“数形结合”方法归纳总结

合集下载

数形结合数学思想方法

数形结合数学思想方法

数形结合数学思想方法小学数学中虽然没有学习函数,但还是慢慢的开始渗透函数的思想。

为初中数学学习打好基础,如确实位置中,用数对表示平面图形上的点,点的平移引起了了数对的变化,而数对变化也对应了不同的点。

下面小编给大家整理了关于数形结合数学思想方法,希望对你有帮助!1数形结合数学思想方法“数”与“形”是数学的基本研究对象,他们之间存在着对立统一的辨证关系。

数形结合是一种重要的数学思想,是人们认识、理解、掌握数学的意识,它是我们解题的重要手段,是根据数理与图形之间的关系,认识研究对象的数学特征,寻求解决问题的方法的一种数学思想。

它是在一定的数学知识、数学方法的基础上形成的。

它对理解、掌握、运用数学知识和数学方法,觖决数学问题能起到促进和深化的作用。

2数形结合数学思想方法用图形的直观,帮助学生理解数量关系,提高教学效率用数形结合策略表示题中量与量之关系,可以达到化繁为简、化难为易的目的。

“数形结合”可以借助简单的图形(如统计图)、符号和文字所作的示意图,促进学生形象思维和抽象思维的协调发展,沟通数学知识之间的联系,从复杂的数量关系中凸显最本质的特征。

它是小学数学教材的一个重要特点,更是解决问题时常用的方法。

众所周知,学生从形象思维向抽象思维发展,一般来说需要借助于直观。

以数解形:有关图形中往往蕴含着数量关系,特别是复杂的几何形体可以用简单的数量关系来表示。

而我们也可以借助代数的运算,常常可以将几何图形化难为易,表示为简单的数量关系(如算式等),以获得更多的知识面,简单地说就是“以数解形”。

它往往借助于数的精确性来阐明形的某些属性,表示形的特征、形的求积计算等等,而有的老师在出示图形时太过简单,学生直接来观察却看不出个所以然,这时我们就需要给图形赋予一定价值的问题。

助表象,发展学生的空间观念,培养学生初步的逻辑思维能力。

儿童的认识规律,一般来说是从直接感知到表象,再到形成科学概念的过程。

表象介于感知和形成科学概念之间,抓住这中间环节,在几何初步知识教学中,发展学生的空间观念,培养初步的逻辑思维能力,具有十分重要意义。

高考数学复习点拨 复数中的数形结合

高考数学复习点拨 复数中的数形结合

复数中的数形结合因为复数i b a z +=与复平面上的点()b a Z ,是一一对应的,体现了数与形上的对应,所以在复数中利用数形结合解某些问题不仅巧妙,而且也体现出一种数学之美. 知识点:设动点Z 、定点1Z 、2Z 分别表示复数z 、1z 、2z 所对应的点,则 ⑴1z z -的几何含义:点Z 到点1Z 的距离; ⑵r z z =-1表示以r 为半径,点1Z 为圆心的圆; ⑶21z z z z -=-表示线段的垂直平分线,其中点1Z 、2Z 是线段的两个端点; ⑷a z z z z 221=-+-,当212Z Z a =时,表示线段1Z 2Z ; 当212Z Z a >时,表示以点1Z 、2Z 为焦点,a 2为长轴长的椭圆; 上述几种曲线都可以结合⑴当中的1z z -的几何含义来理解,比如,⑶中1z z -表示点Z 到点1Z 的距离,2z z -表示点Z 到点2Z 的距离,即点Z 到点1Z 的距离与到点2Z 的距离相等,所以,点Z 的轨迹是线段1Z 2Z 的垂直平分线.下面举例说明数形结合的用法:例1.若24i 3≤++z ,则z 的最大值为.解析:由24i 3≤++z 知,复数z 对应点的轨迹为以2为半径,点()431--,Z 为圆心的圆及其内部.所以,z 的最大值为7251=+=+r OZ .例2.如果复数z 满足2i i =-++z z ,那么1i ++z 的最小值为()A .1B .2C .2D .5 解析:由2i i =-++z z 知,复数z 对应的点的轨迹是线段AB ,其中()01,-A ,()01,B .又1i ++z 表示点()1,1--到线段AB 的距离,故当i -=z 时,11i i =++n m z .例3.复数z 满足条件4i 2-=+z z ,则z 的最小值为.解析:由4i 2-=+z z 知,复数z 对应点的轨迹为线段AB 的垂直平分线,其中()02,-A ,()40,B ,z 即原点到垂直平分线上点的距离.故553z =min .例4.复数z 满足2i 2=-z ,则2i +z 的取值X 围是() A .⎥⎦⎤⎢⎣⎡25,21 B .⎥⎦⎤⎢⎣⎡27,23 C .⎥⎦⎤⎢⎣⎡221,1 D .⎥⎦⎤⎢⎣⎡221,2 解析:由2i 2=-z 可得:12i =-z .因此复数z 对应点Z 的轨迹是以)21,0(为圆心,1为半径的圆周,而()2i 2i --=+z z 即点Z 到点()2,0-的距离,最小值为23,最大值为27.。

数形结合思想方法(新课标)

数形结合思想方法(新课标)

数形结合思想方法一、知识整合1.数形结合是数学解题中常用的思想方法,使用数形结合的方法,很多问题能迎刃而解,且解法简捷。

所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法。

数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化能够变抽象思维为形象思维,有助于把握数学问题的本质,它是数学的规律性与灵活性的有机结合。

2.实现数形结合,常与以下内容有关:①实数与数轴上的点的对应关系;②函数与图象的对应关系;③曲线与方程的对应关系;④以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;⑤所给的等式或代数式的结构含有明显的几何意义。

如等式()()x y -+-=214223.纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是研究“以形助数”。

4.数形结合的思想方法应用广泛,常见的如在解方程和解不等式问题中,在求函数的值域,最值问题中,在求复数和三角函数问题中,运用数形结合思想,不仅直观易发现解题途径,而且能避免复杂的计算与推理,大大简化了解题过程。

这在解选择题、填空题中更显其优越,要注意培养这种思想意识,要争取胸中有图,见数想图,以开拓自己的思维视野。

二、例题分析例1.2230 13x x kx k k ++=-若关于的方程的两根都在和之间,求的取值范围。

分析:2()23f x x kx k x =++令,其图象与轴交点的横坐标就是方程()0f x =()13y f x =-的解,由的图象可知,要使二根都在,之间, (1)0f ->只需,(3)0f >,()()02bf f k a-=-<同时成立. 10(10)k k -<<∈-解得,故,例2. 解不等式x x +>2 解:法一、常规解法:原不等式等价于或()()I x x x x II x x ≥+≥+>⎧⎨⎪⎩⎪<+≥⎧⎨⎩2020202解,得;解,得()()I x II x 0220≤<-≤<综上可知,原不等式的解集为或{|}{|}x x x x x -≤<≤<=-≤<200222 法二、数形结合解法: 令,,则不等式的解,就是使的图象y x y x x x y x 121222=+=+>=+在的上方的那段对应的横坐标,y x 2=如下图,不等式的解集为{|}x x x x A B ≤<而可由,解得,,,x x x x x B B A +===-222故不等式的解集为。

“数形结合”方法归纳总结

“数形结合”方法归纳总结

“数形结合”方法归纳总结一、以数助形“数(代数)”与“形(几何)”是中学数学的两个主要研究对象,而这两个方面是紧密联系的.体现在数学解题中,包括“以数助形”和“以形助数”两个方面.“数”与“形”好比数学的“左右腿”.全面理解数与形的关系,就要从“以数助形”和“以形助数”这两个方面来体会.此外还应该注意体会“数”与“形”各自的优势与局限性,相互补充.“数缺形时少直觉,形少数时难入微;数形结合百般好,隔离分家万事非.”华罗庚的这四句诗很好地总结了“数形结合、优势互补”的精要,“数形结合”是一种非常重要的数学方法,也是一种重要的数学思想,在以后的数学学习中有重要的地位.要在解题中有效地实现“数形结合”,最好能够明确“数”与“形”常见的结合点,,从“以数助形”角度来看,主要有以下两个结合点:(1)利用数轴、坐标系把几何问题代数化(在高中我们还将学到用“向量”把几何问题代数化);(2)利用面积、距离、角度等几何量来解决几何问题,例如:利用勾股定理证明直角、利用三角函数研究角的大小、利用线段比例证明相似等.二、以形助数几何图形具有直观易懂的特点,所以在谈到“数形结合”时,更多的老师和学生更偏好于“以形助数”,利用几何图形解决代数问题,常常会产生“出奇制胜”的效果,使人愉悦.几何直观运用于代数主要有以下几个方面:(1)利用几何图形帮助记忆代数公式,例如:正方形的分割图可以用来记忆完全平方公式;将两个全等的梯形拼成一个平行四边形可以用来记忆梯形面积公式;等等.(2)利用数轴或坐标系将一些代数表达式赋予几何意义,通过构造几何图形,依靠直观帮助解决代数问题,或者简化代数运算.比如:绝对值的几何意义就是数轴上两点之间的距离;数的大小关系就是数轴上点的左右关系,可以用数轴上的线段表示实数的取值范围;利用函数图像的特点把握函数的性质:一次函数的斜率(倾斜程度)、截距,二次函数的对称轴、开口、判别式、两根之间的距离,等等;一元二次方程的根的几何意义是二次函数图像与x轴的交点;函数解析式中常数项的几何意义是函数图像与y轴的交点(函数在x=0时有意义);锐角三角函数的意义就是直角三角形中的线段比例.。

数形结合知识点

数形结合知识点

数形结合知识点数形结合是指数学中数与图形的结合,通过运用数学知识解决与图形和空间有关的问题。

在数形结合中,数与图形的关系相互补充,相互依存,共同呈现出独特的数学魅力。

一、数形结合的基本概念数形结合是数学中的一个重要概念,它主要包括以下几个方面的内容:1.几何图形与数量关系:通过几何图形可以了解到其中的数量关系,例如平行线的性质、多边形的各种角度关系等。

