每小题4分,共16分)13. 已知曲线y =Asin(ωx +ϕ)+k (A>0,ω>0,|ϕ|<π)在同一周期内的最高点的坐标为(8π, 4),最低点的坐标为(85π, -2),此曲线的函数表达式是 。

高一数学必修四综合试题及详细答案

高一数学必修四综合试题及详细答案

2009—2010学年度下学期高一数学期末测试[新课标版]本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,满分150分,用时120分钟。

第Ⅰ卷(共60分)一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,选择一个符合题目要求的选项.) 1.下列命题中正确的是 ( )A .第一象限角必是锐角B .终边相同的角相等C .相等的角终边必相同D .不相等的角其终边必不相同2.已知角α的终边过点()m m P 34,-,()0≠m ,则ααcos sin 2+的值是 ( )A .1或-1B .52或52-C .1或52- D .-1或523.下列命题正确的是( )A .若→a ·→b =→a ·→c ,则→b =→cB .若||||b a b a -=+,则→a ·→b =0C .若→a //→b ,→b //→c ,则→a //→c D .若→a 与→b 是单位向量,则→a ·→b =14.计算下列几个式子,①35tan 25tan 335tan 25tan ++,②2(sin35︒cos25︒+sin55︒cos65︒), ③15tan 115tan 1-+ , ④6tan16tan2ππ-,结果为3的是( )A .①②B .③C .①②③D .②③④5.函数y =cos(4π-2x )的单调递增区间是 ( ) A .[k π+8π,k π+85π] B .[k π-83π,k π+8π]C .[2k π+8π,2k π+85π]D .[2k π-83π,2k π+8π](以上k ∈Z )6.△ABC 中三个内角为A 、B 、C ,若关于x 的方程22cos cos cos02Cx x A B --=有一根为1,则△ABC 一定是 ( ) A .直角三角形 B .等腰三角形 C .锐角三角形 D .钝角三角形7.将函数)32sin()(π-=x x f 的图像左移3π,再将图像上各点横坐标压缩到原来的21,则所得到的图象的解析式为 ( )A .x y sin =B .)34sin(π+=x yC .)324sin(π-=x y D .)3sin(π+=x y 8. 化简10sin 1++10sin 1-,得到( ) A .-2sin5 B .-2cos5 C .2sin5 D .2cos59.函数f(x)=sin2x·cos2x 是 ( )A .周期为π的偶函数B .周期为π的奇函数C .周期为2π的偶函数 D .周期为2π的奇函数. 10.若|2|=a ,2||=b 且(b a -)⊥a ,则a 与b 的夹角是( )A .6πB .4πC .3πD .π125 11.正方形ABCD 的边长为1,记→-AB =→a ,→-BC =→b ,→-AC =→c ,则下列结论错误..的是( )A .(→a -→b )·→c =0B .(→a +→b -→c )·→a =0C .(|→a -→c | -|→b |)→a =→0 D .|→a +→b +→c |=212.20XX 年8月,在北京召开的国际数学家大会会标如图所示,它是由4个相同的直角三角形与中间的小正方形拼成的一大正 方形,若直角三角形中较小的锐角为θ,大正方形的面积是1,小正方形的面积是θθ22cos sin ,251-则的值等于( )A .1B .2524-C .257D . -257二、填空题(本大题共4小题,每小题4分,共16分。

人教A版必修四高一数学必修4综合考试卷(人教A版附答案.docx

人教A版必修四高一数学必修4综合考试卷(人教A版附答案.docx

高一数学必修4综合考试卷(人教A 版附答案)第I 卷注意事项:本次考试试卷分为试题和答题卷两部分,学生应把试题中的各个小题答在第II 卷中相应的位置上,不能答在试题上,考试结束后,只交答题卷。

一、选择题:本大题共10题,每小题3分,共30分。

在每一题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在...........第.II ..卷的选择题答案表中.........。

1.将-300o化为弧度为( ) A .-;34π B .-;35π C .-;67π D .-;47π2.若角α的终边过点(sin30o,-cos30o),则sin α等于( ) A .;21 B .-;21 C .-;23 D .-;33 3.下列四式不能化简为的是( )A .;)++(BC CD AB B .);+)+(+(CM BC M B ADC .;-+BM AD M B D .;+-CD OA OC 4.oooo26sin 19sin -26cos 71sin 的值为( ) A .;21B .1;C .-;22 D .;22 5.函数)23cos(3x y π+=的图象是把y=3cos3x 的图象平移而得,平移方法是( )A .向左平移2π个单位长度; B .向左平移6π个单位长度; C .向右平移2π个单位长度; D .向右平移6π个单位长度; 6.在下列四个函数中,在区间),(20π上为增函数,且以π为最小正周期的偶函数是( )A .y=x 2; B .y=|sinx|; C .y=cos2x; D .y=sinxe;7.在∆ABC 中,若sinAsinB<cosAcosB ,则∆ABC 一定是( ) A .锐角三角形; B .直角三角形; C .钝角三角形; D .不能确定;8.已知)(),点),,-21x,P 1,132在线段NM 的中垂线上,则x 等于( )A .;-25B .;-23C .;-27 D .-3;9.在平面直角坐标系中,已知两点A (cos80o,sin80o),B(cos20o,sin20o),则|AB |的值是( ) A .;21 B .;22 C .;23 D .1; 10.平面直角坐标系中,已知两点A (3,1),B (-1,3),若点C 满足,+βα 1R =+,且、其中βαβα∈,则点C 的轨迹方程是( )A .3x+2y -11=0;B .(x -1)2+(y -2)2=5; C .2x -y=0; D .x+2y -5=0;二、填空题:本大题共有5小题,每小题3分,满分15分。

