2012年秋季学期 概率论考题及答案
2012秋概率B答案
浙江农林大学天目学院 2012 - 2013 学年第 一 学期考试卷(B 卷)答案课程名称: 概率论与数理统计 课程类别: 必修 考试方式: 闭卷注意事项:1、本试卷满分100分。
2、考试时间 120分钟。
一、 单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的选项填在题后的括号内。
每小题3分,共18分)1.对任意的两个事件A 与B 满足()0,()0P A P B >>,下面条件 ( C )成立时,事件A 与B 一定独立。
(A )()()()P AB P A P B = ; (B ) ()()()P A B P A P B ⋃=+; (C )()()P A B P A = ; (D )()()P A B P B =。
2.若~(2,6)X U ,密度函数为1, 26()0, x f x λ⎧<<⎪=⎨⎪⎩其他,则λ= ( C )(A) 14-; (B) 14; (C) 4 ; (D) 4- 。
3.若2()(())D X E X =,则X 服从( C ) (A )二项分布; (B )泊松分布; (C )指数分布; (D )正态分布。
4..已知事件,A B 满足()()P AB P A B =⋅,且()0.4P A =,则=)(B P B 。
(A )0.5; (B )0.6; (C )0.7; (D )不确定 。
。
5.设总体2~(,)X N μσ,其中μ未知,12345,,,,X X X X X 为来自总体X 的一个样本,则以下关于μ的四个估计:1123451ˆ()5X X X X X μ=++++,212341211ˆ5555X X X X μ=+++,3123111ˆ623X X X μ=++,411ˆ5X μ=中,哪一个是最有效的系(部): 专业班级: 姓名: 学号: 装 订 线 内 不 要 答 题估计?( A )(A )1ˆμ; (B )2ˆμ ; (C )3ˆμ; (D )4ˆμ。
社会学概率2012秋季试卷(B)
哈尔滨工业大学 2012 年秋 社会学《概率统计》期末考试试题
题号 分数 一 二 三 四 五 六 七 八 九 十 总分
一、填空题(每小题 3 分,共 5 小题,满分 15 分) 1. 设事件 A, B, C 两两独立,且 ABC , P ( A) P ( B ) P (C ) 则 P( A) . 2. 设事件 A, B 独立, P ( A) P ( B )
第 2 页(共 5 页)
试题:
X
四、 (4 分)设离散型随机变量 X 的分布列为
P
2 1 0 1 1 1 3 4 4
1 1 6
,
(1)求 Y X 1 的分布列与分布函数; (2)求 EY , DY .
2
0 五(10 分)随机变量 X ~ 1 4
1 0 , Y ~ 3 1 4 4
E | X C |
()
5.将一枚硬币重复掷 n 次,以 X 和 Y 分别表示正、反面向上的次数,则 X 和 Y 的相关系数 等于 (A) 1 ; (B) 1 ; (C) 0 ; (D)
1 .( 2
)
三、 (10 分)甲袋中有 2 个白球 3 个黑球,乙袋中有 3 个白球 2 个黑球,从甲袋中取出一个放入 乙袋,再从乙袋中任取一个,若放入乙袋的球和从乙袋中取出的球是同色的,求放入乙袋的是黑 球的概率.
1 5 3 , EXY , 8 4
求(1) P( X Y 1) ; (2) E min( X , Y ) .
第 3 页(共 5 页)
试题:
1 3 , 2 x 0 六、 (8 分)设随机变量 X 的密度函数 f ( x) A, 1 x B , 0, 其他 5 分布函数 F ( x) 在 x 2 处的值 F (2) , 6
2012,2013,2014年概率论与数理统计期末考试试卷答案
2012年概率论与数理统计期末考试试卷一. 填空题(每题5分, 共30分)1. 设随机变量X 服从正态分布(1,4)N , 已知(1)a Φ=, 其中()x Φ表示标准正态分布的分布函数, 则{13}P X -≤≤=21a -.解: 111311{13}11(1)(1)2222(1)(1(1))2(1)12 1.X X P X P P a -----⎧⎫⎧⎫-≤≤=≤≤=-≤≤=Φ-Φ-=⎨⎬⎨⎬⎩⎭⎩⎭Φ--Φ=Φ-=- 2. 设概率()0.3,()0.5,()0.6P A P B P A B ==+=, 则()P AB = 0.1 . 解: ()()()()0.2P AB P A P B P A B =+-+=,()()()0.30.20.1P AB P A P AB =-=-=.3. 设随机变量,X Y 的数学期望分布是-2, 1, 方差分别是1, 4, 两者相关系数是—0.5, 则由契比雪夫不等式估计(|2|6)P X Y +≥≤ 13/36 . 解: 由已知条件得, (2)2220E X Y EX EY +=+=-+=,(2)4()2(,2)4()4(,)D X Y DX D Y Cov X Y DX D Y Cov X Y +=++=++4()41164(1/2)213DX D Y ρ=++=++⋅-⋅=, 所以, 13(|2|6)36P X Y +≥≤. 4. 已知,X Y 是具有相同分布的两个独立随机变量, 且1(1)(1)2P X P Y =-==-=, 1(0)(0)2P X P Y ====, 则()P X Y == 1/2 . 解:()(0,0)(1,1)1(0)(0)(1)(1).2P X Y P X Y P X Y P X P Y P X P Y ====+=-=-===+=-=-=5. 设1216,,,X X X 是来自2(0,)N σ的样本, S 是样本均方差, 则1614ii XS=∑服从t (15).解: 由定理3(15)t ,161611(15)4i ii X X X t S ===∑∑.6. 设1281,,,(,9)X X X N μ, 要检验假设0:0H μ=, 则当0H 为真时, 用于检验的统计量3X 服从的分布是(0,1)N . 解: 由定理1(0,1)X N , 3(0,1)X N .二. 解答下列各题:7. (10分)已知男人中色盲人数所占比例是5%, 女人中色盲人数所占比例是0.25%. 现从男女人数各占一半的人群中随机选取一人, 求该人恰是色盲者的概率.解: 设A =“该人是色盲”, 1A =“该人是男人”, 2A =“该人是女人”.由全概率公式知, 2111()()()0.050.0025 2.625%22i i i P A P A P A A ===⨯+⨯=∑.8. (10分) 从只含3红, 4白两种颜色的球袋中逐次取一球, 令1,,0,i X ⎧=⎨⎩第次取出球第次取出白球,i 红i 1,2i =. 实在不放回模式下求12,X X 的联合分布律,4/7 3/7 j P因为1212{0,0}{0}{0}P X X P X P X ==≠==, 所以12,X X 不独立. 9. (10分)设随机向量(,)X Y 的联合概率密度函数为3,01,,(,)20,xx x y x f x y ⎧<<-<<⎪=⎨⎪⎩其他,求,X Y 的边缘概率密度函数. 解: 当01x <<时, 23()(,)32xX x xf x f x y dy dy x +∞-∞-===⎰⎰.所以,23,01,()0,.其他X x x f x ⎧<<=⎨⎩当10y -<<时, 1233()(1)24Y y x f y dx y -==-⎰;当01y ≤<时, 1233()(1)24Y y x f y dx y ==-⎰; 所以,23(1),11,()40,.其他Y y y f y ⎧--<<⎪=⎨⎪⎩10. (10分) 设,X Y 相互独立, 且(1)(1)0P X P Y p ====>, (0)(0)10P X P Y p ====->,令1,0,X Y Z X Y +⎧=⎨+⎩当为偶数,当为奇数,求Z 的分布律.解:{0}{0,1}{1,0}{0}{1}{1}{0}2(1)P Z P X Y P X Y P X P Y P X P Y p p ====+=====+===- 22{1}{0,0}{1,1}{0}{0}{1}{1}(1).P Z P X Y P X Y P X P Y P X P Y p p ====+=====+===+- 所以, Z11. (10分12,,X 是来自具有分布的总体的随机样本,试用中心极限定理计算()5P X >.(已知(2)0.508Φ=.)解: 由题知1()3i E X =,2()1i E X =,故()228()9i i i D X EX EX =-=. 由中心极限定理知,20012001600(,)39ii X N =∑. 所以, 11111()4014052005n i n n i i i i i X P X P P X P X ===⎛⎫ ⎪⎛⎫⎛⎫ ⎪>=>=>=-≤ ⎪ ⎪ ⎪⎝⎭⎝⎭⎪⎝⎭∑∑∑1200200403311(2)(2)0.508404033n i i X P =⎛⎫-- ⎪ ⎪=-≤≈-Φ-=Φ= ⎪ ⎪⎝⎭∑. 12. (10分)设总体X 的密度函数为36(),0,(;)0,其他,xx x f x θθθθ⎧-<<⎪=⎨⎪⎩求θ的矩估计ˆθ并计算ˆD θ.解: 依题意,306()()2xE X xx dx X θθθθ=-==⎰,得参数θ的矩估计量为ˆ2X θ=. 4ˆ4D DX DX n θ==. 而2223063()()10x E X x x dx θθθθ=-=⎰,故22244ˆ()5D DX EX E X n n n θθ==-=.13. (10分) 某电器零件平均电阻一直保持在2.64Ω,使用新工艺后,测得100个零件平均电阻在2.62Ω,如改变工艺前后电阻均方差保持在0.06Ω,问新工艺对零件电阻有无显著影响?(取0.01α=)(1.96)0.975,Φ=(1.64)0.95,Φ=(2.58)0.995Φ=. 解: 设X 为零件的平均电阻, 则2~(,0.06)X N μ. (1)假设0: 2.64H μ=; (2)取统计量~(0,1)X U N=;(3)由0.01α=, 确定临界值22.58u α=, , 使得2{||}0.01P U u α>=;(4)由样本值 2.62x =, 得统计量U 的观察值3.33x u ==≈-.(5)因为 2.58u >,所以拒绝原假设0H ,认为新工艺对零件电阻有显著影响.2013年概率论与数理统计期末考试试卷一. 填空题(每题4分, 共20分)1. 设随机变量,X Y 相互独立, 且同分布, {1}{1}0.5P X P X =-===,{1}{1}0.5P Y P Y =-===, 则{}P X Y == 1/2 .解: 1{}{1,1}{1,1}{1}{1}{1}{1}.2P X Y P X Y P X Y P X P Y P X P Y ===-=-+====-=-+===2.22x edx +∞-=⎰2. 解:因为221x +∞--∞=⎰,所以22xe +∞--∞=⎰即2202x e +∞-=⎰. 3. 设连续型随机变量X的密度函数22()2()x f x μσ--=, x -∞<<+∞, 则EX =μ, DX =2σ. 解:因为22()2()x X f x μσ--=, 所以2(,)X N μσ.4. 设总体(3,10)XN , 12100,,,X X X 为来自总体X 的简单随机样本, 则10011100i i X X ==∑1~(3,)10X N . 解: 由定理1知, 1~(3,)10X N . 5. 设袋中有8个红球, 2个黑球, 每次从袋中摸取一个球并且不放回, 那么第一次与第三次都摸到红球的概率是 28/45 . 解: 记i A =“第i 次摸到红球”, 1,2,3i =.13131223123123()()(())()P A A P A A P A A A A P A A A A A A =Ω=+=+123123121312121312()()()()()()()()P A A A P A A A P A P A A P A A A P A P A A P A A A =+=+876827281098109845=⨯⨯+⨯⨯=. 二. 解答题6. (12分) 某矿内有甲乙两个报警系统, 单独使用时甲的有效性为0.92, 乙为0.93, 且在甲失灵的条件下乙有效的概率为0.85, 求意外发生时, 甲乙至少有一个有效的概率, 以及乙失灵时甲有效的概率. 参考练习册反12第4题. 解: 设A =“甲有效”, B =“乙有效”.题目转为: 已知()0.92,()0.93P A P B ==, {}0.85P B A =, 求()P A B +和{}P A B . 因为()()()(){}0.851()1()()P BA P B A P B P AB P B A P A P A P A --====--, 所以, ()0.862P AB =.