通过数学思维和分析方法可以研究这些数量关系,从而更好地理解和应用几何图形。

2.数学模型与几何形状相结合:数学模型是指利用数学方法来模拟和解决实际问题的过程。

而几何形状则是模型的基础,通过数学建模和分析,可以将问题转化为几何形状的关系,进而获得问题的解答。

3.平面几何与立体几何的结合:在数形结合中,平面几何和立体几何的知识相互交叉、相互渗透。

例如在计算一个立体图形的体积时,需要运用到平面几何中的面积计算公式,而在分析一个平面图形的特征时,也需要考虑到其所在平面的空间性质。

4.空间想象与数学推理的结合:数形结合还要求我们能够在思维中准确地理解和想象几何图形的形状、大小和位置。

在这个过程中,我们需要结合空间想象能力和数学推理能力来分析和解决问题。

二、数形结合的应用领域数形结合的知识点在数学学科的多个领域都有广泛的应用,下面以几个典型的应用领域来介绍:1.建筑设计与规划:建筑设计中需要考虑到空间形状、比例、尺寸等因素,这些都需要通过数形结合的方法进行分析和解决。

例如,设计师在确定建筑物的尺寸和布局时,常常需要运用到数学几何的知识。

2.工程测量与绘图:在进行工程测量与绘图时,需要准确地测量和绘制各种几何形状,例如房屋平面图、道路工程图等。

在这个过程中,运用到的就是数形结合的方法。

3.地理与地貌研究:地理和地貌研究中需要考虑到地球表面的形状、地貌特征等因素,而这些都可以通过数学几何的知识进行研究和分析。

4.数据可视化与分析:在进行数据可视化与分析时,常常需要利用图表来呈现数据的分布和关系。

中考数学专题之数形结合

中考数学专题之数形结合

中考数学专题 数形结合知识梳理数形结合是把抽象的数学语言与直观的图形结合起来思索,使抽象思维和形象思维相结合,通过“以形助数”或“以数解形”可使复杂问题简单化,抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质.另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷,从而起到优化计算的目的.华罗庚先生曾指出:“数与形本是相倚依,焉能分作两边飞;数缺形时少直觉,形少数时难入微;数形结合百般好,隔裂分家万事休.”这充分说明了数形结合数学学习中的重要性,是中考数学的一个最重要数学思想.典型例题一、在数与式中的应用【例1】实数a 、b 在数轴上的位置如图所示,化简2a ab +-=_________.【分析】 由数轴上a ,b 的位置可以得到a 〈0,b>0且a <b .∴2a a =-,a b b a -=-.【解】()22a a b a b a a b +-=-+-=-+【例2】 如下图是小明用火柴搭的1条、2条、3条“金鱼”……,则搭n 条“金鱼”需要火柴_________根.【分析】 由图形可知,搭1条金鱼需要8根火柴棒,后面每多一条就多6根火柴棒,所以搭n 条金鱼共需8+6(n -1)=(6n+2)根火柴棒. 【解】6n+2二、在方程、不等式中的应用【例3】 (08聊城)已知关于x 的不等式组020x a x ->⎧⎨->⎩的整数解共有2个,则a 的取值范围是___________.【分析】解不等式组得解集为2x ax >⎧⎨<⎩,我们可以将x<2标注在数轴上,要使得不等式组有2个整数解,由图象可知整数解为0,1,则a 应在-1~0之间,且可以等于-1,但不能为0,所以以的取值范围是-l ≤a <0.【解】 1≤n 〈0【例4】(08南通)用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A.203210x yx y+-=⎧⎨--=⎩B.2103210x yx y--=⎧⎨--=⎩C.2103250x yx y--=⎧⎨+-=⎩D.20210x yx y+-=⎧⎨--=⎩【分析】根据图象我们可以知道这个方程组的解为11xy=⎧⎨=⎩,只要将解进行代入检验即可.【解】D【例5】已知二次函数y=a x2+bx+c的图象如图所示,若关于x的方程a x2+bx+c-k=0有两个不相等的实数根,则k的取值范围为()A.k〉3 B.k=3 C.k<3 D.无法确定【分析】如果根据b2-4a c的符号来判别解的情况,本题将无从入手,可将原方程变形为a x2+bx+c=k,从而理解成是两个函数的交点问题,即2y ax bx cy k⎧=++⎨=⎩,由图象可知只要y=k〈3就一定定与抛物线有两个不同的交点,所以答案选C.【解】C三、在函数中的应用【例6】(08安徽)如图为二次函数y=a x2+bx+c的图象,在下列说法中:①a c<0 ②方程a x2+bx+c=0的根是x1=-1,x2=3 ③a+b+c>0 ④当x>1时,y随x的增大而增大正确的说法有__________.(把正确的答案的序号都填在横线上)【分析】由图象可知,开口向上,与x轴交于-1和3两点,与y轴交于负半轴,则a>0,c〈0;由对称性知对称轴x=1,所以结论①②④正确.【解】①②④【例7】某跳水运动员进行10米跳台跳水训练时,身体(看成一点)在空中的运动路线如图所示,为经过原点O 的一条抛物线(图中标出的数据为已知条件).要跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面2103米,入水处距池边的距离为4米,同时,运动员在距水面高度为5米以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误, (1)求这条抛物线的解析式;(2)在某次试跳中,测得运动员在空中运动路线是如图抛物线,且运动员在空中调整好入水姿势时,距池边的水平距离为3导米,问此次跳水会不会失误?并通过计算说明理由.【分析】(1)在给出的直角坐标系中,要确定抛物线的解析式,就要确定抛物线上三个点的坐标,如起跳点O(0,0),入水点(2,-10),最高点的纵点标为23. (2)求出抛物线的解析式后,要判断此次跳水会不会失误, 就是要看当该运动员在距池边水平距离为335米,3332155x =-=时, 该运动员距水面高度与5米的关系.【解】(1)在给定的直角坐标系下,设最高点为A ,入水点为B ,抛物线的解析式为y=a x 2+bx+c ,由图可知,O ,B 两点的坐标依次为(0,0)(2,-10),且顶点A 的纵坐标为23,则2042104243c a b c ac b a ⎧⎪=⎪⎪++=-⎨⎪-⎪=⎪⎩,解得2561030a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩或3220a b c ⎧=-⎪⎪=-⎨⎪=⎪⎩抛物线的对称轴在y 轴右侧,∴02b a ->.又抛物线开口向下,∴256a =-,103b =,c=0,∴2251063y x x =-+.(2)当运动员在空中距池边距离为335米时,即383255x=-=时,63y=-,∴此时运动员距水面高为16410533-=<.因此,试跳会出现失误.四、在概率统计中的应用【例8】(05江西)某报社为了解读者对本社一种报纸四个版面的喜欢情况,对读者作了一次问卷调查,要求读者选出自己最喜欢的一个版面,将所得数据整理后绘制成了如图所示的条形统计图:(1)请写出从条形统计图中获得的一条信息;(2)请根据条形统计图中的数据补全扇形统计图,并说明这两幅统计图各有什么特点;(3)请你根据上述数据,对该报社提出一条合理的建议.【分析】观察条形统计图可以计算出调查总人数,画扇形统计图需计算出第一版、第二版的百分比和圆心角,分别为15003601085000⨯︒=︒,500360365000⨯︒=︒,建议可从不足的方面提出.【解】(1)参加调查的人数为5000人;(2)如图所示:条形统计图能清楚地表示出喜欢各版面的读者人数.扇形统计图能清楚地表示出喜欢各版面的读者人数占所调查的总人数的百分比.(3)如:建议改进第二版的内容,提高文章质量,内容更贴近生活,形式更活泼些.综合训练1.“数轴上的点并不都表示有理数,如图中数轴上的点P 所表示的数是2",这种说明问题的方式体现的数学思想方法叫做( )A .代入法B .数形结合C .换元法D .分类讨论2.(08大连)如图,两温度计读数分别为我国某地今年2月份某天的最低气温与最高气温,那么这天的最高气温比最低气温高 ( )A .5℃B .7℃C .12℃D .-12℃3.某人从A 地向B 地打长途电话6分钟,按通话时间收费,3分钟以内收费2.4元,此后每加1分钟加收1元,则表示电话费y(元)与通话时间(分)之间的关系的图象正确的是( )4.若M 112y ⎛⎫- ⎪⎝⎭,,N 214y ⎛⎫- ⎪⎝⎭,,312y ⎛⎫ ⎪⎝⎭,三点都在函数ky x=(k<0)的图象上,则y 1,y 2,y 3的大小关系为( )A .y 2>y 3>y 1B .y 2〉y 1>y 3C .y 3>y 1〉y 2D .y 3〉y 2〉y 15.关于x 的一元二次方程x 2-x -n=0没有实数根,则抛物线y=x 2-x -n 的顶点在A .第一象限B .第二象限C .第三象限D .第四象限( )6.(08临沂)若不等式组302741x a x x +<⎧⎨+>-⎩的解集为x 〈0,则a 的取值范围为 ( )A .a 〉0B .a =0C .a >4D .a =47.(08镇江)福娃们在一起探讨研究下面的题目:函数y=x 2-x+m (m 为常数)的图象如图所示,如果x=a 时,y<0;那么x=a -1时,函数值( )下面是福娃们的讨论,请你解答该题.贝贝:我注意到当x=0时,y=m〉0.晶晶:我发现图象的对称轴为x=1 2欢欢:我判断出x1<a〈x2.迎迎:我认为关键要判断a-1的符号.妮妮:m可以取一个特殊的值.A.y<0 B.0<y<m C.y〉m D.y=m8.如图,在平面直角坐标系中,∠AOB=150°,OA=OB=2,则点A、B的坐标分别是_________和_________.9.在边长为a的正方形中,挖掉一个边长为b的小正方形(a>b)如图1,把余下的部分剪拼成一个矩形如图2,通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是_______________.10.(08绍兴)如图,已知函数y=x+b和y=a x+3的图象交点为P,则不等式x+b>a x+3的解集为__________.11.方程组211y xy x=-⎧⎨=--⎩的解是__________.12.(08广州)如图,为实数a 、b 在数轴上的位置,化简()222a b a b ---.13.(02南京)(1)阅读下面材料:点A 、B 在数轴上分别表示实数a 、b,A 、B 两点之间的距离表示为AB .当A 、B 两点中有一点在原点时,不妨设点A 在原点,如图1,AB OB b a b ===-; 当A 、B 两点都不在原点时,①如图2,点A 、B 都在原点的右边AB OB OA b a b a a b =-=-=-=-; ②如图3,点A 、B 都在原点的左边,()AB OB OA b a b a a b =-=-=---=-; ③如图4,点A 、B 在原点的两边,()AB OB OA a b a b a b =+=+=+-=-.(2)回答下列问题:①数轴上表示2和5的两点之间的距离是_______,数轴上表示-2和-5的两点之间的距离是_______,数轴上表示1和-3的两点之间的距离是________;②数轴上表示x 和-1的两点A 和B 之间的距离是_________,如果2AB =,那么x 为__________; ③当代数式12x x ++-取最小值时,相应的x 的取值范围是____________.14.(08苏州)某厂生产一种产品,图①是该厂第一季度三个月产量的统计图,图②是这三个月的产量与第一季度总产量的比例分布统计图,统计员在制作图①、图②时漏填了部分数据.根据上述信息,回答下列问题:(1)该厂第一季度_________月份的产量最高.(2)该厂一月份产量占第一季度总产量的_______%.(3)该厂质检科从第一季度的产品中随机抽样,抽检结果发现样品的合格率为98%.请你估计:该厂第一季度大约生产了多少件合格的产品?(写出解答过程)15.(08恩施)如图所示,C 为线段BD 上一动点,分别过点B 、D 作AB ⊥BD ,ED ⊥BD ,连接AC 、EC .已知AB=5,DE=1,BD=8;设CD=x .(1)用含x 的代数式表示AC+CE 的长;(2)请问点C 满足什么条件时,AC+CE 的值最小?(3)根据(2)中的规律和结论,请构图求出代数式()224129x x ++-+的最小值.16.如图,已知抛物线与x 轴交于A (-1,0)、B (3,0)两点,与y 轴交于点C (0,3)。

