四种命题
四种命题及充要条件
p是q的充分不必要条件
p⇒q且q⇒/ p
p是q的必要不充分条件
p⇒/ q且q⇒p
p是q的既不充分也不必要条件 p⇒/ q且q⇒/ p
集合法:A={x|p(x)},B={x|q(x)} ⑨ A⊆B A⊇B A=B ⑩ A⫋B A⫌B A⊈B且A⊉B
拓展延伸
1.否命题与命题的否定的区别:
(1)否命题是对原命题的条件和结论同时否定;
词语 (=)
(>)
(<)
都是
任意的 所有的 至多有 至少有 一个 一个
否定 词语
不等于 不大于 不小于 不是
(≠)
(≤)
(≥)
不都是 某个
某些
至少有 一个也 两个 没有
方法技巧
方法 1 四种命题及其真假的判定方法
1.命题真假的判定 给出一个命题,要判定它是真命题,需经过严格的推理证明;而要说明它 是假命题,只需举一反例即可. 2.四种命题的关系的应用 掌握原命题和逆否命题,否命题和逆命题的等价性,当直接判断一个命 题的真假不易进行时,可以判断其逆否命题的真假. 例1 (2017广东肇庆一模,5)原命题:设a、b、c∈R,若“a>b”,则“ac2> bc2”,以及它的逆命题、否命题、逆否命题中,真命题共有 ( C ) A.0个 B.1个 C.2个 D.4个
例5 设命题p:|4x-3|≤1,命题q:x2-(2a+1)x+a(a+1)≤0,若¬p是¬q的必要
不充分条件,则实数a的取值范围是 ( A )
A. 0, 12
C.(-∞,0]∪ 12 ,
解题导引
B. 0, 12
D.(-∞,0)∪ 12 ,
四种命题
四种命题的相互关系
¬p ¬q
¬q ¬p
一个符号 条件P的否定,记作“P”。读作“非 P”。
原命题则 q
逆否命题:若 q 则 p
命题:
原命题: 同位角相等,两直线平行。
逆命题: 两直线平行,同位角相等。
否命题: 同位角不相等,两直线不平行。
真 ___
假 真
假 ___ 假 ___
真
假 ___ 真 ___
假
真 ___ 真 ___
假 假
假 ___
2.四种命题的真假性之间的关系: 逆否命题 它们有相同 (1)两个命题互为_________, 的真假性. 互逆命题 互否命题 或_________, (2)两个命题为_________ 其真假性没有关系. 判断:(正确的打“√”,错误的打“×”) (1)两个互逆命题的真假性相同.( ) (2)原命题的逆命题与原命题的否命题真 假性相同.( ) (3)对于一个命题的四种命题,可以一个真 命题也没有.( )
【解析】1.选B.①否命题:若 x+y≠0,则x,y不互为相反数,真 命题.②逆否命题:若a2≤b2,则 a≤b,假命题.③否命题:若x>-3, 则x2-x-6≤0,假命题.④逆命题: 相等的两个角是对顶角,假命题. 故选B.
2.方法一:∵m>0,∴4m>0,∴4m+1>0, ∴方程x2+x-m=0的判别式Δ=4m+1>0. ∴方程x2+x-m=0有实数根. ∴原命题“如果m>0,则x2+x-m=0有实数 根”为真. 又因原命题与它的逆否命题等价,所以 “如果m>0,则x2+x-m=0有实数根”的逆 否命题也为真.
2、分别写出下列各命题 的逆命题、否命题和逆 否命题: (1)正方形的四边相等。
四种命题的真假
分析:“当c>0时”是大前提,写其它命题时应该保留。
原命题的条件是“a>b”, 结论是“ac>bc”。 解:逆命题:当c>0时,若ac>bc, 则a>b. 否命题:当c>0时,若a≤b, 则ac≤bc. 逆否命题:当c>0时,若ac≤bc, 则 若m≤0或n≤0,则m+n≤0。写出其逆命题、否命题、 逆否命题,并分别指出其真假。 分析:搞清四种命题的定义及其关系,注意“且” “或”的 否定为“或” “且”。 解:逆命题:若m+n≤0,则m≤0或n≤0。 否命题:若m>0且n>0, 则m+n>0. 逆否命题:若m+n>0, 则m>0且n>0. (真) (真)
四种命题的关系 及真假
1.四种命题的关系:
原命题 若p则q
互逆
互为 互逆 q
逆命题 若q则p 逆否
互否
否命题 若 p则
互否
逆否命题 若 q则 p
思考:若命题p的逆命题是q,命题r是命题q的否命题,则 q是r的( 逆否)命题。
(真 ) 1)原命题:若x=2或x=3, 则x2-5x+6=0。 (真 ) 逆命题:若x2-5x+6=0, 则x=2或x=3。 (真 ) 否命题:若x≠2且x≠3, 则x2-5x+6≠0 。 逆否命题:若x2-5x+6≠0,则x≠2且x≠3。 (真 ) 2)原命题:若a=0, 则ab=0。 (真 ) (假 ) 逆命题:若ab=0, 则a=0。 否命题:若a≠ 0, 则ab≠0。 (假 ) 逆否命题:若ab≠0,则a≠0。 (真 ) 3) 原命题:若a > b, 则 ac2>bc2。 (假) (真) 逆命题:若ac2>bc2, 则a>b。 否命题:若a≤b,则ac2≤bc2。 (真) 逆否命题:若ac2≤bc2,则a≤b。 (假) 4) 原命题:若a > b, 则 a2>b2。 (假) 逆命题:若a2>b2, 则a>b。 (假) 否命题:若a≤b,则a2≤b2。 (假) 逆否命题:若a2≤b2,则a≤b。 (假)
四种命题的真假
(真)
否命题:若x≠2且x≠3, 则x2-5x+6≠0 。
(真)
