简述磨削加工的过程
第五节 磨削的工艺特点及其应用
第五节磨削的工艺特点及其应用用砂轮或其他磨具加工工件,称为磨削。
本节主要讨论用砂轮在磨床上加工工件的特点及其应用,磨床的种类很多,较常见的有外圆磨床、内圆磨床和平面磨床等。
作为切削工具的砂轮,是由磨料加结合剂用烧结的方法而制成的多孔物体。
由于磨料、结合剂及制造工艺等的不同,砂轮特性可能差别很大,对磨削的加工质量、生产效率和经济性有着重要影响。
砂轮的特性包括磨料、粒度、硬度、结合剂、组织以及形状和尺寸等。
一.磨削过程磨削可以加工外圆面、内孔、平面、成形面、螺纹、齿轮等1.外圆磨削1、在外圆磨床上进行磨法:纵磨法横磨法综合磨深磨法2、无心外圆磨圆面必须连续,不能有较长键槽等孔的磨削2.平面磨削周磨质量较高,但较慢端磨较快,但质量不高特点:主运动是砂轮的旋转运动;磨削过程:实际上是磨粒对工件表面的切削、刻削和滑擦三种作用的综合效应;砂轮的“自锐性” :磨削中,磨粒本身也会由尖锐逐渐磨钝,使切削能力变差,切削力变大,当切削力超过粘结剂强度时,磨钝的磨粒会脱落,露出一层新的磨粒,这就是砂轮的“自锐性”。
磨削往往作为最终加工工序。
砂轮的修整由于砂轮的“自锐性”以及切屑和碎磨粒会阻塞砂轮,在磨削一定时间后,需用金刚石车刀等对砂轮进行修整。
二.磨削的工艺特点磨床的特点:a.使用磨料、磨具(如砂轮、砂带、油石、研磨料等)为工具,进行切削加工。
b.用来加工硬度较高的材料。
c.加工精度高、光洁度高。
d.一般加工余量较小。
工业发达国家,磨床比例高(约30%左右),磨床用于粗、精加工,发展了新型强力磨和高速磨。
三.磨削的应用和发展(一)外圆磨床磨床中所占比例较大的一种,包括万能外圆磨床、外圆磨床、无心外圆磨床。
1.万能外圆磨床万能性好,常用于加工以下几种典型表面。
<1>磨外圆加工所需的运动砂轮主运动 n工件的圆周进给运动 f1工件的纵向进给运动 f2砂轮的横向切入运动 c<2>磨长圆锥面外圆磨床工作台分两层,上工作台相对下工作台调整至一定的角度位置(不超过±7°)机床运动与(1)相同,但工件回转中心线与工作台纵向进给方向不平行,故磨削出来的是圆锥面。
简述磨削平面的方法
简述磨削平面的方法磨削平面是机械加工中常用的一种方法,它可以使工件表面光滑、平整、精度高。
下面将详细介绍磨削平面的方法。
一、准备工作在进行磨削平面前,需要做好以下准备工作:1.选择合适的磨削工具和砂轮。
根据被加工材料的硬度和形状,选择合适的砂轮和磨削工具。
2.调整机床。
调整机床的刀架高度和角度,使其与被加工材料表面垂直,并且旋转方向与材料运动方向相反。
3.清洁被加工材料表面。
清除被加工材料表面上的油污和灰尘,以保证磨削效果。
二、粗加工1.粗选合适的砂轮。
根据被加工材料的硬度和形状,选择合适的粗砂轮,并将其安装到机床上。
2.调整刀架高度和角度。
将刀架调整到与被加工材料表面垂直,并且旋转方向与材料运动方向相反。
3.开始粗加工。
打开机床,将砂轮轻轻地接触到被加工材料表面,然后逐渐增加砂轮的压力,直到达到所需的粗磨效果。
4.检查粗加工效果。
停止机床,检查被加工材料表面的平整度和光滑度。
如果需要进一步精加工,则进行下一步操作。
三、精加工1.选择合适的砂轮。
根据被加工材料的硬度和形状,选择合适的细砂轮,并将其安装到机床上。
2.调整刀架高度和角度。
将刀架调整到与被加工材料表面垂直,并且旋转方向与材料运动方向相反。
3.开始精加工。
打开机床,将细砂轮轻轻地接触到被加工材料表面,然后逐渐增加砂轮的压力,直到达到所需的精磨效果。
4.检查精加工效果。
停止机床,检查被加工材料表面的平整度和光滑度。
如果需要进一步提高平整度和光滑度,则进行下一步操作。
四、抛光1.选择合适的抛光材料。
根据被加工材料的硬度和形状,选择合适的抛光材料,如毛毡轮、绒布轮等。
2.调整刀架高度和角度。
将刀架调整到与被加工材料表面垂直,并且旋转方向与材料运动方向相反。
3.开始抛光。
打开机床,将抛光材料轻轻地接触到被加工材料表面,然后逐渐增加压力,直到达到所需的抛光效果。
4.检查抛光效果。
停止机床,检查被加工材料表面的平整度和光滑度。
如果需要进一步提高平整度和光滑度,则进行下一步操作。
磨削加工过程及典型加工工序
磨削加工过程及典型加工工序一、引言磨削加工是一种常用于金属工件加工的方法,它通过利用磨料与工件表面的相对运动,在高速旋转的磨具的作用下,将工件表面的硬度较高、粗糙度较高的层状材料切削去除,从而使工件达到精度更高、光洁度更好的目的。
本文将介绍磨削加工的原理、典型加工工序以及注意事项。
二、磨削加工的原理磨削加工是一种磨削剂与工件表面之间的相对运动产生磨削力的加工方法。