数形结合具体用法

数形结合具体用法

数形结合具体用法
1. 你知道吗,数形结合可以用来解决几何问题呀!比如说计算图形的面积,就像我们要求一个不规则四边形的面积,把它放到坐标系里,通过坐标来计算,多神奇啊!
2. 哎呀呀,在函数问题里数形结合超好用的呢!比如研究函数的单调性和极值,画个图出来不就一目了然了嘛,这可比干瞪着眼看式子清楚多啦!
3. 嘿,你想想看,当你面对一堆数字不知道该怎么分析的时候,数形结合不就派上用场啦!像分析统计数据,把它变成图表,一下子就好理解了,是不是很厉害?
4. 哇塞,在解方程组的时候,数形结合也能大显身手呀!好比直线和曲线的交点,这不就是方程组的解嘛,这种感觉是不是超棒?
5. 哈哈,遇到行程问题的时候可别忘了数形结合哦!把路程和时间用图形表示出来,那进展情况不就清清楚楚啦,多直观呀!
6. 哎哟喂,在研究概率问题的时候,数形结合也是个好家伙呢!用图形来表示各种概率情况,一下子就抓住重点啦,妙不妙?
7. 哇,当要比较大小的时候,数形结合也能来帮忙呀!把数字转化成图形上的位置,谁大谁小一眼便知,太有意思了吧!
8. 嘿嘿,在解决复杂的数学问题时,数形结合就像是一把钥匙呀!比如一个让人头疼的不等式,通过图形来理解,瞬间就打开思路了,牛不牛?
9. 总之呢,数形结合的用处简直太多啦!它就像我们数学学习中的得力助手,能帮我们轻松解决各种难题,让我们的学习变得更加有趣和高效,一定要好好利用它呀!。

高中数学的数形结合思想方法_全(讲解+例题+巩固+测试)

高中数学的数形结合思想方法_全(讲解+例题+巩固+测试)

数形结合的思想方法(1)---讲解篇一、知识要点概述数与形是数学中两个最古老、最基本的元素,是数学大厦深处的两块基石,所有的数学问题都是围绕数和形的提炼、演变、发展而展开的:每一个几何图形中都蕴藏着一定的数量关系,而数量关系又常常可以通过图形的直观性作出形象的描述。

因此,在解决数学问题时,常常根据数学问题的条件和结论之间的内在联系,将数的问题利用形来观察,提示其几何意义;而形的问题也常借助数去思考,分析其代数含义,如此将数量关系和空间形式巧妙地结合起来,并充分利用这种“结合”,寻找解题思路,使问题得到解决的方法,简言之,就是把数学问题中的数量关系和空间形式相结合起来加以考察的处理数学问题的方法,称之为数形结合的思想方法。

数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质。

数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化。

在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围。

二、解题方法指导1.转换数与形的三条途径:①通过坐标系的建立,引入数量化静为动,以动求解。

②转化,通过分析数与式的结构特点,把问题转化到另一个角度来考虑,如将转化为勾股定理或平面上两点间的距离等。

③构造,比如构造一个几何图形,构造一个函数,构造一个图表等。

数学思想方法——数形结合

数学思想方法——数形结合

则ymax
3 3 , ymin 。 3 3
例6.已知直线y x b与曲线x 1 y 2 有且只有一个公共点, 求b的取值范围。
法一 用代数方法转化为方程处理 (思考)
消y得 : x 1 ( x b) 2 x 0且2 x 2 2bx b 2 1 0
0 0
0

② 一正一负
③ 一零一负
两个相等非负根
综上可知 : b 2或 1 b 1
y
l3
l2
o
x
l1
法二 : 数形结合法 如图, y x b表示平行于y x的直线系,x 1 y 2 表示单位圆的右半部分(半圆)。 直线与半圆有且只有一个公共点, 当直线的位置在l1时或在l2到l3之间运动时,符合题意。 当直线的位置在l1时,直线与圆相切。
举一反三
练习 :直线x 3 y m 0与圆x 2 y 2 1在第一象限内 1
( 3,2) 有两个不同的交点,则m ________1
1
X
练习2:如果实数x、y满足等式 3 2+y2=3,那么y/x的最大值是_____ (x-2)
2
-10
-5
5
10
-2
-4
-6
-8
四、 数形结合常见题型:
题型一:数形结合在集合中的应用 例1.设命题甲:0<x<3,命题乙:|x-1|<4, 则甲是乙成立的_____________
【解析】
将两个命题用数轴表示,如下图:
从上图可以看出,命题甲是命题乙的充分不 必要条件.
[点评]对于处理集合的问题,可以用数形结合的方法,如果是
含字母参数的,可以画韦恩图,如果是具体的数集,则可以画数 轴,都可以使集合间的关系直观化.

高中数学二轮专题复习——数形结合思想

高中数学二轮专题复习——数形结合思想

思想方法专题数形结合思想【思想方法诠释】一、数形结合的思想所谓的数形结合,就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义,使数量关系和空间形式巧妙、和谐地结合起来,并充分利用这种“结合”,寻找解题思路,使问题得到解决,数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法。

数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化,从形的直观和数的严谨两方面思考问题,拓宽了解题思路,是数学的规律性与灵活性的有机结合.数形结合的实质是将抽象的数学语言与直观的图象结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化.二、数形结合思想解决的问题常有以下几种:1.构建函数模型并结合其图象求参数的取值范围;2.构建函数模型并结合其图象研究方程根的范围;3.构建函数模型并结合其图象研究量与量之间的大小关系;4.构建函数模型并结合其几何意义研究函数的最值问题和证明不等式;5.构建立体几何模型研究代数问题;6.构建解析几何中的斜率、截距、距离等模型研究最值问题;7.构建方程模型,求根的个数;8.研究图形的形状、位置关系、性质等。

三、数形结合思想是解答高考数学试题的一种常见方法与技巧,特别是在解选择题、填空题时发挥奇特功效,具体操作时,应注意以下几点:1.准确画出函数图象,注意函数的定义域;2.用图象法讨论方程(特别是含参数的方程)的解的个数是一种行之有效的方法,值得注意的是首先把方程两边的代数式看作是两个函数的表达式(有时可能先作适当调整,以便于作图)然后作出两个函数的图象,由图求解。

四、在运用数形结合思想分析问题和解决问题时,需做到以下四点:1.要清楚一些概念和运算的几何意义以及曲线的代数特征;2.要恰当设参,合理用参,建立关系,做好转化;3.要正确确定参数的取值范围,以防重复和遗漏;4.精心联想“数”与“形”,使一些较难解决的代数问题几何化,几何问题代数化,以便于问题求解。

初二数形结合题解题技巧

初二数形结合题解题技巧

初二数形结合题解题技巧
1. 观察图形特点:首先要仔细观察数形结合题中的图形,寻找图形的特点和规律。

例如,图形的对称性、重复性、变化规律等。

2. 运用数学知识:根据题目所给条件和图形的特点,运用基本的几何知识和数学公式进行推理和计算。

如长度、面积、角度的计算等。

3. 利用图形的辅助线:当图形较为复杂时,可以尝试画一些辅助线来辅助解题。

通过引入辅助线,可以将问题转化为更简单的几何问题或代数问题解答。

4. 运用逻辑思维:通过分析题目中的条件和信息,利用逻辑推理思维,找到图形之间的联系和规律,从而推导出答案。

5. 多角度思考:解题时不要固守一种思维方式,可以尝试从不同角度思考问题,寻找多种可能性和解题思路。

6. 锻炼空间想象力:数形结合题通常涉及到对图形的空间变换和投影等概念,因此锻炼空间想象力能够帮助更好地理解和解决问题。

总之,解答数形结合题需要考虑到数学知识的应用,观察和分析图形特点,灵活运用解题技巧和思维方式,以及锻炼创造性和逻辑思维能力。

初中数学思想方法篇——数形结合

初中数学思想方法篇——数形结合

解题思想之数形结合一、注解:数形结合思想指将数量与图形结合起来,对题目中的给定的题设和结论既进行代数方面的分析,又从几何含义方面进行分析,将抽象的数学语言与直观的图形结合起来,使抽象思维与形象思维相结合,也可以使图形的性质通过数量之间的计算与分析,达到更加完整、严密和准确。