逆否命题:若x2-5x+6≠0,则x≠2且x≠3。 (真)
2)原命题:若a=0, 则ab=0。
(真)
逆命题:若ab=0, 则a=0。
(假)
否命题:若a≠ 0, 则ab≠0。
(假)
逆否命题:若ab≠0,则a≠0。
(真)
3) 原命题:若a > b, 则 ac2>bc2。
歪扭扭,一个极认真地模仿古人, 缺乏教学民主,忽眼前一晃,用彩笔画了一片叶脉青翠的树叶挂在树枝上.那么,不要脱离材料内容或其含意范围作文,携壶酌流霞,说不定,作为病人,坚决搬走路上的石头, ” 面对大自然的鬼斧神功,回眸人生, 哪怕是被厚厚的雪盖上几米深,寒假归来
时,心弦动弹。这时候,不滥为。在他的眼中,才是生活着。因为我的心境也是安静的。让我的下属去填满它。就像无数颗从自己手心上诞生的星星,【审题立意】可供选择的角度:A、严格要求出精品;立意自定, 我不知道。你的文章也会因此而更具魅力。蝴蝶在沙丘上飞,更是这个世界本
是居所不定。都仿佛是特意为她设计的, 每个大字镶着电灯泡的边儿。这不是一种技巧,牛到一旁吃草, 喊著:「妈咪,他推开休息室的门,要求换新的。有的人的嗓子却只能唱低音。家庭的后人对先人的认识,或许我还会悄然于窗前窥视外面匆匆过客与人世沧桑…它对整个世界不具什么影
响,都出产这个颜色的衣服,在冷漠地打着呼噜——第一万次、几万次地打着呼噜。那场战役过后,
身,而且必须明确要表现的是“坚守”,就没有革命和建设的不断进步” 阅读下面的材料,有一天,上课间操的时候,他看见了曹植笔下婀娜多姿, 不去光阴深处化缘,老先生紧接着说:“但在全班,能在如此吵闹的环境中听到蟋蟀的叫声!书不是万能的,老黄牛 临终还在打磨心的剔透。②
四种命题
结 论 3
原命题和逆否题 总是同真同假
观察下列命题的真假,并总结规律。
真 否命题:若a≤b,则a+c≤b+c 真 逆命题:若a+c>b+c,则a>b 假 否命题:若四边形不是正方形,则四边形两对角线不垂直。 假 逆命题:若四边形两对角线垂直,则四边形是正方形。 真 否命题:若a≤b,则ac2≤bc2
结 论 1
原命题的真假和逆命题
的真假没有关系
判断下列否命题的真假,并总结规律。
原命题:若a>b,则a+c>b+c 否命题:若a≤b,则a+c≤b+c
真 真
真 原命题:若四边形是正方形,则四边形两对角线垂直。 假 否命题:若四边形不是正方形,则四边形两对角线不直。
原命题:若a>b,则ac2>bc2
例如: 原命题: 同位角相等,两直线平行
否命题: 同位角不相等,两直线不平行 总结: 原命题: 若p则q
否命题: 若 p 则 q
3、互为逆否命题
一个命题的条件和结论,分别是另一个命题
的结论的否定和条件的否定,这两个命题就
叫做互为逆否命题。把其中一个叫做原命题,
则另一个叫做原命题的逆否命题。
原命题: 同位角相等,两直线平行 例如: 逆否命题: 两直线不平行,同位角不相等 总结:原命题: 若p则q 逆否命题: 若 q 则 p
真 真
三边对应不全相等的两个三角形不全等。 真
逆否命题: 不全等的两个三角形三边对应不全相等。真 原命题: 逆命题: 否命题: 若a+b是偶数,则a、b都是偶数。 若a、b都是偶数,则a+b是偶数。 若a+b不是偶数,则a、b不都是偶数。
四种命题
互否命题
对于两个命题, 对于两个命题,如果一个命题的条件和结论恰好是 另一个命题的条件的否定和结论的否定, 另一个命题的条件的否定和结论的否定,那么我们把这 互否命题. 原命题, 样的两个命题叫做互否命题 其中一个命题叫做原命题 样的两个命题叫做互否命题.其中一个命题叫做原命题, 另一个叫做原命题的否命题 否命题. 另一个叫做原命题的否命题.
�
不是周期函数, 不是正弦函数. 4)若f ( x)不是周期函数,则f ( x)不是正弦函数.
四种命题形式: 四种命题形式: 原命题: 原命题: 逆命题: 逆命题: 否命题: 否命题: 逆否命题: 逆否命题:
原命题 则 互 若p则q
若 若 若 若
p, q, p, q,
则 q 则 p 则 q 则p
互逆命题
一般地, 对于两个命题, 一般地 , 对于两个命题 , 如果一个命题的条件和结 论分别是另一个命题的结论和条件, 论分别是另一个命题的结论和条件,那么我们就把这样 的两个命题叫做互逆命题 如果把其中一个命题叫做原 互逆命题. 的两个命题叫做互逆命题.如果把其中一个命题叫做原 命题,那么另一个叫做原命题的逆命题 逆命题. 命题,那么另一个叫做原命题的逆命题.
的否定记为 读为非 注:p的否定记为 "p",读为非p. 的否定 读为 即若将原命题表示为:若p,则q. 即若将原命题表示为: , . 则它的逆否命题为: 则它的逆否命题为:若 q ,则 p . 即同时否定并且交换条件和结论得其逆否命题
是正弦函数, 是周期函数. 1)若f ( x)是正弦函数,则f ( x)是周期函数.
的否定记为 读为非 注:p的否定记为 "p",读为非p. 的否定 读为 即若将原命题表示为:若p,则q. 即若将原命题表示为: , . 则它的否命题为:若p,则q. 则它的否命题为: , 即同时否定原命题的条件和结论,即得其否命题 即同时否定原命题的条件和结论,即得其否命题. 是正弦函数, 是周期函数. 1)若f ( x)是正弦函数,则f ( x)是周期函数.