人教版高一数学必修四测试题含详细答案

人教版高一数学必修四测试题含详细答案

高一数学试题(必修4)(特别适合按14523顺序的省份) 必修4 第一章 三角函数(1)一、选择题:1.已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、C 关系是( ) A .B=A∩C B .B∪C=C C .A C D .A=B=C202120sin 等于 ( )A 23±B 23C 23-D 21 3.已知sin 2cos 5,tan 3sin 5cos ααααα-=-+那么的值为( )A .-2B .2C .2316 D .-23164.下列函数中,最小正周期为π的偶函数是 ( )A.y=sin2xB.y=cos 2xC .sin2x+cos2x D. y=xx 22tan 1tan 1+-5 若角0600的终边上有一点()a ,4-,则a 的值是 ( )A 34B 34-C 34± D36. 要得到函数y=cos(42π-x )的图象,只需将y=sin 2x的图象 ( ) A .向左平移2π个单位 B.同右平移2π个单位C .向左平移4π个单位 D.向右平移4π个单位7.若函数y=f(x)的图象上每一点的纵坐标保持不变,横坐标伸长到原来的2倍,再将 整个图象沿x 轴向左平移2π个单位,沿y 轴向下平移1个单位,得到函数y=21sinx 的图象则y=f(x)是 ( )A .y=1)22sin(21++πx B.y=1)22sin(21+-πxC.y=1)42sin(21++πxD. 1)42sin(21+-πx8. 函数y=sin(2x+25π)的图像的一条对轴方程是 ( ) A.x=-2π B. x=-4π C .x=8πD.x=45π9.若21cos sin =⋅θθ,则下列结论中一定成立的是 ( )A.22sin =θ B .22sin -=θC .1cos sin =+θθD .0cos sin =-θθ10.函数)32sin(2π+=x y 的图象( )A .关于原点对称B .关于点(-6π,0)对称C .关于y 轴对称D .关于直线x=6π对称 11.函数sin(),2y x x R π=+∈是 ( )A .[,]22ππ-上是增函数 B .[0,]π上是减函数C .[,0]π-上是减函数D .[,]ππ-上是减函数12.函数y =的定义域是 ( ) A .2,2()33k k k Z ππππ-+∈⎡⎤⎢⎥⎣⎦ B .2,2()66k k k Z ππππ-+∈⎡⎤⎢⎥⎣⎦C .22,2()33k k k Z ππππ++∈⎡⎤⎢⎥⎣⎦D .222,2()33k k k Z ππππ-+∈⎡⎤⎢⎥⎣⎦二、填空题:13. 函数])32,6[)(8cos(πππ∈-=x x y 的最小值是 . 14 与02002-终边相同的最小正角是_______________15. 已知,24,81cos sin παπαα<<=⋅且则=-ααsin cos . 16 若集合|,3A x k x k k Z ππππ⎧⎫=+≤≤+∈⎨⎬⎩⎭,{}|22B x x =-≤≤, 则B A I =_______________________________________三、解答题:17.已知51cos sin =+x x ,且π<<x 0. a) 求sinx 、cosx 、tanx 的值. b) 求sin 3x – cos 3x 的值.18 已知2tan =x ,(1)求x x 22cos 41sin 32+的值 (2)求x x x x 22cos cos sin sin 2+-的值19. 已知α是第三角限的角,化简ααααsin 1sin 1sin 1sin 1+---+20.已知曲线上最高点为(2,2),由此最高点到相邻的最低点间曲线与x 轴交于一点(6,0),求函数解析式,并求函数取最小值x 的值及单调区间必修4 第一章 三角函数(2)一、选择题:1.已知0tan ,0sin ><θθ,则θ2sin 1-化简的结果为 ( )A .θcos B. θcos - C .θcos ± D. 以上都不对 2.若角α的终边过点(-3,-2),则 ( )A .sin α tan α>0B .cos α tan α>0C .sin α cos α>0D .sin α cot α>0 3 已知3tan =α,23παπ<<,那么ααsin cos -的值是 ( ) A 231+-B 231+- C 231- D 231+4.函数)22cos(π+=x y 的图象的一条对称轴方程是 ( )A .2π-=x B. 4π-=x C. 8π=x D. π=x5.已知)0,2(π-∈x ,53sin -=x ,则tan2x= ( )A .247 B. 247- C. 724 D. 724-6.已知31)4tan(,21)tan(-=-=+παβα,则)4tan(πβ+的值为 ( )A .2 B. 1 C. 22D. 2 7.函数xx xx x f sin cos sin cos )(-+=的最小正周期为 ( )A .1 B. 2πC. π2D. π8.函数)32cos(π--=x y 的单调递增区间是 ( )A .)(322,342Z k k k ∈⎥⎦⎤⎢⎣⎡+-ππππ B. )(324,344Z k k k ∈⎥⎦⎤⎢⎣⎡+-ππππC .)(382,322Z k k k ∈⎥⎦⎤⎢⎣⎡++ππππ D. )(384,324Z k k k ∈⎥⎦⎤⎢⎣⎡++ππππ 9.函数x x y cos sin 3+=,]2,2[ππ-∈x 的最大值为 ( )A .1 B. 2 C. 3 D.23 10.要得到)42sin(3π+=x y 的图象只需将y=3sin2x 的图象( )A .向左平移4π个单位 B .向右平移4π个单位 C .向左平移8π个单位 D .向右平移8π个单位11.已知sin(4π+α)=23,则sin(43π-α)值为 ( )A.21 B. —21C. 23D. —2312.若).(),sin(32cos 3sin 3ππφφ-∈-=-x x x ,则=φ ( )A. 6π-B.6π C. 65π D. 65π-二、填空题13.函数y =的定义域是14.)32sin(3π+-=x y 的振幅为 初相为15.求值:00cos20sin202cos10-=_______________16.把函数)32sin(π+=x y 先向右平移2π个单位,然后向下平移2个单位后所得的函数解析式为_____________2)322sin(--=πx y ___________________三、解答题17 已知1tan tan αα,是关于x 的方程2230x kx k -+-=的两个实根,且παπ273<<,求ααsin cos +的值18.已知函数x x y 21cos 321sin+=,求: (1)函数y 的最大值,最小值及最小正周期;(2)函数y 的单调递增区间19. 已知βαtan tan 、是方程04332=++x x 的两根,且)2,2(ππβα-∈、,求βα+的值20.如下图为函数)0,0,0()sin(>>>++=ϕωϕωA c x A y 图像的一部分(1)求此函数的周期及最大值和最小值(2)求与这个函数图像关于直线2=x 对称的函数解析式必修4 第三章 三角恒等变换(1)一、选择题:1.cos 24cos36cos66cos54︒︒︒︒-的值为 ( )A 0 B12 C 2 D 12-2.3cos 5α=-,,2παπ⎛⎫∈ ⎪⎝⎭,12sin 13β=-,β是第三象限角,则=-)cos(αβ( )A 3365-B 6365C 5665D 1665- 3.设1tan 2,1tan x x +=-则sin 2x 的值是 ( )A 35B 34-C 34D 1- 4. 已知()()tan 3,tan 5αβαβ+=-=,则()tan 2α的值为 ( )A 47-B 47C 18D 18-5.βα,都是锐角,且5sin 13α=,()4cos 5αβ+=-,则βsin 的值是 ( )A 3365B 1665C 5665D 63656. )4,43(ππ-∈x 且3cos 45x π⎛⎫-=- ⎪⎝⎭则cos2x 的值是 ( )A 725-B 2425-C 2425D 7257.cos 23x x a +=-中,a 的取值域范围是 ( )A2521≤≤a B 21≤a C 25>a D 2125-≤≤-a 8. 已知等腰三角形顶角的余弦值等于54,则这个三角形底角的正弦值为 ( )A 1010B 1010-C 10103D 10103-9.要得到函数2sin 2y x =的图像,只需将x x y 2cos 2sin 3-=的图像 ( )A 、向右平移6π个单位 B 、向右平移12π个单位 C 、向左平移6π个单位 D 、向左平移12π个单位10. 函数sin 22x xy =+的图像的一条对称轴方程是 ( )A 、x =113πB 、x =53πC 、53x π=-D 、3x π=-11.若x 是一个三角形的最小内角,则函数sin cos y x x =-的值域是 ( )A [B 1(1,]2- C 1[1,]2- D 1(1,)2-12.在ABC ∆中,tan tan tan A B A B ++=,则C 等于 ( )A3π B 23π C 6π D 4π二、填空题:13.若βαtan ,tan 是方程04332=++x x 的两根,且),2,2(,ππβα-∈则βα+等于14. .在ABC ∆中,已知tanA ,tanB 是方程23720x x -+=的两个实根,则tan C = 15. 已知tan 2x =,则3sin 22cos 2cos 23sin 2x xx x+-的值为16. 关于函数()cos2cos f x x x x =-,下列命题: ①若存在1x ,2x 有12x x π-=时,()()12f x f x =成立; ②()f x 在区间,63ππ⎡⎤-⎢⎥⎣⎦上是单调递增; ③函数()f x 的图像关于点,012π⎛⎫⎪⎝⎭成中心对称图像;④将函数()f x 的图像向左平移512π个单位后将与2sin 2y x =的图像重合. 其中正确的命题序号 (注:把你认为正确的序号都填上)三、解答题:17. 化简000020cos 1)]10tan 31(10sin 50sin 2[+++18. 求)212cos 4(12sin 312tan 30200--的值.19. 已知α为第二象限角,且 sin α=,415求12cos 2sin )4sin(+++ααπα的值.20.已知函数22sin sin 23cos y x x x =++,求 (1)函数的最小值及此时的x 的集合。

