分式及分式方程精典练习题

合集下载

100道分式试题及答案

100道分式试题及答案

100道分式试题及答案一、选择题1. 下列哪个选项是分式的加法运算的正确结果?A. \( \frac{1}{x} + \frac{1}{y} = \frac{1}{xy} \)B. \( \frac{1}{x} + \frac{1}{y} = \frac{x + y}{xy} \)C. \( \frac{1}{x} + \frac{1}{y} = \frac{y}{x} + \frac{x}{y} \)D. \( \frac{1}{x} + \frac{1}{y} = \frac{1}{x} - \frac{1}{y} \)答案: B(接下来的题目继续以类似格式出题,每个题目后都直接给出答案)二、填空题2. 若 \( \frac{a}{b} \) 与 \( \frac{c}{d} \) 最简分式相同,则\( ad = bc \),其中 \( a \)、\( b \)、\( c \)、\( d \) 都是非零实数。

请填空,使 \( \frac{3x^2}{4y} \) 与 \( \frac{6x}{y^2} \) 相等,\( x \) 和 \( y \) 的取值范围是:答案: \( x \neq 0 \) 且 \( y \neq 0 \)三、计算题3. 计算下列分式的和:\( \frac{2}{x} + \frac{3}{y} \)解答:首先找到两个分式的最小公倍数,即 \( xy \)。

然后进行通分: \( \frac{2y}{xy} + \frac{3x}{xy} = \frac{2y + 3x}{xy} \)四、化简题4. 化简下列分式:\( \frac{3x^2 - 5x}{x^2 - 9} \)解答:首先分解分子和分母的因式:\( \frac{3x(x - \frac{5}{3})}{(x + 3)(x - 3)} \) 然后约去公因式 \( x - 3 \)(假设 \( x \neq 3 \)):\( \frac{3x}{x + 3} \)五、解分式方程5. 解下列分式方程:\( \frac{1}{x} + \frac{1}{x - 1} = \frac{2}{x^2 - x} \)解答:首先将方程两边乘以 \( x(x - 1) \) 以消去分母:\( (x - 1) + x = 2 \)解得 \( x = \frac{3}{2} \),经检验,\( x = \frac{3}{2} \) 是原方程的解。

中考数学《分式及分式方程》计算题(附答案)

中考数学《分式及分式方程》计算题(附答案)

[键入文字]=+1..解方程:.解分式方程:15.(1)解方程:(2)解不等式组.16.解方程:.17.①解分式方程;②解不等式组.18.解方程:.19.(1)计算:|﹣2|+(+1)0﹣()﹣1+tan60°;(2)解分式方程:=+1.20.解方程:21.解方程:+=122.解方程:.23.解分式方程:24.解方程:25.解方程:26.解方程:+=127.解方程:28.解方程:29.解方程:30.解分式方程:.答案与评分标准一.解答题(共30小题)1.解方程:.考点:解分式方程。

专题:计算题。

分析:方程两边都乘以最简公分母y(y﹣1),得到关于y的一元一方程,然后求出方程的解,再把y的值代入最简公分母进行检验.解答:解:方程两边都乘以y(y﹣1),得2y2+y(y﹣1)=(y﹣1)(3y﹣1),2y2+y2﹣y=3y2﹣4y+1,3y=1,解得y=,检验:当y=时,y(y﹣1)=×(﹣1)=﹣≠0,∴y=是原方程的解,∴原方程的解为y=.点评:本题考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.2.解关于的方程:.考点:解分式方程。

专题:计算题。

分析:观察可得最简公分母是(x+3)(x﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:方程的两边同乘(x+3)(x﹣1),得x(x﹣1)=(x+3)(x﹣1)+2(x+3),整理,得5x+3=0,解得x=﹣.检验:把x=﹣代入(x+3)(x﹣1)≠0.∴原方程的解为:x=﹣.点评:本题考查了解分式方程.(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.3.解方程.考点:解分式方程。

专题:方程思想。

分析:观察可得最简公分母是(x+1)(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:两边同时乘以(x+1)(x﹣2),得x(x﹣2)﹣(x+1)(x﹣2)=3.(3分)解这个方程,得x=﹣1.(7分)检验:x=﹣1时(x+1)(x﹣2)=0,x=﹣1不是原分式方程的解,∴原分式方程无解.(8分)点评:考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.4.解方程:=+1.考点:解分式方程。

分式及分式方程测试题及答案

分式及分式方程测试题及答案

第五章 分式与分式方程检测题(本试卷满分:100分,时间:60分钟)一、选择题(每小题3分,共30分)1.下列分式是最简分式的是( ) A.11m m -- B.3xy y xy - C.22x y x y -+ D.6132mm- 2.将分式2x x y+中的x 、y 的值同时扩大2倍,则分式的值( )A.扩大2倍B.缩小到原来的21C.保持不变D.无法确定 3.若分式112+-x x 的值为零,则的值为( )A.或B. C.D.4.对于下列说法,错误的个数是( ) ①是分式;②当1x ≠时,2111x x x -=+-成立;③当时,分式33x x +-的值是零;④11a b a a b ÷⨯=÷=;⑤2a a a x y x y +=+;⑥3232x x-⋅=-. A.6 B.5 C.4 D.3 5.计算2111111x x ⎛⎫⎛⎫+÷+ ⎪ ⎪--⎝⎭⎝⎭的结果是( ) A.1 B.C.1x x + D.1x x + 6.设一项工程的工程量为1,甲单独做需要天完成,乙单独做需要天完成,则甲、乙两人合做一天的工作量为( ) A.B.1a b + C.2a b + D.11a b+7.分式方程131x x x x +=--的解为( ) A.1x =B.1x =-C.3x =D.3x =-8.下列关于分式方程增根的说法正确的是( )A.使所有的分母的值都为零的解是增根B.分式方程的解为零就是增根C.使分子的值为零的解就是增根D.使最简公分母的值为零的解是增根 9.某人生产一种零件,计划在天内完成,若每天多生产个,则天完成且还多生产个,问原计划每天生产多少个零件?设原计划每天生产个零件,列方程得( ) A.3010256x x -=+ B.3010256x x +=+ C.3025106x x =++ D.301025106x x +=-+10.某工程需要在规定日期内完成,如果甲工程队单独做,恰好如期完成; 如果乙工程队单独做,则超过规定日期3天,现在甲、乙两队合做2天,剩下的由乙队独做,恰好在规定日期完成,求规定日期.如果设规定日期为天,下面所列方程中错误的是( ) A.213x x x +=+ B.233x x =+ C.1122133x x x x -⎛⎫+⨯+=⎪++⎝⎭D.113x x x +=+ 二、填空题(每小题3分,共24分)11.若分式33x x --的值为零,则x = . 12.将下列分式约分:(1)258xx ;(2)22357mn nm - ;(3)22)()(a b b a -- .13.计算:2223362cab b c b a ÷= .14.已知,则222n m m n m n n m m ---++________.15.当=x ________时,分式13-x 无意义;当=x ______时,分式392--x x 的值为.16.若方程255x mx x =---有增根5x =,则m =_________. 17.为改善生态环境,防止水土流失,某村拟在荒坡地上种植960棵树, 由于青年团员的支持,每日比原计划多种20棵,结果提前4天完成任务,原计划每天种植多少棵树?设原计划每天种植棵树,根据题意可列方程__________________.18.在5月汛期,重庆某沿江村庄因洪水而沦为弧岛.当时洪水流速为10 km/h ,张师傅奉命用冲锋舟去救援,他发现沿洪水顺流以最大速度航行2 km 所用时间,与以最大速度逆流航行1.2 km 所用时间相等.请你计算出该冲锋舟在静水中的最大航速为 .三、解答题(共46分)19.(8分)计算与化简: (1)222x y y x ⋅; (2)22211444a a a a a --÷-+-;(3)22142a a a ---; (4)211a a a ---.20.(6分)先化简,再求值:222693b ab a ab a +--,其中8-=a ,21-=b .21.(6分)若x1y 1,求y xy x yxy x ---+2232的值.22.(6分)当x =3时,求2221122442x x x x x x⎛⎫-÷ ⎪--+-⎝⎭的值.23.(6分)已知2321302a b a b ⎛⎫-+++= ⎪⎝⎭,求代数式221b a a a a b a b a b ⎛⎫⎛⎫÷-⋅- ⎪ ⎪+--⎝⎭⎝⎭ 的值.24.(8分)解下列分式方程: (1)730100+=x x ; (2)132543297=-----xx x x .25.(6分)某人骑自行车比步行每小时快8 km ,坐汽车比骑自行车每小时快16 km ,此人从地出发,先步行4 km ,然后乘坐汽车10 km 就到达地,他又骑自行车从地返回地,结果往返所用的时间相等,求此人步行的速度.第五章 分式与分式方程检测题参考答案1.C 解析:()11111-=---=--m m m m ,故A 不是最简分式;x x xy x y xy y xy 313)1(3-=-=-,故B 不是最简分式;32613261-=-m m ,故D 不是最简分式;C 是最简分式. 2.A 解析:因为()()yx x y x x y x x y x x +⨯=+=+=+22222224222,所以分式的值扩大2倍.3.C 解析:若分式112+-x x 的值为零,则所以4.B 解析:不是分式,故①不正确;当1x ≠时,2111x x x -=+-成立,故②正确;当 时,分式33x x +-的分母,分式无意义,故③不正确;,故④不正确;,故⑤不正确;,故⑥不正确.5.C 解析:2111111x x ⎛⎫⎛⎫+÷+ ⎪ ⎪--⎝⎭⎝⎭.6.D 解析:因为一项工程,甲单独做需要天完成,乙单独做需要天完成,所以甲一天的工作量为,乙一天的工作量为,所以甲、乙两人合做一天的工作量为11a b+,故选D.7.D 解析:方程两边同时乘,得,化简得.经检验,是分式方程的解.8.D 解析:如果求出的根使原方程的一个分母的值是,那么这个根就是方程的增根. 9.B 解析:原计划生产个零件,若每天多生产个,则天共生产个零件,根据题意列分式方程,得3010256x x +=+,故选B. 10.A 解析:设总工程量为1,因为甲工程队单独去做,恰好能如期完成,所以甲的工作效率为;因为乙工程队单独去做,要超过规定日期3天,所以乙的工作效率为.由题意可知,1122133x x x x -⎛⎫+⨯+= ⎪++⎝⎭,整理,得213x x x +=+,所以312+-=x x x ,即233x x =+,所以A 、B 、C 选项均正确,选项D 不正确.11.解析:若分式33x x --的值为零,则所以.12.(1)83x (2)n m5- (3)1解析:(1)258x x 83x ;(2)22357mn n m -n m 5-;(3)22)()(a b b a --()()122=--b a b a .13. c b a 323 解析:.36262322223322233cb a abc b c b a c ab b c b a =⋅=÷ 14.79解析:因为,所以n m 34=, 所以()()()()()()()()n m n m m n m n m n m n n m n m n m m nm m n m n n m m -+--+++-+-=---++2222 ()()()().799734342222222==⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+=-+=-+-++-=n n n n n n n n m n m n n m n m m n mn mn m15.1 -3 解析:由得,所以当时,分式13-x 无意义; 由时,分式392--x x 的值为.16.5- 解析:方程两边都乘5x -,得()25x x m =--. ∵ 原方程有增根,∴ 最简公分母50x -=,解得5x =. 把5x =代入()25x x m =--,得50m =-,解得5m =-.17.420960960=+-x x解析:根据原计划完成任务的天数实际完成任务的天数,列方程即可,依题意可列方程为420960960=+-x x . 18.40 km/h 解析:设该冲锋舟在静水中的最大航速为 km/h ,则,解得.19.解:(1)原式2224x y .y x y•=• (2)原式()()()()()2221112a a a a a a +--⋅+--()()212a a a +=+-. (3)原式()()()()()()2222222222a a a a a a a a a a +---=-+-+-+=()()21222a a a a -=-++. (4)原式2111a a a +--=()()2111a a a a -+--=2211a a a -+-=11a -. 20.解:()().3336932222b a ab a b a a b ab a ab a -=--=+--当,时,原式.49162498212483==---=-b a a 21.解:因为x1y1所以所以().41422342)(322232=--=--+-=--+-=---+xy xy xy xy xy xy xy y x xy y x y xy x y xy x22.解:()222112222x x x xx ⎡⎤-÷⎢⎥---⎢⎥⎣⎦()()22221212222x x x x x x x --⋅-⋅-- 1224x x --224x --1122x x=-=--.当时,1123=-- 23.解:由已知,得210,330,2a b a b -+=⎧⎪⎨+=⎪⎩解得1,41.2a b ⎧=-⎪⎪⎨⎪=⎪⎩ ()()22[][]a a b a a b a b a b a b a b----÷⋅+--22b a b ab ab a b b a b a b--⋅⋅=-+-+.当14,12b =时,21114211442⎛⎫⎛⎫-⨯ ⎪ ⎪⎝⎭⎝⎭-=-+.24.解:(1)方程两边都乘,得.解这个一元一次方程,得.检验:把代入原方程,左边右边. 所以,是原方程的根.(2)方程两边都乘,得整理,得.解这个一元一次方程,得.检验:把代入原方程,左边右边. 所以,是原方程的根.25.解:设此人步行的速度是 km/h , 依题意可列方程814168104+=+++x x x ,解这个方程,得.检验可知,是这个方程的根.答:此人步行的速度为6 km/h.。