在解决数学问题的过程时要善于由形思数,由数思形,数形结合,通过数量与图形的转化,把数的问题利用图形直观的表示出来,力图找到解题思路。

数形结合是数学学习的一个重要方法,通常与平面直角坐标系,数轴及其他数学概念同时使用。

二、实例运用:1.在实数中的运用【例1】如图,在所给数轴上表示出实数—3,—1,2-的点,并把这组数从小到大用“<”连接。

【例2】已知a<0,b<0,且a<b,则()A —b>—aB —b>aC —a >bD b>a2.在不等式中的运用【例3】不等式组2030xx-⎧⎨-≥⎩的正整数解的个数为()A 1个B 2个C 3个D 4个【例4】关于x的不等式组521xx a-≥-⎧⎨-⎩无解,则a的取值范围是。

3.在方程(组)中的运用【例5】利用图像法解方程组24212x yx y-=⎧⎨+=⎩4.在函数中的运用【例6】某水电站的蓄水池有2个进水口和1个出水口,每个进水口进水量与时间的关系如图甲所示,出水口出水量与时间的关系如图乙所示。

已知某天0点到6点进行机组试运行,试机时至少打开一个水口,且该水池的蓄水量与时间的关系如图丙所示。

给出三个判断:(1)0点到3点,只进水不出水;(2)3点到4点,不进水只出水;(3)4点到6点,不进水不出水。

则以上判断正确的是()A (1)B (2)C (2)(3)D (1)(2)(3)【例7】已知二次函数y=ax2+bx+c的图象如图所示,则在(1)a<0,(2)b>0(3)c<0(4)b2-4ac>0中,正确的判断是()A (1)(2)(3)(4)B (4)C(1)(2)(3)D(1)(4)5.在统计与概率中的运用【例8】近年来,某市旅游业蓬勃发展,吸引了大批海内外游客前来观光,下面两图分别反映了该市2001—2004年旅客总人数和旅游业总收入的情况。

数形结合教研活动总结(3篇)

数形结合教研活动总结(3篇)

第1篇一、活动背景随着新课程改革的不断深入,数学教学逐渐从传统的“重计算、轻应用”向“重思维、重能力”转变。

数形结合作为一种重要的数学思想方法,在培养学生数学思维、提高学生数学素养方面具有重要意义。

为了更好地推进数形结合教学,提高教师的专业素养,我校数学组于近日开展了以“数形结合”为主题的教研活动。

本次活动旨在通过研讨、交流和实践,探索数形结合在数学教学中的应用,提升教师的教学水平和学生的数学学习效果。

二、活动内容1. 理论学习活动伊始,全体数学教师共同学习了数形结合的相关理论知识。

通过学习,教师们对数形结合的概念、原理及其在数学教学中的应用有了更深入的了解。

同时,教师们还学习了国内外关于数形结合教学的研究成果,为后续的教学实践提供了理论支撑。

2. 经验分享在理论学习的基础上,各年级教师结合自身教学实践,分享了在数形结合教学中的成功经验和心得体会。

例如,一年级教师通过图形的变换,引导学生发现数与形的联系;二年级教师利用数形结合的思想,帮助学生解决实际问题;三年级教师则通过实例引导学生体会数形结合在解决问题中的优势。

3. 案例研讨针对具体的教学案例,教师们进行了深入的研讨。

以“分数与小数”为例,教师们讨论了如何运用数形结合的思想,帮助学生理解分数与小数之间的关系,以及如何通过图形的变换,使学生在直观感受中掌握分数与小数的概念。

4. 教学实践为了将数形结合的思想更好地融入课堂教学,教师们进行了教学实践。

在教学实践中,教师们尝试运用多种教学手段,如多媒体、实物操作等,使学生在直观、生动的教学环境中感受数形结合的魅力。

5. 总结反思活动最后,教师们对本次教研活动进行了总结反思。

大家一致认为,数形结合教学在提高学生数学素养、培养学生的数学思维能力方面具有重要意义。

同时,教师们也认识到,在今后的教学中,还需不断探索和实践,使数形结合教学更加贴近学生的实际需求。

三、活动成果1. 教师的专业素养得到提升。

通过本次教研活动,教师们对数形结合有了更深入的认识,教学水平得到提高。

二次函数的数形结合归纳

二次函数的数形结合归纳

二次函数的数形结合一、一般式:y=ax 2+bx+c (a ≠0)顶点坐标)44,2(2a b ac a b --,对称轴是ab x 2-= 当ab x 2-=时,函数有最大(小)值为a b ac 442- 抛物线的开口方向和大小 a 的符号,︱a ︱越大开口越小 抛物线的形状相同︱a ︱相同对称轴在y 轴左侧 a ,b 同号对称轴在y 轴右侧 a ,b 异号正半轴 c >0与y 轴的交点(0,c )位置 原点 c=0负半轴 c <0与x 轴的交点的横坐标 ax 2+bx+c=0 的解抛物线与x 轴有两个交点 a ≠0;△=b 2-4ac >0抛物线与x 轴有一个交点 顶点在x 轴上 抛物线与x 轴没有交点 a ≠0;△=b 2-4ac <0抛物线的顶点在y 轴上 b=0抛物线的顶点在原点3个交点 △>0,c △>0,c=0抛物线与坐标轴有 2个交点△=0,c ≠0 △<01个交点b=c=0函数值恒为正(无论x 取何值,y 始终为正) a >0,△<0 函数值恒为负(无论x 取何值,y 始终为负) a >0,△<0 X 轴的对称抛物线是 y=-ax 2-bx-c 抛物线y=ax 2+bx+c (a ≠0)关于 Y 轴的对称抛物线是 y=ax 2-bx+c原点的对称抛物线是 y=-ax 2+bx-c抛物线在x 轴上截得的线段长度—————︱x 1-x 2︱=aac b 42- a ≠0;△=b 2-4ac=0二、顶点式:y=a(x+m)2+k(a ≠0)的顶点是(-m ,k ),对称轴是x =-m. 当x =-m 时,函数有最大(小)值为 k考虑平移时一般要用顶点式,平移规律是抛物线y=a(x+m)2+k 关于x 轴y 轴或原点的对称抛物线——————关键是找到对称抛物线的顶点坐标和a 即可如y=2(x+2)2-3关于x 轴的对称抛物线——关于x 轴的对称抛物线——关于原点的对称抛物线——顶点在一定在什么特殊的函数上-------如何处理三、交点式(两根式):))((21x x x x a y --=,其中21,x x 是c bx ax ++2=0的两个实数根,图象与x 轴的两个交点坐标为( , )和 ( , ),对称轴是直线x= 图像上纵坐标相等的点关于对称轴对称如(2,5),(-4,5)在图像上 对称轴是直线x=1242-=- 抛物线y=ax 2+bx+c 与x 轴交于(x 1,0),(x 2,0)ax 2+bx+c >0——————抛物线))((21x x x x a y --=关于x 轴的对称抛物线——))((21x x x x a y ---=抛物线))((21x x x x a y --=关于y 轴的对称抛物线——))((21x x x x a y ++= 抛物线))((21x x x x a y --=关于原点的对称抛物线—— a >0———— a <0————。

数形结合的概念

数形结合的概念

数形结合的概念数形结合的概念数形结合是指在数学中,通过对几何图形的研究来发现其中的数学规律和性质,从而推导出一些与几何图形相关的数学定理和公式。

这种方法不仅可以帮助我们更深入地理解几何图形,还可以拓展我们对数学知识的认识,使我们能够更好地应用数学知识解决实际问题。

一、数形结合的历史背景早在古代,人们就已经开始探索几何图形与数字之间的联系。

例如,在古希腊时期,欧几里得就提出了许多关于几何图形和数字之间关系的定理,如勾股定理、相似三角形定理等。

此外,在古代中国、印度和阿拉伯等地也有许多学者研究过这方面的问题。

二、数形结合的基本思想数形结合是一种通过探究几何图形中隐藏着的数学规律和性质来推导出一些与几何图形相关的数学定理和公式的方法。

其基本思想是将几何问题转化为代数问题,并通过代数运算来解决问题。

这种方法不仅可以帮助我们更深入地理解几何图形,还可以拓展我们对数学知识的认识,使我们能够更好地应用数学知识解决实际问题。

三、数形结合的应用范围数形结合方法在数学中有着广泛的应用。

例如,在初中阶段,我们就需要通过数形结合方法来推导出勾股定理和相似三角形定理等基本几何定理;在高中阶段,我们需要通过数形结合方法来推导出圆锥曲线的方程和立体几何体积公式等高级数学知识;在大学阶段,我们需要通过数形结合方法来研究微积分、复变函数等高级数学领域。