在磨削过程中,磨料与磨具之间的接触是点、线、面三种形式的交替进行,从而形成切削力。
这种切削力的作用下,磨具将工件表面的层状材料切削去除,使得工件表面达到更高的精度和光洁度。
三、典型磨削加工工序1. 平面磨削平面磨削是指对平面工件进行磨削加工的工序。
它是磨削加工中最常见的一种工序,广泛应用于各个领域的加工过程中。
平面磨削的主要步骤包括:确定磨削的位置和方向,选择合适的磨具和磨料,进行粗磨和精磨,最后进行抛光。
平面磨削的参数包括磨削速度、工件进给速度、磨削深度等。
2. 内圆磨削内圆磨削是指对内圆工件进行磨削加工的工序。
它是磨削加工中一种较为复杂的工序,需要使用专门的磨削装置和磨具。
内圆磨削的主要步骤包括:确定磨削位置、选择合适的磨具和磨料,进行粗磨和精磨,最后进行抛光。
内圆磨削的参数包括磨削速度、工件进给速度、磨削深度等。
3. 外圆磨削外圆磨削是指对外圆工件进行磨削加工的工序。
它是磨削加工中一种比较常见的工序,广泛应用于各个领域的加工过程中。
外圆磨削的主要步骤同样包括:确定磨削位置、选择合适的磨具和磨料,进行粗磨和精磨,最后进行抛光。
外圆磨削的参数也包括磨削速度、工件进给速度、磨削深度等。
4. 带状磨削带状磨削是指对宽度较大的工件进行磨削加工的工序。
它是磨削加工中一种较为特殊的工序,需要使用带状磨削装置和特殊的磨具。
带状磨削的主要步骤与其他磨削工序类似,但需要特别注意工艺参数的调整和对磨削带的管理。
四、磨削加工注意事项在进行磨削加工时,需要注意以下几点: 1. 选择合适的磨具和磨料。
简述磨削加工
磨削加工1. 简介磨削加工是一种常见的金属加工方法,通过使用磨料对工件表面进行摩擦磨损,以达到加工的目的。
它可以用于改善工件表面质量、调整尺寸精度和形状精度,以及去除杂质和残余应力等。
磨削加工广泛应用于机械制造、航空航天、汽车制造、模具制造等领域。
2. 磨削原理磨削加工是利用切削性能较差的材料(磨料)对工件进行切削,通过与工件表面的相对运动来实现切削作用。
其主要原理包括以下几个方面:•切削颗粒:磨料是由硬度较高的颗粒组成,通常为氧化铝、碳化硅等材料。
这些颗粒与工件表面摩擦产生很高的切向力,从而实现切削作用。
•切向力:当磨料与工件表面接触时,由于相对运动产生了摩擦力,使得磨料在切向方向上产生了切削力。
这种力对工件表面进行了切削作用。
•磨屑形成:在磨削过程中,磨料与工件表面的摩擦力和切向力使得工件表面的材料被切削下来,形成了磨屑。
这些磨屑会随着磨料的运动带走,并通过冷却液进行排出。
•热效应:由于切削过程中的摩擦力和切向力,会产生较高的温度。
为了避免温度过高引起工件变形或损坏,通常需要使用冷却液进行冷却。
3. 磨削方法根据加工目标和工件材料的不同,磨削加工可以采用多种方法。
下面介绍几种常见的磨削方法:3.1 平面磨削平面磨削是最基本、最常用的磨削方法之一。
它主要用于对平面工件进行加工,如平面零件、平底孔等。
平面磨削通常采用平面砂轮进行加工,通过对工件表面进行连续的摩擦来实现加工效果。
在平面磨削过程中,需要注意保持磨削面与砂轮之间的良好接触,以确保加工质量。
3.2 内圆磨削内圆磨削是用于加工孔内表面的一种方法。
它通常使用内圆砂轮进行加工,通过对孔内表面进行旋转磨削来实现加工效果。
在内圆磨削过程中,需要注意选择合适的砂轮尺寸和形状,并控制好加工参数,以确保加工质量。
3.3 外圆磨削外圆磨削是用于加工轴类零件外表面的一种方法。
它通常使用外圆砂轮进行加工,通过对零件外表面进行旋转磨削来实现加工效果。
在外圆磨削过程中,同样需要注意选择合适的砂轮尺寸和形状,并控制好加工参数。
磨削加工原理
磨削加工原理
磨削加工是一种常见的金属加工方法,通过磨削工具对工件进
行切削,以达到精密加工的目的。
磨削加工原理是在磨削过程中,
磨料颗粒不断接触工件表面,将工件表面的金属材料逐渐磨除,从
而形成所需的形状和尺寸。
磨削加工原理的关键在于磨料颗粒与工件表面的接触。
在磨削
过程中,磨料颗粒以一定的速度和压力接触工件表面,通过不断的
摩擦和冲击作用,磨削掉工件表面的金属材料。
这种磨削过程需要
一定的能量输入,通常是通过旋转的磨削工具或者工件本身的旋转
来提供。
磨削加工原理的另一个重要方面是磨削工具的选择和使用。
不
同的磨削工具适用于不同的工件材料和加工要求。
常见的磨削工具
包括砂轮、砂带、砂纸等,它们的磨料颗粒大小、形状和硬度都会
影响磨削加工的效果。
此外,磨削工具的转速、进给速度、磨削压
力等参数也会对磨削加工产生影响。
在磨削加工原理中,还需要考虑磨削过程中产生的热量和磨屑。
磨削过程中,由于摩擦和冲击作用,会产生大量的热量,如果不能
及时散去,会对工件和磨削工具造成损坏。