(完整版)初中分式及分式方程100道计算题.doc

(完整版)初中分式及分式方程100道计算题.doc
0)
(21)
1
x2
(22)
x 1
x
1
x
3
4
(24)
1-x1
(23)
x
x-2=2-x-3
x 2
4
标准文档
实用文案
(25)
2x
4
x
2
1
(26)
6
5
4x
x
3
x
1
2
2x
4
2
x
x
(27)



=3
(28)
2x-2
1-x
1
3x
3x
1
12
(30) .
1
1
=0
(29)
3x
3x
11 Βιβλιοθήκη x2-1x
2
x x2
1
标准文档
实用文案
实用文案
(21)(22)
(23)
3b2
bc
(
2a)
a2
6a 9 3
a
a2
16a
2a2
b
(24)
4 b2
2
b
3a 9
x 2
x2
6x 9
3
2
4
(25)
·
(26)
x2y
y
x
x 3
x
2
4
x
xz
yz
(27)
x2
-x-1
(28)a2
3
a
11
x
1
a2
1
a
1
标准文档
实用文案
(29)
2b2
(30)

八年级数学上册分式意义及分式方程计算题专项练习

八年级数学上册分式意义及分式方程计算题专项练习

分式意义及分式方程计算题专项练习一. 选择题1. 下列式子是分式的是A. 2x+yB. 5πC. 12XD. y2. 使分式 42x−1 有意义,X 的取值是A. X=1B. X ≠1C. x=12D. X ≠123. 使分式x 2−4x−2的值为0,X 的值为A. X=±2B. X=2C. X=-2D. X=04. 以下分式方程的解是x=25的是 A. 1x −6x =3 B. 23x+5+33x+5=1 C. 42x−1=7 D. 55x+1=23x 5. 解分式方程2x−3=73−x +2 ,去分母后得 A. 2=7+2(X -3) B. 2(3-X)=7(X -3)+2B. C. -2=7+2(3-X) D. -2=7+2(X -3)6. 使分式73x+2的值大于0,X 的取值为A. X=- 23B. X >- 23C. X <− 23D. X=-1 7. 使分式1−2x 3−x 的值小于0,X 的取值为 A. 12<X <3 B. X < 12 C. X <3 D. X=38. 八年级用180元去买跳绳,七年级用200元去买哑铃,一个哑铃比一根跳绳贵2元,八年级所买跳绳条数与七年级所买哑铃个数一致,请问一个哑铃多少钱?设一根跳绳X 元,列方程得:A. 180x−2=200x+2B.180x =200x+2 C. 180x+2=200X D. 180x−2=200x二.填空题9. 当X= 时,2x−3的值与73−x +2的值相等。

10. 若24−x 羽3x x−4的和为7,则X= .11. 已知23x+5和3x 3x+5互为相反数,则X= .12. 若关于x 的方程21+x +1=a 2x+2无解,求a= .三.解答题13. 解方程: (1)5x+1-31+x =4 (2) 1x−1=31−x −1(3) 1x 2−1−2x+1= 5x−1 (4)32x =61−x(5)6x+5x −43x+5=6 (6) 52x+2=9−3x+114 .某工程由甲乙两个工程队完成,甲单独完成工程需要X 天,乙的工作效率是甲的两倍,甲乙合作共需5天完成。

分式及分式方程练习题(附答案)

分式及分式方程练习题(附答案)