人教版高一数学必修四测试题(含详细答案)

人教版高一数学必修四测试题(含详细答案)

高一数学试题(必修4) (特别适合按14523顺序的省份) 必修4 第一章 三角函数(1)一、选择题:1.已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、C 关系是( )A .B=A∩CB .B ∪C=CC .A CD .A=B=C22120s i n 等于 ( ) A 23±B 23C 23-D 21 3.已知sin 2cos 5,tan 3sin 5cos ααααα-=-+那么的值为( )A .-2B .2C .2316 D .-23164.下列函数中,最小正周期为π的偶函数是 ( )A.y=sin2xB.y=cos 2xC .sin2x+cos2x D. y=x x 22tan 1tan 1+-5 若角0600的终边上有一点()a ,4-,则a 的值是 ( )A 34B 34-C 34± D36. 要得到函数y=cos(42π-x )的图象,只需将y=sin 2x的图象 ( ) A .向左平移2π个单位 B.同右平移2π个单位C .向左平移4π个单位 D.向右平移4π个单位7.若函数y=f(x)的图象上每一点的纵坐标保持不变,横坐标伸长到原来的2倍,再将 整个图象沿x 轴向左平移2π个单位,沿y 轴向下平移1个单位,得到函数y=21sinx 的图象则y=f(x)是 ( )A .y=1)22sin(21++πx B.y=1)22sin(21+-πx C.y=1)42sin(21++πx D. 1)42sin(21+-πx8. 函数y=sin(2x+25π)的图像的一条对轴方程是 ( ) A.x=-2π B. x=-4π C .x=8πD.x=45π9.若21cos sin =⋅θθ,则下列结论中一定成立的是 ( )A.22sin =θ B .22sin -=θC .1cos sin =+θθD .0cos sin =-θθ10.函数)32sin(2π+=x y 的图象( )A .关于原点对称B .关于点(-6π,0)对称C .关于y 轴对称D .关于直线x=6π对称 11.函数sin(),2y x x R π=+∈是 ( )A .[,]22ππ-上是增函数 B .[0,]π上是减函数C .[,0]π-上是减函数D .[,]ππ-上是减函数 12.函数2cos 1y x =+的定义域是 ( ) A .2,2()33k k k Z ππππ-+∈⎡⎤⎢⎥⎣⎦ B .2,2()66k k k Z ππππ-+∈⎡⎤⎢⎥⎣⎦ C .22,2()33k k k Z ππππ++∈⎡⎤⎢⎥⎣⎦D .222,2()33k k k Z ππππ-+∈⎡⎤⎢⎥⎣⎦二、填空题:13. 函数])32,6[)(8cos(πππ∈-=x x y 的最小值是 . 14 与02002-终边相同的最小正角是_______________15. 已知,24,81cos sin παπαα<<=⋅且则=-ααsin cos . 16 若集合|,3A x k x k k Z ππππ⎧⎫=+≤≤+∈⎨⎬⎩⎭,{}|22B x x =-≤≤, 则B A =_______________________________________三、解答题:17.已知51cos sin =+x x ,且π<<x 0. a) 求sinx 、cosx 、tanx 的值. b) 求sin 3x – cos 3x 的值.18 已知2tan =x ,(1)求x x 22cos 41sin 32+的值 (2)求x x x x 22cos cos sin sin 2+-的值19. 已知α是第三角限的角,化简ααααsin 1sin 1sin 1sin 1+---+20.已知曲线上最高点为(2,2),由此最高点到相邻的最低点间曲线与x 轴交于一点(6,0),求函数解析式,并求函数取最小值x 的值及单调区间必修4 第一章 三角函数(2)一、选择题:1.已知0tan ,0sin ><θθ,则θ2sin 1-化简的结果为 ( ) A .θcos B. θcos - C .θcos ± D. 以上都不对 2.若角α的终边过点(-3,-2),则 ( )A .sin α tan α>0B .cos α tan α>0C .sin α cos α>0D .sin α cot α>0 3 已知3tan =α,23παπ<<,那么ααsin cos -的值是 ( ) A 231+-B 231+- C 231- D 231+4.函数)22cos(π+=x y 的图象的一条对称轴方程是 ( )A .2π-=x B. 4π-=x C. 8π=x D. π=x5.已知)0,2(π-∈x ,53sin -=x ,则tan2x= ( ) A .247 B. 247- C. 724 D. 724-6.已知31)4tan(,21)tan(-=-=+παβα,则)4tan(πβ+的值为 ( )A .2 B. 1 C. 22D. 2 7.函数xx xx x f sin cos sin cos )(-+=的最小正周期为 ( )A .1 B. 2πC. π2D. π8.函数)32cos(π--=x y 的单调递增区间是 ( )A .)(322,342Z k k k ∈⎥⎦⎤⎢⎣⎡+-ππππ B. )(324,344Z k k k ∈⎥⎦⎤⎢⎣⎡+-ππππ C .)(382,322Z k k k ∈⎥⎦⎤⎢⎣⎡++ππππ D. )(384,324Z k k k ∈⎥⎦⎤⎢⎣⎡++ππππ 9.