四、数形结合的优点1. 拓展了我们对数学知识的认识:通过探究几何图形中隐藏着的数学规律和性质,可以帮助我们更深入地理解几何图形,并拓展我们对数学知识的认识。

2. 便于应用:通过将几何问题转化为代数问题,并通过代数运算来解决问题,可以使得复杂的计算变得简单易懂,便于应用。

3. 帮助培养逻辑思维能力:数形结合方法需要我们通过逻辑推理来得出结论,这可以帮助我们培养逻辑思维能力。

五、数形结合的缺点1. 需要具备一定的数学基础:数形结合方法需要我们具备一定的数学基础,否则很难理解其中的概念和推导过程。

小学数学总结_数形结合

小学数学总结_数形结合

第一讲 数形结合看到数,想到形,利用图形的技巧解决问题。

a 想到线段,2a 想到正方形,3a 想到正方体。

一、 三角形数自然数列,金字塔数列,可以构成三角形的图形,成为三角形数。

连续自然数的三角形数的解题思路:1、是连续自然数列,1+2+…+n ,2、圈内填等差数列,3、旋转对称求解。

详见相关例题。

二、 正方形数平方数、奇数数列、金字塔数列,可以构成正方形的图形,成为正方形数。

1+3+5+7+…+(2n-1)=2n ,1+2+3+…+n+…+3+2+1=2n ,23333)...321(...321n n++++++++=。

101、【补充1】1+2+3+…+n =21n(n+1),想到的图形?【难度级别】★☆☆☆☆ 【解题思路】正三角形。

102、【补充2】求解222 (21)n +++【难度级别】★★★☆☆【解题思路】提供数形结合的两种方法,通过此题了解三角形数、正方形数的求解方法。

方法一:正方形数(金字塔数列、奇数列)平方数可以表示成金字塔数列:21=1,1个数; 22=1+2+1,3个数; 23=1+2+3+2+1,5个数;24=1+2+3+4+3+2+1,7个数;……数的个数,构成了奇数列,1+3+5+7+…+(2n-1)=2n ,奇数列可以构成正方形数,将金字塔数列填入正方形数中,如上图。

所以,222 (21)n +++=(2n-1)×1+(2n-3)×2+(2n-5)×3+…+[2n-(2n-1)]×n=2n ×(1+2+3+…+n)-[1×1+2×3+3×5+4×7+…+n ×(2n-1)]1112121231234321=n ×n ×(n+1)-[2(2n-1)+1]÷3×2)1(+⨯n n =)12)(1(61++⨯⨯n n n其中,1×1+2×3+3×5+4×7+…+n ×(2n-1)是采用三角形数的求解方法: 1、连续自然数,1、2、3、…、n 2、每个圈内的数,形成奇数数列 3、旋转对称每个位置的平均值为:[2(2n-1)+1]÷3,数的个数为:1+2+3+…+n =2)1(+⨯n n所以,1×1+2×3+3×5+4×7+…+n ×(2n-1)=[2(2n-1)+1]÷3×2)1(+⨯n n 。

如何有效的培养数形结合思维

如何有效的培养数形结合思维

如何有效的培养数形结合思维导语:数学,这门看似枯燥的学科,实则蕴含着无尽的奥秘与智慧。

数形结合思维作为数学学习中不可或缺的TB分,能够帮助我们更好地理解数学的本质。

本文将为你揭秘如何行之有效的培养数形结合思维,让你在数学的世界里畅游无阻。

一、数形结合思维:数学学习的得力助手数形结合思维,即将数学中的抽象概念与具体图形相结合,通过直观的方式理解数学问题。

这种思维方式不仅有助于我们更好地掌握数学知识,还能提高我们的逻辑思维能力和创新能力。

因此,培养数形结合思维对于数学学习至关重要。

二、培养数形结合思维的三个关键步骤建立数学与生活的联系数学并非孤立无援的学科,它与我们的生活息息相关。

我们可以通过观察生活中的现象,将其与数学知识相联系,从而加深对数学概念的理解。

例如,当我们看到钟表时,可以联想到角度与时间的关系;当我们走在马路上,可以思考距离与速度的问题。

这样的联系能够帮助我们更好地运用数形结合思维。

多做数形结合的练习题通过大量的练习,我们可以逐渐熟悉数形结合思维的运用方法。

在解题过程中,我们要尝试将题目中的文字描述转化为图形表示,以便更直观地理解问题。

同时,我们还要学会从图形中提取关键信息,将其转化为数学语言,从而得出正确的答案。

积极参与课堂讨论与互动课堂上的讨论与互动是培养数形结合思维的重要途径。

我们可以与老师和同学分享自己的解题思路和方法,听取他们的意见和建议。

通过交流和映,我们可以不断拓展自己的思维边界,提高自己的数学素养。

三、数形结合思维的应用场景数形结合思维在数学学习的各个领域都有着广泛的应用。

无论是代数、几何还是概率统计,我们都可以运用数形结合思维来解决问题。

例如,在解决几何问题时,我们可以利用图形来辅助分析;在解决代数问题时,我们可以通过绘制函数图像来理解函数的性质;在解决概率统计问题时,我们可以通过绘制概率分布图来直观展示数据的变化趋势。

四、结语数形结合思维是数学学习中不可或缺的一部分,它能够帮助我们更好地掌握数学知识提高我们的逻辑思维能力和创新能力。

数形结合方法

数形结合方法

▁▂▃▄▅▆▇█▉▊▋▌精诚凝聚 =^_^= 成就梦想 ▁▂▃▄▅▆▇█▉▊▋▌
▃ ▄ ▅ ▆ ▇ █ █ ■ ▓点亮心灯 ~~~///(^v^)\\\~~~ 照亮人生 ▃ ▄ ▅ ▆ ▇ █ █ ■ ▓ 数形结合方法
我国著名数学家华罗庚教授曾经写过这样一首诗:
“数形本是相倚依,焉能分作两边飞。

数缺形时少直觉,形缺数时难入微。

数形结合百般好,隔裂分家万事休。

几何代数统一体,永远联系莫分离。


其中很好地说明了数形结合的意义。

所谓数形结合方法是指在研究数学问题时,由数思形、以形思数、数形结合考虑问题。

数学研究现实世界的数量关系和空间形式,在现实世界中这两者相互统一,共同构成现实世界的两种重要属性,而不是相互割裂存在。

只是为了研究的方便,人们才将它们分别从现实世界中抽象出来,在数学研究领域内形成代数、几何等范畴。

数学研究必然要求将数与形结合起来,理解和掌握数形结合的思想将有助于提高我们分析问题、解决问题的能力。

在数学学习过程中,我们既可以通过构造几何图形来
解决代数和三角问题,也可以用代数和三角的方法解决几
何问题。

例如解决这样一个问题:已知x,y,z 都是正数, ,并且222222,x r x z z y x =-=+.求证:rz=xy.
由式子222z y x =+,很容易联想到勾股定理;而222x r x z
=-又会使人想起射影定理.于是作一个相应的直角三角形(x,y 为直角边,z 为斜边,r 为斜边上的高)问题便很容易解决了.。