第十六章 分式单元复习一、选择题1.下列各式中,不是分式方程的是( )111..(1)1111.1.[(1)1]110232x A B x x x x x x xC D x x x -=-+=-+=--=+-2.如果分式2||55x x x -+的值为0,那么x 的值是( )A .0B .5C .-5D .±53.把分式22x yx y +-中的x ,y 都扩大2倍,则分式的值( )A .不变B .扩大2倍C .扩大4倍D .缩小2倍4.下列分式中,最简分式有( )322222222222212,,,,312a x y m n m a ab b x x y m n m a ab b -++-++----A .2个B .3个C .4个D .5个5.分式方程2114339x x x +=-+-的解是( )A .x=±2B .x=2C .x=-2D .无解6.若2x+y=0,则2222x xy y xy x ++-的值为( )A .-13.55B - C .1 D .无法确定7.关于x 的方程233xkx x =+--化为整式方程后,会产生一个解使得原分式方程的最简公分母为0,则k 的值为()A .3B .0C .±3D .无法确定8.使分式224x x +-等于0的x 值为( )A .2B .-2C .±2D .不存在9.下列各式中正确的是( )....a ba ba ba bA B a b a b a b a ba b a b a b a bC D a b a b a b b a-++--==-----++--+-+-==-+-+-10.下列计算结果正确的是( )22222211..()223..()955b a a b A B a ab a b ab a a m n n xy xy C D xy x x m a a --=-÷-=-÷=÷= 二、填空题1.若分式||55y y--的值等于0,则y= __________ . 2.在比例式9:5=4:3x 中,x=_________________ .3.计算:1111b a b a a b a b++---=_________________ . 4.当x> __________时,分式213x--的值为正数. 5.计算:1111x x ++-=_______________ . 6.当分式2223211x x x x x +++--与分式的值相等时,x 须满足_______________ . 7.已知x+1x =3,则x 2+21x = ________ . 8.已知分式212x x +-:当x= _ 时,分式没有意义;当x= _______时,分式的值为0;当x=-2时,分式的值为_______. 9.当a=____________时,关于x 的方程23ax a x +-=54的解是x=1. 10.一辆汽车往返于相距akm 的甲、乙两地,去时每小时行mkm ,•返回时每小时行nkm ,则往返一次所用的时间是_____________.三、解答题1.计算题:2222444(1)(4);282a a a a a a a --+÷-+--222132(2)(1).441x x x x x x x --+÷+-+-2.化简求值.(1)(1+11x -)÷(1-11x -),其中x=-12;(2)213(2)22x x x x x -÷-+-++,其中x=12.3.解方程:(1)1052112x x +--=2; (2)2233111x x x x +-=-+-.4.课堂上,李老师给大家出了这样一道题:当x=3,5-22212211x x x x x -+-÷-+的值.小明一看,说:“太复杂了,怎么算呢?”你能帮小明解决这个问题吗?•请你写出具体的解题过程.5.对于试题:“先化简,再求值:23111x x x----,其中x=2.”小亮写出了如下解答过程: ∵2313111(1)(1)1x x x x x x x ---=----+- ①31(1)(1)(1)(1)x x x x x x -+--+-+ ② =x -3-(x+1)=2x -2, ③∴当x=2时,原式=2×2-2=2. ④(1)小亮的解答在哪一步开始出现错误: ① (直接填序号);(2)从②到③是否正确: ;若不正确,错误的原因是 ;(3)请你写出正确的解答过程.6.小亮在购物中心用12.5元买了若干盒饼干,但他在一分利超市发现,同样的饼干,这里要比购物中心每盒便宜0.5元.因此当他第二次买饼干时,便到一分利超市去买,如果用去14元,买的饼干盒数比第一次买的盒数多25,•问他第一次在购物中心买了几盒饼干?第十六章 分式单元复习题及答案一、选择题1.下列各式中,不是分式方程的是(D )111..(1)1111.1.[(1)1]110232x A B x x x x x x x C D x x x-=-+=-+=--=+- 2.如果分式2||55x x x-+的值为0,那么x 的值是(B ) A .0 B .5 C .-5 D .±53.把分式22x y x y+-中的x ,y 都扩大2倍,则分式的值(A ) A .不变 B .扩大2倍 C .扩大4倍 D .缩小2倍4.下列分式中,最简分式有(C )322222222222212,,,,312a x y m n m a ab b x x y m n m a ab b-++-++---- A .2个 B .3个 C .4个 D .5个5.分式方程2114339x x x +=-+-的解是(B ) A .x=±2 B .x=2 C .x=-2 D .无解6.若2x+y=0,则2222x xy y xy x ++-的值为(B ) A .-13.55B -C .1D .无法确定 7.关于x 的方程233x k x x =+--化为整式方程后,会产生一个解使得原分式方程的最简公分母为0,则k 的值为(A ) A .3 B .0 C .±3 D .无法确定8.使分式224x x +-等于0的x 值为(D ) A .2 B .-2 C .±2 D .不存在9.下列各式中正确的是(C )....a b a b a b a bA B a ba b a b a b a ba ba b a b C D a b a b a b b a -++--==-----++--+-+-==-+-+- 10.下列计算结果正确的是(B )22222211..()223..()955b a a b A B a ab a b ab a a m n n xy xy C D xy x x m a a --=-÷-=-÷=÷=二、填空题1.若分式||55y y--的值等于0,则y= -5 . 2.在比例式9:5=4:3x 中,x=2027. 3.1111b a b a a b a b++---的值是 2()a b ab + . 4.当x> 13 时,分式213x--的值为正数. 5.1111x x ++-= 221x - . 6.当分式2223211x x x x x +++--与分式的值相等时,x 须满足 x ≠±1 . 7.已知x+1x =3,则x 2+21x= 7 . 8.已知分式212x x +-,当x= 2 时,分式没有意义;当x= -12 时,分式的值为0;当x=-2时,分式的值为 34 . 9.当a= -173 时,关于x 的方程23ax a x +-=54的解是x=1. 10.一辆汽车往返于相距akm 的甲、乙两地,去时每小时行mkm ,•返回时每小时行nkm ,则往返一次所用的时间是 (a a m n +)h . 三、解答题1.计算题.2222222444(1)(4);28241(2)1.(2)(4)424a a a a a a a a a a a a a a --+÷-+----==-+--+解:原式 2222132(2)(1).441(1)(1)1(1)(2)1.(2)112x x x x x x x x x x x x x x x x --+÷+-+-+----==-+--解:原式 2.化简求值.(1)(1+11x -)÷(1-11x -),其中x=-12; 解:原式=1111111122x x x x x x x x x x -+---÷==-----. 当x=-12时,原式=15. (2)213(2)22x x x x x -÷-+-++,其中x=12.解:原式=22(1)(2)(2)3121(2)(1)2211x x x x x x x x x x ---+++÷=-=-+-++--. 当x=12时,原式=43. 3.解方程.(1)1052112x x+--=2; 解:x=74. (2)2233111x x x x +-=-+-. 解:用(x+1)(x -1)同时乘以方程的两边得,2(x+1)-3(x -1)=x+3.解得 x=1.经检验,x=1是增根.所以原方程无解.4.课堂上,李老师给大家出了这样一道题:当x=3,5-22212211x x x x x -+-÷-+的值.小明一看,说:“太复杂了,怎么算呢?”你能帮小明解决这个问题吗?•请你写出具体的解题过程.解:原式=2(1)1(1)(1)2(1)x x x x x -++--=12. 由于化简后的代数中不含字母x ,故不论x 取任何值,所求的代数式的值始终不变.所以当x=3,5-12. 5.对于试题:“先化简,再求值:23111x x x----,其中x=2.”小亮写出了如下解答过程: ∵ 2313111(1)(1)1x x x x x x x ---=----+- ① 31(1)(1)(1)(1)x x x x x x -+--+-+ ② =x -3-(x+1)=2x -2, ③∴当x=2时,原式=2×2-2=2. ④(1)小亮的解答在哪一步开始出现错误: ① (直接填序号);(2)从②到③是否正确: 不正确 ;若不正确,错误的原因是 把分母去掉了 ;(3)请你写出正确的解答过程.解:正确的应是:23111x x x ----=312(1)(1)(1)(1)1x x x x x x x -++=-+-++ 当x=2时,原式=23. 6.小亮在购物中心用12.5元买了若干盒饼干,但他在一分利超市发现,同样的饼干,这里要比购物中心每盒便宜0.5元.因此当他第二次买饼干时,便到一分利超市去买,如果用去14元,买的饼干盒数比第一次买的盒数多25,•问他第一次在购物中心买了几盒饼干?解:设他第一次在购物中心买了x 盒,则他在一分利超市买了75x 盒. 由题意得:12.51475x x -=0.5 解得 x=5.经检验,x=5是原方程的根.答:他第一次在购物中心买了5盒饼干.。

初中分式及分式方程100道计算题

初中分式及分式方程100道计算题

实用文案分式及分式方程计算题练习“ y +1y - 2 * y _5(6) jy 2-4y+3 y 2-6y+9 丿 y-11.分式计算: (1) 3『,be ( 16a 2a 7 2a )2 b2 2a - 6a 9 3— a a -------------- — ------- d -------- 4 -b 2 2 b 3a -9(3)x 2 2x -3)3 ( 9-x 2 )(x -3)2(4)2x-64 -4x x 2■- (x 3)x 2 x - 6 3 — x(5) • ] - ■'"(7)1 2x'x + y < 2x2 - 2l —旳: x 一 y耳 _3y - s 2- 6xj^9y 2(8)x - yx _3y2 2x - y x 2 _6xy 9y 2(9)a 2 -2a 1 a -1-(a -2).(10)x x ; 4x. ---- ---- k -----X-2 x ,2.2-X2 x 一 v(11) (xy-x 2)-xy(12)(14)(x+y)?a 丄 a+3 2a 2+3a+2a+1 a+2(⑹4 2-b 3)a 2 ~ 2ab+b 2 a^b _ ab 2"一亠「(19)ari-ba3 _ a二2a- 4 ■少7 (22) 一b_a a a2 2a —6a + 9 3 — a a(24) —4—b 2 + b 3a—9(25)2x+2 x -6x+9 x -3 x2-4(26)(27)2xx -1(28)x+1 3b\ be /16a 2a2(23) (21)(29) a —b2b 2 a b(30)1 6 a 39 - a 2(31)T^-2)1 - X(32)(竺—亠一,亠x-2 x 2 x 2-4(35)(33)x 1(34)( 1+—)^-x - X —1 X 2—123.3〜x x -25 x -2(36)(」-)十 2xy2x_y x yx - y(37)‘4 一L1IX -x x —2x+1 丿x(37)3a3)3x y)(x2-y2),( y _x)2y x)(39)12x1 (X y xy(2x- x - y). (40)x2 - 4x 4-42-■2x^2x_1 ix 2 x2.解方程-2丄•丄x -7 x -1 丄•丄x -6 x -21 1+2x —4 2x-4 x-8 x-7------------ I ---------------- = -----------------x-5 x-9 x-8x -2(8)2x—3 2x—41 =x -1 2x 3“c 、 2 123 (13)(14)x —3 xx —1x 1(9)-x 3 (10)x 3「: + 5 =2-i x 2 - 4x 33(12)(||)1 一 x —2 2 —x1 _2 x -2 = x(15) 2- x7^33^=1(16) -__! ----------- -―2—&z^2 2 1 _3x(17) 3■ =0(18)S _1 I(蓝一1)3+1 1 x-2 i+l(19) (20)K+1(21) x 1 4x -1 x2 -1(22) — - —n0(m = n,m n = 0)x x +13 _____ 4x -2 x 4(23)(24)1 -3x 3x 1 12 1 1(29)+_ 2(30) .2- 2 =01 +3x3x -11 -9xx +x x -1(25) 2x-4 x-2 x -3 x -1(26) J=4 * x 2-2x x -231 (27)=3 (28)l 212-_________________ ■丄(31)州1X X2-x xp -H1 1 1 1X 1 X 2 x 3 x 4 (32)(33) (34)2x2x 5 5x —2=1(35)X 1 X -1 4(36)7 4 6x2 x x2 _x _ X2 _1(37)1 X -1------ +-------x—2 2—x(38)2x—5 5 —2x(39) x 1x -1=1(40)x -1x -2 16 x 2F~2 _ x2 _4 _ x _2V + 1 X + 13.已知x ■V - -4, xy - -12,求的值。

分式与分式方程专项练习(含答案)

分式与分式方程专项练习(含答案)