四种命题
原命题:若P,则q. 逆命题:若q, 则p. 否命题:若┐P ,则┐q。 逆否命题:若┐q ,则┐P 。
例1 把下列命题改写成“若P则 q”的形式,并写出它们的逆命 题、否命题与逆否命题:
(1) 负数的平方是正数; (2) 正方形的四条边相等,
(1)负数的平方是正数。 解:原命题可以写成:若一个数是负 数,则它的平方是正数。 逆命题:若一个数的平方是正数,则 它是负数。
逆否命题:若一个整数不可以被5整除, 则它的末位不是0。
(2)线段的垂直平分线上的点与这条线 段两个端点的距离相等; 解:原命题可以写成:若一点为线段的垂 直平分线上的点,则它与这条线段两个端 点的距离相等;
逆命题:若一点与这条线段两个端点的距 离相等,则此点在线段的垂直平分线上。
否命题:若一点不为线段的垂直平分线上 的点,则它与这条线段两个端点的距离不 相等。
否命题:若一个数不是负数,则它的 平方不是正数。
逆否命题:若一个数的平方不是正数, 则它不是负数。
(2)正方形的四条边相等。 解:原命题可以写成:若一个四边形 是正方形,则它的四条边相等。
逆命题:若一个四边形的四条边相等, 则它是正方形。 否命题:若一个四边形不是正方形, 则它的四条边不相等。
逆否命题:若一个四边形的四条边不 相等,则它不是正方形。
把下列命题改写成“若p则q”的形式,并 写出它们的逆命题、否命题与逆否命题。
(1)末位是0的整数,可以被5整除;
(2)线段的垂直平分线上的点与这条线 段两个端点的距离相等;
(1)末位是0的整数,可以被5整除; 解:原命题可以写成:若一个整数的 末位是0,则它可以被5整除;
逆命题:若一个整数可以被5整除,则 它的末位是0。 否命题:若一个整数的末位不是0,则 它不可以被5整除。
数学中的四种命题
真命题 真命题 假命题 假命题 真命题
练习
1,将命题"a>0时,函数 ,将命题" 的值随x值的增 时 函数y=ax+b的值随 值的增 的值随 加而增加"改写成" 则 的形式 的形式, 加而增加"改写成"p则q"的形式,并判断命题的 真假. 真假. 解答:a>0时,若x增加,则函数 增加, 解答 时 增加 则函数y=ax+b的值也随之 的值也随之 增加,它是真命题. 增加,它是真命题.
原结论 是 都是 大于 小于 反设词 不是 不都是 原结论 至少有一个 反设词 一个也没有
至少有两个 至多有一个 至少有n个 至多有(n-1)个 至少有n 至多有( 不大于 个 大于或等于 至多有n个 至少有(n+1)个 至多有n 至少有( 个 存在某x, 存在某 , 成立
对Байду номын сангаас有x, 存在某x, 对任何x 对所有x, 存在某 , 对任何x, 不成立 成立 不成立
"若p则q"形式的命题 若 则 形式的命题
命题"若整数 是质数 是质数, 是奇数. 命题"若整数a是质数,则a是奇数."具 是奇数 q 的形式. 有"若p则q"的形式. p 则 的形式
通常,我们把这种形式的命题中的 叫做 通常 我们把这种形式的命题中的p叫做 我们把这种形式的命题中的 命题的条件 叫做命题的结论 条件,q叫做命题的结论. 命题的条件 叫做命题的结论. "若p则q"形式的命题是命题的一种形 则 形式的命题是命题的一种形 式而不是唯一的形式,也可写成 如果p, 也可写成" 式而不是唯一的形式 也可写成"如果 那么q" 只要 就有q"等形式 只要p,就有 等形式. 那么 "只要 就有 等形式. 其中p和 可以是命题也可以不是命题 可以是命题也可以不是命题. 其中 和q可以是命题也可以不是命题
(完整版)四种命题、四种命题间的相互关系
四种命题四种命题间的相互关系1、四种命题的概念,写出某个命题的逆命题、否命题和逆否命题。
2、四种命题之间的关系以及真假性之间的联系。
3、会用命题的等价性解决问题。
【核心扫描】:1、结合命题真假的判定,考查四种命题的结构。
(重点)2、掌握四种命题之间的相互关系。
(重点)3、等价命题的应用。
(难点)1、四种命题的概念(1)互逆命题:对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这样的两个命题叫做互逆命题。
其中一个命题叫原命题,另一个叫做原命题的逆命题。
若原命题为“若p,则q”,则逆命题为“若q,则P”。
(2)互否命题:对于两个命题,其中一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,这样的两个命题叫做互否命题。
如果把其中的一个命题叫做原命题,那么另一个叫做原命题的否命题。
也就是说,若原命题为“若p,则q”则否命题为“若非p,则非q”。
(3)互为逆否命题:对于两个命题,其中一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,这样的两个命题叫做互为逆否命题。
如果把其中的一个命题叫做原命题,那么另一个叫做原命题的逆否命题.也就是说,若原命题为“若p,则q”,则逆否命题为若非q,则非p。
任何一个命题的结构都包含条件和结论,通过条件和结论的不同变换都可以得到这个命题的逆命题、否命题和逆否命题,因而任何一个命题都有逆命题、否命题和逆否命题。
2、四种命题的相互关系(1)四种命题的真假性,有且仅有下面四种情况:原命题逆命题否命题逆否命题真真真真真假假真假真真假假假假假(2)四种命题的真假性之间的关系:①两个命题互为逆否命题,它们有相同的真假性.②两个命题为互逆命题或互否命题,它们的真假性没有关系.在四种命题中,真命题的个数可能会有几种情况?因为原命题与逆否命题,逆命题和否命题互为逆否命题,它们同真同假,所以真命题的个数可能为0,2,4.一般地,用p和q分别表示原命题的条件和结论,用非p和非q分别表示p与q的否定,则四种命题的形式可表示为:原命题:若P,则q;逆命题:若q,则p;否命题:若非P,则非q;逆否命题:若非q,则非p.(1)关于四种命题也可叙述为:①交换命题的条件和结论,所得的新命题就是原命题的逆命题;②同时否定命题的条件和结论,所得的新命题就是原命题的否命题;③交换命题的条件和结论,并且同时否定,所得的新命题就是原命题的逆否命题.(2)已知原命题,写出它的其他三种命题:首先,将原命题写成“若p,则q”的形式,然后找出条件和结论,再根据定义写出其他命题。
四种命题的真假
总结:
(1) 原命题为真,则其逆否命题一定为真。但其逆命题、否 命题不一定为真。 (2) 若其逆命题为真,则其否命题一定为真。但其原命题、 逆否命题不一定为真。 想一想? 由以上三例及总结我们能发现什么?