所以, ()()()()0.988P A B P A P B P AB +=+-=;()()()()0.920.862{}0.831()1()10.93()P AB P A B P A P AB P A B P B P B P B ---====≈---. 7. (12分)设连续型随机变量X 的分布函数为()arctan ()F x a b x x =+-∞<<+∞, 求常数,a b 以及随机变量X 的密度函数. 解: 根据分布函数的性质得()1,2()0,2b F a b F a ππ⎧+∞=+=⎪⎪⎨⎪-∞=-=⎪⎩ 所以1,21.a b π⎧=⎪⎪⎨⎪=⎪⎩X 的密度函数为21()(1)f x x π=+.8. (14分) 设某种类型人造卫星的寿命X (单位: 年)的密度函数为21,0,()20,0.xe xf x x -⎧>⎪=⎨⎪≤⎩若2颗这样的卫星同时升空投入使用, 试求:(1) 3年后这2颗卫星都正常运行的概率;(2) 3年后至少有1颗卫星正常运行的概率. 参考教材P37例3 解: 1颗卫星3年内正常运行的概率为32231{3}2x P X e dx e +∞--≥==⎰. 记Y 表示2颗卫星在3年内正常运行的颗数, 则32(2,)Y B e -.(1) 3年后这2颗卫星都正常运行的概率2332{2}P Y e e --⎛⎫=== ⎪⎝⎭;(2) 3年后至少有1颗卫星正常运行的概率232{1}1{0}11P Y P Y e -⎛⎫≥=-≥=-- ⎪⎝⎭.9. (14分) 设某高校英语考试成绩近似服从均值为72的正态分布, 96分以上的考生占总数的2.3%(已知满分为100, 合格线为60), 试求: (1) 考生成绩在60-84之间的概率;(2) 该校考生的合格率.((2)0.977,(1)0.8413)Φ=Φ= 解: 设某高校英语考试成绩为X , 则2(72,)XN σ.由题意知{96}0.023P X ≥=, 即7296720.023X P σσ--⎧⎫≥=⎨⎬⎩⎭, 所以241()0.023σ-Φ=, 即24()0.977(2)σΦ==Φ.因此, 12σ=.(1) 考生成绩在60-84之间的概率6072728472{6084}(1)(1)2(1)10.6826;121212X P X P ---⎧⎫≤≤=≤≤=Φ-Φ-=Φ-=⎨⎬⎩⎭(2) 合格率726072{60}1(1)(1)0.8413.1212X P X P --⎧⎫≥=≥=-Φ-=Φ=⎨⎬⎩⎭10. (14分) 一工厂生产的某种电池的寿命服从正态分布(25,100)N , 现在从这种电池中随机抽取16个, 测得平均寿命为23.8小时, 由此能否断定: 在显著性水平为0.05α=时, 该种电池的平均寿命小于25小时. ((1.96)0.975,(1.64)0.95)Φ=Φ= 解: 设X 为电池寿命, 则~(,100)X N μ.(1)假设00:25H μμ≥=; (2)取统计量~(0,1)X U N=;(3) 由0.05α=, 确定临界值 1.64u α-=-, 使得{}0.05P U u α<-=; (4)由样本均值23.8x =, 得统计量U 的观察值00.48u ===-.(5)因为00.48 1.64u =->-,此时没有充分理由说明小概率事件{ 1.64}u <-一定发生. 所以接受原假设0H , 认为这种电池的平均寿命不小于25小时. 注: 原假设不能设为00:25H μμ<=,此时μ取不到0μ,统计量X U =就没有意义了!11. (14分)设总体X 是离散型随机变量, 其所有可能的取值为0, 1, 2, 已知2(1)EX θ=-, 2{2}(1)P X θ==-, θ为参数. 对X 取容量为10的样本如下 1, 1, 0, 2, 2, 1, 1, 1, 0, 2.求参数θ的矩估计和极大似然估计.解:(1) 由2(1)X θ=-, 得θ的矩估计量为12Xθ=-; 结合 1.1x =, θ的矩估计值为10.452x θ=-=.(2) 构造似然函数为11912101210(){1,1,,2}{1}{1}{2}32(1)L P X X X P X P X P X θθθ=========-,取对数ln ()ln3211ln(1)9ln L θθθ=+-+,求导数(ln ())11901d L d θθθθ=-+=-, 得θ的极大似然估计值为920θ=.2014年概率论与数理统计期末考试试卷一. 填空题(共40分, 每空5分)1. 设~(,)X B n p , ~(,)Y B m p , 且X 与Y 独立, 则X Y +~(),(p m n B +)分布;2. 设2~(,)X N μσ, 则X 的密度函数()f x =(222)(21σμσπ--x e);3. 设总体X 的方差为2σ, 12,,,n X X X 为样本, X 为样本均值, 则期望211()n i i E X X n =⎛⎫-= ⎪⎝⎭∑(21σn n -); 4. 设12,,,n X X X 为样本, 则统计量211n i i X n =∑的名称为(样本2阶原点矩);5. 设总体~(,1)X N μ, 12,,,n X X X 为来自该总体的样本, 则21()ni i X μ=-∑服从()(2n χ)分布;6. 一批产品中有5个正品, 3个次品, 从中任取2个, 恰有1个次品, 1个正品的概率为(2815281315=C C C );7. 样本的特性是(独立、同分布且与总体分布相同);8. 在假设检验中, 可能犯两类错误. 其中第一类错误也称为弃真, 弃真的确切含义为(当原假设是真的时,拒绝了它). 二. 计算题(60分, 每题10分)1. 假设某贪官收受一次贿赂而被曝光的概率为0.05, 到目前为止共收受80次贿赂, 假设案发前每次收受贿赂是否曝光相互独立. 试用概率说明 “多行不义必自毙”. (取20190.3520⎛⎫≈ ⎪⎝⎭)解:记i A 为事件“第i 次收受贿赂而被曝光”(1,2,,80i),---------------------2 于是案发的概率为 )(801∑=i i A P ------------- ------------- -----------------4 )(1)(1801801∏∏==-=-=i i i i A P A P----------------------6985.035.01)2019(195.0148080=-=-=-=。
概率2012试卷
一、单项选择题(共6小题;每小题3分,共18分)1、设事件A 与B 独立,,5.0)(,4.0)(==B P A P 则=)(AB P ( )(A) 0.2 (B) 0.1 (C) 0.8 (D) 0.92、掷一枚骰子,事件A 为“出现奇数点”,事件B 为“出现1点”,则条件概率)(A B P 为( )(A) 21 (B) 31 (C) 61 (D) 32 3、设随机变量X 的分布函数为)(x F ,则下列结论中不一定成立的是 ( )(A) 0)(=-∞F (B) 1)(=+∞F (C) )(x F 右连续 (D) )()(}{a F b F b x a P -=<<4、设随机变量X 服从均匀分布)1,0(U ,则关于t 的方程02=++X t t 有实根的概率为( )(A) 21 (B) 31 (C) 41 (D) 61 5、设随机变量)4,3(~N X ,若数c 使得概率{}{}c X P c X P ≤=>,则=c ( )(A) 0 (B) 4 (C) 2 (D) 36、设n X X X ,,2,1 是正态总体),(2σμN 的简单随机样本,若∑-=+-1121)(n i i i X X k 是2σ的无偏估计量,则=k ( )(A) 11-n (B) n 1 (C) )1(21-n (D) n 21 二、填空题(本题6空 ,每空3分,共18分 )1、设X 的分布律为X 0 1 2 3概率 a 0.1 0.5 a则数a = .2、设随机变量X 服从二项分布:)4.0,100(~b X ;随机变量Y 服从均匀分布:)8,2(~U Y ;X 与Y 相互独立,则方差=+)2(Y X D .3、设随机变量X 的概率密度为⎩⎨⎧<<=.,0,102)(其它,x x x f ,则X 的期望()E X = . 4、已知随机变量X 、Y 满足关系式732=+Y X ,则相关系数=XY ρ .5、设n X X X ,,2,1 是正态总体),(2σμN 的样本;若2σ已知,则μ的置信水平为90%的置信区间为 . 6、设总体X 服从标准正态分布:)1,0(~N X ;n X X X ,,2,1 为总体X 的一组简单随机样本,X 与2S 分别是样本均值与样本方差,则~)(12∑=-ni i X X 分布. 三、计算题(本题4小题,每题8分,共32分 )1、(8分) 盒中有10个白球,6个红球,4个人依次从袋中取一只球,(1)作放回抽样;(2)作不放回抽样. 求第4个人取到白球的概率.2、(8分)某银行将客户分为A 、B 、C 三种类型,他们所占比例分别为30%、60%和10%,他们能及时还贷的概率分别为80%、90%和100%;现随机抽取一客户,问:(1)该客户能及时还贷的概率是多少;(2)若已知某客户及时还贷,问他是A 类客户的概率是多少.3、(8分)某药品对某疑难病的治愈率为80%,检验员随机抽查了100个服用此药品的病人,试用中心极限定理估算这些病人中有不少于75人治愈的概率.(933.0)5.1(,908.0)33.1(,894.0)25.1(=Φ=Φ=Φ)4、(8分)甲、乙两人独立地各进行两次射击,甲的命中率为0.2,乙的命中率为0.5,以X 和Y 分别表示甲和乙的命中次数,试求(X ,Y )联合分布律以及X 和Y 的边缘分布律。
2012―2013学年第二学期概率论与数理统计试卷(本科及专升本)
第 1 页 共 3 页一、单项选择题(每小题3分,共21分)1.对于事件B A ,,若∅=B A ,则下列说法中正确的是 ( ) A 、B A ,为对立事件B 、0)(=A P 或0)(=B PC 、B A ,互不相容D 、B A ,独立2.设随机变量X 的分布函数为)(x F ,下列说法中错误的是 ( ) A 、)(x F 是不减函数B 、)(x F 必为),(+∞-∞上的连续函数C 、0)(=-∞FD 、1)(≤x F3.设连续型二维随机变量的联合概率密度函数为),(y x f ,则必有 ( )A 、1),(0≤≤y x fB 、),(y x f 为xOy 平面上的连续函数C 、1),(=⎰⎰+∞∞-+∞∞-dxdy y x f D 、1),(=+∞+∞f4.设Y X ,是两个随机变量,则下式中一定成立的是 ( )A 、)()()(Y E X E Y X E +=+B 、)()()(Y E X E XY E =C 、)()()(YD X D Y X D +=+ D 、)()()(Y D X D XY D =5.随机变量 n X X X ,,,21 相互独立,服从同一分布,且具有期望和方差,0)(,)(2>==σμk k X D X E ,当n 充分大时,近似服从)1,0(N 的是 ( )A 、σμn n Xnk k∑=-1B 、21σμn n Xnk k∑=-C 、σμn n Xnk k∑=-1D 、21σμn n Xnk k∑=-6.设4321,,,X X X X 是来自均值为θ的指数分布的样本,其中θ未知, 以下估计量中哪个不是θ的无偏估计量? ( ) A 、443211X X X X T +++=B 、722343211X X X X T +++=C 、3643211X X X X T +++=D 、5243211X X X X T +++= 7.对于一个原假设为0H 的假设检验问题,有可能犯的第一类错误是指( )A 、0H 成立时,检验结果接受0HB 、0H 成立时,检验结果拒绝0HC 、0H 不成立时,检验结果接受0HD 、0H 不成立时,检验结果拒绝0H二、填空题(每小题3分,共24分)1.设C B A ,,为三个事件,则事件“C B A ,,都不发生” 可以用C B A ,,的运算关系表示为 .2.10片药片中有5片是安慰剂,从中任取2片,其中至少有1片是安慰剂的概率为 .3.三人独立地去破译一份密码,各人能译出的概率分别为3.0,2.0,1.0, 三人中至少有一人能将此密码译出的概率为 .第 2 页 共 3 页4.一射击运动员每次射击命中的概率为7.0,以X 表示他首次命中时 累计已射击的次数,则{}3=X P 为 .5.随机变量X 在4,3,2,1中等可能地取一个值,随机变量Y 在X ~1中 等可能地取一个整数值,则{}4=Y P 为 . 6.随机变量)2,0(~U X ,则=)(X D . 7.总体)6(~2χX ,1021,,,X X X 是来自X 的样本,则=)(X D.8.设n X X X ,,,21 是来自正态总体),(2σμN 的样本,X 是样本均值, 则~X .三、解答题(第1题8分,第2题9分,共17分)1.对以往的数据分析结果表明,当机器调整得良好时,产品的合格率为80%,而当机器发生某种故障时,产品的合格率为30%.每天早上机器开动时,机器调整良好的概率为90%.(1)求每天早上第一件产品是合格品的概率;(2)若某天早上第一件产品是合格品,求此时机器调整良好的概率.2.设随机变量X 具有概率密度⎪⎩⎪⎨⎧<≤<≤-=其它,031,10,1)(x kxx xx f(1)确定常数k ; (2)求()20<<X P .四、解答题(第1题10分,第2题10分,共20分)1.设随机变量X 与Y 的联合分布律为 求:(1)常数a 值;(2)X 与Y 是否独立?为什么?(3) 设Y X Z +=,求Z 的分布律.第 3 页 共 3 页X (以年计)服从指数分布,概率密度为⎪⎪≤>-0,00,313x x e x.1000800元,试求厂方出售一台设备净赢利的数学期望.五、解答题(第1题8分,第2题10分,共18分)X 具有分布律 )1<<θ为未知参数.,2,1,3321===x x x 求θ的矩估计值.2.某批铁矿石的9个样品中的含铁量,经测定为(%)35 36 36 38 38 39 39 40 41设测定值总体服从正态分布,但参数均未知, (1)求样本均值和样本标准差;(2)在01.0=α下能否接受假设:这批铁矿石的含铁量的均值为39%? (3554.3)8(005.0=t )。