分式与分式方程专项练习(含答案)一、选择题(本大题共47小题,共141.0分)1.化简(a−b2a )÷a−ba的结果是()A. a−bB. a+bC. 1a−b D. 1a+b2.分式13−x可变形为()A. 13+x B. −13+xC. 1x−3D. −1x−33.学校为了丰富学生知识,需要购买一批图书,其中科普类图书平均每本的价格比文学类图书平均每本的价格多8元,已知学校用15000元购买科普类图书的本数与用12000元购买文学类图书的本数相等.设文学类图书平均每本x元,则列方程正确的是()A. 15000x−8=12000xB. 15000x+8=12000xC. 15000x =12000x−8D. 15000x=12000x+84.已知关于x的分式方程mx−1+2=−31−x的解为非负数,则正整数m的所有个数为()A. 3B. 4C. 5D. 65.分式方程x−5x−1+2x=1的解为()A. x=−1B. x=1C. x=2D. x=−26.关于x的分式方程mx−2−32−x=1有增根,则m的值()A. m=2B. m=1C. m=3D. m=−37.对于两个不相等的实数a,b,我们规定符号Max{a,b}表示a,b中的较大的值,如Max{2,4}=4,按照这个规定,方程Max{1x ,2x}=1−3x的解是()A. x=4B. x=5C. x=4或x=5D. 无实数解8.如果m+n=1,那么代数式(2m+nm2−mn +1m)⋅(m2−n2)的值为()A. −3B. −1C. 1D. 39.如果a2+3a−2=0,那么代数式(3a2−9+1a+3)⋅a−3a2的值为()A. 1B. 12C. 13D. 1410.解分式方程x2x−1+21−2x=3时,去分母化为一元一次方程,正确的是()A. x +2=3B. x −2=3C. x −2=3(2x −1)D. x +2=3(2x −1)11. 解分式方程xx−1−2x−11−x=12时,去分母后得到的方程正确的是( )A. x −2x +1=x −1B. 2x −4x +2=x −1C. 2x +4x −2=x −1D. x +2x −1=x −112. 某厂计划加工180万个医用口罩,第一周按原计划的速度生产,一周后以原来速度的1.5倍生产,结果比原计划提前一周完成任务.若设原计划每周生产x 万个口罩,则可列方程为( )A. 180−x x =180−x 1.5x+1 B. 180−x x =180−x 1.5x−1C.180x=1801.5x+2 D.180x=1801.5x−213. 已知x =√5−1,y =√5+1,那么代数式x 3−xy 2x(x−y)的值是( )A. 2B. √5C. 4D. 2√514. 分式方程3x−2=1的解是( )A. x =−1B. x =1C. x =5D. x =215. 已知分式A =4x 2−4,B =1x+2+12−x ,其中x ≠±2,则A 与B 的关系是( )A. A =BB. A =−BC. A >BD. A <B16. 化简a 2+b 2a−b+2abb−a 的结果是( )A. a +bB. a −bC. (a+b)2a−bD. (a−b)2a+b17. 若关于x 的一元一次不等式组{3x−12≤x +3,x ≤a的解集为x ≤a ;且关于y 的分式方程y−ay−2+3y−4y−2=1有正整数解,则所有满足条件的整数a 的值之积是( )A. 7B. −14C. 28D. −5618. 若x ,y 的值均扩大为原来的2倍,则下列分式的值保持不变的是( )A. x+1y−1B. 2xy 2C. xx−yD. 2x−1x+y19. 已知m 2−3m +2=0,则代数式mm 2−m+2的值是( )A. 3B. 2C. 13D. 1220. 已知x =3是分式方程kxx−1−2k−1x=2的解,那么实数k 的值为( )A. −1B. 0C. 1D. 221. 下列分式是最简分式的是( )A. 2a3a 2bB. 2a4bC. a+ba 2+b 2D. a2−aba −b 22. 计算xx−1−yy−1的结果为( )A. −x+y(x−1)(y−1)B. x−y(x−1)(y−1)C. −x−y(x−1)(y−1)D. x+y(x−1)(y−1)23. 某工程队承接了80万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了35%,结果提前40天完成了这一任务.设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是( )A. 80(1+35%)x −80x=40B. 80(1+35%)x −80x=40 C.80x−80(1+35%)x=40 D.80x−80(1+35%)x=4024. 已知关于x 的分式方程xx−3−4=k3−x 的解为非正数,则k 的取值范围是( )A. k ≤−12B. k ≥−12C. k >−12D. k <−1225. 若整数a 使关于x 的不等式组{x−12≤11+x34x −a >x +1,有且只有45个整数解,且使关于y的方程2y+a+2y+1+601+y =1的解为非正数,则a 的值为( )A. −61或−58B. −61或−59C. −60或−59D. −61或−60或−5926. 我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x 株,则符合题意的方程是( )A. 3(x −1)=6210xB. 6210x−1=3 C. 3x −1=6210xD.6210x=327. 若关于x 的分式方程2x−1=mx 有正整数解,则整数m 的值是( )A. 3B. 5C. 3或5D. 3或428. 一项工程,甲单独做a 小时完成,乙单独做b 小时完成,甲、乙两人一起完成这项工程所需时间为( )A. aba+b 小时B.a+bab小时 C. a +b 小时D. 1a+b 小时29. 下列变形正确的是( )A. a+1b+1=abB. a−1−b=−a−1bC. a−ba2−b2=1a−bD. (−a−b)2(a+b)2=−130.下面各式化简结果为a的是()A. a−2aB. a2÷a2C. 1−1a+1D. a2a−1+a1−a31.甲、乙二人同驾一辆车出游,各匀速行驶一半路程,共用3小时,到达目的地后,甲对乙说:“我用你所花的时间,可以行驶180km”,乙对甲说:“我用你所花的时间,只能行驶80km”.从他们的交谈中可以判断,乙驾车的时长为()A. 1.2小时B. 1.6小时C. 1.8小时D. 2小时32.甲,乙两个工程队,甲队修路300米与乙队修路400米所用的时间相等,乙队每天比甲队多修10米.若可列方程300x =400x+10表示题中的等量关系,则方程中x表示()A. 甲队每天修路的长度B. 乙队每天修路的长度C. 甲队修路300米所用天数D. 乙队修路400米所用天数33.甲、乙两人做某种机械零件,已知甲做240个零件与乙做280个零件所用的时间相等,两人每天共做130个零件.设甲每天做x个零件,下列方程正确的是()A. 240x =280130−xB. 240130−x=280xC. 240x +280x=130 D. 240x−130=280x34.下列式子x−y3,xπ+2,a2x+1,3ab,23x−y,13x+y,3x+3=1x+1中,分式的个数为()A. 2B. 3C. 4D. 535.如果分式xy2x+y中的x、y都扩大为原来的4倍,那么下列说法中,正确的是()A. 分式的值不变B. 分式的值扩大为原来的4倍C. 分式的值缩小为原来的14D. 分式的值缩小为原来的1836.某校举行“停课不停学,名师陪你在家学”活动,计划投资8000元建设几间直播教室,为了保证教学质量,实际每间建设费用增加了20%,并比原计划多建设了一间直播教室,总投资追加了4000元.根据题意,求出原计划每间直播教室的建设费用是()A. 1600元B. 1800元C. 2000元D. 2400元37.若分式x−3x+3的值为0,则x的值为()A. 3B. −3C. 3或−3D. 038. 下列各式与分式ab 相等的是( )A.−abB. −−abC. a−bD. −−a−b39. 分式1x 2+3x 与1x 2−9的最简公分母是( )A. x(x +3)(x −3)B. x(x +1)(x +3)C. (x 2+3x)(x 2−9)D. (x +3)(x −3)40. 使分式a 2−a a−1有意义的a 取值应是( )A. 任意实数B. a ≠−1C. a ≠1D. a ≠0或141. 计算x(x+1)2+1(x+1)2的结果是( )A. 1x+1B. 1(x+1)2C. 1D. x +142. 在下列各式5x −7,3x 2−1,b−32a+1,m(n+p)7,−5,x 2−xy+y 22x−1,27,45b+c 中,分式有A. 2个B. 3个C. 4个D. 5个43. 下列分式中,当x =−2时,有意义的是A. x−2x+2B. x+2x−2C. x+2|x|−2D. x−2x 2−444. 关于x 的分式方程2x+ax+1=1的解为负数,则a 的取值范围是( )A. a >1B. a <1C. a <1且a ≠−2D. a >1且a ≠245. 八年级学生去距学校10km 的荆州博物馆参观,一部分学生骑自行车先走,过了20min 后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.若设骑车学生的速度为xkm/ℎ,则可列方程为( )A. 102x −10x=20 B.10x−102x =20C.10x−102x =13D. 102x −10x=1346. 甲、乙两人加工某种机器零件,已知每小时甲比乙少加工6个这种零件,甲加工240个这种零件所用的时间与乙加工300个这种零件所用的时间相等,设甲每小时加工x 个零件,所列方程正确的是( )A.240x=300x−6B.240x=300x+6C. 240x−6=300xD. 240x+6=300x47. 如图,若x 为正整数,则表示(x+2)2x 2+4x+4−1x+1的值的点落在( )A. 段①B. 段②C. 段③D. 段④二、填空题(本大题共9小题,共27.0分)48.定义:a∗b=ab,则方程2∗(x+3)=1∗(2x)的解为______.49.已知关于x的分式方程xx−3−2=kx−3有一个正数解,则k的取值范围为__________.50.当m=______时,解分式方程x−5x−3=m3−x会出现增根.51.已知1a +1b=4,则a−3ab+b2a+2b−7ab=.52.若关于x的分式方程k−1x+1=2的解为负数,则k的取值范围为______.53.若关于x的分式方程xx−3+3a3−x=2a无解,则a的值为__________.54.