基于 ANSYS 的变截面连续钢构桥梁分析(全文)
基于ANSYS的钢筋混凝土简支梁桥极限承载力分析研究
基于ANSYS的钢筋混凝土简支梁桥极限承载力分析研究一、本文概述随着现代工程技术的飞速发展,钢筋混凝土简支梁桥作为桥梁工程中的重要结构形式,其极限承载力分析对于确保桥梁的安全性和稳定性具有至关重要的意义。
本文旨在通过基于ANSYS的数值模拟方法,深入研究钢筋混凝土简支梁桥的极限承载力,以期为实际工程应用提供理论依据和技术支持。
本文首先介绍了钢筋混凝土简支梁桥的基本结构特点和应用现状,阐述了进行极限承载力分析的必要性。
接着,详细介绍了ANSYS 有限元分析软件在桥梁工程中的应用及其优势,为后续的研究工作奠定了理论基础。
在研究方法上,本文采用ANSYS软件建立钢筋混凝土简支梁桥的数值模型,通过施加不同的荷载工况,模拟桥梁在实际运营过程中的受力状态。
在此基础上,对桥梁的极限承载力进行分析,探究其破坏模式、应力分布及变形特征。
本文还将考虑不同因素(如材料性能、截面尺寸、配筋方式等)对桥梁极限承载力的影响,以期获得更为全面和准确的分析结果。
本文将对所得的研究结果进行总结,提出钢筋混凝土简支梁桥极限承载力分析的关键问题和改进措施,为实际工程设计和施工提供有益的参考和借鉴。
通过本文的研究,不仅能够加深对钢筋混凝土简支梁桥极限承载力的认识和理解,还能够推动桥梁工程领域的科技进步和创新发展。
二、钢筋混凝土简支梁桥的基本原理钢筋混凝土简支梁桥,作为桥梁工程中的一种基本结构形式,其基本原理主要基于材料力学和结构力学的理论。
简支梁桥是一种静定结构,其特点是梁的两端搁置在支座上,梁端无水平推力,当梁上作用有荷载时,梁内产生的弯矩和剪力仅与荷载的大小和分布有关,而与两端支承处的约束情况无关。
在钢筋混凝土简支梁桥中,混凝土主要承担压应力,而钢筋则主要承受拉应力。
这种组合使得钢筋混凝土结构既具有混凝土的高抗压强度,又具有钢筋的高抗拉强度,从而实现了优势互补,提高了结构的整体承载能力。
钢筋混凝土简支梁桥的设计还需考虑桥梁的使用功能、荷载等级、材料性能、施工工艺等因素。
基于ansys的钢桁架桥的分析和计算
基于ansys的钢桁架桥的分析和计算姓名: 马彦学院:建筑与环境专业:工程力学学号:1043055033指导老师:朱哲明2013/6/151.问题简述钢桁架桥简图如下,尺寸如图,单元长12m,高16m。
设桥面板为0.3m厚的混凝土板。
杆件截面号形状规格端斜杆 1 工字梁400*400*16*16上下弦 2 工字梁400*400*12*12横向连接梁 2 工字梁400*400*12*12其他腹杆 3 工字梁400*300*12*12参数钢材混凝土EX 2.1x1011 3.5x1010PRXY 0.3 0.1667DENS 7850 25002.材料实常数3.半横架桥模型镜面对称,生成整体模型3.施加约束及受力4.计算及分析结果◆整体位移云图◆结点总位移矢量图◆单元第一主应力云图◆单元第二主应力云图◆单元第三主应力云图◆节点位移结果PRINT U NODAL SOLUTION PER NODE***** POST1 NODAL DEGREE OF FREEDOM LISTING *****LOAD STEP= 1 SUBSTEP= 1 TIME= 1.0000 LOAD CASE= 0THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN THE GLOBAL COORDINATESYSTEMNODE UX UY UZ USUM1 0.18808E-02-0.20919E-01 0.70316E-03 0.21015E-012 0.11411E-02-0.21354E-01 0.59772E-03 0.21393E-013 0.14813E-02-0.20809E-01 0.11202E-02 0.20892E-014 0.15919E-02-0.20373E-01 0.11392E-02 0.20467E-015 0.22549E-02-0.18918E-01 0.10528E-02 0.19081E-016 0.23458E-02-0.18310E-01 0.10055E-02 0.18487E-017 -0.10050E-02-0.18459E-01-0.38731E-02 0.18887E-018 -0.11376E-02-0.19066E-01-0.38598E-02 0.19486E-019 0.24977E-02-0.12074E-01 0.72603E-03 0.12351E-0110 0.29237E-02-0.11079E-01 0.68719E-03 0.11479E-0111 -0.35033E-02-0.10438E-01-0.84626E-02 0.13887E-0112 -0.38537E-02-0.10965E-01-0.84226E-02 0.14353E-0113 0.27521E-02 0.0000 0.0000 0.27521E-0214 0.34768E-02 0.0000 0.0000 0.34768E-0215 0.82671E-03-0.17947E-01 0.14911E-03 0.17967E-0116 0.67748E-03-0.19250E-01 0.10648E-03 0.19262E-0117 0.42077E-02-0.19398E-01 0.59595E-02 0.20725E-0118 0.40812E-02-0.18095E-01 0.59727E-02 0.19488E-0119 0.40101E-03-0.10784E-01 0.34385E-04 0.10791E-0120 0.34470E-03-0.12307E-01 0.25523E-06 0.12312E-0121 0.69212E-02-0.11199E-01 0.10204E-01 0.16656E-0122 0.65820E-02-0.10142E-01 0.10244E-01 0.15847E-0123 0.0000 0.0000 0.0000 0.000024 0.0000 0.0000 0.0000 0.0000MAXIMUM ABSOLUTE VALUESNODE 21 2 22 2VALUE 0.69212E-02-0.21354E-01 0.10244E-01 0.21393E-01◆单元受力结果PRINT ELEMENT TABLE ITEMS PER ELEMENT***** POST1 ELEMENT TABLE LISTING *****STAT CURRENT CURRENTELEM ZHOU_I ZHOU_J1 -49659. 