函数x x y cos sin 3+=,]2,2[ππ-∈x 的最大值为 ( )A .1 B. 2 C. 3 D.23 10.要得到)42sin(3π+=x y 的图象只需将y=3sin2x 的图象( )A .向左平移4π个单位 B .向右平移4π个单位 C .向左平移8π个单位 D .向右平移8π个单位11.已知sin(4π+α)=23,则sin(43π-α)值为 ( )A.21 B. —21C. 23D. —2312.若).(),sin(32cos 3sin 3ππφφ-∈-=-x x x ,则=φ ( )A. 6π-B.6π C. 65π D. 65π-二、填空题13.函数tan 2y x =的定义域是14.)32sin(3π+-=x y 的振幅为 初相为15.求值:00cos20sin202cos10-=_______________ 16.把函数)32sin(π+=x y 先向右平移2π个单位,然后向下平移2个单位后所得的函数解析式为_____________2)322sin(--=πx y ___________________三、解答题17 已知1tan tan αα,是关于x 的方程2230x kx k -+-=的两个实根,且παπ273<<,求ααsin cos +的值18.已知函数x x y 21cos 321sin+=,求: (1)函数y 的最大值,最小值及最小正周期;(2)函数y 的单调递增区间19. 已知βαtan tan 、是方程04332=++x x 的两根,且)2,2(ππβα-∈、, 求βα+的值20.如下图为函数)0,0,0()sin(>>>++=ϕωϕωA c x A y 图像的一部分(1)求此函数的周期及最大值和最小值(2)求与这个函数图像关于直线2=x 对称的函数解析式必修4 第三章 三角恒等变换(1)一、选择题:1.cos 24cos36cos66cos54︒︒︒︒-的值为 ( )A 0 B12 C 32 D 12-2.3cos 5α=-,,2παπ⎛⎫∈ ⎪⎝⎭,12sin 13β=-,β是第三象限角,则=-)cos(αβ( )A 3365-B 6365C 5665D 1665- 3.设1tan 2,1tan x x +=-则sin 2x 的值是 ( )A 35B 34-C 34D 1- 4. 已知()()tan 3,tan 5αβαβ+=-=,则()tan 2α的值为 ( )A 47-B 47C 18D 18-5.βα,都是锐角,且5sin 13α=,()4cos 5αβ+=-,则βsin 的值是 ( )A 3365B 1665C 5665D 63656. )4,43(ππ-∈x 且3cos 45x π⎛⎫-=- ⎪⎝⎭则cos2x 的值是 ( )A 725-B 2425-C 2425D 7257.在3sin cos 23x x a +=-中,a 的取值域范围是 ( )A 2521≤≤aB 21≤aC 25>aD 2125-≤≤-a 8. 已知等腰三角形顶角的余弦值等于54,则这个三角形底角的正弦值为 ( )A 1010B 1010-C 10103D 10103-9.要得到函数2sin 2y x =的图像,只需将x x y 2cos 2sin 3-=的图像 ( )A 、向右平移6π个单位 B 、向右平移12π个单位 C 、向左平移6π个单位 D 、向左平移12π个单位10. 函数sin 3cos 22x xy =+的图像的一条对称轴方程是 ( )A 、x =113πB 、x =53π C 、53x π=- D 、3x π=- 11.若x 是一个三角形的最小内角,则函数sin cos y x x =-的值域是 ( )A [2,2]-B 31(1,]2-- C 31[1,]2-- D 31(1,)2--12.在ABC ∆中,tan tan 33tan tan A B A B ++=,则C 等于 ( )A3π B 23π C 6π D 4π二、填空题:13.若βαtan ,tan 是方程04332=++x x 的两根,且),2,2(,ππβα-∈则βα+等于14. .在ABC ∆中,已知tanA ,tanB 是方程23720x x -+=的两个实根,则tan C = 15. 已知tan 2x =,则3sin 22cos 2cos 23sin 2x xx x+-的值为16. 关于函数()cos223sin cos f x x x x =-,下列命题: ①若存在1x ,2x 有12x x π-=时,()()12f x f x =成立; ②()f x 在区间,63ππ⎡⎤-⎢⎥⎣⎦上是单调递增; ③函数()f x 的图像关于点,012π⎛⎫⎪⎝⎭成中心对称图像; ④将函数()f x 的图像向左平移512π个单位后将与2sin 2y x =的图像重合. 其中正确的命题序号 (注:把你认为正确的序号都填上)三、解答题:17. 化简000020cos 1)]10tan 31(10sin 50sin 2[+++18. 求)212cos 4(12sin 312tan 30200--的值.19. 已知α为第二象限角,且 sin α=,415求12cos 2sin )4sin(+++ααπα的值.20.已知函数22sin sin 23cos y x x x =++,求 (1)函数的最小值及此时的x 的集合。

高中数学必修四(综合测试题+详细答案)

高中数学必修四(综合测试题+详细答案)