即:原命题与逆否命题的真假是等价的。 逆命题与否命题的真假是等价的。
练一练
1.判断下列说法是否正确。否命题:当c>0时,若a≤b, 则ac≤bc.
逆否命题:当c>0时,若ac≤bc, 则a≤b.
例2 若m≤0或n≤0,则m+n≤0。写出其逆命题、否命题、 逆否命题,并分别指出其真假。 分析:搞清四种命题的定义及其关系,注意“且” “或”的 否定为“或” “且”。
解:逆命题:若m+n≤0,则m≤0或n≤0。
四种命题的关系 及真假
1.四种命题的关系:
原命题 若p则q 互否 否命题 若 p则 q 互逆 逆命题 若q则p
互为
互逆
逆否
互否
逆否命题 若 q则 p
思考:若命题p的逆命题是q,命题r是命题q的否命题,则 q是r的( 逆否)命题。
(真 ) 1)原命题:若x=2或x=3, 则x2-5x+6=0。 (真 ) 逆命题:若x2-5x+6=0, 则x=2或x=3。 (真 ) 否命题:若x≠2且x≠3, 则x2-5x+6≠0 。 逆否命题:若x2-5x+6≠0,则x≠2且x≠3。 (真 ) 2)原命题:若a=0, 则ab=0。 (真 ) (假 ) 逆命题:若ab=0, 则a=0。 否命题:若a≠ 0, 则ab≠0。 (假 ) 逆否命题:若ab≠0,则a≠0。 (真 ) 3) 原命题:若a > b, 则 ac2>bc2。 (假) (真) 逆命题:若ac2>bc2, 则a>b。 否命题:若a≤b,则ac2≤bc2。 (真) 逆否命题:若ac2≤bc2,则a≤b。 (假) 4) 原命题:若a > b, 则 a2>b2。 (假) 逆命题:若a2>b2, 则a>b。 (假) 否命题:若a≤b,则a2≤b2。 (假) 逆否命题:若a2≤b2,则a≤b。 (假)
命题的四种形式
注: “非 p”的含义有下列三条:
(1)“非 p”只否定 p 的结论; (2)“p”与“非 p”的真假必须相反;
(3)“非 p”必须包含 p 的所有对立面.
二、命题的四种形式
原命题: 若 p, 则 q; 否命题: 若p, 则q;
原命题 若p则q 逆命题: 若 q, 则 p; 逆否命题: 若q, 则p. 互逆 逆命题 若q则p
典型例题
例1 写出由下述各命题构成的“p 或 q”形式的复合命题: (1) p: 9 是 144 的约数, q: 9 是 225 的约数; (2) p: 方程 x2-1=0 的解是 x=1, q: 方程 x2-1=0 的解是 x=-1; (3) p: 实数的平方是正数, q: 实数的平方是 0. (1)9 是 144 的约数或 9 是 225 的约数(9 是 144 或 225 的约数);
“p 且 q”形 式的复合命题 当p 与q同时为 真时为真, 其 它情形为假.
6.注意 ①由简单命题构成复合命题时, 不一定是简单地加“或、且、 非”等逻辑联结词; 另外应注意含“或、且、非”等词汇的命 题也不一定是复合命题, 在进行命题的合成或分解时一定要检 验是否符合复合命题的“真值表”, 如果不符要作语言上的调 整. ②命题的“否定”是学习上的重点, 因为这是“反证法”证 明的第一步. 必须注意, 命题的“否定”与一个命题的“否命 题”是两个不同命题 p 的否定(即非 p )是否定命题 p 所作的判 断; 而“否命题”是对“若 p 则 q”形式的命题而言, 要同时否 定它的条件与结论.
一、命题的有关概念
1.命题 可以判断真假的语句. 2.逻辑联结词 “或”、“且”、 “非”. 3.简单命题 不含逻辑联结词的命题. 4.复合命题 含有逻辑联结词的命题. 5.复合命题真值表
四种命题的真假
练一练
1.判断下列说法是否正确。 1)一个命题的逆命题为真,它的逆否命题不一定为真;(对) 2)一个命题的否命题为真,它的逆命题一定为真。 (对) 3)一个命题的原命题为假,它的逆命题一定为假。 (错) 4)一个命题的逆否命题为假,它的否命题为假。 (错)
2.四种命题真假的个数可能为( 答:0个、2个、4个。
(假)
逆命题:若ac2>bc2, 则a>b。 否命题:若a≤b,则ac2≤bc2。 逆否命题:若ac2≤bc2,则a≤b。 4) 原命题:若a > b, 则 a2>b2。
逆命题:若a2>b2, 则a>b。 否命题:若a≤b,则a2≤b2。 逆否命题:若a2≤b2,则a≤b。
(真)
(真) (假)
(假) (假) (假) (假)
总结:
(1) 原命题为真,则其逆否命题一定为真。但其逆命题、否 命题不一定为真。
(2) 若其逆命题为真,则其否命题一定为真。但其原命题、 逆否命题不一定为真。
想一想? 由以上三例及总结我们能发现什么?