同时,磨削过程中产生的磨屑也需要及时清除,以免对加工质量产生影响。
总的来说,磨削加工原理是通过磨料颗粒不断接触工件表面,将工件表面的金属材料逐渐磨除,从而实现精密加工的目的。
在实际应用中,需要根据工件材料和加工要求选择合适的磨削工具和加工参数,同时要注意散热和清屑,以确保磨削加工的效果和质量。
第七章 磨削加工
第七章磨削加工基本要求及重点:1、了解磨削特点和各种磨削方法与磨削运动。
2、明确砂轮的特性及其选择原则。
3、理解砂轮磨损及耐用度、磨削力及功率、磨削温度及烧伤等概念。
4、了解磨削过程,知道磨削表面缺陷产生的原因及解决办法。
5、了解高效率和高精度及小粗糙度磨削的方法。
§7-1 磨削概述及其原理一、概述磨削加工是用硬质磨粒作为切削工具对工件进行微细切削加工过程的统称。
它是一种精密加工方法。
1、磨削加工的优点及其应用与其他切削加工方法相比,磨削加工是一种多刀多刃的高速切削方法。
它是为适应传统金属材料的精加工及其淬硬表面加工的需要而发展起来的。
随着磨料磨具和高效磨削工艺(如高速磨削、强力磨削、重负荷磨削、砂带磨削等)的发展,以及磨床结构性能的不断改进,磨削加工效率和经济性在显著提高,磨削的应用已从精加工逐步扩大到粗加工领域。
同时,在当今的钛合金、高温合金、超高强度钢、不锈钢及高温结构陶瓷等难加工材料以及硬脆材料的加工中,磨削是一种非常有效的加工方法。
3、磨削加工机床分类磨床是用磨料或磨具(砂轮、砂带、油石或研磨料)作为工具对工件表面进行加工的机床。
为了适应磨削加工表面、结构形状和尺寸大小不同的各种工件的需要,满足不同生产批量的要求,需要的磨床种类很多。
按加工工件表面不同,分为如下几类:(1) 外圆磨床包括万能外圆磨床、外圆磨床及无心外圆磨床等。
(2) 内圆磨床包括内圆磨床,无心内圆磨床及行星式内圆磨床等。
(3) 平面磨床包括卧轴矩台平面磨床、立轴矩台平面磨床、卧轴圆台平面磨床及立轴圆台平面磨床等。
(4) 工具磨床 包括万能工具磨床(能刃磨各种常用刀具)、拉刀刃磨床、滚刀刃磨床等。
(5) 曲线磨床(6) 专用磨床 包括曲轴磨床、凸轮轴磨床,花键轴磨床、轧辊磨床、轴承套圈滚道磨床等。
(7) 坐标磨床(8) 锯磨机(9) 精磨机床 包括研磨机、珩磨机、抛光机、超精加工机床及砂轮机等。
二、磨削原理1、砂轮构造磨削时所用的砂轮是由磨粒、结合剂和气孔组成的,见图7-1。
齿轮磨削工艺技术
齿轮磨削工艺技术齿轮磨削工艺技术是一种用于制造高精度齿轮的重要过程。
它是一种常见的齿轮加工方法,可以产生高质量的齿轮产品。
本文将介绍齿轮磨削工艺技术的主要步骤和关键因素。
齿轮磨削工艺技术主要包括以下几个步骤:齿轮预硬车削、夹紧齿轮、车磨掩盖法检测加工误差、微调磨削参数、终磨检测平行度误差、抛光等。
首先,齿轮磨削工艺技术需要进行齿轮的预硬车削。
预硬车削是指在热处理之前对齿轮进行车削,以满足磨削工艺的要求。
在预硬车削过程中,需要保持良好的车削稳定性和材料去除率,以确保齿轮表面的高精度度。
然后,夹紧齿轮是齿轮磨削过程中的关键步骤。
齿轮在磨削过程中需要保持稳定的夹紧状态,以确保磨削的精度和成形。
夹紧齿轮需考虑到齿轮类型、齿轮材料、磨削力等因素,采用合适的夹紧方式和夹紧力来确保齿轮的稳定性。
接下来,车磨掩盖法检测加工误差是齿轮磨削工艺技术的重要环节。
通过车磨掩盖法可以实时控制磨削过程中的加工误差,提高磨削精度。
车磨掩盖法在磨削过程中实时检测齿轮的误差,通过调整磨削参数来减小误差,提高加工精度。
微调磨削参数也是齿轮磨削工艺技术中的一个重要步骤。
在磨削过程中,通过微调磨削参数可以进一步提高磨削精度。
微调磨削参数包括磨削深度、进给、磨削速度等,通过合理调整这些参数可以减小磨削误差,提高加工精度。
终磨检测平行度误差也是齿轮磨削工艺技术中的一个关键环节。
通过终磨检测可以准确测量齿轮的平行度误差,进一步改善加工精度。
终磨检测平行度误差需要使用高精度的测量仪器和设备,以确保测量结果的准确性。
最后,齿轮磨削工艺技术还需要进行抛光等后续处理。
抛光可以进一步提高精度和光洁度,使得齿轮的表面更加光滑和平整。
总的来说,齿轮磨削工艺技术是一种制造高精度齿轮的重要方法。
通过预硬车削、夹紧齿轮、车磨掩盖法检测加工误差、微调磨削参数、终磨检测平行度误差和抛光等步骤,可以获得高质量的齿轮产品。
这些步骤中的关键因素包括材料选用、磨削参数调整、夹紧方式等,需要进行合理的选择和调整,以实现高精度度的齿轮磨削。
第6章磨削加工
金刚石砂轮
6.2 磨 削 原 理
6.2.1 磨料的形状特征
形状很不规则,但大多呈菱形八面体。顶锥角在80°~ 145°范围内, 但大多数顶锥角为 90°~ 120°。
6.2.2 磨屑形成过程