必修四综合复习一、选择题(12道)1.已知BC CD y x BC AB 且),3,2(),,(),1,6(--===∥DA ,则x+2y 的值为 ( ) A .0 B. 2 C. 21 D. -2 2.设πθ20<≤,已知两个向量()θθsin ,cos 1=OP ,()θθcos 2,sin 22-+=OP ,则向量21P P 长度的最大值是( )A.2B.3C.23D.323.已知向量a ,b 满足1,4,a b ==且2a b ⋅=,则a 与b 的夹角为A .6πB .4πC .3πD .2π 4.如图1所示,D 是△ABC 的边AB 上的中点, 则向量=CD ( )A .BA BC 21+- B .BA BC 21-- C .BA BC 21- D .BA BC 21+ 5.设a 与b 是两个不共线向量,且向量a b λ+与()2b a --共线,则λ=( )A .0B .-1C .-2D .0.5 6.已知向量()1,3=a ,b 是不平行于x 轴的单位向量,且3=⋅b a ,则b =( ) A .⎪⎪⎭⎫ ⎝⎛21,23 B .⎪⎪⎭⎫ ⎝⎛23,21 C .⎪⎪⎭⎫ ⎝⎛433,41 D .(1,0)7.在OAB ∆中,OA a =,OB b =,OD 是AB 边上的高,若AD AB λ=,则实数λ等 于( )A .2()a b a a b ⋅--B .2()a a b a b ⋅--C .()a b a a b ⋅--D .()a a b a b⋅--8.在ABC ∆中,c b a ,,分别为三个内角A 、B 、C 所对的边,设向量(),,m b c c a =-- (),n b c a =+,若向量⊥m n ,则角A 的大小为 ( )A . 6πB .3πC . 2πD . 32π 9.设∠BAC 的平分线AE 与BC 相交于E ,且有,BC CE λ=若2AB AC =则λ等于( )A 2B 21 C -3 D -31高考资源网 10.函数2sin cos 3cos 3y x x x =+-的图象的一个对称中心是( )A.23(,)32π- B.53(,)62π- C.23(,)32π- D.(,3)3π-11.0000(1tan 21)(1tan 22)(1tan 23)(1tan 24)++++ 的值是( )A. 16B. 8C. 4D. 212.当04x π<<时,函数22cos ()cos sin sin x f x x x x =-的最小值是( ) A .4 B .12 C .2 D .14二、填空题(8道)13.已知向量(cos ,sin )a θθ=,向量(3,1)b =-,则2a b -的最大值是 __________.14.设向量a 与b 的夹角为θ,且)3,3(=a ,)1,1(2-=-a b ,则=θcos ______________. 15.在AOB ∆中,)sin 5,cos 5(),sin 2,cos 2(ββαα==OB OA ,若5-=⋅OB OA ,则AOB ∆的面积为__________.16. tan 20tan 403tan 20tan 40++的值是 ________.17. ABC 中,3sin 5A =,5cos 13B =,则cosC = ___________. 18.已知sin cos αβ+13=,sin cos βα-12=,则sin()αβ-=________________. 19.函数x x y cos 3sin +=在区间0,2π⎡⎤⎢⎥⎣⎦上的最小值为 _______. 20.函数(cos sin )cos y a x b x x =+有最大值2,最小值1-,则实数a =_________,b =___________.三、解答题(3道)21.已知|a|=2,|b|=3,向量a 与向量b 夹角为 45,求使向量a+λb 与λa+b 的夹角是锐角时,λ的取值范围22.已知向量)2,(sin -=θa 与)cos ,1(θ=b 互相垂直,其中(0,)2πθ∈. (1)求θsin 和θcos 的值;(2)若sin()2πθϕϕ-=<<,求cos ϕ的值.23.)已知向量(sin ,cos 2sin ),(1,2).a b θθθ=-=若||||,0,a b θπ=<<求θ的值。

人教版高一数学必修四测试题(含详细答案)

人教版高一数学必修四测试题(含详细答案)

高一数学试题(必修4)(特殊适合按14523依次的省份)必修4第一章三角函数(1)一、选择题:l已知A={第一象限角}'B={锐角}'C={小千90°的角},那么A、B、C关系是()A. B=Anc2.✓sin2120° 等千忒i A土——- B. B U C=CC. A宝D. A=B=C()五2B五2c1_2n i sin a —2cosa3已知=-5, 那么tana的值为3 sin a + 5 c os aA.—2B. 2C .23164. 下列函数中,最小正周期为兀的偶函数是A.y =sin 2xXB y =c s—2A , 4✓3B -4✓3C .s in 2x+c s 2x 5, 若角600°的终边上有一点(-4,a),则a的值是()23 D.16( )1-tan 2 xD. y =1 + tan2 x()c .土4✓3D✓3X冗X6. 要得到函数y=co s (—-—)的图象,只需将y=sin —的图象( )2 4 2冗冗A. 向左平移—个单位B 同右平移—个单位22冗冗C. 向左平移—个单位D. 向右平移—个单位4 47. 若函数y=f (x)的图象上每一点的纵坐标保持不变,横坐标伸长到原来的2倍,再将冗l整个图象沿x轴向左平移—个单位,沿y轴向下平移l个单位,得到函数y =-sin x 的图象22测y=f (x)是()l 兀A. y=—sin(2x+—) +12 2 l 兀C.y =—sin(2x+—) +1 2 4l 兀B.y =—sin(2x -—) +12 2 l 冗D. —sin(2x -—) +12 45兀8. 函数y=sin (2x+—-)的图像的一条对方程是2冗A.x=-— 冗B. x =-— 冗_8__ xc 19. 若sin0·cos0=—,则下列结论中肯定成立的是A .si n 0 = ✓22B. 五sin 0 = -—C. si n 0+cos0 = 1(三4(_ x D))冗10 函数y = 2si n (2x+—)的图象3冗A. 关千原点对称B.关千(——,0)对称c.6 冗11 函数y =s n (x+—)X E R 是2 兀冗A . [-—,—]上是增函数2 2C. [-冗OJ 上是减函数12函数y =✓2c o sx l的定义域是A . [2k三三}k EZ)C. [2k冗十f,2k冗+气}k EZ)D. si n 0—cos0=0()冗关千y 对称D .关千直线x =—对称6( )B. [O五上是减函数D. [-冗冗上是减函数()B. [2k 二,2k 兀三}k E Z ) 6 6D. [2k 兀一气,2k兀+气}k E Z ) 二、填空题:冗冗213. 函数y = cos (x -—) (x E [—,—兀)的最小值是8 6 314。