2012年全国自考概率论与数理统计试卷有答案的
1.已知事件A ,B ,A ∪B 的概率分别为0.5,0.4,0.6,则P (A B )=B.0.22.设F(x)为随机变量X 的分布函数,则有C.F (-∞)=0,F (+∞)=13.设二维随机变量(X ,Y )服从区域D :x 2+y 2≤1上的均匀分布,则(X ,Y )的概率密度为D.1(,)0,x y D f x y π⎧∈⎪=⎨⎪⎩,(,),其他 4.设随机变量X 服从参数为2的指数分布,则E (2X -1)= A.0 5.设二维随机变量(X ,Y )的分布律则D (3X )= B.26.设X 1,X 2X n …为相互独立同分布的随机变量序列,且E (X 1)=0,D (X 1)=1,则1lim 0n i n i P X →∞=⎧⎫≤=⎨⎬⎩⎭∑ A.07.设x 1,x 2,…,x n 为来自总体N (μ,σ2)的样本,μ,σ2是未知参数,则下列样本函数为统计量的是D.211n i i x n =∑8.对总体参数进行区间估计,则下列结论正确的是B.置信度越大,置信区间越短 9.在假设检验中,H 0为原假设,H 1为备择假设,则第一类错误是B.H 0成立,拒绝H 0 10.设一元线性回归模型:201(1,2,),~(0,)ii i i y x i n N ββεεσ=++=…,且各i ε相互独立.依据样本(,)(1,2,,)i i x y i n =…得到一元线性回归方程01ˆˆˆy x ββ=+,由此得i x 对应的回归值为ˆi y ,i y 的平均值11(0)ni i y y y n ==≠∑,则回归平方和S 回为C .21ˆ(-)nii yy =∑11.设甲、乙两人独立地向同一目标射击,甲、乙击中目标的概率分别为0.8,0.5,则甲、乙两人同时击中目标的概率为_0.4. 12.设A ,B 为两事件,且P (A )=P (B )=13,P (A |B )= 16,则P (A |B )=7/12. 13.已知事件A ,B 满足P (AB )=P (A B ),若P (A )=0.2,则P (B )= 0.8 .14.设随机变量X 的分布律 则a =0.1.15.设随机变量X ~N (1,22),则P {-1≤X ≤3}=0.6826.(附:Ф(1)=0.8413)16.设随机变量X 服从区间[2,θ]上的均匀分布,且概率密度f (x )=1,240,x θ⎧≤≤⎪⎨⎪⎩,其他,X 1 2 3 4 5 ,P2a0.10.3a0.3则θ=6.17.设二维随机变量(X,Y)的分布律YX0 1 20 0.1 0.15 01 0.25 0.2 0.12 0.1 0 0.1 则P{X=Y}=_0.4.18.设二维随机变量(X,Y)~N(0,0,1,4,0),则X的概率密度f X (x)=___________.19.设随机变量X~U(-1,3),则D(2X-3)= 16/3.20.设二维随机变量(X,Y)的分布律YX-1 1-1 0.25 0.251 0.25 0.25则E(X2+Y2)=_2.21.设m为n次独立重复试验中事件A发生的次数,p为事件A的概率,则对任意正数ε,有limnmP pnε→∞⎧⎫-<⎨⎬⎩⎭=1.22.设x1,x2,…,x n是来自总体P(λ)的样本,x是样本均值,则D(x)=入/n.23.设x1,x2,…,x n是来自总体B(20,p)的样本,则p的矩估计ˆp=_.24.设总体服从正态分布N(μ,1),从中抽取容量为16的样本,uα是标准正态分布的上侧α分位数,则μ的置信度为0.96的置信区间长度是_________.25.设总体X~N(μ,σ2),且σ2未知,x1,x2,…,x n为来自总体的样本,x和S2分别是样本均值和样本方差,则检验假设H0:μ =μ0;H1:μ≠μ0采用的统计量表达式为_________.26.一批零件由两台车床同时加工,第一台车床加工的零件数比第二台多一倍.第一台车床出现不合格品的概率是0.03,第二台出现不合格品的概率是0.06.(1)求任取一个零件是合格品的概率;(1)依题意知某一台车床加工的零件数占有率为2/3第二台车床位1/3,故另取一个零件是合格品的概率位,2/3*(1-0.03)+1/3*(1-1.06)=0.96(2)如果取出的零件是不合格品,求它是由第二台车床加工的概率.(2)取出的零件是不合品格的概率为2/3*0.03+1/3*0.06=0.04,它是由第二台车床加工的概率为0.04/0.06=0.6727.已知二维随机变量(X,Y)的分布律Y -1 0 1X0 0.3 0.2 0.11 0.1 0.3 0求:(1)X和Y的分布律;(2)Cov(X,Y).28.某次抽样结果表明,考生的数学成绩(百分制)近似地服从正态分布N(75,σ2),已知85分以上的考生数占考生总数的5%,试求考生成绩在65分至85分之间的概率.P(65≤X≤85)=∮((85-75)/6)-∮((65-75)/6)=2∮(10/6)-1所以P(85>)=0.05所以P(x<=85)=∮(10/6)=0.95Suoyi p(65<=x<=85)=2*0.95-129.设随机变量X服从区间[0,1]上的均匀分布,Y服从参数为1的指数分布,且X与Y相互独立.求:(1)X及Y的概率密度;x的概率密度为f(x)=1 (0<=x<=1);f(x)=0,其他(2)(X,Y)的概率密度;因为x 为y相互独立,所以(x,y)的概率密度为f(x,y)=e^-y (0<=x<=1,y>0);f(x,y)=0,其他(3)P{X>Y}.p(x>y)=1-1/e30.某种产品用自动包装机包装,每袋重量X~N(500,22)(单位:g),生产过程中包装机工作是否正常要进行随机检验.某天开工后抽取了9袋产品,测得样本均值x=502g. 问:当方差不变时,这天包装机工作是否正常(α=0.05)?(附:u0.025=1.96)假设H0:u=u0;H1:u不等于u0 统计量V=3在a=0.05下,把域问|u|>=u1-a/2=1.96 经计算的u=3>1.96 拒绝H0,即包装不正常。
2012概率论与数理统计期末试题含详解
2012概率论与数理统计期末试题含详解概率论与数理统计⼀、填空题(每题4分,共20分) 1、假设事件A 和B 满⾜1)(=A B P ,则A和B 的关系是_______________。
2、设随机变量)(~λπX ,且{}{},21===X P X P 则{}==k X P _____________。
3、设X服从参数为1的指数分布,则=)(2X E ___________。
4、设),1,0(~),2,0(~N Y N X 且X 与Y 相互独⽴,则~Y X Z-=___________。
5、),16,1(~),5,1(~N Y N X且X 与Y 相互独⽴,令12--=Y X Z,则=YZ ρ____。
⼆、选择题(每题4分,共20分)1、将3粒黄⾖随机地放⼊4个杯⼦,则杯⼦中盛黄⾖最多为⼀粒的概率为()A、323B、83C、161 D、812、随机变量X 和Y 的,0=XY ρ则下列结论不正确的是()A、)()()(Y D X D Y XD +=-B、a X-必相互独⽴C、X 与Y 可能服从⼆维均匀分布D、)()()(Y E X E XY E =3、样本nX X X ,,,21 来⾃总体X ,,)(,)(2σµ==X D X E 则有()A、2iX)1(n i ≤≤都是µ的⽆偏估计B、X 是µ的⽆偏估计C、)1(2n i X i ≤≤是2σ的⽆偏估计 D、2X 是2σ的⽆偏估计4、设nX X X ,,,21 来⾃正态总体),(2σµN 的样本,其中µ已知,2σ未知,则下列不是ini X ≤≤1minB、µ-XC、∑=ni iX 1σD、1X X n-5、在假设检验中,检验⽔平α的意义是() A 、原假设0H 成⽴,经检验被拒绝的概率B、原假设0H 不成⽴,经检验被拒绝的概率C 、原假设0H 成⽴,经检验不能拒绝的概率 D、原假设0H 不成⽴,经检验不能拒绝的概率三、计算题(共28分)1、已知离散型随机变量的分布律为求:X 的分布函数,(2))(X D (5分)2、已知连续型随机变量X 的分布函数为),(,arctan )(∞-∞∈+=x x B A x F 求(1)常数A 和B ,(2))11(<<-X p ,(3)概率密度)(x f (8分)3、设随机变量321,,X X X 相互独⽴,其中21],6,0[~X U X 服从21=3(~3πX ,计算)32(321X X X D +-。
2012秋季期概率I试卷标准答案127
北方工业大学《概率论与数理统计I 》课程试卷答案及评分标准A 卷2012年秋季学期开课学院: 理学院考试方式:闭卷考试时间:120 分钟班级 姓名 学号 注意事项:1.最后一页可以撕下作稿纸,但不能把试卷撕散,撕散试卷作废。
2.可以使用简易计算器,但不可使用有存储功能的文曲星、掌上电脑等,否则视为作弊。
一、填空题:(每题4分,共20分)1. 设A 与B 为互斥事件,()0>B P ,则()=B A P 02. 设随机变量 ),(~p n B X 且 4.2=EX ,44.1=DX ,则 =n 6 ,=p 0.4 。
3. 已知)1,0(N ~X ,则}0X {P >= 0.5 。
4. 设22,),,(~σμσμN X 均未知,样本容量为n ,样本方差为2s , 2σ的95%的置信区间为 ()()()()⎪⎪⎪⎭⎫ ⎝⎛-----11,112222212n s n n s n ααχχ。
5. 设随机变量4321X ,X ,X ,X 相互独立,服从相同的正态分布),(N 2σμ,则)X 2X X 2X X X X X (21Y 4321242322212--+++=σ服从 )2(2χ 分布。
二、选择题(每题4分,共20分)1. 设两个相互独立的随机变量X 和Y 的方差分别为4和2,则随机变量Y X 23-的方差是 (C )订线装(A ) 8 (B ) 16 (C ) 34 (D ) 442.随机变量X 服从参数为1的泊松分布,则()C X E X P ==)}({。
(A )1-e (B )121-e(C )22-e(D )221-e3. 设X 服从)(n t 分布, a X P =>}|{|λ,则}{λ-<X P 为 (A ) 。
(A )a 21 (B ) a2 (C )a +21 (D ) a 211-4. 为使⎩⎨⎧≥=+-其他,00,,),()43(y x Ke y x f y x 为二维随机向量()Y ,X 的联合密度,则K 必为( C ) 。
2012年概率论与数理统计试题及答案
∴
=(1-0.2)(1-0.3)(1-0.5)=0.28
=
=0.2×0.7×0.5+0.8×0.3×0.5+0.8×0.7×0.5=0.47
同理P(X=2)=P( =0.22
=0.03
∴X的分布律:
X
0
1
2
3
P
0.28
0.47
0.22
0.03
(2)由(1)及分布函数的定义知
解:设B1、B2、B3分别表示选出的其中装有一等品为20,12,24件的箱子,A1、A2分别表示第一、二次选出的为一等品,依题意,有
P(A1)=P(B1)P( |B1)+P(B2)P(A1|B2)+P(B3)P(A1|B3)
= =0.467
P( )= =0.220
八、(10分)设 .