第6章磨削加工
磨削过程——磨具上的无数个磨粒的微切削刃对工件 表面的微切削过程。
图 6-2 磨粒的切削过程
①当砂轮硬度较高,修整较细,磨削载荷较轻时,易出现钝化型。这时,加工 表而质量虽较好,但金属切除率显著下降。
②当砂轮硬度较低,修整较粗,磨削载荷较重时,易出现脱落型。这时,砂轮 廓形失真,严重影响磨削表面质量及加工精度。
表 6-3 常用结合剂的性能及适用范围
第6章磨削加工
6.1.4 硬度 磨粒在外力作用下从其表面脱落的难易程度。 磨粒容易脱落,砂轮硬度软,反之则硬。 表 6-4 砂轮的硬度等级名称及代号
第6章磨削加工
砂轮硬度的选用原则: ①工件材料越硬,应选用越软的砂轮。 ②磨削面积较大时,磨粒易磨损,应选较软的砂轮。 ③半精磨与粗磨相比,需用较软的砂轮。 ④精磨和成形磨削时,需用较硬的砂轮。
且,径向力Fx最大, 是Fy的2-4倍
图 6-3 磨削力
第6章磨削加工
径向分力 F x 与
砂轮轴、工件的变 形及振动有关,影 响加工精度、质量
6.2.4 磨削温度基本概念 磨削时,切除单位体积切削层所削耗的功率为车、铣等
的10~20倍,且大部分转变为热能,使磨削区形成高温。
⑴磨粒磨削点温度 指磨粒切削刃与切屑点的温度,是磨削中温度 最高的部位,达1000~1400 ℃,它影响加工质量,砂轮磨损。
第 6 章 磨削加工
第6章磨削加工
磨削:用磨具(砂轮、砂带、油石等)对表面加工的方法。 适用难切削的高硬度材料的半、精加工。
机械制造工艺之磨削概述
通过调整砂轮转速、切削深度和进给速度等参数,优化磨削力的 大小和方向,提高加工质量和效率。
砂轮磨损与再生
1 2 3
砂轮磨损
在磨削过程中,砂轮与工件之间的摩擦会导致砂 轮磨损,影响磨削效果和加工精度。
再生技术
为了减少砂轮磨损,采用金刚石或立方氮化硼等 超硬材料对砂轮进行修整和再生,恢复砂轮的磨 削性能。
热影响
冷却技术
为了控制磨削热,采用切削液、喷雾 冷却和油雾冷却等技术,降低工件表 面温度,减少热影响。
磨削热会导致工件表面烧伤、裂纹和 变形等问题,影响工件质量和精度。
磨削力影响及优化
磨削力产生
在磨削过程中,砂轮与工件之间的相互作用力产生磨削力。
磨削力影响
磨削力的大小和方向对工件表面质量、加工精度和砂轮磨损有重 要影响。
磨削的应用领域
01
02
03
机械制造
磨削广泛应用于机械制造 领域,如汽车、航空、能 源、轨道交通等。
精密加工
由于磨削加工精度高,因 此也广泛应用于精密加工 领域,如光学、钟表、医 疗器械等。
难加工材料
对于硬脆、高强度、高精 度要求的难加工材料,磨 削是一种有效的加工方法 。
02
磨削工艺流程
磨料与磨具选择
再生方法
包括在线修整、离线修整和超声波振动修整等方 法,根据不同的加工需求选择合适的再生方法。
06
案例分析
航空发动机叶片磨削工艺
总结词
高精度、高效率
详细描述
航空发动机叶片磨削工艺是机械制造中的重 要环节,要求高精度和高效率。采用先进的 磨削设备和工艺技术,确保叶片的几何形状 、尺寸和表面质量达到设计要求,同时提高 生产效率,降低制造成本。
简述磨削加工
磨削加工1. 磨削加工的概述磨削加工是一种通过研磨工具对工件表面进行切削的加工方法。
它通过切削工具与工件之间的相对运动,在切削、研磨和磨痕的共同作用下,将工件表面不平整层次的高点消除,从而得到平整、光滑的表面。
2. 磨削加工的原理磨削加工的原理是力学切削。
在磨削过程中,磨粒对工件表面的切削作用类似于多个微小切削刃对工件表面的切削作用,因此磨削可以看成是由许多微小切削刃共同作用的切削过程。
3. 磨削加工的分类磨削加工根据磨粒的尺寸和磨粒与工件之间的相对运动情况可以分为不同的类型,主要包括:3.1 粗磨粗磨是指在切削速度较低、磨粒尺寸较大的条件下进行的磨削加工,主要目的是迅速去除工件表面的大量金属,使其达到一定的粗糙度,为后续磨削过程提供条件。
3.2 精磨精磨是指在切削速度适中、磨粒尺寸适当的条件下进行的磨削加工,主要目的是进一步消除工件表面的细小凹坑和凸起,提高工件表面的精度和光洁度。
3.3 超精磨超精磨是指在切削速度较高、磨粒尺寸小的条件下进行的磨削加工,主要用于加工高精度、高光洁度的工件,以提高工件表面的质量。
4. 磨削加工的过程磨削加工通常包括以下几个基本工序:4.1 磨削前准备在进行磨削加工之前,需要对磨削工具进行选择和准备,包括选用合适的磨粒、绑定磨料和磨具、选择适当的磨削液等。
4.2 磨削磨削是磨削加工的核心过程,主要包括以下几个步骤:固定工件,调整磨削参数,启动磨削机床,进行磨削操作。
4.3 表面质量检测在磨削加工完成后,需要对工件表面的质量进行检测。
常用的表面质量检测方法有视觉检测、触觉检测和测量仪器检测等。