已知a米布料能做b件上衣,2a米布料能做3b条裤子,则一件上衣的用料是一条裤子用料的________倍.55.关于x的分式方程1x−2+2=1−k2−x的解为正实数,则k的取值范围是______.56.某商店第一次用600元购进2B铅笔若干支,第二次又用600元购进该款铅笔,但这次每支的进价是第一次进价的54倍,购进数量比第一次少了30支.则该商店第一次购进的铅笔,每支的进价是________元.三、计算题(本大题共5小题,共30.0分)57.先化简再求值:(a−2ab−b2a )÷a2−b2a,其中a=1+√2,b=1−√2.58.列方程(组)解应用题:为顺利通过国家义务教育均衡发展验收,我市某中学配备了两个多媒体教室,购买了笔记本电脑和台式电脑共120台,购买笔记本电脑用了7.2万元,购买台式电脑用了24万元,已知笔记本电脑单价是台式电脑单价的1.5倍,那么笔记本电脑和台式电脑的单价各是多少?59.计算:(1)2x3zy2⋅3y24xz2;(2)4a+4b5ab ⋅15a2b a2−b2.60.先化简,再求值:(1−1a )÷a2−1a2+2a+1,其中a是不等式组{a−2≥2−a ①2a−1<a+3 ②的最小整数解.61.求式子3m−3÷4m2−9的值,其中m=−2019.四、解答题(本大题共22小题,共176.0分)62.端午节是我国的传统节日,人们素有吃粽子的习俗.某商场在端午节来临之际用3000元购进A、B两种粽子1100个,购买A种粽子与购买B种粽子的费用相同.已知A种粽子的单价是B种粽子单价的1.2倍.(1)求A、B两种粽子的单价各是多少?(2)若计划用不超过7000元的资金再次购进A、B两种粽子共2600个,已知A、B两种粽子的进价不变.求A种粽子最多能购进多少个?63.先化简,再求值:x+1x2−4⋅(1x+1+1),其中x是不等式组{x+1≥05−2x>3的整数解.64.某学校为丰富同学们的课余生活,购买了一批数量相等的象棋和围棋供兴趣小组使用,其中购买象棋用了420元,购买围棋用了756元,已知每副围棋比每副象棋贵8元.(1)求每副围棋和象棋各是多少元?(2)若该校决定再次购买同种围棋和象棋共40副,且再次购买的费用不超过600元,则该校最多可再购买多少副围棋?65.先化简:(x−1x−2−x+2x)÷4−xx2−4x+4,然后选择一个合适的x值代入求值.66.解分式方程:x−2x −3x−2=1.67.在“旅游示范公路”建设的过程中,工程队计划在海边某路段修建一条长1200m的步行道.由于采用新的施工方式,平均每天修建步行道的长度是计划的1.5倍,结果提前5天完成任务.求计划平均每天修建步行道的长度.68.甲、乙两公司全体员工踊跃参与“携手防疫,共渡难关”捐款活动,甲公司共捐款100000元,乙公司共捐款140000元.下面是甲、乙两公司员工的一段对话:(1)甲、乙两公司各有多少人?(2)现甲、乙两公司共同使用这笔捐款购买A、B两种防疫物资,A种防疫物资每箱15000元,B种防疫物资每箱12000元.若购买B种防疫物资不少于10箱,并恰好将捐款用完,有几种购买方案?请设计出来(注:A、B两种防疫物资均需购买,并按整箱配送).69.某社区拟建A,B两类摊位以搞活“地摊经济”,每个A类摊位的占地面积比每个B类摊位的占地面积多2平方米.建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元.用60平方米建A类摊位的个数恰好是用同样面积建B .类摊位个数的35(1)求每个A,B类摊位占地面积各为多少平方米?(2)该社区拟建A,B两类摊位共90个,且B类摊位的数量不少于A类摊位数量的3倍.求建造这90个摊位的最大费用.70.某内陆城市为了落实国家“一带一路”战略,促进经济发展,增强对外贸易的竞争力,把距离港口420km的普通公路升级成了同等长度的高速公路,结果汽车行驶的平均速度比原来提高了50%,行驶时间缩短了2h,求汽车原来的平均速度.71.某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A、B型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片?72. 已知A x+1−B x−3=x+5(x+1)(x−3)(其中A ,B 为常数),求A 2020B 的值.73. 近年来,我市大力发展城市快速交通,小王开车从家到单位有两条路线可选择,路线A 为全程25km 的普通道路,路线B 包含快速通道,全程30km ,走路线B 比走路线A 平均速度提高50%,时间节省6min ,求走路线B 的平均速度.74. 先化简,再求值:(1−x+1x 2−2x+1)÷x−3x−1,其中x 是16的算术平方根.75. 为改善交通拥堵状况,我市进行了大规模的道路桥梁建设.已知某路段乙工程队单独完成所需的天数是甲工程队单独完成所需天数的1.5倍,如果按甲工程队单独工作20天,再由乙工程队单独工作30天的方案施工,这样就完成了此路段的23.(1)求甲,乙工程队单独完成这项工程各需多少天?(2)已知甲工程队每天的施工费用是2万元,乙工程队每天的施工费用为1.2万元,要使该项目的工程费不超过114万元,则需要改变施工方案,但甲乙两个工程队不能同时施工,乙工程队最少施工多少天才能完成此项工程?76.某工厂制作甲、乙两种窗户边框,已知同样用12米材料制成甲种边框的个数比制成乙种边框的个数少1个,且制成一个甲种边框比制成一个乙种边框需要多用20%的材料.(1)求制作每个甲种边框、乙种边框各用多少米材料?(2)如果制作甲、乙两种边框的材料共640米,要求制作乙种边框的数量不少于甲种边框数量的2倍,求应最多安排制作甲种边框多少个(不计材料损耗)?77.先化简,再求值.1 1−x ÷x2+2xx2−2x+1+1x+2,请从不等式组{5−2x≥1x+3>0的整数解中选择一个你喜欢的求值.78.随着人们“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行,也给自行车商家带来商机.某自行车行经营的A型自行车去年销售总额为8万元.今年该型自行车每辆售价预计比去年降低200元.若该型车的销售数量与去年相同,那么今年的销售总额将比去年减少10%,求:(1)A型自行车去年每辆售价多少元?(2)该车行今年计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍.已知,A型车和B型车的进货价格分别为1500元和1800元,计划B型车销售价格为2400元,应如何组织进货才能使这批自行车销售获利最多?79.在襄阳市创建全国文明城市的工作中,市政部门绿化队改进了对某块绿地的灌浇方,这样120吨水可多用3天,式.改进后,现在每天用水量是原来每天用水量的45求现在每天用水量是多少吨?80.山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场,某车行经营A型车去年销售总额为5万元,今年每辆售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.A,B两种型号车的进货和销售单价如下表:(1)今年A型车每辆售价为多少元?(用列方程的方法解答)(2)该车行计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多⋅81.用A、B两种机器人搬运大米,A型机器人比B型机器人每小时多搬运20袋大米,A型机器人搬运700袋大米与B型机器人搬运500袋大米所用时间相等.求A、B 型机器人每小时分别搬运多少袋大米.82.化简aa2−4⋅a+2a2−3a−12−a,并求值,其中a与2、3构成△ABC的三边,且a为整数.83.如图,点A、B在数轴上,它们对应的数分别为−2,x,且点A、B到原点的距离x+1相等.求x的值.答案和解析1.【答案】B【解析】解:原式=a2−b2a ×aa−b=(a+b)(a−b)a×aa−b=a+b.故选:B.直接将括号里面通分,进而分解因式,再利用分式的除法运算法则计算得出答案.此题主要考查了分式的混合运算,正确进行通分运算是解题关键.2.【答案】D【解析】解:分式13−x 可变形为:−1x−3.故选:D.直接利用分式的基本性质分析得出答案.此题主要考查了分式的基本性质,正确将原式变形是解题关键.3.【答案】B【解析】解:设文学类图书平均每本x元,则科普类图书平均每本(x+8)元,依题意,得:15000x+8=12000x.故选:B.设文学类图书平均每本x元,则科普类图书平均每本(x+8)元,根据数量=总价÷单价结合用15000元购买科普类图书的本数与用12000元购买文学类图书的本数相等,即可得出关于x的分式方程,此题得解.本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.4.【答案】B【解析】解:去分母,得:m+2(x−1)=3,移项、合并,得:x=5−m2,∵分式方程的解为非负数,≠1,∴5−m≥0且5−m2解得:m≤5且m≠3,∴正整数解有1,2,4,5共4个,故选:B.根据解分式方程,可得分式方程的解,根据分式方程的解为负数,可得不等式,解不等式,可得答案.本题考查了分式方程的解,先求出分式方程的解,再求出不等式的解.5.【答案】A【解析】解:方程两边同时乘以x(x−1)得,x(x−5)+2(x−1)=x(x−1),解得x=−1,把x=−1代入x(x−1)得x(x−1)≠0,故x=−1是原方程的解.故选:A.先把分式方程化为整式方程求出x的值,再代入最简公分母进行检验即可.此题主要考查了解分式方程,注意解分式方程时需要验根.6.【答案】D【解析】【分析】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.分式方程去分母转化为整式方程,由分式方程有增根,确定出m的值即可.【解答】解:去分母得:m+3=x−2,由分式方程有增根,得到x−2=0,即x=2,把x=2代入整式方程得:m+3=0,解得:m=−3,故选:D.7.【答案】B【解析】解:当1x >2x,即x<0时,方程为1x=1−3x,去分母得:1=x−3,解得:x=4(舍去),当1x <2x,即x>0时,方程为2x=1−3x,去分母得:2=x−3,解得:x=5,经检验,x=5是分式方程的解.故选:B.根据1x 与2x的大小关系,取1x与2x中的最大值化简所求方程,求出解即可.此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.8.【答案】D【解析】【分析】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.原式化简后,约分得到最简结果,把已知等式代入计算即可求出值.【解答】解:原式=2m+n+m−nm(m−n)⋅(m+n)(m−n)=3mm(m−n)⋅(m+n)(m−n)=3(m+n),当m+n=1时,原式=3.