(word完整版)高一数学必修四综合试题及详细答案

(word完整版)高一数学必修四综合试题及详细答案

1.下列命题中正确的是( )A .第一象限角必是锐角B .终边相同的角相等C .相等的角终边必相同D .不相等的角其终边必不相同2.已知角α的终边过点()m m P 34,-,()0≠m ,则ααcos sin 2+的值是 ( )A .1或-1B .52或52-C .1或52- D .-1或523.下列命题正确的是( )A .若→a ·→b =→a ·→c ,则→b =→cB .若|||b -=+,则→a ·→b =0C .若→a //→b ,→b //→c ,则→a //→c D .若→a 与→b 是单位向量,则→a ·→b =14.计算下列几个式子,①οοοο35tan 25tan 335tan 25tan ++,②2(sin35︒cos25︒+sin55︒cos65︒), ③οο15tan 115tan 1-+ , ④ 6tan16tan2ππ-,结果为3的是( )A .①②B .③C .①②③D .②③④5.函数y =cos(4π-2x )的单调递增区间是 ( ) A .[k π+8π,k π+85π] B .[k π-83π,k π+8π]C .[2k π+8π,2k π+85π]D .[2k π-83π,2k π+8π](以上k ∈Z )6.△ABC 中三个内角为A 、B 、C ,若关于x 的方程22cos cos cos 02Cx x A B --=有一根为1,则△ABC 一定是 ( )A .直角三角形B .等腰三角形C .锐角三角形D .钝角三角形 7.将函数)32sin()(π-=x x f 的图像左移3π,再将图像上各点横坐标压缩到原来的21,则所得到的图象的解析式为( )A .x y sin =B .)34sin(π+=x yC .)324sin(π-=x y D .)3sin(π+=x y8. 化简10sin 1++10sin 1-,得到( ) A .-2sin5 B .-2cos5 C .2sin5 D .2cos59.函数f(x)=sin2x·cos2x 是( )A .周期为π的偶函数B .周期为π的奇函数C .周期为2π的偶函数 D .周期为2π的奇函数. 10.若|2|= ,2||= 且(b a -)⊥a ,则a 与b 的夹角是( )A .6πB .4πC .3πD .π125 11.正方形ABCD 的边长为1,记→-AB =→a ,→-BC =→b ,→-AC =→c ,则下列结论错误..的是( )A .(→a -→b )·→c =0B .(→a +→b -→c )·→a =0C .(|→a -→c | -|→b |)→a =→D .|→a +→b +→c |=213.已知曲线y =Asin(ωx +ϕ)+k (A>0,ω>0,|ϕ|<π)在同一周期内的最高点的坐标为(8π, 4),最低点的坐标为(85π, -2),此曲线的函数表达式是 .14.设sin α-sin β=31,cos α+cos β=21, 则cos(α+β)= .15.已知向量OP X OB OA OP 是直线设),1,5(),7,1(),1,2(===上的一点(O 为坐标原点),那么⋅的最小值是___________.16.关于下列命题:①函数x y tan =在第一象限是增函数;②函数)4(2cos x y -=π是偶函数; ③函数)32sin(4π-=x y 的一个对称中心是(6π,0);④函数)4sin(π+=x y 在闭区间]2,2[ππ-上是增函数; 写出所有正确的命题的题号: 。