1.若 ,求 ;2.若 ,求 ;3.若 ,求 .
4.由题可知A1、A2互斥,又0<P(B)<1,0<P(A1)<1,0<P(A2)<1,所以
P(A1B∪A2B)=P(A1B)+P(A2B)–P(A1A2B)=P(A1)P(B|A1)+P(A2)P(B|A2)
故应选(C)。
5.因为A、B互为对立事件,所以P(A+B)=1,P(AB)=0,又P(A) ,P(B)>0,
所以 =A,因而P( |A)=P(A|A)=1,故选(A)
二、填空题(毎小题3分,共15分):
1. 、 、 代表三件事,事件“ 、 、 至少有二个发生”可表示为.
2.已知 ,则 =.
3. 、 二个事件互不相容, ,则 .
4.对同一目标进行三次独立地射击,第一、二、三次射击的命中率分别为 ,则在三次射击中恰有一次击中目标的概率为.
2012概率论与数理统计试卷答案内
11-12暨南大学概率论试卷A 张培爱、邱青1.设A 、B 、C 为三个事件,则事件“A 、B 、C 中恰有两个发生”可表示为( C ). A .AB AC BC ++; B. A B C ++; C. ABC ABC ABC ++; D. ABC 2.. 设在 Bernoulli 试验中,每次试验成功的概率为)10(<<p p ,重复独立进行3 次试验, 至少失败一次的概率为 ( B ). A. 3)1(p -; B. 31p -;C. 3(1)p -;D. )1()1()1(223p p p p p -+-+-. 3. 设12,,,,n ηηη⋅⋅⋅⋅⋅⋅是相互独立且具有相同分布的随机变量序列, 若 1n E η=,方差存在,(1,2,),n =⋅⋅⋅ 则1lim ||3ni n i n P n η→∞=⎛⎫-<=⎪⎝⎭∑( B ). A. 0; B. 1; C. 1;3 D. 12. 4. 设随机变量X 的概率密度为 33,0()0,0x e x x x ϕ-⎧>=⎨≤⎩, 则方差D(X)= ( D )A. 9;B. 3;C. 13;D. 19.5. 设随机变量X 的概率密度函数)1(1)(2x x f +=π,则X Y 3=的概率密度函数为( B ). A .)1(12y +π B .)9(32y +π C .)9(92y +πD .)9(272y +π6. 设()~1,X N σ2,且(13)0.7P X -<<=,则()=-<1X P ( A ) A .0.15B. 0.30C. 0.45D. 0.67.设)2,3(~2N X ,则=<<}51{X P ( B )(设220()d x xx x -Φ=⎰). A .00(5)(1)Φ-Φ B .02(1)1Φ- C .011()122Φ- D .0051()()44Φ-Φ8.设总体2~(,)X N μσ,其中μ未知,1234,,,x x x x 为来自总体X 的一个样本,则以下关于的μ四个无偏估计:1ˆμ=),(414321x x x x +++4321252515151ˆx x x x +++=μ 4321361626261ˆx x x x +++=μ,4321471737271ˆx x x x +++=μ中,哪一个最有效?( A )9. 设),,,(21n X X X 为总体2(2,3)N 的一个样本,X 为样本均值,S 为样本标准差, 则下列结论中正确的是 ( D ).~()X t n ; B. 211()~(,1)9ni i X X F n =-∑;~(0,1)X N ; D. 2211(2)~()9ni i X n χ=-∑. 10. 在假设检验中,记0H 为原假设,则犯第一类错误指的是( C ). A. 0H 正确,接受0H ; B. 0H 不正确,拒绝0H ; C. 0H 正确,拒绝0H ; D. 0H 不正确,接受0H1. 假设12,A A 是两个相互独立的事件, 若11239(),(),1010P A P A A =+= 则2()P A =67.2. 若)45.0,122(~B X ,则它的概率函数()P X k =在k = 55 取得最大值.3. 若 ,1()25, ()4, ,2X Y D X D Y ρ=== 则 ()D X Y -= 19 .4. 设X ,Y 的联合分布律为且X ,Y 相互独立,则α=29,=β19.5. 设2(),(),E X D x μσ==由切比雪夫不等式知{}22P X μσμσ-<<+≥3/4.6. 设A n 是n 次独立试验中事件A 发生的次数,p 是事件A在每次试验中发生的概率,则lim 0}n P →∞≤= 0.5 .7. 若随机变量,ξη相互独立, 且~(1,1),N ξ- ~(2,4),N η则23~ξη-(8,40)N -. 8. 若随机变量~(,)F F m n , 则1~F(,)F n m . 9. 设总体ξ的分布密度为 ,0(0)(;)0,0,x e x x x θθθϕθ-⎧≥>=⎨<⎩, 现从中抽取n 个样本, 测得观测值分别为12,,,(0,1,2,,)n i x x x x i n ⋅⋅⋅>=⋅⋅⋅, 则参数θ的最大似然估计为1xθ∧=. 1. 甲罐中有一个白球,二个黑球,乙罐中有一个白球,四个黑球,现掷一枚均匀的硬币,如果得正面就从甲罐中任取一球,如果得反面就从乙罐中任取一球,若已知取的球是白球,试求此球是甲罐中取出的概率。
华南理工大学2012概率论试题
诚信应考,考试作弊将带来严重后果!华南理工大学期末考试《概率论与数理统计》试卷A 卷(2学分用)注意事项:1. 考前请将密封线内各项信息填写清楚; 2. 可使用计算器,解答就答在试卷上; 3.考试形式:闭卷;4. 本试卷共 十 大题,满分100分。
考试时间120分钟。
题 号 一 二 三 四 五 六 七 八 九 十 总分 得 分 评卷人一、(本题满分10分)两台机床加工同样的零件,第一台出现废品的概率为0.03,第二台出现废品的概率为0.02,已知第一台加工的零件比第二台加工的零件多一倍,加工出来的零件放在一起,求:任意取出的零件是合格品(A)的概率.二、(本题满分12分)甲乙两电影院在竞争1000名观众,假设每位观众在选择时随机的,且彼此相互独立,问甲至少应设多少个座位,才能使观众因无座位而离去的概率小于1%。
三、(本题满分13分)设随机变量X 的密度函数为()xf x A e -= ()x -∞<<+∞,求 (1)系数A, (2) {01}P x ≤≤ (3) 分布函数)(x F 。
四、(本题满分13分)某厂生产某产品1000件,其价格为2000P =元/件,其使用寿命X (单位:天)的分布密度为120000(365)120000365()0365x e x f x x --⎧≥⎪=⎨<⎪⎩现由某保险公司为其质量进行保险:厂方向保险公司交保费0P 元/件,若每件产品若寿命小于1095天(3年),则由保险公司按原价赔偿2000元/件. 试利用中心极限定理计算 (1) 若保费0100P =元/件, 保险公司亏本的概率? (2) 试确定保费0P ,使保险公司亏本的概率不超过1%._____________ ________姓名 学号学院 专业 座位号( 密 封 线 内 不 答 题 )………………………………………………密………………………………………………封………………………………………线………………………………)99.0)33.2(,946.0)61.1(,926.0)45.1(,96.0(0365.0=Φ=Φ=Φ≈-e五、(本题满分14分)箱中共有6个,其中红球、白球、黑球的个数分别为1、2、3,现从箱中随机地取出两个球,记X 为取出的红球个数,Y 为取出的白球个数, (Ⅰ)求二维随机变量(X,Y)的概率分布. (Ⅱ)求Cov(X,Y).六、(本题满分15分)设二维随机变量(ξ,η)的联合密度函数为()⎩⎨⎧<<<<--=其它,040,20,6),(y x y x k y x f求:(1)常数k ;(2)()1,3P ξη<<; (3) ()1.5P ξ<; (4) ()4P ξη+≤.七、(本题满分13分)设随机变量X 与Y 相互独立,X 的概率分布为{}()11,0,13P X i i ===-,Y 的概率密度为()1010Yy f y ≤≤⎧=⎨⎩其它,记Z X Y =+ (1)求102P Z X ⎧⎫≤=⎨⎬⎩⎭; (2)求Z 的概率密度.八、(本题满分10分)证明题:设随即变量X 的参数为2的指数分布,证明21X Y e -=-在区间(0,1)上服从均匀分布。
2012年考研数学概率论真题与答案--WORD版
2012年概率论考研真题与答案1. (2012年数学一)设随机变量X 与Y 相互独立,且分别服从参数为1与4的指数分布,则{}P X Y <=_________. 【A 】A .15 B. 13 C. 25 D. 45解:X 与Y 的概率密度函数分别为:,0()0,0x X e x f x x -⎧>=⎨≤⎩, 44,0()0,0y Y e y f y y -⎧>=⎨≤⎩ 因为X 与Y 相互独立,所以X 与Y 的联合密度函数为44,0,0(,)()()0,x y X Y e x y f x y f x f y --⎧>>=⋅=⎨⎩其他 {}40(,)4x y xx yP X Y f x y dxdy dx e dy +∞+∞--<∴<==⎰⎰⎰⎰450145xyx xe dx edy e dx +∞+∞+∞---===⎰⎰⎰2. (2012年数学一)将长度为1m 的木棒随机地截成两段,则两段长度的相关系数为______.A .1 B.12 C. 12- D. 1- 答案:D.解:设两段长度分别为X 和Y ,显然满足1X Y +=,即1Y X =-+,故两者是线性关系,且是负相关,所以相关系数为1-.3. (2012年数学三)设随机变量X 与Y 相互独立,且都服从区间(0,1)上的均匀分布,{}221P X Y +≤=_________. 【D 】A .14 B. 12 C. 8π D. 4π解:X 与Y 的概率密度函数分别为:1,01()0,X x f x <<⎧=⎨⎩其他, 1,01()0,Y y f y <<⎧=⎨⎩其他又X 与Y 相互独立,所以X 与Y 的联合密度函数为1,0,1(,)()()0,X Y x y f x y f x f y <<⎧=⋅=⎨⎩其他, 从而 {}222211(,)4D x y P X Y f x y dxdy S π+≤+≤===⎰⎰.4. (2012年数学三)设1234,,,X X X X 为来自总体2(1,)(0)N σσ>的简单随机样本,则统计量12342X X X X -+- 的分布为_________. 【B 】A. (0,1)NB. (1)tC.2(1)χ D. (1,1)F解:因为2(1,)i X N σ ,所以212(0,2)X X N σ-(0,1)N 234(2,2)X X N σ+(0,1)N ,22342(2)(1)2X X χσ+- . 因为1234,,,X X X X2342(2)2X X σ+-也相互独立, 从而1234(1)2X X t X X -=+-5. (2012年数学一、三)设,,A B C 是随机事件,A 与C 互不相容,11(),()23P AB P C ==,则()____P AB C =. 【34】解:由于A 与C 互不相容,所以AC φ=,则ABC φ=,从而()0P ABC =;10()()()32()14()()13P ABC P AB P ABC P AB C P C P C --====-6. (2012年数学一、三)设二维离散型随机变量(,)X Y 的概率分布为(1)求{}2P X Y =;(2)求(,)Cov X Y Y -.解:(1){}{}{}120,02,14P X Y P X Y P X Y ====+===.(2) 由(,)X Y 的概率分布可得,,X Y XY 的概率分布分别为,,所以 23EX =,1EY =,2522,,()333EY DY E XY ===(,)()0Cov X Y E XY EX EY =-⋅=故: 2(,)(,)3Cov X Y Y Cov X Y DY -=-=-7. (2012年数学一)设随机变量X 和Y 相互独立且分别服从正态分布2(,)N μσ和2(,2)N μσ,其中σ是未知参数且0σ>. 