数形结合

数形结合

数形结合思想【知识归纳】1.数形结合是把数或数量关系与图形对应起来,借助图形来研究数量关系或者利用数量关系来研究图形的性质,是一种重要的数学思想方法.它可以使抽象的问题具体化,复杂的问题简单化. 2.数形结合的常见方法有: ①解析法:建立适当的坐标系(直角坐标系,极坐标系),引进坐标将几何图形变换为坐标间的代数关系.注意运用重要的公式(如两点间的距离、点到直线的距离公式,直线的斜率,直线的截距)、有关曲线的定义等来寻求代数式的图形背景及有关性质.②三角法:将几何问题与三角形沟通,运用三角代数知识获得探求结合的途径.③向量法:将几何图形向量化,运用向量运算解决几何中的平角、垂直、夹角、距离等问题.把抽象的几何推理化为代数运算.特别是空间向量法使解决立体几何中平行、垂直、夹角、距离等问题变得有章可循. ④构造函数法:方程或不等式问题常可以通过构造函数,利用函数图象和性质解决相关的问题. ⑤曲线交点和位置问题又可以通过构造方程、不等式或函数来解决. 2.利用数形结合应注意的问题(1)等价性原则:在数形结合时,代数性质和几何性质的转换必须是等价的,否则解题将会出现漏洞.有时,由于图形的局限性,不能完整的表现数的一般性,这时图形的性质只能是一种直观而浅显的说明,但它同时也是抽象而严格证明的诱导.(2)双向性原则:在数形结合时,既要进行几何直观的分析,又要进行代数抽象的探索,两方面相辅相成,仅对代数问题进行几何分析(或仅对几何问题进行代数分析)在许多时候是很难行得通的.例如,在解析几何中,我们主要是运用代数的方法来研究几何问题,但是在许多时候,若能充分地挖掘利用图形的几何特征,将会使得复杂的问题简单化.(3)简单性原则:就是找到解题思路之后,至于用几何方法还是用代数方法、或者兼用两种方法来叙述解题过程,则取决于那种方法更为简单.而不是去刻意追求一种流性的模式——代数问题运用几何方法,几何问题寻找代数方法.【基础演练】1.设全集{1,2,3,4,5},{2,4},U U MN MC N ===则N = ▲ .解析:画出韦恩图,可知N ={1,3,5}.点评:本题主要利用数轴、韦恩图考查集合的概念和集合的关系.2.(苏州市2013届高三期末)已知()1f x x x =+,则11()()42f x f -<的解集是 . 答案:3(,)4-∞3.设平面点集{}221(,)()()0,(,)(1)(1)1A x y y x y B x y x y x ⎧⎫=--≥=-+-≤⎨⎬⎩⎭,则A B 所表示的平面图形的面积为 ▲ .解析:由0)1)((≥--x y x y 可知⎪⎩⎪⎨⎧≥-≥-010x y x y 或者⎪⎩⎪⎨⎧≤-≤-01x y x y ,在同一坐标系中做出平面区域如图,由图象可知B A 的区域为阴影部分,根据对称性可知,两部分阴影面积之和为圆面积的一半,所以面积为2π.4.当0≤x ≤1时,不等式sin πx2≥kx 成立,则实数k 的取值范围是________.解析:作出y 1=sin πx 2与y 2=kx 的图象,要使不等式sin πx2≥kx 成立,由图可知需k ≤1.答案:(-∞,1]5.设f (x )是定义在R 上的偶函数,对任意的x ∈R ,都有f (x +2)=f (x -2),且当x ∈[-2,0]时,f (x )=⎝⎛⎭⎫12x-1,若在区间(-2,6]内关于x 的方程f (x )-log a (x +2)=0 (a >1)有3个不同的实数根,则a 的取值范围为________.解析:依题意可得f (x +4)=f [(x +2)+2]=f [(x +2)-2]=f (x ),所以函数f (x )的周期为4,如图所示,先作出当x ∈[-2,0]时的图象,然后根据函数f (x )是定义在R 上的偶函数,作出其关于y 轴的对称图形,得到x ∈[0,2]时函数的图象.再根据函数的周期性,即可得到x ∈[2,6]时函数的图象,在此坐标系内,作出函数y =log a (x +2)(a >1)的图象.由题意知,函数y =log a (x +2)(a >1)的图象与函数f (x )在(-2,6]上的图象有3个交点,根据两个函数图象可知⎩⎪⎨⎪⎧ log a 4<3,log a 8>3,即⎩⎪⎨⎪⎧a 3>4,a 3<8,解得34<a <2.故a 的取值范围为(34,2).答案:(34,2)6.若函数f (x )=e x -2x -a 在R 上有两个零点,则实数a 的取值范围是_____.解析:当直线y =2x +a 和y =e x 相切时,仅有一个公共点,这时切点是(ln 2,2),直线方程是y =2x +2-2ln 2,将直线y =2x +2-2ln 2向上平移,这时两曲线必有两个不同的交点.变式题:若方程ln x -2x -a =0有两个不等的实数根,则实数a 的取值范围是________.解析:作出y =ln x 和y =2x +a 的图象,分析方程ln x -2x -a =0,有两个不等的实数根问题,即是研究y =ln x 和y =2x +a 的图象交点问题,如图可知,y =2x +a 与y =ln x 相切时,a =-1-ln 2,只要a <-1-ln 2,图象都有两个不等的交点, 即a ∈(-∞,-1-ln 2). 答案:(-∞,-1-ln 2)【考点例析】例题1 ⑴已知函数f (x )=e |x |,m >1,对任意的x ∈[1,m ],都有f (x -2)≤e x ,则最大的正整数m 为________.解析:作出函数y =e|x -2|和y 2=e x 的图象,如图可知x =1时y 1=y 2,又x =4时y 1=e 2<y 2=4e ,x =5时y 1=e 3>y 2=5e ,故m <5,即m 的最大整数值为4.⑵(2012高考真题浙江理17)设a ∈R ,若x >0时均有[(a -1)x -1]( x 2-ax -1)≥0,则a =________.解析:a =本题按照一般思路,则可分为一下两种情况:(A )2(1)1010a x x ax ≤⎧⎨≤⎩----, 无解;(B )2(1)1010a x x ax ≥⎧⎨≥⎩----, 无解. 因为受到经验的影响,会认为本题可能是错题或者解不出本题.其实在x >0的整个区间上,我们可以将其分成两个区间,在各自的区间内恒正或恒负.(如下答图) 函数y 1=(a -1)x -1,y 2=x 2-ax -1都过定点P (0,-1). 考查函数y 1=(a -1)x -1:令y =0,得M (11a -,0),还可分析得:a >1; 考查函数y 2=x 2-ax -1:显然过点M (11a -,0),代入得:211011a a a ⎛⎫--= ⎪--⎝⎭,解之得:a =a =,得答案:a =点评:数形结合的思想方法,是研究数学问题的一个基本方法.深刻理解这一观点,有利于提高我们发现问题、分析问题和解决问题的能力.⑶若方程lg(-x 2+3x -m )=lg(3-x )在x ∈(0,3)内有两个不同的解,则实数m 的取值范围是________. 解析:原方程可化为-(x -2)2+1=m (0<x <3),设y 1=-(x -2)2+1(0<x <3),y 2=m .在同一坐标系中画出它们的图象(如图).由原方程在(0,3)内有两解,知y 1与y 2的图象只有两个公共点,可见m 的取值范围是(0,1). 答案:(0,1)⑷已知f (x )=m (x -2m )(x +m +3),g (x )=2x -2.若同时满足条件: ①∀x ∈R ,f (x )<0或g (x )<0; ②∃x ∈(-∞,-4),f (x )g (x )<0. 则m 的取值范围是________.解析:当x <1时,g (x )<0,当x >1时,g (x )>0,当x =1时,g (x )=0.m =0不符合要求;当m >0时,根据函数f (x )和函数g (x )的单调性,一定存在区间[a ,+∞)使f (x )≥0且g (x )≥0,故m >0时,不符合第①条的要求;当m <0时,如图所示,如果符合①的要求,则函数f (x )的两个零点都得小于1,如果符合第②条要求,则函数f (x )至少有一个零点小于-4,问题等价于函数f (x )有两个不相等的零点,其中较大的零点小于1,较小的零点小于-4.函数f (x )的两个零点是2m ,-(m +3),故m 满足⎩⎪⎨⎪⎧m <0,2m <-(m +3),2m <-4,-(m +3)<1或者⎩⎪⎨⎪⎧m <0,-(m +3)<2m ,2m <1,-(m +3)<-4,解第一个不等式组得-4<m <-2,第二个不等式组无解, 故所求m 的取值范围是(-4,-2).答案:(-4,-2 )例题2 ⑴(2012·苏锡常镇二模)设实数n ≤6,若不等式2xm +(2-x )n -8≥0对任意x ∈[-4,2]都成立,则nm的最大值为________.解析:设y =2xm +(2-x )n -8,整理可得 y =(2m -n )x +(2n -8). 当2m -n ≥0时,∵x ∈[-4,2],∴y min =(2m -n )·(-4)+(2n -8)=-8m +6n -8当2m -n <0时,∵x ∈[-4,2], ∴y min =(2m -n )·2+(2n -8)=4m -8.∵不等式2xm +(2-x )n -8≥0对任意x ∈[-4,2]都成立,∴m ,n 满足⎩⎨⎧-8m +6n -8≥0,2m -n ≥0,n ≤6或⎩⎨⎧2m -n <0,4m -8≥0,n ≤6.可行域如图∴当且仅当m =2,n =6时,⎝⎛⎭⎫n m max =3. 答案:3⑵(2012·徐州四市)平面直角坐标系中,已知点A (1,-2),B (4,0),P (a,1),N (a +1,1),当四边形P ABN 的周长最小时,过三点A ,P ,N 的圆的圆心坐标是________. 解析:∵AB ,PN 的长为定值, ∴只要求P A +BN 的最小值.P A +BN =(a -1)2+9+(a -3)2+1,其几何意义为动点(a,0)到两定点(1,3)和(3,-1)距离之和,当三点共线,即a =52时,其和取得最小值,线段PN 的中垂线方程为x =3,线段P A 的中垂线方程为y +12=-12⎝⎛⎭⎫x -74,交点⎝⎛⎭⎫3,-98即为所求的圆心坐标. 答案:⎝⎛⎭⎫3,-98 ⑶设点P 是三角形ABC 内一点(不包括边界),且AP =m AB +n AC ,m ,n ∈R ,则m 2+(n -2)2的取值范围为________.解析:因为点P 是三角形ABC 内一点(不包括边界),所以0<m ,n <1,0<m +n <1,根据线性规划的知识,作出如图阴影部分,m 2+(n -2)2表示点P (0,2)到阴影内点的距离的平方,显然到点A (0,1)的距离最近,为1;到点B (1,0)的距离最远,这时m 2+(n -2)2=5,故所求取值范围为(1,5).答案:(1,5)变式题(苏州市2013届高三期末)已知实数x ,y 满足不等式20403x y x y x -≥⎧⎪+-≥⎨⎪≤⎩,则3322x y x y +的取值范围是 . 答案:55[3,]9例题3⑴已知A (1,1)为椭圆x 29+y 25=1内一点,F 1为椭圆左焦点,P 为椭圆上一动点.则PF 1+P A 的最大值是 .[解] 由x 29+y 25=1可知a =3,b =5,c =2,左焦点F 1(-2,0),右焦点F 2(2,0).由椭圆定义,PF 1=2a -PF 2=6-PF 2,∴PF 1+P A =6-PF 2+P A =6+P A -PF 2. 如图:由|P A -PF 2|≤AF 2=(2-1)2+(0-1)2=2知-2≤P A -PF 2≤ 2.当P 在AF 2延长线上的P 2处时,右边取等号; 当P 在AF 2的反向延长线的P 1处时,左边取等号. 即P A -PF 2的最大、最小值分别为2、- 2.于是PF 1+P A 的最大值是6+2,最小值是6- 2.点评:圆锥曲线中与焦点有关的最值问题,求解时可作出图形,借助定义数形结合求解.⑵函数f (x )=(2x -1)2,g (x )=ax 2(a >0),满足f (x )<g (x )的整数x 恰有4个,则实数a 的取值范围是________. [解析] 在同一坐标系内分别作出满足条件的函数f (x )=(2x -1)2,g (x )=ax 2的图象,则由两个函数的图象可知,y =f (x ),y =g (x )在区间(0,1)内总有一个交点.要使满足不等式(2x -1)2<ax 2的整数恰有4个,则只要f (4)<g (4)且f (5)>g (5)即可.由⎩⎪⎨⎪⎧49<16a ,81>25a ,得4916<a <8125.[答案] ⎝⎛⎭⎫4916,8125点评:当不等式的解集不易求出时,可构造函数,利用函数的图象直观寻找不等式成立的条件. ⑶在直角三角形ABC 中,点D 是斜边AB 的中点,点P 为线段CD 的中点,则222PA PB PC+= ▲ .解析:将直角三角形放入直角坐标系中,如图,设0,),,0(),0,(>b a b B a A ,则)2,2(b a D ,)4,4(b a P ,所以1616)4()4(22222b a b a PC +=+=,16916)4()4(22222b a b b a PB +=-+=, 16169)4()4(22222b a b a a PA +=+-=,所以22222222210)1616(101616916916PCb a b a b a PB PA =+=+++=+,所以1022=+PCPB PA ,⑷定义在区间⎝⎛⎭⎫0,π2上的函数y =6cos x 的图象与y =5tan x 的图象的交点为P ,过点P 作PP 1⊥x 轴于点P 1,直线PP 1与y =sin x 的图象交于点P 2,则线段P 1P 2的长为________.解析:画出函数的图象,如图所示,由y =6cos x 与y =5tan x 联立成方程组得:6cos x =5tan x ,即6cos x=5sin x cos x ,也即6sin 2x +5sin x -6=0,解得sin x =23或sin x =-32(舍去),故P 1P 2=sin x =23.答案:23例题3(2012·苏锡常镇第一次模拟考试)若斜率为k 的两条平行直线l ,m 经过曲线C 的端点或与曲线C 相切,且曲线C 上的所有点都在l ,m 之间(也可在直线l ,m 上),则把l ,m 间的距离称为曲线C 在“k 方向上的宽度”,记为d (k ).(1)若曲线C :y =2x 2-1(-1≤x ≤2),求d (-1);(2)已知k >2,若曲线C :y =x 3-x (-1≤x ≤2),求关于k 的函数关系式d (k ). 解:(1)y =2x 2-1(-1≤x ≤2)的端点为A (-1,1),B (2,7),∵y ′=4x ,由y ′=-1得到切点为⎝⎛⎭⎫-14,-78, ∴当k =-1时,与曲线C 相切的直线只有一条.结合题意可得,两条平行直线中一条与曲线C :y =2x 2-1(-1≤x ≤2)相切,另一条直线过曲线的端点B (2,7).∴平行的两条直线分别为:x +y -9=0和x +y +98=0.由两条平行线间的距离公式可得,d (-1)=81216.(2)曲线C :y =x 3-x (-1≤x ≤2)的端点A (-1,0),B (2,6), ∴y ′=3x 2-1∈[-1,11]. 