最新人教版高一数学必修四测试题(含详细答案-出题参考必备)优秀名师资料

最新人教版高一数学必修四测试题(含详细答案-出题参考必备)优秀名师资料

1必修4 三角函数(1)一、选择题:1.已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、C 关系是( )A .B=A∩CB .B ∪C=C C .A CD .A=B=C 2 02120sin 等于( ) A 23± B 23 C 23- D 21 3.已知sin 2cos 5,tan 3sin 5cos ααααα-=-+那么的值为 ( ) A .-2 B .2 C .2316 D .-23164.下列函数中,最小正周期为π的偶函数是 ( ) A.y=sin2x B.y=cos 2xC .sin2x+cos2x D. y=xx 22tan 1tan 1+- 5 若角0600的终边上有一点()a ,4-,则a 的值是 ( ) A 34 B 34- C 34± D 36. 要得到函数y=cos(42π-x )的图象,只需将y=sin 2x 的图象 ( ) A .向左平移2π个单位 B.同右平移2π个单位 C .向左平移4π个单位 D.向右平移4π个单位 7.若函数y=f(x)的图象上每一点的纵坐标保持不变,横坐标伸长到原来的2倍,再将整个图象沿x 轴向左平移2π个单位,沿y 轴向下平移1个单位,得到函数y=21sinx 的图象则y=f(x)是( )A .y=1)22sin(21++πx B.y=1)22sin(21+-πx C.y=1)42sin(21++πx D. 1)42sin(21+-πx 8. 函数y=sin(2x+25π)的图像的一条对轴方程是 ( )A.x=-2π B. x=-4π C .x=8π D.x=45π9.若21cos sin =?θθ,则下列结论中一定成立的是 ( )A.22sin =θ B .22sin -=θC .1cos sin =+θθ D .0cos sin =-θθ 10.函数)3 2sin(2π+=x y 的图象( )A .关于原点对称B .关于点(-6π,0)对称C .关于y 轴对称D .关于直线x=6π对称 11.函数sin(),2y x x R π=+∈是 ( )A .[,]22ππ-上是增函数 B .[0,]π上是减函数C .[,0]π-上是减函数D .[,]ππ-上是减函数 12.函数2cos 1y x = +的定义域是 ( )A .2,2()33k k k Z ππππ-+∈?????? B .2,2()66k k k Z ππππ-+∈? ?????C .22,2()33k k k Z ππππ++∈??????D .222,2()33k k k Z ππππ-+∈??????二、填空题:13. 函数])32,6[)(8cos(πππ∈-=x x y 的最小值是 . 14 与02002-终边相同的最小正角是_______________15. 已知,24,81cos sin παπαα<<=?且则=-ααsin cos . 16 若集合|,3A x k x k k Z ππππ??=+≤≤+∈????,{}|22B x x =-≤≤, 则B A =_______________________________________ 必修4 第三章三角恒等变换(1)一、选择题:1.cos 24cos36cos66cos54????-的值为 ( )A 0 B12 C 32D 12- 2.3cos 5α=-,,2παπ??∈ ???,12sin 13β=-,β是第三象限角,则=-)cos(αβ( ) A 3365-B 6365C 5665D 1665- 3.设1tan 2,1tan xx +=-则sin 2x 的值是 ( ) A 35 B 34- C 34 D 1- 4. 已知()()tan 3,tan 5αβαβ+=-=,则()tan 2α的值为 ( )A 47- B 47 C 18 D 18-5.βα,都是锐角,且5sin 13α=,()4cos 5αβ+=-,则βsin 的值是 ( )A 3365B 1665C 5665D 63656. )4,43(ππ-∈x 且3cos 45x π??-=- ???则cos2x 的值是 ( ) A 725-B 2425-C 2425D 7257.在3sin cos 23x x a +=-中,a 的取值域范围是 ( )A 2521≤≤aB 21≤aC 25>aD 2125-≤≤-a8. 已知等腰三角形顶角的余弦值等于54,则这个三角形底角的正弦值为 ( )A 1010B 1010-C 10103D 10103-9.要得到函数2sin 2y x =的图像,只需将x x y 2cos 2sin 3-=的图像 ( )A 、向右平移6π个单位 B 、向右平移12π个单位 C 、向左平移6π个单位 D 、向左平移12π个单位10. 函数sin 3cos 22x xy =+的图像的一条对称轴方程是 ( )A 、x =113πB 、x =53πC 、53x π=-D 、3x π=-11.若x 是一个三角形的最小内角,则函数sin cos y x x =-的值域是 ( )A [2,2]-B 31(1,]2-- C 31[1,]2-- D 31(1,)2-- 12.在ABC ?中,tan tan 33tan tan A B A B ++=,则C 等于 ( ) A3π B 23π C 6π D 4π二、填空题:13.若βαtan ,tan 是方程04332=++x x 的两根,且),2,2(,ππβα-∈则βα+等于 14. .在ABC ?中,已知tanA ,tanB 是方程23720x x -+=的两个实根,则tan C =15. 已知tan 2x =,则3sin 22cos 2cos 23sin 2x xx x+-的值为16. 关于函数()cos223sin cos f x x x x =-,下列命题: ①若存在1x ,2x 有12x x π-=时,()()12f x f x =成立; ②()f x 在区间,63ππ??-????上是单调递增; ③函数()f x 的图像关于点,012π?????成中心对称图像; ④将函数()f x 的图像向左平移512π个单位后将与2sin 2y x =的图像重合. 其中正确的命题序号 (注:把你认为正确的序号都新课标必修4 三角函数测试题说明:本试卷分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷60分,第Ⅱ卷60分,共120分,答题时间90分钟.第Ⅰ卷(选择题,共60分)一、选择题:(本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1函数sin(2)(0)y x ??π=+≤≤是R 上的偶函数,则?的值是 ( )A 0 B4π C 2πD π 2.A 为三角形ABC 的一个内角,若12sin cos 25A A +=,则这个三角形的形状为 ( )A. 锐角三角形B. 钝角三角形C. 等腰直角三角形D. 等腰三角形 3曲线sin (0,0)y A x a A ωω=+>>在区间2[0,]πω上截直线2y =及1y =-所得的弦长相等且不为0,则下列对,A a 的描述正确的是 ( ) A 13,22a A = > B 13,22a A =≤ C 1,1a A =≥ D 1,1a A =≤ 4.设)2,0(πα∈,若53sin =α,则)4cos(2πα+等于 ( ) A .57 B .51 C .57- D .51-5. oooo54cos 66cos 36cos 24cos -的值等于 ( )A.0B.21C.23 D.21-6.=-+0tan50tan703tan50tan70 ( )A. 3B.33 C. 33- D. 3-7.函数)sin(?ω+=x A y 在一个周期内的图象如图,此函数的解析式为 ( )A .)322sin(2π+=x y B .)32sin(2π+=x yC .)32sin(2π-=x y D .)32sin(2π-=x y8. 已知53sin ),,2(=∈αππα,则)4tan(πα+等于 ( ) A .71 B .7 C .71- D .7-9.函数)4tan()(π+=x x f 的单调增区间为 ( ) A .Z k k k ∈+-),2,2(ππππ B. Z k k k ∈+),,(πππC .Z k k k ∈+-),4,43(ππππD .Z k k k ∈+-),43,4(ππππ 10. sin163sin 223sin 253sin313+= ( )A 12-B 12C 32-D 3211.函数2sin ()63y x x ππ=≤≤的值域是 ( )A .[]1,1-B .1,12??????C .13,22??????D .3,12??????12.为得到函数y =cos(x-3π)的图象,可以将函数y =sinx 的图象 ( ) A.向左平移3π个单位 B.向右平移3π个单位C.向左平移6π个单位 D.向右平移6π个单位二、填空题:(共4小题,每题4分,共16分,把答案填在题中横线上) 13.已知sin cos αβ+13=,sin cos βα-12=,则sin()αβ-=__________ 14.若)10(sin 2)(<<=??x x f 在区间[0,]3 π上的最大值是2,则?=________15. 关于函数f(x)=4sin(2x +3π), (x ∈R)有下列命题:①y =f(x)是以2π为最小正周期的周期函数; ② y =f(x)可改写为y=4cos(2x -6π);③y =f(x)的图象关于(-6π,0)对称;④ y =f(x)的图象关于直线x =-6 π对称;其中正确的序号为。