设Z X Y =-. (1)求Z 的概率密度2(,)f z σ;(2)设12,,,n Z Z Z 是来自总体Z 的简单随机样本,求2σ的最大似然估计量2σ;(3)证明 2σ是2σ的无偏估计量. 解:(1) 因为2(,)X N μσ ,2(,2)Y N μσ ,且X 和Y 相互独立,故2(0,3)Z X Y N σ=-2226(;),z f z z R σσ-∴=∈(2)似然函数为 2116221()(;)ni i nz i i L f z σσσ=-=∑==∏两边取对数,得222211l n ()l n 26nii nL n zσσσ==--∑关于2σ求导,得2222221ln ()1+26()nii d L n z d σσσσ=-=∑ 令22ln ()0,d L d σσ= 解得λ的最大似然估计值 22113n i i z n σ==∑ 因此,λ的最大似然估计量 22113n i i Z n σ==∑(3) 2221111()()()33n n i i i i E E Z E Z n n σ====∑∑2221111[()()]333n n i i i i E Z D Z n n σσ===+==∑∑ 故 2σ是2σ的无偏估计量. 8. (2012年数学三)设随机变量X 与Y 相互独立,且都服从参数为1的指数分布. 记{}max ,U X Y =,{}min ,V X Y =,则(1)求V 的概率密度()V f v ;(2)求()E U V +. 解:(1) X 与Y 的分布函数均为1,0()0,0x e x F x x -⎧-≥=⎨<⎩{}min ,V X Y =的分布函数为{}{}{}{}()min ,1min ,V F v P X Y v P X Y v =≤=-> {}21,1(1())P X v Y v F v =->>=--21,00,0v e v v -⎧-≥=⎨<⎩故V 的概率密度为22,0()()0,0v V V e v f v F v v -⎧>'==⎨≤⎩(2) min(,)max(,)U V X Y X Y X Y +=+=+()()()()2E U V E X Y E X E Y ∴+=+=+=.。
2012级概率论与数理统计课程考试卷A(含参考答案626)
湖南人文科技学院 数学系 数学与应用数学、信息与计算科学专业 2012 级2013---2014学年第二学期概率论与数理统计课程考试试卷A分钟一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题干的括号内。
多选无分。
1.设B A ,是任意2个事件,则=-)(B A P ( C).(A ))()(B P A P -; (B )()()()P A P B P AB -+;(C ))()(AB P A P -; (D ))()()(AB P B P A P -+.2.设n x x x ,,,21 是来自正态总体),(2σμN (σ未知)的样本,对均值μ考虑如下的检验0100::μμμμ≠=H vs H ,则显著性水平为α的拒绝域是( A )(记t =)A .2{;(1)}W t t t n α=≥- B.{;(1)}W t t t n α=≥-C.1{;(1)}W t t t n α-=≤- D .2{;(1)}W t t t n α=≤-3.设总体X ~2(1,)N σ,12,,,n X X X ⋅⋅⋅是取自总体X 的一个样本, 则为参数2σ的无偏估计量的是( A )(A) 211()1n i i X X n =--∑; (B) 211()ni i X X n =-∑; (C) 211nii X n =∑; (D) 2X4.若随机变量X 和Y 的协方差等于0,则以下结论正确的是( B ).)(A X 和Y 相互独立; )(B )()()(Y D X D Y X D +=+;)(C )()()(Y D X D Y X D -=-; )(D )()()(Y D X D XY D ⋅=.5设随机变量X 与Y 均服从正态分布,)5,(~),4,(~22μμN Y N X ;记},4{1-≤=μX p p }5{2+≥=μY p p ,则有( A).)(A 对任何实数μ,都有21p p =; )(B 对任何实数μ,都有21p p < ;)(C 只对个别μ值,才有21p p =; )(D 对任何实数μ,都有21p p >. 二、填空题(本大题共5小题,每小题 3分,共15分) 1.随机变量X ~)4,(μN ,且5)(2=X E ,则X 2(1)x ±-2.设Y X ,独立且均服从正态分布),0(2σN ,且41)2,2(=-≤≤Y X P ,则=->>)2,2(Y X P 14 . 3.设 ,n X X X ,,,21为独立同分布的随机变量序列,且),2,1( =i X i 服从参数为2的指数分布,则∞→n 当时,∑==n i i n X n Y 121依概率收敛于 12. 4. 设(1521,,,X X X )是来自正态总体()9,0N 的简单随机样本,则统计量 2152122112102221 21X X X X X X Y ++++++= 的概率分布是(10,5)F .(只填F分布得2分.) 5. 设总体n X X X N X ,,,),,(~212⋅⋅⋅σμ是来自X 的一个样本∑==n i i X n X 11,参数2,σμ都是未知的,则2σ的矩估计量为 22211()n n i i i i x x x x n n ==--∑∑或 三、判断题(每小题2分,共12分对的打“√”,错的打“×”) 1.设X ~(,1)N μ,则满足{}{}22P X P X >=≤的参数μ=2 (√ ) 2.设随机变量)1,0(~),1,0(~N Y N X ,则22Y X +服从2χ分布; (× ) 3. 设随机变量X 与Y 相互独立,且),(~1p n B X ,),(~2p n B Y ,则~Y X +)2,(21p n n B +;(× )4. 设A,B,C 是三个事件,如果有 ()()()()()()()()()P AB P A P B P BC P B P C P AC P A P C =⎧⎪=⎨⎪=⎩, 则称A,B,C 相互独立 ( × )5. 设0<P(A)<1,0<P(B)<1,且A 、B 两事件相互独立,则必有A 与B 互斥事件; (× )6. 设总体),(~2σμN X ,2σ未知,X 为样本均值,,)(1122∑=-=n i i n X X n S,)(11122∑=--=ni i X X n S 检验假设00:μμ=H 时采用的统计量是n X Z /0σμ-= ( × )(以下各题要有详细过程,只写结果不给分)。
2012-2013第二学期概率论与数理统计试卷 参考答案
重庆大学概率论与数理统计课程试卷2012 ~2013 学年 第 二 学期开课学院: 数统学院 课程号:10029830 考试日期:考试方式:考试时间: 120分钟分位数:220.0050.975(39)20,(39)58.12χχ==,0.975 1.96u =,(2.68)0.9963,(1.79)0.9633Φ=Φ=,0.025(35) 2.0301t =一、填空题(每空3分,共42分)1.已知()0.3P A =,()0.4P B =,()0.5P AB =,则()P B A B ⋃= 0.25 。
2.从一副扑克牌(52张)中任取3张(不重复),则取出的3张牌中至少有2张花色相同的概率为 0.602 。
3.从1到9的9个整数中有放回地随机取3次,每次取一个数,则取出的3个数之积能被10整除的概率为 0.214 。
4.一个有5个选项的考题,其中只有一个选择是正确的。
假定应 考人知道正确答案的概率为p 。
如果他最后选对了,则他确实知道答案的概率为541pp +。
5.重复抛一颗骰子5次得到点数为6 的次数记为X ,则(3)P X >= 13/3888 。
6.设X 服从泊松分布,且(1)(2)P X P X ===,则(4)P X ==0.0902 。
7.设圆的直径X 服从区间(0,1)上的均匀分布,则圆的面积Y 的密度函数为1//4()0 ,Y y f y elseπ⎧<<⎪=⎨⎪⎩。
8.已知(,)(1,9;0,16;0.5) ,32X Y X Y N Z -=+ 且,则Z 的密度函数21()36z Z f --(z )。
9.设总体2(,)X N μσ ,其中2σ已知,从该总体中抽取容量为40n = 的样本1,240,,X X X ,则()222110.5 1.453nii P X X n σσ=⎧⎫≤-≤⎨⎬⎩⎭∑= 0.97。
10.设1,210,,X X X 是来自总体2(0,)X N σ 的样本,则Y =服从 t(8) 。
概率论考试题库及答案
概率论考试题库及答案一、单项选择题(每题2分,共20分)1. 如果随机变量X服从标准正态分布,则P(X > 0)的值为:A. 0.5B. 0.3C. 0.7D. 0.9答案:A2. 以下哪个选项是概率论中大数定律的表述?A. 样本均值收敛于总体均值B. 样本方差收敛于总体方差C. 样本中事件A出现的次数除以总次数收敛于P(A)D. 所有上述选项答案:D3. 假设随机变量X服从二项分布B(n, p),其中n=10,p=0.3,那么E(X)的值为:A. 3B. 2.1C. 0.3D. 0.9答案:B4. 在概率论中,以下哪个事件是必然事件?A. 抛一枚硬币,正面朝上B. 抛一枚骰子,得到6点C. 太阳从东方升起D. 以上都不是答案:C5. 如果随机变量X和Y独立,且P(X=1)=0.4,P(Y=1)=0.3,那么P(X=1且Y=1)的值为:A. 0.12B. 0.09C. 0.43D. 0.7答案:A6. 假设随机变量X服从泊松分布,其参数为λ=2,那么P(X=0)的值为:A. 0.1353B. 0.2707C. 0.5488D. 0.8647答案:A7. 以下哪个选项是概率论中条件概率的定义?A. P(A|B) = P(A)P(B)B. P(A|B) = P(A∩B)/P(B)C. P(A|B) = P(B)P(A)D. P(A|B) = P(A∩B)答案:B8. 假设随机变量X服从均匀分布U(a, b),那么其概率密度函数f(x)的表达式为:A. f(x) = 1/(b-a),当a≤x≤bB. f(x) = 1/(a+b),当a≤x≤bC. f(x) = 1/a,当a≤x≤bD. f(x) = 1/b,当a≤x≤b答案:A9. 如果随机变量X服从正态分布N(μ, σ^2),那么其期望E(X)的值为:A. μB. σC. μ^2D. σ^2答案:A10. 假设随机变量X服从几何分布,其成功概率为p,那么其期望E(X)的值为:A. 1/pB. pC. 1-pD. p^2答案:A二、多项选择题(每题3分,共15分)11. 以下哪些是概率论中随机变量的类型?A. 离散型B. 连续型C. 混合型D. 以上都是答案:D12. 在概率论中,以下哪些是随机变量的期望值的性质?A. 线性性质B. 无界性质C. 单调性质D. 以上都是答案:A13. 以下哪些是概率论中随机变量的方差的性质?A. 非负性B. 齐次性C. 可加性D. 以上都是答案:A14. 在概率论中,以下哪些是随机变量的协方差的性质?A. 对称性B. 线性性质C. 非负性D. 以上都是答案:A15. 以下哪些是概率论中随机变量的相关系数的性质?A. 取值范围在[-1, 1]之间B. 对称性C. 非负性D. 以上都是答案:A三、计算题(每题10分,共40分)16. 假设随机变量X服从正态分布N(2, 4),求P(1 < X < 3)。
2012级硕士概率论与数理统计标准答案及评分标准