下面分两种情况:①当k ≥11时,两条直线都不是曲线的切线,且分别经过点A (-1,0),B (2,6),此时两条直线方程分别为l :y =k (x +1),m :y -6=k (x -2),所以d (k )=3k -61+k2;②当2<k <11时,设切点N (a ,a 3-a )得到k =3a 2-1>2且-1≤a ≤2得到1<a ≤2,且a =1+k3从而推出l ,m 当中有一条与曲线C 相切,有一条经过一点,且是经过A (-1,0)的直线,和以B (2,6)为切点的直线,方程分别为l :y =k (x +1),m :y =(3a 2-1)(x -a )+a 3-a =kx -2 39(1+k )32,所以d (k )=9k +2 3(1+k )329 1+k2.综上得d (k )=⎩⎪⎨⎪⎧3k -61+k2,k ≥11,9k +2 3(1+k )329 1+k2,2<k <11.点评:本题是一个即时定义问题,背景新颖,在解决第二问时要注意将k 看成一个常数,对k 进行讨论,探究出两条直线与曲线C 的关系是都相切还是都是经过点还是一个相切一个经过点,并且了解经过哪个点.这些都可以利用导数这个工具解决.例题4已知中心在坐标原点,焦点在x 轴上的椭圆过点P (2,3),且它的离心率21=e . (Ⅰ)求椭圆的标准方程;(Ⅱ)与圆1)1(22=++y x 相切的直线t kx y l +=:交椭圆于N M ,两点,若椭圆上一点C 满足OC ON OM λ=+,求实数λ的取值范围.解:(Ⅰ) 设椭圆的标准方程为)0(12222>>=+b a by a x由已知得:⎪⎪⎪⎩⎪⎪⎪⎨⎧-===+2222221194b a c a c b a 解得⎪⎩⎪⎨⎧===2324c b a 所以椭圆的标准方程为:1121622=+y x ┈┈┈┈┈┈┈┈┈┈┈┈ 6分(Ⅱ) 因为直线l :t kx y +=与圆1)1(22=++y x 相切所以,)0(121122≠-=⇒=+-t t t k kkt 把t kx y +=代入1121622=+y x 并整理得: 0)484(8)43(222=-+++tktx x k设),(,),(2211y x N y x M ,则有 221438k ktx x +-=+22121214362)(k tt x x k t kx t kx y y +=++=+++=+因为,),(2121y y x x OC ++=λ 所以,⎪⎪⎭⎫⎝⎛++-λλ)43(6,)43(822k t k ktC 又因为点C 在椭圆上, 所以,1)43(3)43(4222222222=+++λλk tk t k 1)1()1(143222222++=+=⇒tt kt λ 因为 02>t 所以 11)1()1(222>++t t 所以 102<<λ 所以 λ的取值范围为 )1,0()0,1( - ┈┈┈┈┈┈┈┈┈┈┈┈ 16分【方法技巧】目前高考“注重通法,淡化特技”的命题原则来看,对于数形结合的数学思想方法,我们在复习时,应将重点置于解析几何中图象的几何意义的重视与挖掘以及函数图象的充分利用之上.数形结合的思想方法应用广泛,常见的如在解方程和解不等式问题中,在求函数的值域,最值问题中,在求向量和三角函数问题中,运用数形结合思想,不仅直观易发现解题途径,而且能避免复杂的计算与推理,大大简化了解题过程.这在解填空题中更显其优越,要注意培养这种思想意识,要做到胸中有图,见数想图,以开拓自己的思维视野.数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化.在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围.1. 已知OB →=(2,0),OC →=(2,2),CA →=(2cos α,2sin α),则向量OA →与OB →的夹角的取值范围为 ▲ . 解析:如图,在以O 为原点的平面直角坐标系中,B (2,0),C (2,2),A 点轨迹是以2为半径的圆C ,OD ,OE 为⊙C 的切线,易得∠COB =π4,∠COD =∠COE =π6,当A 点位于D 点时,OA →与OB →的夹角最小为π12,当A 点位于E 点时,OA →与OB →的夹角最大为512π,即夹角的取值范围为[π12,512π].2. 函数f (x )=13x 3+ax 2-bx 在[-1,2]上是单调减函数,则a +b 的最小值为________.解析:∵y =f (x )在区间[-1,2]上是单调减函数,∴f ′(x )=x 2+2ax -b ≤0在区间[-1,2]上恒成立.结合二次函数的图象可知f ′(-1)≤0且f ′(2)≤0,即⎩⎪⎨⎪⎧ 1-2a -b ≤0,4+4a -b ≤0也即⎩⎪⎨⎪⎧2a +b -1≥0,4a -b +4≤0.作出不等式组表示的平面区域如图:当直线z =a +b 经过交点P (-12,2)时,z =a +b 取得最小值,且z min =-12+2=32.∴z =a +b 取得最小值32.答案:32点评:由f ′(x )≤0在[-1,2]上恒成立,结合二次函数图象转化为关于a ,b 的二元一次不等式组,再借助线性规划问题,采用图解法求a +b 的最小值.3. 设函数g (x )=x 2-2,f (x )=⎩⎪⎨⎪⎧g (x )+x +4,x <g (x ),g (x )-x ,x ≥g (x ).则f (x )的值域是________.解析:依题意知f (x )=⎩⎪⎨⎪⎧x 2-2+x +4,x <x 2-2,x 2-2-x ,x ≥x 2-2,即f (x )=⎩⎪⎨⎪⎧x 2+x +2,x <-1或x >2,x 2-2-x ,-1≤x ≤2.由图象得f (x )值域为⎣⎡⎦⎤-94,0∪(2,+∞). 答案:⎣⎡⎦⎤-94,0∪(2,+∞) 4. 已知u ≥1,v ≥1且(log a u )2+(log a v )2=log a (au 2)+log a (a v 2)(a >1),则log a (u v )的取值范围是 ▲ . 解析:令x =log a u ,y =log a v ,则已知式可化为(x -1)2+(y -1)2=4(x ≥0,y ≥0).再设t =log a (u v )=x +y (x ≥0,y ≥0),则当线段y =-x +t (x ≥0,y ≥0)与圆弧(x -1)2+(y -1)2=4(x ≥0,y ≥0)相切时,如图截距t 取最大值t max =2+22(图中CD 位置);当线段端点是圆弧端点时,t 取最小值t min =1+3(图AB 位置).因此log a (u v )的最大值是2+22,最小值是1+ 3.答案: [ 1+3,2+22]5. 若直角坐标平面内两点P ,Q 满足条件:①P 、Q 都在函数f (x )的图象上;②P 、Q 关于原点对称,则称点对(P ,Q )是函数f (x )的一个“友好点对”(点对(P ,Q )与点对(Q ,P )看作同一个“友好点对”).已知函数f (x )=⎩⎪⎨⎪⎧2x 2+4x +1,x <0,2e x ,x ≥0,则f (x )的“友好点对”有________个.解析:设P (x ,y )、Q (-x ,-y )(x >0)为函数f (x )的“友好点对”,则y =2ex ,-y =2(-x )2+4(-x )+1=2x 2-4x +1, ∴2e x +2x 2-4x +1=0,在同一坐标系中作函数y 1=2e x 、y 2=-2x 2+4x -1的图象,y 1、y 2的图象有两个交点,所以f (x )有2个“友好点对”. 答案:26. 已知:函数f (x )满足下面关系:①f (x +1)=f (x -1);②当x ∈[-1,1]时,f (x )=x 2,则方程f (x )=lg x 解的个数是________. 解析:由题间可知,f (x )是以2为周期,值域为[0,1]的函数.又f (x )=lg x ,则x ∈(0,10],画出两函数图象,则交点个数即为解的个数.由图象可知共9个交点.答案:97. 设正项等差数列{a n }的前n 项和为S n ,若S 4≥10,S 5≤15,则a 4的最大值为________. 解析:设等差数列的首项为a 1,公差为d , 则S 4=4a 1+6d ≥10,即2a 1+3d ≥5,S 5=5a 1+10d ≤15,即a 1+2d ≤3.又a 4=a 1+3d , 因此求a 4的最值可转化为在线性约束条件⎩⎪⎨⎪⎧2a 1+3d ≥5,a 1+2d ≤3,a 1>0,d >0下的线性目标函数的最值问题,作出可行域,如图可知当a 4=a 1+3d ,经过点A (1,1)时有最大值4.答案:48. 已知AC ,BD 为圆O :x 2+y 2=4的两条相互垂直的弦,垂足为M (1,2),则四边形ABCD 的面积的最大值为________. 解析:如图,设弦AC ,BD 的中点分别为P ,Q ,连结OP ,OQ ,OM ,则OP ⊥AC ,OQ ⊥BD ,又AC ⊥BD ,故四边形OPMQ 为矩形,设圆心O 到AC ,BD 的距离分别为d 1,d 2,则d 21+d 22=OM 2=3.又AC =24-d 21,BD =24-d 22,四边形ABCD 的面积S =12AC ·BD =2(4-d 21)(4-d 22)≤8(d 21+d 22)=5,当且仅当d 1=d 2=62时,等号成立. 答案:59. 如图放置的等腰直角三角形ABC 薄片(∠ACB =90°,AC =2)沿x 轴滚动,设顶点A (x ,y )的轨迹方程是y =f (x ),则f (x )在其相邻两个零点间的图象与x 轴围成的封闭图形的面积为________. 解析:作出点A 的轨迹中相邻两个零点间的图象,如图所示.其轨迹为两段圆弧,一段是以C 为圆心,CA 为半径的四分之一圆弧;一段是以B 为圆心,BA 为半径,圆心角为3π4的圆弧.故其与x 轴围成的封闭图形的面积为12×22×π2+12×2×2+12×(22)2×3π4=2+4π.答案:2+4π10. 已知函数f (x )=13x 3+12ax 2+bx +1(a 、b ∈R ,且b ≥-2),当x ∈[-2,2]时,总有f ′(x )≤0.(1)求函数f (x )的解析式;(2)设函数g (x )=-3f (x )+mx 2-6x (m ∈R ),若当x ∈[0,1]时,|g ′(x )|≤1,求m 的范围.解:(1)由条件,得f ′(x )=13·3x 2+12a ·2x +b =x 2+ax +b ,当x ∈[-2,2]时,总有f ′(x )≤0,结合f ′(x )=x 2+ax +b 的图象,所以有⎩⎨⎧f ′(-2)≤0,f ′(2)≤0.即⎩⎪⎨⎪⎧2-a 2+b ≤0, ①2+a 2+b ≤0. ②由①+②得,4+2b ≤0⇒b ≤-2.又b ≥-2,∴b =-2.把b=-2代入①和②得⎩⎪⎨⎪⎧2-a 2-2≤0,2+a 2-2≤0.即⎩⎨⎧a ≥0,a ≤0.所以a =0.因此f (x )=13x 3-2x +1.(2)证明:g (x )=-3⎝⎛⎭⎫13x 3-2x +1+mx 2-6x =-x 3+mx 2-3, g ′(x )=-3x 2+2mx 是关于x 的二次函数,观察y =g ′(x )的图象因为g ′(0)=0,所以当x ∈[0,1]时,|g ′(x )|≤1⇔⎩⎨⎧g ′(1)=-3+2m ≥-1,0≤m3≤1,g ′⎝⎛⎭⎫m 3=m 23≤1,或⎩⎪⎨⎪⎧g ′(1)=-3+2m ≤1,m 3>1,或⎩⎪⎨⎪⎧g ′(1)=-3+2m ≥-1,m 3<0⇔1≤m ≤ 3. 11.已知抛物线D 的顶点是椭圆C :x 216+y 215=1的中心,焦点与该椭圆的右焦点重合.(1)求抛物线D 的方程;(2)过椭圆C 右顶点A 的直线l 交抛物线D 于M 、N 两点. ①若直线l 的斜率为1,求MN 的长;②是否存在垂直于x 轴的直线m 被以MA 为直径的圆E 所截得的弦长为定值?如果存在,求出m 的方程;如果不存在,说明理由.[解] (1)由题意,可设抛物线方程为y 2=2px (p >0).由a 2-b 2=16-15=1,得c =1. ∴抛物线的焦点为(1,0),∴p =2. ∴抛物线D 的方程为y 2=4x . (2)设M (x 1,y 1),N (x 2,y 2).①直线l 的方程为:y =x -4,联立⎩⎪⎨⎪⎧y =x -4,y 2=4x ,整理得x 2-12x +16=0. 则x 1+x 2=12,x 1x 2=16, 所以MN =(x 1-x 2)2+(y 1-y 2)2=410.②设存在直线m :x =a 满足题意,则圆心E ⎝⎛⎭⎪⎫x 1+42,y 12,过E 作直线x =a 的垂线,垂足为H ,设直线m 与圆E 的一个交点为G .可得GH 2=EG 2-EH 2,即GH 2=EA 2-EH 2=(x 1-4)2+y 214-⎝ ⎛⎭⎪⎫x 1+42-a 2=14y 21+(x 1-4)2-(x 1+4)24+a (x 1+4)-a 2 =x 1-4x 1+a (x 1+4)-a 2=(a -3)x 1+4a -a 2.当a =3时,GH 2=3,此时直线m 被以MA 为直径的圆E 所截得的弦长恒为定值2 3. 因此存在直线m :x =3满足题意.12. 为加强安全防范,某商场在门前5 m 处的灯杆上B 处安装了一个监控探头,用来监视商场大门附近发生的情况.若商场门FG 的高为h m(0<h <4),紧接门上有一高为1 m 的平面镜制的幕墙EF ,探头安装在距离地面x m(6≤x ≤9)处,设探头通过平面镜的监控宽度为C ′D ′,如图所示,记C ′D 的长为y m(y =GD ′-GC ′).(1)当门的高度h =3 m 时,求监控宽度y 关于x 的函数关系式并求出函数的最大值; (2)为了使探头通过平面镜EF 能监控到A 点,即灯杆的下端点A 在C ′,D ′之间(包括端点C ′,D ′),C ,D 为C ′,D ′在平面镜中所成的像,问商场门的高h 在什么范围时可以实现.解:由题意知,△ACB ∽△GCF ,所以FG AB =GCAC,即h x =GC 5+GC ,解得GC =5h x -h .又△GDE ∽△ADB , 所以GE AB =GD AD ,即h +1x =GD 5+GD ,解得GD =5h +5x -h -1.(1)当h =3 m 时,由于C ,D 为C ′、D ′在平面镜中所成的像,所以y =GD ′-GC ′=GD -GC ,则y =20x -4-15x -3,即y =5xx 2-7x +12(6≤x ≤9).y ′=5(x 2-7x +12)-5x (2x -7)(x 2-7x +12)2=-5(x 2-12)(x 2-7x +12)2.当x ∈[6,9]时,y ′<0,所以函数y =5x x 2-7x +12在[6,9]上单调递减,所以当x =6时,y max =202-153=5.(2)若探头通过平面镜EF 能监控到A 点,即GC ′≤GA ≤GD ′.所以GC ′≤5≤GD ′,即5hx -h ≤5≤5h +5x -h -1在x ∈[6,9]上总成立,即⎩⎨⎧5hx -h≤5,5h +5x -h -1≥5,解得2h ≤x ≤2h +2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