故选D.9.【答案】B【解析】【分析】本题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.原式括号中两项通分并利用同分母分式的加法法则计算,约分得到最简结果,把已知等式代入计算即可求出值.【解答】解:原式=a(a+3)(a−3)⋅a−3a2=1a2+3a,由a2+3a−2=0,得到a2+3a=2,则原式=12,故选:B.10.【答案】C【解析】【分析】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.最简公分母是2x−1,方程两边都乘以(2x−1),把分式方程便可转化成一元一次方程.【解答】解:方程两边都乘以(2x−1),得x−2=3(2x−1),故选:C.11.【答案】C【解析】解:分式方程xx−1−2x−11−x=12,去分母得:2x+2(2x−1)=x−1,即2x+4x−2=x−1,故选:C.分式方程两边乘以2(x−1),去分母得到结果,即可作出判断.此题考查了解分式方程,属于基础题.12.【答案】A【解析】解:∵原计划每周生产x万个口罩,一周后以原来速度的1.5倍生产,∴一周后每周生产1.5x万个口罩,依题意,得:180−xx =180−x1.5x+1.故选:A.由原计划每周生产的口罩只数结合一周后提高的速度,可得出一周后每周生产1.5x万个口罩,根据工作时间=工作总量÷工作效率结合实际比原计划提前一周完成任务(第一周按原工作效率),即可得出关于x的分式方程,此题得解.本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.13.【答案】D【解析】解:原式=x(x+y)(x−y)x(x−y)=x+y当x=√5−1,y=√5+1,原式=√5−1+√5+1=2√5.故选:D.先将分式化简,再代入值求解即可.本题考查了分式的化简求值,解决本题的关键是掌握分式的化简.14.【答案】C【解析】解:去分母,得x−2=3,移项合并同类项,得x=5.检验:把x=5代入x−2≠0,所以原分式方程的解为:x=5.故选:C.根据解分式方程的步骤进行计算即可.本题考查了解分式方程,解决本题的关键是掌握解分式方程的步骤.15.【答案】B【解析】解:∵B=x−2−x−2(x+2)(x−2)=−4x2−4,∴A和B互为相反数,即A=−B.故选:B.先把B式进行化简,再判断出A和B的关系即可.本题考查的是分式的加减法,先根据题意判断出A和B互为相反数是解答此题的关键.16.【答案】B【解析】解:原式=a 2+b 2a−b −2ab a−b=a 2+b 2−2ab a −b=(a −b)2a −b=a −b .故选:B .根据同分母分式相加减的运算法则计算即可.同分母分式相加减,分母不变,分子相加减.本题主要考查了分式的加减,熟记运算法则是解答本题的关键.17.【答案】A【解析】解:不等式组整理得:{x ≤7x ≤a, 由解集为x ≤a ,得到a ≤7,分式方程去分母得:y −a +3y −4=y −2,即3y −2=a ,解得:y =a+23,由y 为正整数解,且y ≠2得到a =1,7,1×7=7,故选A.不等式组整理后,根据已知解集确定出a 的范围,分式方程去分母转化为整数方程,由分式方程有正整数解,确定出a 的值即可.此题考查了分式方程的解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.18.【答案】C【解析】A .变化为2x+12y−1,分式的值改变,不符合题意;B .变化为4x 4y 2,4x 4y 2=x y 2,分式的值改变,不符合题意;C.变化为2x2x−2y ,2x2x−2y=xx−y,分式的值保持不变,符合题意;D.变化为4x−12x+2y,分式的值改变,不符合题意.故选C.19.【答案】D【解析】略20.【答案】D【解析】【分析】本题考查一元一次方程的解,属于基础题.将x=3代入原方程即可求出k的值.【解答】解:将x=3代入kxx−1−2k−1x=2,∴3k2−2k−13=2,解得:k=2,故选:D.21.【答案】C【解析】略22.【答案】A【解析】解:原式=x(y−1)(x−1)(y−1)−y(x−1)(x−1)(y−1)=xy−x−xy+y(x−1)(y−1)=−x+y(x−1)(y−1).故选:A.直接通分运算,进而利用分式的性质计算得出答案.此题主要考查了分式的加减法,正确通分运算是解题关键.23.【答案】A【解析】解:设实际工作时每天绿化的面积为x万平方米,则原计划每天绿化的面积为x1+35%万平方米,依题意,得:80x1+35%−80x=40,即80(1+35%)x −80x=40.故选:A.设实际工作时每天绿化的面积为x万平方米,则原计划每天绿化的面积为x1+35%万平方米,根据工作时间=工作总量÷工作效率结合实际比原计划提前40天完成了这一任务,即可得出关于x的分式方程,此题得解.本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.24.【答案】A【解析】解:方程xx−3−4=k3−x两边同时乘以(x−3)得:x−4(x−3)=−k,∴x−4x+12=−k,∴−3x=−k−12,∴x=k3+4,∵解为非正数,∴k3+4≤0,∴k≤−12.故选:A.表示出分式方程的解,由解为非正数得出关于k的不等式,解出k的范围即可.本题考查了分式方程的解及解一元一次不等式,熟练掌握分式方程的解法和一元一次不等式的解法是解题的关键.25.【答案】B【解析】解:解不等式组,得a+13<x ≤25,∵不等式组有且只有45个整数解,∴−20≤a+13<−19,解得−61≤a <−58,因为关于y 的方程2y+a+2y+1+601+y =1的解为: y =−a −61,y ≤0,∴−a −61≤0,解得a ≥−61,∵y +1≠0,∴y ≠−1,∴a ≠−60则a 的值为:−61或−59.故选:B .解不等式组,得a+13<x ≤25,根据不等式组有且只有45个整数解,可得−61≤a <−58,根据关于y 的方程2y+a+2y+1+601+y =1的解为非正数:解得a ≥−61,又y +1不等于0,进而可得a 的值. 本题考查了分式方程的解、解一元一次不等式组、一元一次不等式组的整数解,解决本题的关键是确定一元一次不等式组的整数解.26.【答案】A【解析】解:依题意,得:3(x −1)=6210x .故选:A .根据单价=总价÷数量结合少拿一株椽后剩下的椽的运费恰好等于一株椽的价钱,即可得出关于x 的分式方程,此题得解.本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键. 27.【答案】D【解析】解:解分式方程,得x =m m−2,经检验,x =m m−2是分式方程的解,因为分式方程有正整数解,则整数m 的值是3或4.故选:D .解分式方程,得x =m m−2,因为分式方程有正整数解,进而可得整数m 的值. 本题考查了分式方程的解,解决本题的关键是准确求出分式方程的整数解. 28.【答案】A【解析】解:由题意可得,甲、乙两人一起完成这项工程所需时间为:11a +1b =ab a+b (小时),故选:A .根据题意可以列出相应的代数式,从而可以解答本题.本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.29.【答案】B【解析】【分析】本题考查分式的基本性质:分式的分子分母同时乘以或除以同一个不为零的数可整式,分式的值不变.根据分式的性质判定A ;根据分式的本身、分子、分母三个符号中任意改变两个,分式值不变,判定B ;分式的约分判定C 、D ;即可得出答案.【解答】解:A.分式a+1b+1分式分母同时减1,不能等于a b ,故A 错误;B .a−1−b =−a−1b ,故B 正确; C .a−b a 2−b 2=a−b (a+b )(a−b )=1a+b ,故C 错误;D .(−a−b )2(a+b )2=(a+b )2(a+b )2=1,故D 错误.故选B.30.【答案】D【解析】解:A、a−2a=−a,不符合题意;B、a2÷a2=1,不符合题意;C、1−1a+1=a+1a+1−1a+1=aa+1,不符合题意;D、a2a−1+a1−a=a2−aa−1=a(a−1)a−1=a,符合题意;故选:D.分别根据合并同类项法则、同底数幂相除、分式的加减运算法则逐一计算即可判断.本题主要考查分式的加减法和整式的运算,解题的关键是掌握同分母分式加减法法则:同分母的分式相加减,分母不变,把分子相加减.31.【答案】C【解析】解:设乙驾车时长为x小时,则甲驾车时长为(3−x)小时,根据两人对话可知:甲的速度为180x km/ℎ,乙的速度为803−xkm/ℎ,根据题意得:180(3−x)x =80x3−x,解得:x1=1.8或x2=9,经检验:x1=1.8或x2=9是原方程的解,x2=9不合题意,舍去,故选:C.设乙驾车时长为x小时,则甲驾车时长为(3−x)小时,根据两人对话可知:甲的速度为180 x km/ℎ,乙的速度为803−xkm/ℎ,根据“各匀速行驶一半路程”列出方程求解即可.考查了分式方程的应用,解题的关键是能够分别表示出各自的实际速度,难度中等.32.【答案】A【解析】解:方程中x表示甲队每天修路的长度,故选:A.根据题意和所列方程即可得到结论.本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.33.【答案】A【解析】解:设甲每天做x 个零件,根据题意得:240 x =280130−x ,故选:A .设甲每天做x 个零件,根据甲做240个零件与乙做280个零件所用的时间相同,列出方程即可.此题考查了由实际问题抽象出分式方程,找到关键描述语,找到等量关系是解决问题的关键.本题用到的等量关系为:工作时间=工作总量÷工作效率.34.【答案】B【解析】 a 2x+1,3a b ,23x−y 的分母中均含字母,因此是分式,共有3个,故选B . 35.【答案】B【解析】解:原式=16xy 8x+4y =4xy 2x+y故选:B .根据分式的基本性质即可求出答案.本题考查分式的基本性质,解题的关键是正确理解分式的基本性质,本题属于基础题型. 36.【答案】C【解析】解:设原计划每间直播教室的建设费用是x 元,则实际每间建设费用为1.2x ,根据题意得:8000+40001.2x −8000x =1,解得:x =2000,经检验:x =2000是原方程的解,答:原计划每间直播教室的建设费用是2000元,故选:C .设原计划每间直播教室的建设费用是x 元,则实际每间建设费用为1.2x ,根据“实际每间建设费用增加了20%,并比原计划多建设了一间直播教室,总投资追加了4000元”列出方程求解即可.。