4.4 后续处理在完成磨削加工后,还需要进行一些后续处理工序,例如清洗工件、除去残留物和保护处理等,以确保工件表面的质量和性能满足要求。
5. 磨削加工的优点和局限性磨削加工具有以下优点:•可加工具有复杂形状的工件•可加工高硬度材料•可获得高精度的加工结果•可提高工件表面的质量和光洁度然而,磨削加工也存在一些局限性:•生产效率低,加工速度较慢•工艺过程较为复杂,需要一定的技术和经验•磨具和磨料的消耗较大,成本较高6. 磨削加工的应用领域磨削加工在各个制造行业中都得到广泛应用,特别是对高精度、高光洁度的工件加工需求较高的领域,例如:•汽车制造业:发动机缸体、曲轴等零部件的加工•刀具制造业:高精度刀具的生产加工•航空航天业:航空发动机叶片、轴承等零部件的加工•电子制造业:半导体芯片、磁头等精密元件的加工7. 磨削加工的未来发展趋势随着制造技术和加工要求的不断提高,磨削加工也在不断发展和改进。
机械制造技术--磨削加工概述
机械制造技术–磨削加工概述简介磨削加工是机械制造中常用的一种加工方法。
通过磨削将工件的表面剥离,实现工件的加工精度提高和表面质量改善。
磨削加工通常用于硬度较高、形状复杂、精度要求较高的工件加工,如汽车发动机曲轴、齿轮、精密模具等。
磨削加工的原理磨削加工的原理是利用磨削颗粒的高速旋转和工件的间隙之间的相互作用力,使工件表面颗粒被剥离。
磨削加工主要应用砂轮作为磨削工具,通过磨削工具和工件之间的相对运动,实现对工件表面的切削。
砂轮的分类砂轮是磨削加工中常用的磨削工具,根据不同的磨削任务和工件材料,砂轮可以分为不同的类型,包括磨削砂轮、抛光砂轮、磨床砂轮等。
砂轮的选择不仅取决于工件的材料和形状,还取决于磨削的精度要求和表面质量要求。
砂轮的组成和结构砂轮通常由磨削颗粒、结合剂和孔隙三个部分组成。
砂轮的磨削颗粒可以是石英、氧化铝等硬质颗粒,结合剂可以是陶瓷、橡胶、金属等材料,孔隙可以提高砂轮的散热性能和剥离颗粒的能力。
砂轮的结构可以分为两种类型:单层结构和多层结构。
单层结构的砂轮由一层磨削颗粒和结合剂构成,适用于较粗糙的磨削。
多层结构的砂轮由多层磨削颗粒和结合剂构成,适用于较精细的磨削。
磨削加工的过程磨削加工通常包括粗磨、半精磨和精磨三个阶段。
在粗磨阶段,砂轮的颗粒与工件表面进行大范围的剥离,以消除工件的毛刺和大尺寸误差。
在半精磨阶段,砂轮的颗粒与工件表面进行中等范围的剥离,以改善工件的表面质量和减小尺寸误差。
在精磨阶段,砂轮的颗粒与工件表面进行微小范围的剥离,以获得工件的高精度和高表面质量。
磨削加工的优点和局限性磨削加工具有以下优点:1.可以实现高精度和高表面质量的加工。
2.可以加工复杂形状和高硬度的工件。
3.可以控制加工过程中的温度和应变。
然而,磨削加工也有一些局限性:1.加工效率低,加工速度慢。
2.磨削过程中产生的热量和应力可能会导致工件表面的损伤和变形。
3.砂轮的磨损较快,需要经常更换。
磨削加工的应用磨削加工广泛应用于各个行业,特别是需要高精度和高表面质量的领域。
「第一章 磨削加工的基本知识」
第一章磨削加工的基本知识培训学习目标1.磨削用量包括那几个基本参数?如何计算砂轮圆周速度、工件圆周速度?2.试述切削液的作用、种类及特点。
3.砂轮由哪三要素构成?4.如何选择砂轮硬度?5.如何选择砂轮粒度?6.引起砂轮不平衡的原因是什么?试述平衡砂轮的目的和方法。
一、磨床的基本知识1.磨床工作在制造业中的地位磨削是一种比较精密的金属加工方法,经过磨削的零件有很高的精度和很小的表面粗糙度值。
目前用高精度外圆磨床磨削的外圆表面,其圆度公差可达到0.001mm左右,相当于一个人头发丝粗细的1/70或更小;其表面粗糙度值达到Ra0.025um,表面光滑似镜。
在现代制造业中,磨削技术占有重要的地位。
一个国家的磨削水平,在一定程度上反映了该国的机械制造工艺水平。
随着机械产品质量的不断提高,磨削工艺也不断发展和完善。
2.普通磨床简介以常用的万能外圆磨床为例,磨床主要由床身、工作台、头架、尾座、砂轮架和内圆磨具等部件组成。
见图1。
磨床还包括液压系统。
(1)床身:磨床的支承。
(2)头架:安装与夹持工件,带动工件旋转,可在水平面内逆时针转90°;(3)内圆磨具:支承磨内孔的砂轮主轴。
(4)砂轮架:支承并传动砂轮主轴旋转,可在水平面±30°范围内转动;(5)尾坐:与头架一起支承工件;(6)滑鞍与横进给机构:通过进给机构带动滑鞍上的砂轮架实现横向进给;(7)横向进给手轮(8)工作台:a.上工作台:上面装有头架与尾坐;b.下工作台:上工作台可绕下工作台在水平面转±10°角度。
3.磨床的型号磨床的种类很多,按GB/T15375-1994磨床的类、组、系划分表,将我国的磨床品种分为三个分类。