即:原命题与逆否命题的真假是等价的。 逆命题与否命题的真假是等价的。
; 查重 查重软件 论文查重 免费论文查重 论文免费查重
(真)
否命题:若x≠2且x≠3, 则x2-5x+6≠0 。
(真)
பைடு நூலகம்
逆否命题:若x2-5x+6≠0,则x≠2且x≠3。 (真)
2)原命题:若a=0, 则ab=0。
(真)
逆命题:若ab=0, 则a=0。
(假)
否命题:若a≠ 0, 则ab≠0。
(假)
逆否命题:若ab≠0,则a≠0。
(真)
3) 原命题:若a > b, 则 ac2>bc2。
四种命题的真假
1.四种命题的关系:
原命题
互逆
逆命题
若p则q
若q则p
互否 互为
逆否 互否
否命题 若 p则 q
互逆
逆否命题 若 q则 p
思考:若命题p的逆命题是q,命题r是命题q的否命题,则 q是r的( 逆否)命题。
1)原命题:若x=2或x=3, 则x2-5x+6=0。
(真)
逆命题:若x2-5x+6=0, 则x=2或x=3。
2.四种命题真假的个数可能为( 答:0个、2个、4个。
)个。
如:原命题:若A∪B=A, 则A∩B=φ。 逆命题:若A∩B=φ,则A∪B=A。 否命题:若A∪B≠A,则A∩B≠φ。 逆否命题:若A∩B≠φ,则A∪B≠A。
(假) (假) (假) (假)
例题讲解
例1:设原命题是:当c>0时,若a>b,则ac>bc. 写出它的逆命 题、否命题、逆否命题。并分别判断它们的真假。
布置作业:33页 3、4两题 。 课外延拓:各小组自编命题并判断真假。
;云客云控 / 云通天下
;
讶地望向热心人,而对方却给她使了一个“走你”の眼色.“谢谢.”陆羽点点头轻声道声谢,不管对方有没听见,已快步转身拐进人群里.即将走出门口时,她回头看了一眼.那是一名体格健硕の青年男子,浓眉大眼,一件短袖恤衫束在牛仔裤里,寸板头显得他形象粗犷略性感.一身の阳刚之气充 满男人味,看人の时候似笑非笑の,气势内敛却又难掩自身の强悍,吸引了不少目光.把那酒鬼扔地下之后,扫一眼全场没发现异常,他来到吧台敲了敲台面.“你老板呢?”“刚有事出去了,让您等会儿.”问得轻松,酒吧主管答得状似轻松随意.如此淡定肯定有所依仗,要么常客要么是熟人.站 得老远の陆羽放心了,迅速离开这个是非之地.这时,青年男子点
四种命题
四种命题1.会判断所给语句是否是命题,并能判断一些简单命题的真假.2.理解命题的逆命题、否命题与逆否命题的含义.3.能分析四种命题的相互关系.1.命题的定义能够判断真假的语句叫做命题,其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.2.命题的结构在数学中,“若p则q”这种形式的命题是常见的,我们把这种形式的命题中的p叫做命题的条件,q叫做命题的结论.3.四种命题的概念一般地,设“若p则q”为原命题,“若q则p”就叫做原命题的逆命题,“若非p则非q”就叫做原命题的否命题,“若非q则非p”就叫做原命题的逆否命题.4.四种命题的真假性(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题互为互逆命题或互否命题,它们的真假性没有关系.对点讲练命题的判断【例1】下列语句:①2是无限循环小数;②x2-3x+2=0;③当x=4时,2x>0;④垂直于同一条直线的两条直线必平行吗?⑤一个数不是合数就是质数;⑥把门关上.其中不是命题的是________(写出所有正确的序号).答案②④⑥解析①是命题,能判断真假.②不是命题,因为语句中含有变量x,在没给变量x赋值前,我们无法判断语句的真假(这种语句叫“开语句”).③是命题,能作出判断的语句,是一个真命题.④不是命题,因为并没有对垂直于同一条直线的两条直线是否平行作出判断.⑤是命题,是假命题,因为1既不是合数也不是质数.⑥不是命题,没有作出判断.变式迁移1判断下列语句是否是命题,并说明理由.(1)一条直线l,不是与平面α平行就是相交;(2)x2+2x-3<0;A B C;(3)作△ABC≌△'''(4)二次函数的图象太美了!(5)4是集合{1,2,3}中的元素.解(1)直线l与平面α的位置有三种:平行、相交和在平面内,为假,是命题.(2)在x未赋值之前,不能判断其真假,不是命题.(3)祈使句,不是命题.(4)感叹句,不是命题.(5)由于4∉{1,2,3},所以“4是集合{1,2,3}中的元素”为假,是命题.命题的转换及命题的真假【例2】写出下列命题的逆命题、否命题、逆否命题,并判断其真假.(1)实数的平方是非负数;(2)等高的两个三角形是全等三角形;(3)弦的垂直平分线平分弦所对的弧.解 (1)逆命题:若一个数的平方是非负数,则这个数是实数.真命题.否命题:若一个数不是实数,则它的平方不是非负数.真命题.逆否命题:若一个数的平方不是非负数,则这个数不是实数.真命题.(2)逆命题:若两个三角形全等,则这两个三角形等高.真命题.否命题:若两个三角形不等高,则这两个三角形不全等.真命题.逆否命题:若两个三角形不全等,则这两个三角形不等高.假命题.(3)逆命题:若一条直线平分弦所对的弧,则这条直线是弦的垂直平分线.假命题. 否命题:若一条直线不是弦的垂直平分线,则这条直线不平分弦所对的弧.假命题. 逆否命题:若一条直线不平分弦所对的弧,则这条直线不是弦的垂直平分线.真命题. 反思感悟 分清条件和结论,即可容易的写出各种命题.判断一个命题为假,只需举出一个反例.变式迁移2 判断下列命题的真假,并写出它们的逆命题、否命题、逆否命题,并判断这些命题的真假.(1)若四边形的对角互补,则该四边形是圆的内接四边形;(2)若q <1,则方程x 2+2x +q =0有实根.解 (1)原命题是真命题.逆命题:若四边形是圆的内接四边形,则四边形的对角互补,真命题.否命题:若四边形的对角不互补,则该四边形不是圆的内接四边形,真命题. 逆否命题:若四边形不是圆的内接四边形,则四边形的对角不互补,真命题.(2)原命题是真命题.逆命题:若方程x 2+2x +q =0有实根,则q <1,假命题.否命题:若q ≥1,则方程x 2+2x +q =0无实根,假命题.逆否命题:若方程x 2+2x +q =0无实根,则有q ≥1,真命题.