分式方程20道例题

分式方程20道例题

分式方程20道例题一、基础题型例1:解方程(2)/(x + 1)=(1)/(x - 1)解析:1. 首先去分母,给方程两边同时乘以(x + 1)(x-1)(最简公分母),得到: - 2(x - 1)=x + 1。

2. 然后展开括号:- 2x-2=x + 1。

3. 接着移项:- 2x-x=1 + 2。

- 解得x = 3。

4. 最后检验:- 当x = 3时,(x + 1)(x - 1)=(3+1)×(3 - 1)=4×2 = 8≠0。

- 所以x = 3是原分式方程的解。

例2:解方程(x)/(x - 2)-1=(4)/(x^2)-4解析:1. 先将方程右边的分母因式分解,x^2-4=(x + 2)(x - 2)。

2. 去分母,方程两边同时乘以(x + 2)(x - 2),得到:- x(x + 2)-(x + 2)(x - 2)=4。

3. 展开括号:- x^2+2x-(x^2-4)=4。

- x^2+2x - x^2+4 = 4。

4. 化简得:- 2x=0,解得x = 0。

5. 检验:- 当x = 0时,(x + 2)(x - 2)=(0 + 2)×(0 - 2)=-4≠0。

- 所以x = 0是原分式方程的解。

例3:解方程(3)/(x)+(6)/(x - 1)=(x + 5)/(x(x - 1))解析:1. 去分母,方程两边同时乘以x(x - 1),得到:- 3(x - 1)+6x=x + 5。

2. 展开括号:- 3x-3+6x=x + 5。

3. 移项合并同类项:- 3x+6x - x=5 + 3。

- 8x=8,解得x = 1。

4. 检验:- 当x = 1时,x(x - 1)=1×(1 - 1)=0。

- 所以x = 1是增根,原分式方程无解。

二、有增根问题的分式方程例4:若关于x的分式方程(2)/(x - 2)+(mx)/(x^2)-4=(3)/(x + 2)会产生增根,求m的值。

初中分式及分式方程100道计算题

初中分式及分式方程100道计算题

初中分式及分式方程100道计算题分式及分式方程计算题练1.分式计算:a) $\frac{3b^2c^2a}{2a^2-6a+9-aa^2} \div (-2) \div (1)$b) $\frac{(3-x)(x+1)}{(x-3)(3+x)} \cdot \frac{-(1-x)}{(1+x)^2}$c) $\frac{4-b^2}{2+b} \div \frac{3a-9}{16a^2bc^2a}$d) $\frac{2x^2-6x+1}{4-4x+x^2} \div (x+3) \cdot 6$e) $\frac{y+1}{y-2} \div \frac{y^2-4y+3}{y^2-6y+9} \cdot 6$f) $\frac{x-y}{x-3y} \div \frac{x^2-y^2}{x^2-6xy+9y^2}$g) $\frac{a^2-2a+1}{a-1} \cdot \frac{a-2}{-(a-1)}$h) $\frac{xy-x^2}{x-y} \div \frac{xy}{x^2}$i) $\frac{x}{x-2} - \frac{x}{x+2} \div 4x$j) $(x+y) \cdot \frac{x}{x-2}$k) $\frac{3b^2}{16a} \div \frac{bc^2a}{2a^2} \cdot (-\frac{b}{2a})$l) $\frac{a^2-6a+9}{3-a} \cdot \frac{x^2y}{yz-x}$m) $\frac{4-b^2}{2+b} \div \frac{3a-9}{a^2-6a+9}$n) $\frac{x^2y}{xz(-y)} \div \frac{-xy}{yz}$o) $\frac{a^2+3}{a^2-1} - \frac{a-1}{a+1} +\frac{2b^2}{16}$p) $\frac{a-b}{a+b} - \frac{a+b}{a-b}$q) $\frac{1}{1+3x} - \frac{1-x^2}{x+1}$r) $x(1-\frac{1}{x}) + \frac{x^2-1}{x+1}$s) $\frac{3-x}{x-2} \div \frac{x+2-5}{x-2}$t) $\frac{(3x-x^3)(x-2)}{x-2} \div (x+2)$u) $\frac{1}{x-y} + \frac{1}{xy} \cdot \frac{x+y}{x+y} \div (x^2-y^2)$v) $\frac{(x+1)}{2(x-2)} \cdot \frac{x-2}{x+2} \div (4x^2-x)$2.改写:a) $\frac{3b^2c^2a}{2a^2-6a+9-aa^2} \div (-2) \div (1) =\frac{-3b^2c^2a}{2a^2-6a+9-aa^2}$b) $\frac{(3-x)(x+1)}{(x-3)(3+x)} \cdot \frac{-(1-x)}{(1+x)^2} = \frac{(x-3)(x+1)(1-x)}{(3+x)(1+x)^2}$c) $\frac{4-b^2}{2+b} \div \frac{3a-9}{16a^2bc^2a} =\frac{-2b}{a(3a-9)}$d) $\frac{2x^2-6x+1}{4-4x+x^2} \div (x+3) \cdot 6 = \frac{-6x+18}{x-3}$e) $\frac{y+1}{y-2} \div \frac{y^2-4y+3}{y^2-6y+9} \cdot 6 = \frac{2(y+1)}{(y-3)(y-1)}$f) $\frac{x-y}{x-3y} \div \frac{x^2-y^2}{x^2-6xy+9y^2} = \frac{y}{x-3y}$g) $\frac{a^2-2a+1}{a-1} \cdot \frac{a-2}{-(a-1)} = -(a-2)$h) $\frac{xy-x^2}{x-y} \div \frac{xy}{x^2} = x$i) $\frac{x}{x-2} - \frac{x}{x+2} \div 4x = \frac{2x^2-8x+1}{x(x-2)(x+2)}$j) $(x+y) \cdot \frac{x}{x-2} = \frac{x(x+y)}{x-2}$k) $\frac{3b^2}{16a} \div \frac{bc^2a}{2a^2} \cdot (-\frac{b}{2a}) = -\frac{3b^3c^2}{32a^3}$l) $\frac{a^2-6a+9}{3-a} \cdot \frac{x^2y}{yz-x} = -\frac{a-3}{y-xz} \cdot x^2y$m) $\frac{4-b^2}{2+b} \div \frac{3a-9}{a^2-6a+9} = \frac{-2b(a-3)}{(2+b)(a-3)^2}$n) $\frac{x^2y}{xz(-y)} \div \frac{-xy}{yz} = -\frac{z}{x}$o) $\frac{a^2+3}{a^2-1} - \frac{a-1}{a+1} + \frac{2b^2}{16} = \frac{4a^2b^2+2a^2+2b^2-2a}{16(a^2-1)}$p) $\frac{a-b}{a+b} - \frac{a+b}{a-b} = -\frac{4ab}{a^2-b^2}$q) $\frac{1}{1+3x} - \frac{1-x^2}{x+1} = \frac{-2x^3-3x^2-3x}{(1+3x)(x+1)(x-1)}$r) $x(1-\frac{1}{x}) + \frac{x^2-1}{x+1} = x+1$s) $\frac{3-x}{x-2} \div \frac{x+2-5}{x-2} = \frac{3-x}{x-3}$t) $\frac{(3x-x^3)(x-2)}{x-2} \div (x+2) = -(x-1)(3x-x^2)$u) $\frac{1}{x-y} + \frac{1}{xy} \cdot \frac{x+y}{x+y} \div (x^2-y^2) = \frac{2xy}{(x+y)(y-x)(x+y)}$v) $\frac{(x+1)}{2(x-2)} \cdot \frac{x-2}{x+2} \div (4x^2-x) = \frac{1}{2x(x-2)}$2.解方程⑴ $\dfrac{3x-2}{5x}=\dfrac{6}{x+2}$化简得:$3x^2+4x-8=0$,解得:$x=1$ 或 $x=-\dfrac{4}{3}$⑵ $\dfrac{x}{x-5}=\dfrac{x-2}{x-6}$化简得:$x^2-8x+12=0$,解得:$x=2$ 或 $x=6$⑶ $\dfrac{2-x}{x+1}=-2$化简得:$x^2+3x+4=0$,无实数解⑷ $\dfrac{x-1}{x-2}+3=\dfrac{x-2}{x-2}$化简得:$x=3$⑸ $\dfrac{1}{x-2}+3=\dfrac{x-2}{x-2}$化简得:$x=3$ 或 $x=4$⑹ $\dfrac{2x-4}{x-8}+\dfrac{x-5}{x-9}=\dfrac{x-8}{x-6}+\dfrac{x-6}{x-2}$化简得:$x=10$⑺ $\dfrac{2x-3}{2x-4}-\dfrac{1}{x-1}=\dfrac{2x+3}{x-3}$化简得:$x=-\dfrac{3}{2}$ 或 $x=4$⑻ $\dfrac{x-7}{x-1}+\dfrac{1}{x-2}=\dfrac{x-6}{x-2}+\dfrac{1}{x-2}$化简得:$x=3$ 或 $x=8$⑼ $\dfrac{x-1}{x-2}+3=\dfrac{x-2}{x-2}$化简得:$x=3$⑽ $\dfrac{2x-4}{x-3}-\dfrac{x-2}{x-1}=1$化简得:$x=3$ 或 $x=\dfrac{7}{3}$⑾ $\dfrac{1}{x-3}-\dfrac{1}{x-2}+1=\dfrac{3}{2-x}$化简得:$x=1$ 或 $x=4$⑿ $\dfrac{2}{x-3}=\dfrac{1}{x}$化简得:$x=6$⒀ $\dfrac{1}{x+3}+\dfrac{1}{x-3}-\dfrac{2}{x}=1$化简得:$x=2$ 或 $x=4$⒁ $\dfrac{x-1}{x+1}-\dfrac{x+2}{x-1}=\dfrac{x+3}{x+4}-\dfrac{x+4}{x+3}$化简得:$x=-\dfrac{7}{2}$⒂ $\dfrac{3}{x+1}-\dfrac{5}{x+3}=\dfrac{1}{x+3}-\dfrac{1}{x+1}$化简得:$x=-\dfrac{1}{2}$ 或 $x=-\dfrac{7}{3}$3.已知 $x+y=-4$,$xy=-12$,求$\dfrac{y+1}{x+1}+\dfrac{x+1}{y+1}$ 的值。

分式练习计算练习题(超全)

分式练习计算练习题(超全)

分式及分式方程练习题一 填空题1(1)已知bab 2a bab 3a ,2b 1a 1+++-=+则=____________. (2)已知x-y=4xy ,则2322x xy yx xy y+---的值为2。

(1)某林场原计划在一定期限内固沙造林240公顷,实际每天固沙造林的面积比原计划多4公顷,结果提前5天完成任务。

设原计划每天固沙造林x 公顷,根据题意列出方程为 。

(2)从甲地到乙地全长S 千米,某人步行从甲地到乙地t 小时可以到达,现为了提前半小时到达,则每小时应多走 千米(结果化为最简形式)(3)某农场原计划用m 天完成A 公顷的播种任务,如果要提前a 天结束,那么平均每天比原计划要多播种_________公顷。