一般磨床为第一类,用字母M表示,读作“磨”。
超精加工机床、抛光机床、砂带抛光机为第二类,用2M表示。
轴承套圈、滚球、叶片磨床为第三类,用3M表示。
齿轮磨床和螺纹磨床分别用Y和S表示,读作“牙”和“丝”。
磨削加工过程及典型加工工序
磨削加工过程及典型加工工序磨削加工是一种常见的精密加工方法,通过磨削工具对工件表面进行切削和磨擦,以达到精度高、表面质量好的效果。
本文将从磨削加工的基本原理、主要设备和典型加工工序三个方面进行详细介绍。
一、磨削加工的基本原理磨削加工是一种高速旋转的切削运动,其基本原理是利用切削力和摩擦力对金属材料进行切削和抛光。
在磨削过程中,砂轮或其他磨具与被加工物体相互作用,使被加工物体表面受到切向力和径向力的作用,并产生高温、高压等现象。
当被加工物体与砂轮之间的接触面积减小时,单位面积上承受的压力就会增大,因此被加工物体表面会发生塑性变形或断裂。
同时,由于摩擦作用和高温效应,在接触区域形成了液态金属层,从而实现了对表面缺陷、毛刺等不良部位的去除。
二、磨削加工的主要设备磨削加工过程需要使用一系列专用设备,包括砂轮机、平面磨床、外圆磨床、内圆磨床等。
下面将对这些设备进行详细介绍。
1. 砂轮机砂轮机是最常用的磨削设备之一,其主要作用是利用高速旋转的砂轮对工件表面进行切削和抛光。
根据不同的加工要求,可选用不同材质和形状的砂轮,如金刚石砂轮、碳化硅砂轮等。
在使用时,需要根据具体情况调整转速和进给量,以达到最佳的加工效果。
2. 平面磨床平面磨床是一种专门用于平面加工的设备,其主要作用是通过旋转的平板和移动的刀架对工件表面进行切削和抛光。
与其他类型的磨削设备相比,平面磨床具有高精度、高效率等优点,在航空、汽车等行业广泛应用。
3. 外圆磨床外圆磨床是一种专门用于加工轴类零件的设备,其主要作用是通过旋转的工件和移动的砂轮对工件表面进行切削和抛光。
外圆磨床通常采用高精度直线导轨和液压系统,以保证加工精度和稳定性。
4. 内圆磨床内圆磨床是一种专门用于加工孔类零件的设备,其主要作用是通过旋转的工件和移动的砂轮对孔内表面进行切削和抛光。
内圆磨床通常采用高精度滚珠丝杠和液压系统,以保证加工精度和稳定性。
三、典型加工工序磨削加工过程中,需要根据不同的加工要求选择不同的切削方式、设备和材料。
磨削工艺的发展历程
磨削工艺的发展历程
磨削工艺是一种重要的金属加工方法,其发展历程可以追溯到古代。
以下是磨削工艺的发展历程:
1. 手工磨削:最早的磨削工艺是人工手工磨削。
在古代,人们使用石块、砂轮等材料来对金属进行加工。
这种方法的精度和效率较低,但在当时是唯一可用的磨削方法。
2. 机械磨削:随着科技和机械加工的进步,出现了机械磨削工艺。
在18世纪末和19世纪初,人们发明了旋转磨削机和其他磨削设备,使磨削过程更加精确和高效。
这种方法的出现显著提高了磨削的质量和效率。
3. 自动化磨削:随着计算机技术的发展,磨削工艺得到了自动化和智能化的发展。
传感器、控制系统和自适应技术的应用使磨削过程更加自动化和精确。
自动化磨削系统能够根据工件的形状和要求进行自适应调节,提高了加工的精度和稳定性。
4. 先进磨削技术:随着精确加工要求的不断提高,出现了一系列先进的磨削技术。
例如,超精密磨削技术可以达到亚微米级的精度,复合磨削技术可以同时实现磨削和其他加工方式,如电火花加工和化学加工。
5. 高效磨削工艺:为了提高磨削的效率和经济性,出现了一些高效磨削工艺。
例如,高速磨削技术通过提高磨削轮的转速和进给速度,快速去除工件表面的金属,提高了磨削效率。
高效磨削工艺还包括高效磨削液的应用、磨削参数的优化等。
总的来说,磨削工艺经历了从手工磨削到机械磨削,再到自动化和智能化的发展。
先进的磨削技术和高效磨削工艺的出现大大提高了磨削的精度和效率,满足了不断提高的精确加工要求。
最新磨削加工工艺过程及主要工序
一 、轴承套圈磨削加工工艺过程
轴承是一种精度高互换性强的标准零件, 形状较为简单,为获得高的生产效率和高 的产品质量,目前均采用分散工序的加工 工艺过程来进行生产。
轴承套圈磨削加工比较成熟且广泛采用的 工艺过程可概括为:双端面磨削 无心 外、内圆磨削 沟(滚)道切入无心磨 削 沟(滚)道超精加工。
(2)立轴平面磨削
立轴平面磨削主要采用立轴圆台平面磨床,
属于单面磨削,对于套圈两个端面,需要 两次定位,两次磨削。由于砂轮回转平面 与工作面不平行、磁台不平、磁力吸紧变 形以及其他因素(比如残磁影响等)而产 生的加工误差会累计叠加,因而套圈宽度 变动量一般较大。磨削套圈时,一般分为 两个工步:先磨非基准面,后磨基准面, 以保证后续加工工序具有良好的工艺基准。
结束语
谢谢大家聆听!!!