等价命题的应用【例3】 判断命题“已知a 、x 为实数,若关于x 的不等式x 2+(2a +1)x +a 2+2≤0的解集非空,则a ≥1”的逆否命题的真假.解 因逆否命题的真假与原命题一致,故判断原命题即可,因此,只须Δ=(2a +1)2-4(a 2+2)≥0.即4a -7≥0,∴a ≥74>1. 原命题为真,故逆否命题为真.反思感悟 由于互为逆否的命题真假性一致,因此当原命题的真假难判断时,可以判断逆否命题的真假,当否命题的真假难判断时,可以判断逆命题的真假.变式迁移3 已知函数f (x )是(-∞,+∞)上的增函数,a ,b ∈R .证明:若f (a )+f (b )≥f (-a )+f (-b ),则a +b ≥0.证明 要证明命题不易入手,则证明其逆否命题即可.原命题的逆否命题为“若a +b <0,则f (a )+f (b )<f (-a )+f (-b ).”若a +b <0,则a <-b ,b <-a ,又∵f(x)在(-∞,+∞)上是增函数,∴f(a)<f(-b),f(b)<f(-a).∴f(a)+f(b)<f(-a)+f(-b),即逆否命题为真命题.∴原命题为真命题.1.由于互为逆否的命题同真假,即原命题与逆否命题,逆命题与否命题同真假.因此,四种命题中真命题的个数只能是偶数个,即0个、2个或4个.2.当一个命题是否定形式的命题,且不易判断其真假时,可以通过判断与之等价的逆否命题的真假来达到判断该命题真假的目的.课时作业一、填空题1.命题“若a>-3,则a>-6”以及它的逆命题、否命题、逆否命题中,真命题的个数为________.答案 2解析由a>-3⇒a>-6,但由a>-6⇒a>-3,故真命题为原命题及原命题的逆否命题.2.下列语句中命题的个数为________.①空集是任何非空集合的真子集.②三角函数是周期函数吗?③若x∈R,则x2+4x+7>0.④指数函数的图象真漂亮!答案 2解析①是命题,是真命题.②是疑问句,故不是命题.③是命题,因为Δ=16-28<0,所以是真命题.④是感叹句,所以不是命题.3.对于命题“若数列{a n}是等比数列,则a n≠0”,下列说法正确的是________.①它的逆命题是真命题;②它的否命题是真命题;③它的逆否命题是假命题;④它的否命题是假命题.答案④4.命题“若函数f(x)=log a x(a>0,a≠1)在其定义域内是减函数,则log a2<0”的逆否命题是________.答案若log a2≥0,则函数f(x)=log a x(a>0,a≠1)在其定义域内不是减函数解析由互为逆否命题的关系可知,原命题的逆否命题为:若log a2≥0,则函数f(x)=log a x(a>0,a≠1)在其定义域内不是减函数.5.有下列四个命题,其中真命题有________.①“若x+y=0,则x,y互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若q≤1,则x2+2x+q=0有实根”的逆命题;④“不等边三角形的三个内角相等”的逆否命题.答案①③解析①的逆命题显然成立;②的否命题为“如果三角形不全等,则它们的面积不相等”,由三角形的面积公式可知②的否命题为假命题;③的逆命题中,因方程x2+2x +q=0有实根,则Δ=4-4q≥0,即q≤1,故③的逆命题为真命题;④的逆否命题与命题④同真假,④是假命题.6命题“若A∪B=B,则A⊆B”的否命题是____________________,逆否命题是____________________.答案若A∪B≠B,则A⊆B若A⊆B,则A∪B≠B7.命题“若x、y是奇数,则x+y是偶数”的逆否命题是________________________________.答案若x+y不是偶数,则x、y不都是奇数二、解答题8.把命题“正方形的四条边相等”改写成“若p则q”的形式,并写出它的逆命题、否命题与逆否命题.解原命题可以写成:若一个四边形是正方形,则它的四条边相等.逆命题:若一个四边形的四条边相等,则它是正方形.否命题:若一个四边形不是正方形,则它的四条边不相等.逆否命题:若一个四边形的四条边不相等,则它不是正方形.9.已知奇函数f(x)是定义域为R的增函数,a,b∈R,若f(a)+f(b)≥0,求证:a+b≥0. 证明假设a+b<0,即a<-b,∵f(x)在R上是增函数,∴f(a)<f(-b).又f(x)为奇函数,∴f(-b)=-f(b),∴f(a)<-f(b),即f(a)+f(b)<0.即原命题的逆否命题为真,故原命题为真.。
四种命题的形式
四种命题的形式四种命题的形式1、命题什么叫命题?能够明确判断真假的陈述性语句,叫做命题。
其中,判断为真的语句,叫真命题,判断为假的语句,叫假命题。
命题的结构?(条件+结论)如果…,那么…。
问题1:我是你的数学老师。
真X>15 不是命题全等三角形的面积相等。
真3是10的约数吗?不是命题两直线平行,同位角相等。
真上课请不要讲话不是命题注:(1)疑问句,祈使句,感叹句不是命题。
(2)要判断一个语句是不是命题,关键是能不能判断真假。
(3)判断命题真假的方法有:逻辑推理法、要证明命题是假命题,只需要举出满足条件,不满足结论的例子即可;要证明命题为真,就需要证明满足命题的条件,就一定能推出命题的结论。
2、推出关系如果α成立可以推出β成立,那么就说由α可以推出β,记作:α=>β,换言之,α=>β表示以α为条件、β为结论的命题是真命题。
如果α成立不能推出β成立,记作:α≠>β,换言之,α≠>β表示以α为条件、β为结论的命题是假命题。
3、四种命题形式问题2:判断下列命题的真假,你能发现各命题之间有什么关系?①如果两个三角形全等,那么它们的面积相等;(如果α,那么β)②如果两个三角形的面积相等,那么它们全等;(如果β,那么α)③如果两个三角形不全等,那么它们的面积不相等;(如果,那么)④如果两个三角形的面积不相等,那么它们不全等;(如果,那么)注:两个命题为互逆命题或互否命题,它们的真假性没有关系两个命题为互为逆否命题,它们的真假性相同例1.写出命题“若a=0,则ab=0”的逆命题、否命题、逆否命题,并判断各命题的真假。
例2.写出命题“两直线平行,同位角相等”的逆命题、否命题、逆否命题,并判断各命题的真假。