“数形结合”方法归纳总结
一、以数助形
“数(代数)”与“形(几何)”是中学数学的两个主要研究对象,而这两个方面是紧密联系的.体现在数学解题中,包括“以数助形”和“以形助数”两个方面.“数”与“形”好比数学的“左右腿”.全面理解数与形的关系,就要从“以数助形”和“以形助数”这两个方面来体会.此外还应该注意体会“数”与“形”各自的优势与局限性,相互补充.“数缺形时少直觉,形少数时难入微;数形结合百般好,隔离分家万事非.”华罗庚的这四句诗很好地总结了“数形结合、优势互补”的精要,“数形结合”是一种非常重要的数学方法,也是一种重要的数学思想,在以后的数学学习中有重要的地位.要在解题中有效地实现“数形结合”,最好能够明确“数”与“形”常见的结合点,,从“以数助形”角度来看,主要有以下两个结合点:(1)利用数轴、坐标系把几何问题代数化(在高中我们还将学到用“向量”把几何问题代数化);(2)利用面积、距离、角度等几何量来解决几何问题,例如:利用勾股定理证明直角、利用三角函数研究角的大小、利用线段比例证明相似等.
二、以形助数
几何图形具有直观易懂的特点,所以在谈到“数形结合”时,更多的老师和学生更偏好于“以形助数”,利用几何图形解决代数问题,常常会产生“出奇制胜”的效果,使人愉悦.几何直观运用于代数主要有以下几个方面:
(1)利用几何图形帮助记忆代数公式,例如:
正方形的分割图可以用来记忆完全平方公式;
将两个全等的梯形拼成一个平行四边形可以用来记忆梯形面积公式;等等.
(2)利用数轴或坐标系将一些代数表达式赋予几何意义,通过构造几何图形,依靠直观帮助解决代数问题,或者简化代数运算.比如:绝对值的几何意义就是数轴上两点之间的距离;
数的大小关系就是数轴上点的左右关系,可以用数轴上的线段表示实数的取值范围;
利用函数图像的特点把握函数的性质:一次函数的斜率(倾斜程度)、截距,二次函数的对称轴、开口、判别式、两根之间的距离,等等;
一元二次方程的根的几何意义是二次函数图像与x轴的交点;
函数解析式中常数项的几何意义是函数图像与y轴的交点(函数在x=0时有意义);
锐角三角函数的意义就是直角三角形中的线段比例.。

相关文档
最新文档