16
d、调心轴承外圈沟道对角线的直径差等。
(3)位置偏差
a、两端面平行差
b、内、外沟道中心线对基准端面的平行 差。
c、内外径母线或沟道中心线对基准端面 的垂直差。
d、内、外径对沟道和滚道的壁厚差。
( 4)、表面质量 a、工件表面粗糙度及缺陷 b、磨加工后套圈残磁不应超过现行标准。 c、磨加工后的套圈不应有烧伤。
被加工表面就是定位面,且一次磨削两个端面,避 免了定位误差及加工误差的重叠,同时不存在磁台 不平及磁力吸引工件变形而造成的加工误差,加工 精度高。
套圈双端面磨削的方式较多,根据工件运动情况, 主要可分为以下几种:
直线贯穿式 效率高,易于实现自动化生产。
圆弧贯穿式 效率高,易于实现自动化生产,常 用于微型、小型轴承套圈加工等。
加工误差对后续的所有工序都有影响,如 外圈端面磨削时控制外圈宽度变动量较严, 无心外圆磨削就可获得较小的外圈外表面 对端面的垂直度,
3.6 磨削过程及磨削机理
3.6 磨削过程及磨削机理
一、磨削过程及切屑形成机理
磨粒微小切削刃不规则,磨削过程复杂磨粒形状、大小各异,一般
都有钝圆半径,磨粒以较大
的负前角进行切削。
切削刃排列不规则,随机
分布状态。
磨削过程大致分为三个阶段:1.滑擦阶段
工件表层产生弹
性变形和热应力
2.刻划阶段
产生塑性变形沟痕
隆起现象和热应力
3.切削阶段
切削厚度、切应力
和温度达一定值,
材料明显滑移形成切屑。
二、磨削加工的特点
1.磨削过程复杂,单位磨削力很大
磨粒形状及分布不合理,切削厚度小,挤压摩擦严重,单位能耗大。
2.切深抗力大
磨粒负前角,
F p /F
c
=2~3,
系统弹性变形,最后进行几次光磨。
3.磨削速度高、磨削温度高
35~50 m/s, 挤压摩擦严重,单位能耗大,砂轮导热性差,瞬时高温可达800~1000℃,要用切削液。
4.砂轮有自锐性
部分地恢复砂轮的切削能力,仍需对砂轮进行修整。
5.可加工高硬度材料
除加工一般材料外,可加工淬硬钢、耐热钢、硬质合金等,但不宜精加工韧性较大的有色金属。
6.加工工艺范围广泛
可加工外圆面、内孔、平面、螺纹、齿形等成形面,不仅用于精加工,也可用于粗加工、毛坯去皮加工。
磨削加工工艺过程及主要工序
磨削加工工艺过程及主要工序
磨削加工是通过摩擦和剪切作用在工件表面上去除一定厚度的材料,以逐步达到工件
表面的精度、光洁度。
在工业生产中,磨削加工广泛应用于机械制造、航空航天、军工制
造等领域,是制造精密零部件不可少的一个步骤。
1. 磨削前准备工作:包括检查磨料和磨具等加工工具的状况,将不良的磨料和磨具
清除,并确认加工工件和加工参数等。
2. 粗磨工序:将工件表面的大颗粒物和粗糙度去除,提高表面平整度和加工性能。
粗磨主要使用粒度较粗的磨料和磨具,磨削过程中会产生较多的热量和磨屑,需要采取冷
却液进行冷却。
3. 半精磨工序:对工件进行中等精度的修整和平滑,精度一般可以达到0.01mm左右。
半精磨使用粒度较细的磨料和磨具进行加工,在与工件接触的磨具上涂覆润滑油,减少磨
料与磨具之间的摩擦和磨损。
5. 抛光工序:对工件表面进行细微处理,有效提高表面亮度和平滑度。
抛光工序使
用细粒度的抛光料和抛光棉进行加工,加工速度较慢但效果很好,加工表面不会有明显的
划痕或损伤。
6. 清洗和除油:不同的磨削工艺需要使用不同的清洗和除油方法,常用的方法有机洗、水洗和气动喷洗等。
清洗时要注意不能让残留的磨料和油污对工件表面造成二次污
染。
磨床 工作原理
磨床工作原理
磨床是一种用来加工刚性材料的机床,可以实现对物体表面进行磨削、研磨和抛光等加工操作。
它的工作原理主要包括以下几个方面。
1. 磨料和工件之间的磨削过程:磨床通过磨石或磨轮与工件表面之间的相对运动来实现磨削作业。
当电机带动磨石或磨轮进行旋转时,磨粒会与工件表面接触,并形成磨削力矩。
通过调节磨石或磨轮与工件之间的距离、转速和进给速度等参数,可以控制磨削的深度、精度和表面质量。
2. 惯性磨削过程:在旋转磨石或磨轮的作用下,工件也会产生旋转。
由于工件的惯性,使得工件在磨削过程中具有相对的稳定性,避免了过大的震动和共振。