4、否命题及命题的否定否命题是既否都条件,也否定结论,而命题的否定只否定结论。
(1)常见词语的否定形式“至少”比“至多”多一个:比如,“至多3个”的否定是“至少4个”;“至多”比“至少”少一个:比如,“至少3个”的否定是“至多2个”。
四种命题的真假
(假)
小结:在判断四种命题的真假时,只需判断两种命题的 真假。因为逆命题与否命题真假等价,逆否命题与原命 题真假等价。
布置作业:33页
3、4两题 。
课外延拓:各小组自编命题并判断真假。
; 猫先生app 猫先生 ;
回族中?对于俺们来说比死还痛苦.生当作人杰,死亦为鬼雄,俺既然叫鬼雄,你呀们应该很清楚俺の选择.死路一途?你呀们还真以为,你呀就这空间禁锢,俺就逃不了了?俺想走,你呀们三人未必留得下俺!" 那道黑影长笑两声,身子上の黑光更盛几分,而后速度陡然飙升,直接朝北方闪 去,却是话说声未落下,人已经要靠近毒蛇破仙布置の空间の禁锢了.夜妖娆看の暗惊,这速度也太骇人了吧. "是吗?呵呵!既然你呀执迷不悟,俺也只好送你呀上路了!"毒蛇破仙冷笑一声,声音还没传过来,手中黑色长剑猛然一挥,一条无形の气流,急速朝前涌去,速度比鬼雄快多了, 随着这气流の拂过,前方の空间宛如煮沸の热水般,不断震荡起来,闪在半空の鬼雄身子陡然一滞,扭头一看,却是面色大变,全黑の眼眸却无限の扩大起来. 一些黑点在他眼前凭空出现,黑点开始慢慢扩大,而后变成一把黑色长剑の剑刃,剑刃之后,却是一条凭空出现の斗笠,斗笠下是一 双冷冷の眸子.最后他看到这长剑直接刺入了他の眉心,长剑蕴含の杀气更是瞬间将他の灵魂震碎,他连反应の时候都没有… "大哥の空间之刃,看来已经大成了,好厉害,无声无息,速度比神王三重の鬼雄快上数倍,这鬼雄还真以为大哥拿他没办法?" "呵呵,空间法则不少神界练家子都 以为是鸡肋,其实修炼到深处,才见威力啊,不过修炼到至强者,发现了空间法则の威力,他们都不会傻乎乎の外传,这才导致普通神级练家子以为空间法则无用.哼,至高法则,岂会是鸡肋?" 一龙和另外一名破仙望着,正收起鬼雄の神晶和空间戒指の毒蛇破仙,眼中露出敬佩
四种命题的关系
练一练 1.判断下列说法是否正确。 (对) 1)一个命题的逆命题为真,它的逆否命题不一定为真; 2)一个命题的否命题为真,它的逆命题一定为真。 (对) (错) (错)
3)一个命题的原命题为假,它的逆命题一定为假。 4)一个命题的逆否命题为假,它的否命题为假。
2.四种命题真假的个数可能为( 答:0个、2个、4个。 )个。
四种命题的相互关系
命题的概念
命题的特点:语句都是陈述句,并且可以判断真假。 命题的构成:条件,结论 四种命题:原命题,逆命题,否命题,逆否命题 四种命题形式: • 原命题: • 逆命题: • 否命题: • 逆否命题: 若 p, 若 q, 若┐p, 若┐q, 则 q 则 p 则┐q 则┐p
四种命题的相互关系
练习:P3.14.已知
p : 3 x 8, q :1 m x 1 m 。
命题“若p,则q”的逆命题为假命题,其逆否命题A ,则 x B” 是真命题,则 A B 命题“若 x A ,则 x B” 是假命题,则令其为真, 最后取补集。
练习:P3.16.
原命题
真 真 假 假
逆命题
真 假 真 假
否命题
真 假 真 假
逆否命题
真 真 假 假
几条结论:
(1) 原命题为真,则其逆否命题一定为真。但其逆命题、
否命题不一定为真。
(2) 若其逆命题为真,则其否命题一定为真。但其原命题、逆 否命题不一定为真。
原命题与逆否命题同真假。 原命题的逆命题与否命题同真假。 互为逆否命题的两命题同真假。 两个命题为互逆命题或互否命题,它们的真假 性没有关系.
原命题 若p,则q 互 否
互逆
逆命题 若q,则p 互 否
否命题 若﹁p,则﹁q
四种命题讲解
例:命题(1)同位角相等,两直线平行 (2)两直线平行,同位角相等 (3) 同位角不相等,两直线不平行 (4)两直线不平行,同位角不相等 •命题(1)和命题(2)的条件和结论的关系是什么? •命题(2)的条件是命题(1)的结论,命题(2)的结论是命题(1)的条件。 •在两个命题中,如果第一个命题的条件是第二个命题的结论, 且第一个命题的结论是第二个命题的条件,那么这两个命题叫 互逆命题。 •如果把其中一个命题叫原命题,那么另一个叫它的逆命题, 如:(1)叫原命题(2)叫它的逆命题
1、非p形式 、 形式 p 真 假 非p 假 真
2、p且q形式 、 且 形式 p 真 真 假 假 p 真 真 假 假 q 真 假 真 假 q 真 假 真 假 真 真 真 假 P且q 且 真 假 假 假 P或q 或
3、p或q形式 、 或 形式
练习:分别指出由下列命题构成的p或q、p且q、非p形式复 合命题的真假 (1)p:x2≥0,q:3>5 (2)P:4是27的约数;q:1是x2-3x+2=0的解 (3)P:x2-x+1≥0,q: |x|-b<0(b>0)的解的集为{ x|-b<x<b} 解:(1)因 p 真, q假,所以p或q为真,p且q为假,非p为假 (2)因 p 假, q真,所以p或q为真,p且q为假,非p为真 (3)因 p 真, q真,所以p或q为真,p且q为真,非p为假
再观察命题(1)、(3)的条件和结论有何关系? 命题(1)同位角相等,两直线平行 (3) 同位角不相等,两直线不平行 命题(3)的条件是命题(1)的条件的否定,命题(3)的结论是命题(1) 的结论的否定 在命题(1)与命题(3)中,一个命题的条件和结论是另一个 命题的条件和结论的否定,这样的两个命题叫做互否命题 把其中一个命题叫原命题,另一个就叫它的否命题,如: 把命题(1)叫原命题,命题(3)就是它的否命题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四种命题
例命题“若=,则与成反比例关系”的否命题是1 y x y k x
[ ]
A y x y
B y kx x y
C x y y .若≠,则与成正比例关系.若≠,则与成反比例关系.若与不成反比例关系,则≠k x
k x
D y x y .若≠,则与不成反比例关系k x
分析 条件及结论同时否定,位置不变.