(4)一艘船顺流航行n 千米用了m 小时,如果逆流航速是顺流航速的qp,那么这艘船逆流航行t 小时走了__________千米。

(5)某项工作,甲单独做需a 天完成,在甲做了c 天(a c <)后,剩下的工作由乙单独完成还需b 天,若开始就由甲乙共同合做,则完成这项任务需_________天.(6)A 地在河的上游,B 地在河的下游,若船从A 地开往B 地的速度为a 千米/时,从B 地返回A 地的速度为b 千米/时,则在A ,B 两地间往返一次的平均速度为___________千米/时.(用a ,b 的式子表示)(7)甲、乙两人分别从两地同时出发,若相向而行,则a 小时相遇;若同向而行,则b 小时甲追上乙。

那么甲的速度是乙的速度的_______倍. (8)一项工程,甲单独做x 小时完成,乙单独做y 小时完成,则两人一起完成这项工程需要__________小时. (9)某工厂库存原材料x 吨,原计划每天用a 吨,若现在每天少用b 吨,则可以多用 天。

(10)甲、乙两人组成一队参加踢毽子比赛,甲踢m 次用时间1t (s ),乙在2t (s)内踢n 次,现在二人同时踢毽子,共N 次,所用的时间是T(s),则T 是________。

分式与分式方程练习题

分式与分式方程练习题

分式与分式方程练习题一、基础练习1. 计算下列分式的值:(a) $\frac{3}{5} + \frac{2}{5}$(b) $\frac{5}{6} - \frac{1}{3}$(c) $\frac{2}{3} \times \frac{4}{5}$(d) $\frac{7}{8} \div \frac{4}{9}$2. 将下列分数化为最简形式:(a) $\frac{9}{12}$(b) $\frac{18}{30}$(c) $\frac{24}{36}$(d) $\frac{16}{48}$3. 求下列分式的整数部分和分数部分:(a) $\frac{15}{4}$(b) $\frac{8}{3}$(c) $\frac{23}{5}$(d) $\frac{17}{6}$4. 求下列分式的倒数:(a) $\frac{4}{9}$(b) $\frac{5}{12}$(c) $\frac{7}{5}$(d) $\frac{9}{10}$5. 求下列分式的平方:(a) $\left( \frac{2}{5} \right)^2$(b) $\left( \frac{3}{4} \right)^2$(c) $\left( \frac{5}{6} \right)^2$(d) $\left( \frac{7}{8} \right)^2$二、方程练习1. 解下列分式方程:(a) $\frac{x}{3} - \frac{1}{2} = \frac{x}{4}$(b) $\frac{2}{x} + \frac{3}{4} = \frac{1}{2}$(c) $\frac{x}{6} + \frac{x-1}{3} = \frac{3}{2}$(d) $\frac{x}{5} - \frac{2x-1}{4} = \frac{x}{3} - 2$2. 解下列分式方程组:(a) $\frac{1}{x} + \frac{1}{y} = \frac{3}{4}$$\frac{1}{x} - \frac{1}{y} = \frac{1}{8}$ (b) $\frac{x+1}{2} + \frac{y-1}{3} = 1$$\frac{x-2}{4} - \frac{y+2}{2} = 2$三、应用练习1. 小明花了$\frac{3}{8}$小时的时间在写作业上,又花了$\frac{5}{12}$小时的时间在看电视上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分式及分式方程精典练习题
一、填空题:
⒈当x 时,分式1223+-x x 有意义;当x 时,分式x
x --112的值等于零. ⒉分式ab c 32、bc a 3、ac
b 25的最简公分母是 ; ⒊化简:2
42--x x = . ⒋当x 、y 满足关系式________时,
)(2)(5y x x y --=-25 ⒌化简=-+-a
b b b a a . ⒍分式方程3
13-=+-x m x x 有增根,则m = . ⒎若121-x 与)4(3
1+x 互为倒数,则x= . ⒏某单位全体员工在植树节义务植树240棵.原计划每小时植树口棵。

实际每小时植树的棵数是原计划的1.2倍,那么实际比原计划提前了 小时完成任务
9、已知关于x 的方程32
2=-+x m x 的解是正数,则m 的取值范围为_____________. 二、选择题:
⒈下列约分正确的是( )
A 、326x x x =
B 、0=++y x y x
C 、x xy x y x 12=++
D 、2
14222=y x xy ⒉用换元法解分式方程13101x x x x --+=-时,如果设1x y x
-=,将原方程化为关于y 的整式方程,那么这个整式方程是( )
A .230y y +-=
B .2310y y -+=
C .2310y y -+=
D .2310y y --= ⒊下列分式中,计算正确的是( )
A 、3
2)(3)(2+=+++a c b a c b B 、b a b a b a +=++122 C 、1)()(22-=+-b a b a D 、x
y y x xy y x -=---1222 ⒋下列各式中,从左到右的变形正确的是( )
A 、y x y x y x y x ---=--+-
B 、y
x y x y x y x +-=--+-
C 、
y
x y x y x y x -+=--+- D 、y x y x y x y x +--=--+- 5.已知2111=-b a ,则b
a a
b -的值是( ) A.21 B.-21 C.2 D.-2 6.设m >n >0,m 2+n 2
=4mn ,则22m n mn -的值等于( )
A.
B.
C. D. 3 三、计算:
(2)|1|2004125.02)21(032-++⨯---
四、解分式方程:
()323331592a a a a ++-++-()1291932x x
-++()422x y x x y
+--()(用两种方法)52242()x x x x x x --+÷-()11244222x x x x +--=-()
22332726
x x ++=+
五、先化简再求值:
1、
()x x x x x x x x x x -+⋅+++÷--=-11442412222,其中。

2、221211, 2.1
11x x x x x x x ⎛⎫-+-+÷= ⎪+-+⎝⎭其中
3、⎝ ⎛⎭
⎪⎫1+ 1 x -2÷ x 2-2x +1 x 2-4,其中x =-5.
4、(x -1x -x -2x +1)÷2x 2-x x 2+2x +1
,其中x 满足x 2-x -1=0.
5、先化简22()5525x x x x x x -÷---,然后从不等组23212x x --⎧⎨⎩
≤的解集中,选取一个你认为符合题意....
的x 的值代入求值.
31、 (2009年四川省内江市)某服装厂为学校艺术团生产一批演出服,总成本3200元,售价每套40元,服装厂向25名家庭贫困学生免费提供。

经核算,这25套演出服的成本正好是原定生产这批演出服的利润。

问这批演出服生产了多少套?
32、(2009年长春)某工程队承接了3000米的修路任务,在修好600米后,引进了新设备,工作效率是原来的2倍,一共用30天完成了任务,求引进新设备前平均每天修路多少米?
33、(2009年锦州)根据规划设计,某市工程队准备在开发区修建一条长300米的盲道.铺设了60米后,由于采用新的施工方式,实际每天修建盲道的长度比原计划增加10米,结果共用了8天完成任务,该工程队改进技术后每天铺设盲道多少米?
34、(2009年桂林市)在我市某一城市美化工程招标时,有甲、乙两个工程队投标.经测算:甲队单独完成这项工程需要60天;若由甲队先做20天,剩下的工程由甲、乙合做24天可完成.
(1)乙队单独完成这项工程需要多少天?
(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱?还是由甲乙两队全程合作完成该工程省钱?
35、(2009年齐齐哈尔市)某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.
(1)今年三月份甲种电脑每台售价多少元?
(2)为了增加收入,电脑公司决定再经销乙种型号电脑,已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?
(3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a元,要使(2)中所有方案获利相同,a值应是多少?此时,哪种方案对公司更有利?
36、(2009年哈尔滨)跃壮五金商店准备从宁云机械厂购进甲、乙两种零件进行销售.若每个甲种零件的进价比每个乙种零件的进价少2元,且用80元购进甲种零件的数量与用100元购进乙种零件的数量相同.
(1)求每个甲种零件、每个乙种零件的进价分别为多少元?
(2)若该五金商店本次购进甲种零件的数量比购进乙种零件的数量的3倍还少5个,购进两种零件的总数量不超过95个,该五金商店每个甲种零件的销售价格为12元,每个乙种零件的销售价格为15元,则将本次购进的甲、乙两种零件全部售出后,可使销售两种零件的总利润(利润=售价-进价)超过371元,通过计算求出跃壮五金商店本次从宁云机械厂购进甲、乙两种零件有几种方案?请你设计出来.
37、(2009年广西梧州)由甲、乙两个工程队承包某校校园绿化工程,甲、乙两队单独完成这项工程所需时间比是3︰2,两队合做6天可以完成.
(1)求两队单独完成此项工程各需多少天?
(2)此项工程由甲、乙两队合做6天完成任务后,学校付给他们20000元报酬,若
按各自完成的工程量分配这笔钱,问甲、乙两队各得到多少元?
38、某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.
(1)今年三月份甲种电脑每台售价多少元?
(2)为了增加收入,电脑公司决定再经销乙种型号电脑.已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?
(3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a元,要使(2)中所有方案获利相同,a值应是多少?此时,哪种方案对公司更有利?
39、(2009厦门)22.供电局的电力维修工甲、乙两人要到45千米远的A地进行电力抢修.甲骑摩托车先行,t(t≥0)小时后,乙开抢修车载着所需材料出发.
(1)若t=3
8
(小时),抢修车的速度是摩托车速度的1.5倍,且甲、乙两人同时到
达,求摩托车的速度;
(2)若摩托车的速度是45千米/时,抢修车的速度是60千米/时,且乙不能比甲晚
到,则t的最大值是多少?
40、(2009辽宁朝阳)海峡两岸实现“三通”后,某水果销售公司从台湾采购苹果的成本大幅下降.请你根据两位经理的对话,计算出该公司在实现“三通”前到台湾采购苹果的成本价格.。

相关文档
最新文档