2012级硕士概率论与数理统计标准答案及评分标准一、(10分)设121,,,,,n n n m X X X X X ++为来自正态总体),0(2σN 的样本,求统计量2121ni i n mi i n m X Z n X=+=+=∑∑的分布.解:由~(0,1)iX N σ,m n i +=,,2,1 (2分)故221()~()nii X n χσ=∑,221()~()n mii n X m χσ+=+∑,且两者独立, (8分)因此2121()~(,)()nii n mii n X nF n m X mσσ=+=+∑∑ (10分)二、(20分)设总体X 的密度函数为θθθ||21),(x ex f -=)(+∞<<-∞x其中0>θ未知,n X X X ,,21是取自这个总体的一个样本, (1)求θ的矩估计;(2)求θ的最大似然估计;(3)判断矩估计和最大似然估计是否为无偏估计. 解:(1)||1()02x EX xf x dx x e dx θθ-+∞+∞-∞-∞===⎰⎰||22221()22x EX x f x dx x e dx θθθ-+∞+∞-∞-∞===⎰⎰令2211n i i EX X n ==∑,得θ的矩估计ˆθ= (5分) (2)似然函数1||1()2ni i x nL eθθθ=-∑⎛⎫= ⎪⎝⎭对数似然函数1||ln ()ln(2)nii x L n θθθ==--∑21l n ()1||0ni i d L n x d θθθθ==-+=∑ 得θ得最大似然估计11ˆ||nMLEi i X n θ==∑. (10分)(3)222222111ˆˆˆˆ()()()22n i i E E D E E X EX n θθθθθ==-<===∑, 所以矩估计不是无偏估计 (15分)11ˆ||||nMLEi i E E X E X n θθ====∑,所以最大似然估计是无偏估计 (20分)三、(10分)设总体的概率密度函数为(1)01(,)0x x p x θθθ⎧+<<=⎨⎩其他,求(0)θθ>的费歇尔信息量()I θ.解:222ln (;)1(1)p x θθθ∂=-∂+, (5分) 222ln (;)1()(1)p X I E θθθθ⎛⎫∂=-= ⎪∂+⎝⎭ (10分)四、(10分)设1100,,X X 是来自正态总体2(,2.6)N μ的样本,对检验问题01:12,:13H H μμ≤=拒绝域取为{12.4277}W X =>,求该检验的水平和第二类错误的概率. (备用数据:95.0)645.1(=Φ,(2.2)0.9861Φ=)解:()12.4277|12P X αμ=>≤⎭⎬⎫⎩⎨⎧>-=≤26.04277.026.01212X P μ05.0)645.1(126.04277.026.012=Φ-=⎭⎬⎫⎩⎨⎧>-≤≤μμX P ; (5分)(12.4277|13)P X βμ=≤=⎭⎬⎫⎩⎨⎧-≤-=26.05723.026.0131X P1(2.2)0.0139=-Φ= (10分)五、(20分)服用某种药物一定剂量可以使人的脉搏增加,增加的次数2~()X N μσ,,2μσ,均未知。
2012-2013概率期末试题+答案
2012-2013-1《概率论与数理统计》期末试卷(A)一、填空题(每小题4分,共28分)1.对一批次品率为p (0<p <1)的产品逐一检测, 则第二次或第二次后才检测到次品的概率为________.2.二维离散型随机变量),(Y X 的联合分布律为j i p , (i , j =1 , 2 ,……),关于X 及关于Y 的边缘分布律为p i •及p •j (i , j =1,2,……),则X 与Y 相互独立的充分必要条件是_________. 3.设样本),,,(21n X X X 抽自总体22, ). ,(~σμσμN X 均未知. 要对μ作假设检验,统计假设为,:00μμ=H (0μ已知), ,:01μμ≠H 则要用检验统计量为_________.4.若总体) ,(~2σμN X ,则~n Z σμ-X =__________其中n 为样本容量.5.设某种零件的寿命),(~2σμN Y ,其中μ未知. 现随机抽取5只,测得寿命(单位小时)为1502 , 1453 ,1367 , 1650,1498,则用矩估计可求得μˆ=________. 6.设某离散型随机变量ξ的分布律是{}⋅⋅⋅===,2,1,0,!k k Ck P kλξ,常数λ>0,则常数=C ________.7.设A ,B 是两个互不相容的随机事件,且知21)(,41)(==B P A P , 则=)(B A P ______. 二、单项选择题(每小题4分,共40分)1.对任意两个互不相容的事件A 与B ,必有_________.(A ) 如果0)(=A P ,则0)(=B P . (B ) 如果0)(=A P ,则1)(=B P .(C ) 如果1)(=A P ,则0)(=B P . (D ) 如果1)(=A P ,则1)(=B P .2.已知随机变量X 在]1,0[上服从均匀分布,记事件}5.00{≤≤=X A ,}75.025.0{≤≤=X B ,则_________.(A ) A 与B 互不相容. (B ) B 包含A . (C ) A 与B 对立. (D ) A 与B 相互独立. 3.6.0 ,1)( ,4)(===ξηρηξD D ,则=-)23(ηξD _________.(A) 40 (B) 34 (C) 25.6 (D) 17.64.任一个连续型的随机变量ξ的概率密度为)(x ϕ,则)(x ϕ必满足_________.(A) 1)(0<<x ϕ (B)()⎰+∞∞-=1dx x ϕ (C) 单调不减 (D)1)(lim =+∞→x x ϕ5.设两个随机变量X 与Y 相互独立且同分布,{1}{1}0.5P X P Y ====,{1}{1}0.5P X P Y =-==-=,则下列各式成立的是_________.(A){}0.5P X Y == (B) {}1P X Y == (C) {0}0.25P X Y +== (D) {1}0.25P XY == 6.若随机变量ξ和η相互独立,且方差21)(σξ=D 和22)(ση=D 2121,),0,0(k k >>σσ 是已知常数,则)(21ηξk k D -等于_________.(A )222211σσk k - (B )222211σσk k + (C )22222121σσk k - (D )22222121σσk k +7.设( X , Y )为二维随机变量,其概率密度函数为⎩⎨⎧≥≥=+-其他,0,0,),()(y x e y x f y x ,则下列各式正确的是_________.⎰⎰∞-∞-+-=x y y x dxdy e y x F A )(),()( ⎰∞+∞-+-=dy e x f B y x X )()()(dx e dy Y X P C y y x ⎰⎰-+-=≤+240)(2}42{)( ⎰⎰∞+∞-∞+∞-+-=dxdy xe X E D y x )()()(8.对总体的某个参数做检验,取显著性水平α,如果原假设正确,但由于样本的随机性做出拒绝原假设的决策,因而犯了错误,这类错误称第一类错误,也称“弃真错误”,犯这类错误的概率是_________.(A )α-1 (B) 21α-(C) α (D)α19.设n X X ,,1 是来自随机变量X 的样本∑=--=ni i X X n S 122)(11(样本方差),则下列结论正确的是_______. (A))()(2X D S E = (B) )(1)(2X D n nS E -=(C) )(1)(2X D nn S E -= (D) )()1()(22X D n nS E -= 10.采用包装机包装食盐,要求500g 装一袋. 已知标准差g 3=σ,要使食盐每袋平均重量的95%的置信区间长度不超过4.2g ,则样本容量n 至少为_______.(已知u 0.025=1.96)(A ) 4 (B) 6 (C) 8 (D) 10三、不同的两个小麦品种的种子混杂在一起,已知第一个品种的种子发芽率为90%,第二个品种的种子发芽率为96%,并且已知第一个品种的种子比第二个品种的种子多一倍,求:(1)从中任取一粒种子,它能发芽的概率;(2)如果取到的一粒种子能发芽,则它是第一个品种的概率是多少?(8分)四、设随机变量X 和Y 相互独立且)5,3(~N X , )19,3(~-N Y . 试求 Z =3X –2Y –15的概率密度. (8分)五、从一台车床加工的成批轴料中抽取15件,测量其椭圆度(设椭圆度服从正态分布),(2σμN ) ,计算得2s =0.025,问该批轴料的椭圆度的总体方差2σ与规定的方差 04.020=σ 有无显著差别?(最后结果保留3位小数),(α =0.05). (8分) (已知220.9750.025(14) 5.629,(14)26.119χχ==,220.9750.025(15) 6.262,(15)27.488χχ==)六、设某种零件长度X 服从正态分布),(2σμN ,现随机从该批零件中抽取10件,测得其样本均值)(05.10cm X =,样本标准差)(2415.0cm S =,求μ的置信度为95%的置信区间(最后结果保留3位小数). (8分) (已知2281.2)10(,2622.2)9(025.0025.0==t t ,2281.2)10(,8331.1)9(025.005.0==t t )答案:一、填空1.1-p ;2.j i j i p p p ••⨯=;3.,/0nS X t μ-= ;4.)1 ,0(N ;5.1494. 6.λ-e ;7. 21二、单项选择题 题号 12345678910答案C D C B A D C C A C三、A i (i =1,2)分别表示取到的一粒种子是第一,二品种的事件B =“取到的一粒种子能发芽”则()()%90,3211==A B P A P ,()()%96,3122==A B P A P 由全概率公式 ()()()2121230.90.960.92=3325i i i P B P A P B A ===⨯+⨯=∑由贝叶斯公式 ()()()()⎪⎭⎫⎝⎛≈===65.0231592.060.0111B P A B P A P B A P 四、因为)3,2(~N X , )6,3(~-N Y ,且X 与Y 独立,故X 和Y 的联合分布为正态分布,X 和Y 的任意线性组合是正态分布.即 Z ~N (E (Z ), D (Z ))015)(2)(3)(=--=Y E X E Z E 121)(4)(9)(=+=Y D X D Z D Z ~N (0, 112)则Z的概率密度函数为 2242(),()x f x x -=-∞<<+∞五、显著性水平 α = 0.05,检验假设04.0:;04.0:20212020=≠==σσσσH H22201140.0258.750.04n s χσ-⨯===()由于()22220.0250.97521(14) 5.6298.7526.119(14)n αχχχχ-==<=<=故接受H 0 即认为该批轴料的圆度的总体方差与定的方差0.04 无显著差别. 六、当2σ未知时,μ的置信度为0.95的置信区间为22(1),(1)X n X n αα⎛⎫-- ⎪⎝⎭10.05 2.2622,10.05 2.2622⎛⎫=+ ⎪⎝⎭(9.877,10.223)=。
概率统计考试题及答案2012
试卷编号 课程名称:概率论与数理统计 考试时间:110 分钟:名姓一、选择题(本大题共5小题,每小题3分,总计15分) 1、甲、乙两乒乓球队各有运动员三男二女 ,其中甲队一男与乙队一女是种子选手 ,现在两队进行混 合双打比赛,则两个种子选手都上场的概率是 () :号学••业专级年----- 装---------A. 1 ;B. 6 5 36C. _5_ 12D. 2、下列关系式中成立的个数 (1)A U B=(A B )U B (3)若 A U B ,贝U A=AB A.1个 B.2个 (2)(AuB)nC= A n ⑷若 AB=0,且 C U A ,贝U BC=0 C.3个 D.4个 3、已知随机变量 X 的概率密度为f x (x),令Y=-2X ,则丫的概率密度f Y (y)为(). y 1 y 1 y A. 2f x (—2y); B. f x (-T); C. 一7 f x(——); D. -f x(——). 2 2 2 2 2 4、设随机变量 X 的概率密度为P(X),且P {x >0} = 1,则必有( A. p(x)在(0,+处内大于零; -be C. 4 P(x)dx =1; ). B . D. 5.设随机变量X ~N(A,cr 2),则随CT 的增大,概率 (A )单调增大 (B )单调减小 p(x)在(一处,0 )内小于零; p(x)在(0,+处)上单调增加. p{X-4 (C )保持不变 (D ) 增减不定 二、填空题(本大题共5小题,每小题3分,总计15分) 若卩(A) =0.4, P( AB) =0.3,则 P(A U B)= 设连续型随机变量 F(x)M 0, 1、 2、 X 的分布函数为 X >0; X <0. 则当x>0时,X 的概率密度f(x) = 设随机变量X 的分布函数为 0, F(x)={x 2, h , xcO; 0<x <1;以丫表示对X 的3次独立重复观测中 X 纣.五(10分)、若随机变量K~N(A,cr 2),而方程+ 4x + K = 0无实根的概率为0.5,试求卩事件{ X < !}出现的次数,则P{Y=2} =2 4、从长度为 1、3、5、7、9五条线段中任取三条能构成三角形的概率是5、随机变量 X 的所有可能取值为 0和X ,且P {X =0}=0.8, E(X)=1,则x = 三(10分)、 设一批混合麦种中一、二、三、四等品分别占率依次为,0.98, 0.95, 0.9, 0.85.求这批麦种的发芽率; 94%、3%、2%、1%,,四个等级的发芽 若取一粒能发芽,它是二等品的概率是多少? 四(15分)、设随机变量X, E(X)=工,且12『ax +b,P(x) =\10,求a 与b 的值,并求分布函数F (x).0 <x<1; 其它.六(15分)、•某单位招聘员工,共有10000人报考。