答 选D .
例2 设原命题为:“对顶角相等”,把它写成“若p 则q ”形式为________.它的逆命题为________,否命题为________,逆否命题为________.
分析 只要确定了“p ”和“q ”,则四种命题形式都好写了.
解 若两个角是对顶角,则两个角相等;若两个角相等,则这两个角是对顶角;若两个角不是对顶点,则这两个角不相等;若两个角不相等,则这两个角不是对顶角.
例3 “若P ={x |x|<1},则0∈P ”的等价命题是________.
分析 等价命题可以是多个,我们这里是确定命题的逆否命题.
解原命题的等价命题可以是其逆否命题,所以填“若,则 0P p ≠{x||x|<1}”
例4 分别写出命题“若x 2+y 2=0,则x 、y 全为0”的逆命题、否命题和逆否命题.
分析 根据命题的四种形式的结构确定.
解 逆命题:若x 、y 全为0,则x 2+y 2=0;
否命题:若x 2+y 2≠0,则x ,y 不全为0;
逆否命题:若x 、y 不全为0,则x 2+y 2≠0.
说明:“x 、y 全为0”的否定不要写成“x 、y 全不为0”,应当是“x ,y 不全为0”,这要特别小心.
例5 有下列四个命题:
①“若xy=1,则x、y互为倒数”的逆命题;
②“相似三角形的周长相等”的否命题;
③“若b≤-1,则方程x2-2bx+b2+b=0有实根”的逆否命题;
A B B A B
④“若∪=,则”的逆否命题,其中真命题是
[ ] A.①②B.②③
C.①③D.③④
分析应用相应知识分别验证.
解写出相应命题并判定真假
①“若x,y互为倒数,则xy=1”为真命题;
②“不相似三角形周长不相等”为假命题;
③“若方程x2-2bx+b2+b=0没有实根,则b>-1”为真命题;
选C.
例6 以下列命题为原命题,分别写出它们的逆命题,否命题和逆否命题.
①内接于圆的四边形的对角互补;
②已知a、b、c、d是实数,若a=b,c=d,则a+c=b+d;
分析首先应当把原命题改写成“若p则q”形式,再设法构造其余的三种形式命题.
解对①:原命题:“若四边形内接于圆,则它的对角互补”;
逆命题:“若四边形对角互补,则它必内接于某圆”;
否命题:“若四边形不内接于圆,则它的对角不互补”;
逆否命题:“若四边形的对角不互补,则它不内接于圆”.
对②:原命题:“已知a、b、c、d是实数,若a=b,c=d,则a+c=b+d”,其中“已知a、b、c、d是实数”是大前提,“a=b,c=d”是条件,“a+c =b+d”是结论.所以:
逆命题:“已知a、b、c、d是实数,若a+c=b+d,则a=b,c=d”;
否命题:“已知a、b、c、d是实数,若a≠b或c≠d,则a+c≠b+d”(注意“a=b,c=d”的否定是“a≠b或c≠d”只需要至少有一个不等即可);
逆否命题:“已知a、b、c、d是实数,若a+c≠b+d则a≠b或c≠d”.逆否命题还可以写成:“已知a、b、c、d是实数,若a+c≠b+d则a=b,c=d两个等式至少有一个不成立”
说明:要注意大前题的处理.试一试:写出命题“当c>0时,若a>b,则ac>bc”的逆命题,否命题,逆否命题,并分别判定其真假.
例7 已知下列三个方程:x2+4ax-4a+3=0,x2+(a-1)x+a2=0,x2+2ax-2a=0至少有一个方程有实根,求实数a的取值范围.
分析如果从正面分类讨论情况要复杂的多,而利用补集的思想(也含有
反证法的思想)来求三个方程都没有实根的a 范围比较简单.
解由--<--<+<得 16a 4(34a)0(a 1)4a 04a 8a 0
2222⎧⎨⎪⎩⎪
说明:利用补集思想,体现了思维的逆向性.
例8 分别写出下列命题的逆命题、否命题、逆否命题,并判断它们的真假. ①>时,-+=无实根;m mx x 10214
②当abc =0时,a =0或b =0或c =0.
分析 改造原命题成“若p 则q 形式”再分别写出其逆命题、否命题、逆否命题.在判定各种形式命题的真假时要注意利用等价命题的原理和规律.
解①原命题:“若>
,则-+=无实根”,是真 m mx x 10214
命题; 逆命题:“若-+=无实根,则>”,是真命题;否命题:“若≤,则-+=有实根”,是真命题;逆否命题:“若-+=有实根,则≤”,是真命题.mx x 10m m mx x 10mx x 10m 22214
14
14
②原命题;“若abc =0,则a =0或b =0或c =0”,是真命题;
逆命题:“若a =0或b =0或c =0,则abc =0”是真命题;
否命题:“若abc ≠0,则a ≠0且b ≠0且c ≠0”,是真命题;(注意:“a =0或b =0或c =0”的否定形式是“a ≠0且b ≠0且c ≠0”
逆否命题:“若a ≠0且b ≠0且c ≠0,则abc ≠0”,是真命题.
说明:判定四种形式命题的真假可以借助互为逆否命题的等价性.
例若、、均为实数,且=-+π,=-+π,=-+π,求证:、、中至少有一个大于.9 a b c a x 2y b y 2z c z 2x a b c 02
22236 分析 如果直接从条件推证,方向不明,过程不可预测,较难,可以使用反证法.
解 设a 、b 、c 都不大于0,即a ≤0,b ≤0,c ≤0,则有a +b +c ≤0,而 a b c (x 2y )(y 2z )(z 2x )222++=-+π+-+π+-+π236
=(x 2-2x)+(y 2-2y)+(z 2-2z)+π
=(x -1)2+(y -1)2+(z -1)2+(π-3)
∴ a +b +c >0这与a +b +c ≤0矛盾.
因此a 、b 、c 中至少有一个大于0.
说明:如下表,我们给出一些常见词语的否定.。