3. 调整装置:磨床通常配备有调整装置,用于调节磨石或磨轮的位置和角度。
通过调整磨石或磨轮的位置,可以实现对工件不同部位的磨削。
通过调整磨石或磨轮的角度,可以改变磨削时的切削力矩和磨削效果。
4. 冷却润滑系统:磨床在磨削过程中会产生大量的热量,为了避免工件和磨石或磨轮因过热而受损,磨床通常配备有冷却润滑系统。
冷却润滑系统可以将冷却液或油润滑剂喷洒在磨削区域,冷却和润滑磨削过程,同时还能清洗磨屑和磨粒,保持加工的精度和表面质量。
综上所述,磨床通过磨石或磨轮与工件之间的相对运动,利用
磨削力矩对工件表面进行磨削、研磨和抛光等加工操作。
通过调整磨石或磨轮的位置和角度,以及配备冷却润滑系统,可以实现对不同形状和材料的工件进行定制化的加工。
成形磨削的加工原理
成形磨削的加工原理
成形磨削是一种通过磨削砂轮的旋转来加工工件的方法。
它的加工原理主要包括以下几个步骤:
1. 砂轮进给:砂轮被安装在磨床的主轴上,并以高速旋转。
工件被安装在工作台上,然后由工作台控制移动。
砂轮和工件之间有一个逐渐减小的间隙。
2. 磨粒切削:砂轮的旋转会使磨粒与工件接触并切削工件表面。
磨粒是在砂轮上固定的砂粒,具有尖锐的边缘。
当磨粒与工件接触时,通过切削和抛光的作用,将工件表面的材料去除。
3. 磨屑去除:在磨削过程中,被去除的工件材料以磨屑的形式产生。
这些磨屑会被冲洗液或喷气等方法及时清除,以防止堵塞磨削过程并影响加工质量。
4. 磨削力的形成:在磨削过程中,磨粒对工件表面施加力,使其发生变形和剥离。
这些力包括切削力、磨削力和垂向力。
切削力是指磨粒对工件的切割力,垂向力是指砂轮对工件施加的垂直力,磨削力是指切削力和垂向力的合力。
总的来说,成形磨削通过砂轮的旋转和磨粒的切削作用,将工件表面的材料去除,从而达到精加工和改善工件表面质量的目的。
加工原理的关键在于砂轮和工件之间的切削作用和力的相互作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简述磨削加工的过程
磨削加工是一种制造工艺,用于通过磨削材料表面来达到精度和表面
质量的要求。
它是制造和维修高精度零件的重要工艺之一。
本文将详
细介绍磨削加工的过程。
一、磨削加工概述
磨削加工是通过磨粒与被加工物料之间的相互作用来去除材料表面,
从而实现对工件尺寸、形状和表面质量的控制。
它通常用于制造高精
度和高表面质量要求的零件,如汽车发动机、飞机发动机叶片、航天
器部件等。
二、磨削加工类型
1. 平面磨削:平面磨床用于对平坦表面进行加工,例如平板、底座等。
2. 内圆外圆磨削:内圆外圆磨床用于对轴类零件进行内外圆形的加工,例如轴承、齿轮等。
3. 立式磨削:立式磨床用于对大型或不规则形状的零件进行加工,例
如航空发动机叶片。
4. 行星式磨削:行星式磨床用于对球形零件进行加工,例如轴承、球
阀等。
三、磨削加工过程
1. 磨削工具的选择:磨削工具的选择取决于被加工材料和要求的表面
质量。
常见的磨削工具有砂轮、钻头、铰刀等。
2. 砂轮的选择:砂轮是最常用的磨削工具之一,它通常由胶结剂和磨
粒组成。
不同类型的胶结剂和磨粒适用于不同类型的材料和表面质量
要求。
3. 砂轮修整:在使用前,必须对砂轮进行修整以确保其平整度和圆度。
这可以通过专门的修整器来完成。
4. 砂轮安装:将修整后的砂轮安装在主轴上,并根据需要调整其位置
和角度。
5. 加工参数设置:加工参数包括切速、进给速度、深度等。
这些参数
取决于被加工材料和表面质量要求。
6. 加工过程控制:在加工过程中,必须控制切速、进给速度和深度等
参数,并根据需要进行调整。
此外,还需要定期更换砂轮和清理加工区域。
四、磨削加工的优点和缺点
1. 优点:磨削加工可以实现高精度和高表面质量要求,适用于各种材料和形状的零件加工。
2. 缺点:磨削加工成本较高,加工时间长。
此外,还存在一些问题,如砂轮易损坏、容易产生过热等。
五、总结
磨削加工是制造高精度和高表面质量要求的零件的重要工艺之一。
它可以通过选择合适的磨削工具和调整加工参数来实现对零件尺寸、形状和表面质量的控制。
虽然存在一些缺点,但其优点仍然使其成为制造业中不可或缺的一部分。