人教版高一数学必修四测试题(含详细答案-出题参考必备).doc

人教版高一数学必修四测试题(含详细答案-出题参考必备).doc

必修4三角函数(1)一、选择题:1. 已知A={第一象限角}, B={锐角}, C={小于90。

的处},那么A 、B 、V3 2「, sin a-2 cos a3. ------------------------- 己知 ----------------3sina + 5cosa =-5,那么tana 的值为若角600°的终边上有一点(-4卫),则Q 的值是,沿y 轴向下平移1个单位,得到函数y=2sinx 的图象( )1 • s 71、,B. ------------------- y= —sin(2x ) + 1 D. — sin(2x - —) +12.A. B=AACB. BUC=CC. ASCD. A=B=Csin 2120° 等于4. A. ~2B. 2C.23 16D.23 16下列函数中,最小正周期为兀的偶函数是 A.y=sin2xXB.y=cos—C .sin2x+cos2x1 +tan6. 7. 4V3B. -473D.Y 7T Y耍得到函数尸cos(---)W 图彖,只需将y=sin 一的图彖(TTTTA •向左平移一个单位B.同右平移一个单位22TT 7TC.向左平移-个单位 D •向右平移-个单位 4 4若函数y=f(x)的图象上每一点的纵坐标保持不变,横坐标仲长到原来的2倍,再将C 关系是 V3 2D,7T整个图象沿X 轴向左平移尹单位 •则 y=f(x)是1 •… 兀、,A • y= — sin( 2x 4—) +1 C.y=2 sin(2x + —)4-12 42 4&函数y=sin(2x+—)的图像的一条对轴方程是12•函数y = A /2COSX + 1的定义域是二、填空题:13. 函数 y = cos(x-—)(XG [―,—-T ])的最小值是 ________________________ .8 6 3 14. 与-2002°终边相同的最小正角是 _______________ .I JI15. 已知sin6TcosQ 二一,且一<a< —,则cosa-sina =8 4 2----------------------16. 若集合 A = ^x\k7T + ^<x<k7T-i-7r,keZ^f B = {x\-2< x<2],则 AC\B=7tA.x=- —2 B. x=- —4 c -x=i9. 若sin 0 - cos&=丄,则下列结论中一定成立的是2A.sin& =並B. sin& = 一返2 2TT10. 函数y = 2sin(2x + -)的图象 C. sin& + cos& 二 1D. sin&-cos& = 0A.关于原点对称B.关于点(一兰 0)对称C.关于y 轴对称D.关于直线%=仝对称611. 函 ^y = sin(x + —),XG R 是jr TTA ・[-py]上是增函数 B. [0,龙]上是减函数 C. [―不0]上是减函数D. [-盜龙]上是减函数A.C.伙wZ)B.2k 兀 - ,2kjr —伙 w Z)6 6 (ke Z) D.2R 兀 -- ,2k 兀 ---- {k G Z)3 3一、选择题:必修4第三章三角恒等变换(1)1. cos 24° cos 36 一cos 66 cos 54°的值为sin0 = -12130是第三彖限角,贝ijcos(0 —a)=(33 6356 16A—— B — C — D -----65 65 65 651 + tan x3.设丄W =2,贝ij sin 2兀的值是1 - tan x3 3 3A - B—— c - D -15 4 4g4.已^ltan(a + 0) = 3,tan(a-/?) = 5,则tan(2a)的值为4 A -------74 B - 754,0都是锐角,R sin a -5 二—, 1333 16A — B65 653龙716. XG ( ------- ,—)11 cos -x4 4 <4 /7 24A -------B -25 25 7.在V^sinx + cos兀=2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学必修四综合测试题
一、选择题
1.若点P在的终边上,且|OP|=2,则点P的坐标()
A. B. C. D.
2.已知=(5,-3),C(-1,3),=2,则点D的坐标为
(A)(11,9)(B)(4,0)(C)(9,3)(D)(9,-3)
3.设向量的模为,则c os2=( )
A. B. C.
D.
4.已知,则 f (1)+f (2)+……+f (2005)+f (2006)=( )
A. B. C.1
D.0
5.在则这个三角形的形状是
(A)锐角三角形(B)钝角三角形
(C)直角三角形(D)等腰三角形
6.把函数y=c os x的图象上的所有点的横坐标缩小到原来的一半(纵坐标不变),
然后把图象向左平移个单位,则所得图形对应的函数解析式为()
A. B.
C. D.
7.若角α满足条件sin2α<0,cosα﹣sinα<0,则α在()A第一象限B.第二象限 C 第三象限 D 第四象限
8.己知是夹角为的两个单位向量,则与的夹角的余弦值是
(A)(B)(C)(D)
9.已知函数的最大值为,且,则=()
A.B.C.
或D.
0或
10.若函数f (x)=si nax+c os ax(a>0)的最小正周期为1,则它的图像的一个对称中心为()
A. B.(0,0) C.()
D.
11.设向量,若(t R),则的最小值为()
A. B.1 C.
D.
12.已知函数 f (x)=f (x),且当时,f (x)=x+sin x,设a=f (1),b=f
(2),c=f (3),则()
A.a<b<c
B.b<c<a
C.c<b<a
D.c<a<b
二、填空题
13.的值等于
14.设(sin15o,cos15o),则与的夹角为_____________.
15.已知sin+2sin(2+)=0,且,(kZ),则3tan(+)+tan=_____. 16.下面有四个命题:
(1)函数y=sin(x+)是偶函数;
(2)函数f (x)=|2cos2x1|的最小正周期是;
(3)函数f (x)=sin(x+)在上是增函数;
(4)函数f (x)=a sin xb cos x的图象的一条对称轴为直线x=,则a+b=0.
其中正确命题的序号是_____________________.
三、解答题
17.(其中a∈R).已知:
(Ⅰ)若x∈R,求f(x)的最小正周期;
(Ⅱ)若f(x)在上最大值与最小值之和3,求a的值
18.已知向量.
(1)当时,求的值;
(2)求函数的最大值,并求出f(x)取得最大值时x的集合.
19.已知函数.
(1)求函数的最小正周期、最小值和最大值;
(2)画出函数区间内的图象.
20.已知在直角坐标系中(O为坐标原点),,.
(Ⅰ)若A、B、C可构成三角形,求x的取值范围;
(Ⅱ)当x=6时,直线OC上存在点M,且,求点M的坐标.
21.已知函数
.
(Ⅰ)求函数f (x)的单调递减区间;
(Ⅱ)将函数 f (x)的图象向右平移m个单位长度后得到g(x)的图象,求使函数g(x)为偶函数的m的最小正值.
22.(10分)已知
(Ⅰ)若求的表达式;
(Ⅱ)若函数 f (x)和函数g(x)的图象关于原点对称,求函数g(x)的解析式;
(Ⅲ)若在上是增函数,求实数的取值范围.
新郑一中高一数学必修四综合测试题<一>答案
一、选择题
CDBABD BBDCCD
二、填空题13. 14.105o 15.0 16.
(1)(4)
三、解答题
17. 解:
∵(3分)
(Ⅰ)最小正周(6分)
(Ⅱ)∵,∴,
∴(9分)
即∴2a+3=3即:a=0(12分)
18.解:(1)当时,?=0,


(2)f(x)=2
x
=sin2x+cos2x﹣2=,
∴当2x++kπ(k∈Z)时,f(x)取得最大值﹣2,
此时x的集合是.
19. 解:
(1)函数的最小正周期、最小值和最大值分别是,,;
(2)列表,图像如下图示
-1 0 0 --1
20.解:(1)∵A、B、C可构成三角形∴A、B、C三点不共线,即与不共线
而则有12+4(x3)0
即x的取值范围是x R且x
(2)∵与共线,故设
又∵即,解得或
∴或∴点M坐标为(2,1)或()
21.解:
=
=2si nxc os x+=
(1) 令,解得
所以f (x)的单调递减区间是
(2)将函数 f (x)的图象平移后的解析式为:
要使函数g(x)为偶函数,则
又因为m>0,所以k= 1时,m取得最小正值.
22.解:(1)
=2+sin xc os2x1+sin x=sin2x+2sin x
(2) 设函数y=f (x)的图象上任一点M(x0,y0)关于原点的对称点为N(x,y)
则x0= x,y0= y
∵点M在函数y=f (x)的图象上
,即y= sin2x+2sin x
∴函数g(x)的解析式为g(x)= sin2x+2sin x
(3)设sin x=t,(1≤t≤1)
则有
1 当时,h(t)=4t+1在[1,1]上是增函数,∴λ= 1
2 当时,对称轴方程为直线.
ⅰ) 时,,解得
ⅱ)当时,,解得综上,.。

相关文档
最新文档