概率论与数理统计同步习题册参考答案(2012)
概率论与数理统计同步习题册参考答案(2012)2012年版同步习题册参考答案第一章 1.1节1. (1) }1000|{≤≤x x ; (2) }10|),{(22≤+≤y x y x ; (3) ,....}3,2,1{. 2. (1) C B A ; (2) C AB ; (3) C B A C B A C B A ++; (4) C B A ??; (5) ABC BC A C B A C AB +++; (6) ABC -Ω. 3. (1) (3) (4) (5) 成立.1.2节1. 0.1.2. 85.3. 83,61,21. 4. 0.2. 5. 0.7.1.3节1.!13!2!2!2!3. 2. 161,169,166. 3. 2113. 4.43,407. 5. 43. 1.4节1. 4/1,3/1.2.61. 3. 300209,20964. 4.9548,3019. 1.5节1. 0.48.2. 8.095.09.01??-.3. 0.896.3,74.第一章自测题一. 1. 52. 2. )(1,0q p +-. 3. 21,32. 4. 31; 5. 32. 6. 4.7.2711. 8. 52. 9. 8.0. 10. 0.94. 11. 3011. 二. 1. A. 2. C. 3. B. 3. A. 4. A. 5. A.三. 1. 6612111-,62461211?C ,6246121112??C . 2. 53,43,103,2711,53. 3.4940. 4. 999.004.01>-n. 5. 0.253,47/253. 6. 1/4. 7. 0.24, 0.424.第二章 2.1节1.)12(21100-,31. 2. 101)2(==X P ,109)3(==X P . 3. 3,2,1,0,!85)(3===k A k X P k . 4. (1)1,21=-=b a ,(2)161.5. 2=a ,0,4922,41-.6. 332??.1. (1)649,25, (2) 6133. 2. 0.301, 0.322. 3. 44.64. 4. 256. 5. 34. 6. 31.2.3节1. 20119192021818207.03.07.03.07.0++C C . 2. 20=n , 3.0=p .3. 2==DX EX .4. 1或者2.5.e21. 6. ,2,1,3231)(1k k X P k -?==. 7. 0.264.2.4节1. 45256,311==DY EY .2. 2720. 3. 3694.22.16.3--+---e e e . 4. 0.102.2.5节1.1.06.03.0410p Y .2.23236.02.14.016.02.14.0101?--?-p Y .3.<<-=其它,073,83)(y y y f Y .4. ??≤<=其它,040,41)(y y y f Y .第二章自测题一. 1. )1,0(N . 2. 95,31. 3. π1,21. 4. 1. 5. )(22a F -.6.)3(31y f X -. 7. 31. 8. 2.04.04.0201pX -. 9.132115. 10. 41. 11. ≤>=-2,02,8)(,43,43x x x x f . 12. 200,2-e . 二. 1. (1) 2π, (2) 21, (3) ??>≤<-≤=2,120,cos 10,0)(ππx x x x x F .2. (1) <≤-+?=其它,011,112)(2x x x f π, (2)14,2-ππ.3.8182323,2321422------e e e . 4. 4.03.01.02.09513p Y -,4.05.01.0410p Z .5. ?≤>=-0,00,21)(2)(ln 2y y e y y f y Y π.三. 1.35 4351835123513210pX, 3522.2. 25900--e .3. (1) 422)31)(3(5---e e , (2) 52)31(1---e .4. )09757.01(09757.032-??.第三章 3.1节1.2.(2)(3)0.5. (4)0.8. (5)0.3.3.(1)(2)(3)21/36. (4)8/36. 4. (1)其他10,2002/1),(≤≤≤≤?? =y x y x f ;(2)其他2002/1)(≤≤=x x f ,其他1001)(≤≤?=y y f ;(3)2/3. 5.(1)1/3. (2)5/12.(3)其他100322)(2≤≤+=x x x x f , 其他2006131)(≤≤+=y yy f . 6.(1)15. (2)其他15)(4≤≤??=x x x f ,其他100)2121(15)(22≤≤??-=y y y y f . (3)1/243. 3.2 节1. 3/1)1|0(21===X X P , 3/2)1|1(21===X X P .2. 不独立.3. 6, 独立.4. 000)(421)(73<≥??-=--x x e e x f x x,0007)(7<≥=-y y e y f y . 不独立.5.(1)??≤>=-00)(x x e x f x, ≤>=-0)(y y ye y f y . (2)Y X ,不独立.(3)当0>y 时,<<==其他01)(),()|(|y x y y f y x f y x f Y X .(4)3121213321)12(-----+==≤+??e edy e dxY X P x xy.(5)21)4()4,(1)4|2(1)4|2(2=-=-==≥?∞-dx f x f F Y X P . 3.3节1.(1)(2) 2. 其他200)ln 2(ln 2)(<<??-=z z z f . 3. 3/4, 8/5, 6/5, 47/20.4. 5/3.5. 4/3, 5/8, 47/24, 5/6, 5/8.3.4节1. (1)0, 0. (2)不独立,不相关.2. 4.3. (1)27, (2) 6.4. ,67=EX 67=EY , 3522==EY EX , 3611==DY DX . 34=EXY , 361)(-=Y X COV , 111XY -=ρ,96)(=-Y X D .5. 4/5, 3/5, 2/75, 1/25, 1/50, 4/6.3.5 节1. 0.02275.2. 0.90147.3. 0.00003;40万元.4. m=233958.第三章自测题一. 1. a+b=1/3, a = 2/9 , b =1/9. 2. 1/4,1/8. 3.31. 4.≤≤≤=其他0102)|(2|y x y xy x f Y X . 5. 16.59. 6. 97, 97.7. )17,4(~112N Y X +-.二. 1. B. 2. C. 3. A. 4. B. 5. B. 6. C. 7. B. 三. 1.5/3, 10/3, 5/9, 5/9.2. (1)(2) -0.1025, 1.06, -0.08. 3. (1) ),(Y X 的概率分布为:(2).1515),(==DYDX Y X Cov XY ρ (3) Z 的概率分布为:4. (1) 随机变量和的联合概率密度为<<<=.x y x y x f 其他,,010,1),((2) ??<<-=.y y y f Y 其他,,010,ln )( (3) 2ln 1-.5. (1) 其他100321)(2≤≤-+=x x x x f ,其他1 00y 3)(2≤≤=y y f , 不独立.(2) 1/3. (3) 1/3. 6. 086.0=a .第四章 4.1、4.2节1. 5.1,72==S X .2. (1) n pq p ,,(2) pq np ,, (3) n λλ,, (4) na b b a 12)(,22-+,(5)21,1λλn . 3. 22,,σσμn. 4. (1)λλn n xex x ni i-??∑=!!11 ,(2) ∑=-ni i x ne1λλ.4.3、4.4节1. 1)1111.1()6667.1(-Φ+Φ.2. 1001,201==βα. 3. 0.025,0.01. 4. 16. 6. 81. 7. )9,7(F .第四章自测题一. 1. C. 2. B. 3. A. 4. A. 5. B. 6. C. 7. D. 8. D. 9. D. 10. B. 11. C.12. AC. 13. B. 二. 1. n 9,1. 2. 115.6, 13427.66. 3. 2,n n . 4. )2(t . 5. ),2(n n F . 6. ),(p n b , ),(n pq p N . 7. )209,0(2σN .8. 26. 三. 1. 16. 2. )5.03.0(22Φ-.3. 161,121,81===c b a , )3(~2χU .第五章5.1节1.(1)是统计量,不是无偏的;(2)不是统计量;(3)是无偏统计量;(4)是是统计量,不是无偏的.2. 1 2a =. 4. 2?μ最有效. 5.2节1.(1)211X Xα-=-; 11ln L nii nXα==--∑.(2)1?X θ=;1?LXθ=. (3)?X λ=;?LX λ=. 2.65,65. 5.3节1. (11.366, 14.634).2. (1)(2.121,2.129);(2)(1.668,2.582).3. (1)(71.852,81.348);(2)(59.478,219.374).5.4、5.5节1. 1.23 1.96u ≈<,接受0H .2.3.33 1.96u ≈>,拒绝0H .3. 821.2)9(923.001.0=<≈t t ,接受0H .4. 0.0251.995(5) 2.571t t ≈<=,接受0H .5. 0.050.136(8) 1.86t t ≈<=,接受0H .6. 0.052.788(9) 1.833t t ≈>=,拒绝0H .7.20 1.5278χ≈,220.0250.975(4)11.143,(4)0.484χχ==. 0.484 1.527811.143<<,接受0H .8.2017.858χ≈,220.0250.975(4)11.143,(4)0.484χχ==. 11.85811.143>,拒绝0H .9.209.929χ≈,20.05(7)14.067χ=. 9.92914.067<,接受0H .10.2015.68χ≈,20.05(8)15.507χ=.15.6815.507>,拒绝0H .11.(1)0.0250.917(24) 2.064t t ≈<=,接受0H .(2)2200.0534.66(24)36.415χχ≈<=接受0H .满足要求.5.6节1. 22.5 1.96u u α=>=,拒绝0H .2. 64.1947.305.0=>=u u ,拒绝0H .3. 0.0250.2648(13) 2.16t t ≈<=,接受0H .4. 0.050.951.1724,(15,12) 2.62,(15,12)0.4032,F F F ===接受0H .5. 0.053.673(7,9) 3.29F F ≈>=,拒绝0H .6.(1)406.0)20,20(,464.2)20,20(,552.1975.0025.0==≈F F F ,接受总体方差相等.(2)021.2)40(849.2025.0=>≈t t ,拒绝0H .第五章自测题一. 1.∑-=n i i X X n X 12)(1,. 2. X . 3. 11)(-=∏ααni i n x . 4.87,41. 5. α-1. 6. 14:,141:0>≤μμH H . 7. 小概率原理.8. ??>-=26.210:),,,(21n s x x x x C n . 二. 1.√ 2.× 3.× 4.√ 5.× 6.×三. 1. 均是,2?μ最有效. 2.X p L 1?=. 3. ∑==ni i L X n 11?σ. 4. )49.14,41.14(. 5. )372.24,243.4(. 四. 1.(1))86.33,14.30(, (2)64.1205.0=>=u u ,拒绝0H .2.(1)262.2)9(209.0025.0=<≈t t ,接受0H .(2)919.16)9(552.36205.020=>≈χχ,拒绝0H ,机器工作不正常.3. (1)453.0)25,26(,219.2)25,26(,1975.0025.0===F F F ,接受总体方差相等.(2)008.2)51(262.0025.0=<≈t t ,接受0H .4. 50.3)8,7(646.305.0=>≈F F ,拒绝0H ,乙的方差比甲小.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
哈工大 2012年秋季学期概率论与数理统计 试题一、填空题(每小题3分,共5小题,满分15分)1.设事件A 、B 相互独立,事件B 、C 互不相容,事件A 与C 不能同时发生,且()()0.5P A P B ==,()0.2P C =,则事件A ,B 和C 中仅C 发生或仅C 不发生的概率为__________ .2.设随机变量X 服从参数为2的指数分布, 则21e X Y-=-的概率密度为()Y f y =______ ____.3.设随机变量X 的概率密度为21e ,0()20, 0xx x f x x -⎧>⎪=⎨⎪≤⎩,利用契比雪夫不等式估计概率≥<<)51(X P ______.4.已知铝的概率密度2~(,)X N μσ,测量了9次,得 2.705x =,0.029s =,在置信度0.95下,μ的置信区间为______ ____.5.设二维随机变量(,)X Y 服从区域{(,)|01,02}G x y x y =≤≤≤≤上的均匀分布,令),min(Y X Z =,),max(Y X W =, 则)1(≥+W Z P = .(0.0250.050.050.025(8)23060,(8)18595,(9) 1.8331,(9) 2.2622t t t t =⋅=⋅==()1.960.975Φ=,()1.6450.95Φ=)二、选择题(每小题3分,共5小题,满分15分)(每小题给出的四个选项中,只有一个是符合题目要求的,把所选项的字母填在题后的括号内)1.设0()1, 0()1, ()()P A P B P B A P B <<<<=,则与上式不等价的是(A )A 与B 不相容. (B )()()P B A P B A =.(C ))()(A P B A P =. (D ))()(A P B A P =. 【 】2.设总体X 服从参数为λ的泊松分布,12,,,n X X X 是来自X 的样本,X 为样本均值,则 (A )1EX λ=,21DX n λ=. (B ),λ=X E n X D λ=. (C ),nX E λ=2n X D λ=. (D ),λ=X E λn X D 1=. 【 】 3.设随机变量X 的概率密度为2, 01()0, x x f x <<⎧=⎨⎩其他,则)2(DX EX X P ≥-等于(A)99-. (B)69+. (C )928-6. (D)69-. 【 】 4.如下四个函数,能作为随机变量X 概率密度函数的是(A )⎪⎩⎪⎨⎧≤>+=0,00,11)(2x x x x f . (B )0,157(),1116160, 1x f x x x x <-⎧⎪⎪=+-≤<⎨⎪≥⎪⎩.(C )1()e ,.2xf x x -=∈R . (D )1e ,0()0,0x x f x x -⎧->=⎨≤⎩ . 【 】5.设12,,,n X X X 为来自总体2~(,)X N μσ的一个样本,统计量2)(1μ-=X Sn Y 其中X 为样本均值,2S 为样本方差,则 【 】 (A )2~(1)Y x n -(B )~(1)Y t n -(C )~(1,1)Y F n - (D )~(1,1)Y F n -.三、(8分)假设某段时间内来到百货公司的顾客数服从参数为λ的Poisson 分布,而在百货公司里每个顾客购买电视机的概率均为p ,且顾客之间是否购买电视机相互独立,试求=A “该段时间内百货公司售出k 台电视机”的概率(假设每顾客至多购买一台电视机)。
四、(8分)设随机变量[]~0,1X U ,求(1)241Y X X =-+的概率密度()Y f y ;(2)X 与Y 的相关系数XY ρ.五、(8分)设随机变量X 和Y 的分布列分别为X 0 1 Y —1 0 1P 1/3 2/3 P 1/3 1/3 1/3且1)(22==Y X P ,求(1)二维随机变量),(Y X 的概率分布;(2)XY Z =的概率分布;(3)X 与Y 的相关系数XY ρ.六、(12分)设随机变量X 与Y 相互独立,且分别服从正态分布)2,(σμN 和)22,(σμN ,其中σ为未知参数且0σ>. 记Y X Z -=.(1)求的概率密度Z 2(;)f z σ;(2)设12,,,n Z Z Z 为来自总体Z 的简单随机样本, 求2σ的最大似然估计2σ∧;(3)证明2σ∧是2σ的无偏估计量。
七、(4分)在x 轴上的一个质点可以在整个数轴的整数点上游动,记n S 为时刻n 时质点的位置。
若在时刻0t =时,处于初始位置为原点,即00S =,它移动的规则:每隔单位时间,它总是收到一个外力的随机作用,使位置发生变化,分别以概率p 及概率1q p =-向正的或负的方向移动一个单位(直线上无限制的随机游动)。
求质点在时刻n 时处于位置k 的概率,即求()n P S k =.2012年概率期末答案一、 填空题:(15分)1.0.452.()⎩⎨⎧≤≤=其它,010,1y y f Y 3.41. 4.)(8.2,6.2.5.41二、选择题:(15分)1A 2B 3D 4C 5C三、解:设iA 表示这段时间内到达百货公司的顾客数() ,2,1,0=i利用全概率公式: ++++=A A A A A A A k 10()()()()()0i i i i i i kP A P A P A A P A P A A ∞∞====∑∑ (()0,0)i P A A i k =≤< 4分 ()ki k k i ki ip p C e i --∞=-⋅=∑1!λλ()()()()()()∑∑∞=---∞=---⋅=--⋅⋅=ki k i kk i kki ik i p k p e p p k i k i ei !1!1!!!!λλλλλ()()()()()()∑∞=----=⋅⋅=-⋅==-om p k p kmk ek p ee k p m p p k e p mk i λλλλλλλλ!!!1!1 ),2,1,0( =k 4分四、解:(1)分布函数方法:含f d Y ⋅与()y F YR y ∈∀,()()()y X X P y Y P y F Y ≤+-=≤=142()()322+≤-=y X P又]1.0[∈x ∴()4212≤-≤x 同样431≤+≤y∴12≤≤-y 于是当2-<y 时,()0=y F Y 当1>y 时,()1=y F Y 当12≤≤-y 时,()()()322+≤-=y X P y F Y()3232++≤≤+-=y X y P ()()321132++≤≤+≤≤+-=y X P X y P()130321-+=++--=y y∴()⎪⎩⎪⎨⎧≥<≤--+-<=1,112,132,0y y y y y F Y ()⎪⎩⎪⎨⎧≤≤-+=其它,012,321y y y f Y或公式法:142+-=x x y ↙严格()()()121.0,022≤≤-∈<-='y x x y其反函数()y y h x +-==32 ()12≤≤-y ()yy h x +-='='3214分从而有:()()()()⎪⎩⎪⎨⎧≤≤-+='=其它,12,321y yy h y h f y f X Y 分(2)223441, 345EY EX EX DY =-+=-= 2分 (3)114XY ρ==-=- 2分五、解:(I )由题设有:0)(1)(2222==-=≠Y X P Y X P而)()0,1(),1,0(22Y X Y X Y X ≠⊂==±==所以利用概率的非负性和保序性:0)Y 1,P(X 01)Y 0,P(X ====±==再利用联合分布和边缘分布之间的关系可得联合分布列4分)(∏.Z=XY 的分布列为:31)1,1()1(31)1,1()1(310)Y 0,P(X 0)Y 1,P(X 1)Y 0,P(X 0)P(Z =-===-========++==+±====Y X P Z P Y X P Z P2分 ()I∏)031131)1(31).(132031()1(31131031),(=⨯+⨯+-⨯⨯+⨯--⨯+⨯+⨯=-=EXEY EXY Y X COV 0320031)1(31131)(,92)32(32)(222222222>=-⨯+-⨯+⨯=-==-=-=EY EY DY EX EX DX 所以 0=ρ2分六、解:(I )由题设:Y -X Z =服从正态分布且)3,0()2,(~222σσσμμN N Z =+- Z ∴的概率密度为:2262321)f(z,σσπσz e-=4分(II )似然函数2262226121)()6(321);,,L(z σσσπσπσi i z n nz ni n eez ----===∏取对数:2226262σσπi z Ln n Ln n LnL ---=令42226120σσσi z n LnL +⨯-==∂∂,解得:=2σ∑=n i i z n 1231 ∴2σ的极大似然估计为=∧2σ∑=n i i z n 1231 4分(III )由题设知:n z z z ,,,21 独立且与总体Z 同分布E ∴=∧2σE 2212123313131σσ=⨯⨯=⨯=∑∑==n nEz n z n ni in i i 于是=∧2σ∑=n i i z n 1231为2σ的无偏估计。
4分七、解: 为使质点在时刻t=n 时位于k 位置(k 也可以是负值)⇔在前n 次游动中向右移动的次数比向左移动的次数多k 次,若以x 表示它在前n 次游动中向右移动的次数,y 表示向左移动的次数,则有:⎩⎨⎧==+ky -x ny x 2分 即,2kn x +=因为x 是整数,所以k 与n 必须具有相同的奇偶性。
事件{}k =n S 发生相当于要求在前n 次游动中有2k n +次向右,2kn -次向左,利用二项分布即得{}222n S P k n k n k n nqpCk -++==当k 与n 奇偶性相反时,其概率为0 2分七、解: 为使质点在时刻t=n 时位于k 位置(k 也可以是负值)⇔在前n 次游动中向右移动的次数比向左移动的次数多k 次,若以x 表示它在前n 次游动中向右移动的次数,y 表示向左移动的次数,则有:⎩⎨⎧==+ky -x ny x 2分 即,2kn x +=因为x 是整数,所以k 与n 必须具有相同的奇偶性。
事件{}k =n S 发生相当于要求在前n 次游动中有2k n +次向右,2kn -次向左,利用二项分布即得{}222n S P k n k n k n nq p Ck -++==当k 与n 奇偶性相反时,其概率为0 2分。