7936.32 -42695. -3502.73 -9873.9 -28642.4 9567.9 -51440.5 -15016. 23374.6 -22120. -5510.47 -26981. -11385.8 -33355. 18549.9 -17656. -15556.10 -16095. -16301.11 -16203. -16943.12 -12683. -20132.13 4836.6 5157.114 -17901. -18351.15 -2331.6 23001.16 -18331. -20015.17 -6067.9 50464.18 -19568. -26493.19 -5052.8 51411.20 -26836. -34142.21 -23626. -29919.22 -32522. -21349.23 -35649. -25215.24 -699.47 1061.525 690.13 -1048.326 5802.4 -1462.327 -9677.8 5182.928 16212. -4765.129 -4310.8 3979.130 -25.038 0.000031 -9.3064 0.000032 23.898 0.000033 -3569.2 -42609.34 8110.9 -49823.35 -5544.6 -22051.36 -11343. -27005.37 18453. -33238.38 -28592. -9977.139 -51593. 9648.540 23614. -15193.41 -16998. -16116.***** POST1 ELEMENT TABLE LISTING *****STAT CURRENT CURRENTELEM ZHOU_I ZHOU_J42 -20120. -12682.43 -15489. -17761.44 -16350. -16082.45 5157.1 4836.646 -18351. -17901.47 -2225.2 22850.48 -18463. -19869.49 -6087.5 50530.50 -19228. -26843.51 -5332.4 51796.52 -21374. -32473.53 -25205. -35655.54 -34114. -26894.55 -29953. -23607.56 -1061.5 699.4757 1048.3 -690.1358 5171.8 -9672.159 -1448.6 5796.560 3928.8 -4269.361 -4732.8 16215.62 -20.844 0.000063 -5.2944 0.000064 36.585 0.0000MINIMUM VALUESELEM 39 4VALUE -51593. -51440.MAXIMUM VALUESELEM 40 51VALUE 23614. 51796.5.命令流文件/FILNAM,Structural/TITLE,Truss Bridge Static Analysis/COM,Structural/prep7et,1,beam4et,2,shell63sectype,1,beam,i,,0 !定义工字型截面secoffset,cent !截面至心不偏移secdata,0.4,0.4,0.4,0.016,0.016,0.016,0,0,0,0 !定义工字型截面参数sectype,2,beam,i,,0secoffset,centsecdata,0.4,0.4,0.4,0.012,0.012,0.012,0,0,0,0sectype,3,beam,i,,0secoffset,centsecdata,0.3,0.3,0.4,0.012,0.012,0.012,0,0,0,0r,1,0.0187,0.00017,0.00054,0.4,0.4,0, !定义单元实常数r,2,0.0141,0.128e-3,0.415e-3,0.4,0.4,,r,3,0.0117,0.541e-4,0.324e-3,0.3,0.4,,r,4,0.3,,,,,,MP,EX,1,2.1E11MP,PRXY,1,0.3MP,DENS,1,7850MP,EX,2,3.5E10MP,PRXY,2,0.1667MP,DENS,2,2500N,,0,0,-5,,,, !创建节点,复制结点NGEN,4,4,ALL,,,12,,,1,NGEN,2,1,ALL,,,,,10,1,NGEN,2,1,2,10,4,,16,,1,NGEN,2,1,3,11,4,,,-10,1,TYPE,1MAT,1REAL,1ESYS,0 !单元坐标系SECNUM,1TSHAP,LINEE,11,14 !建立单元TYPE,1 MAT,1 REAL,1 ESYS,0 SECNUM,2 TSHAP,LINE E,2,6E,6,10E,10,14 E,1,5E,5,9E,9,13E,3,7E,7,11E,4,8E,8,12E,1,2E,3,4E,5,6E,7,8E,9,10E,13,14 TYPE,1 MAT,1 REAL,1 ESYS,0 SECNUM,3 TSHAP,LINE E,3,6E,6,11E,4,5E,5,12E,2,3E,1,4E,6,7E,5,8E,10,11 E,9,12 TYPE,2 MAT,2 REAL,1 ESYS,0TSHAP,QUADE,1,2,6,5E,5,6,10,9E,9,10,14,13NSYM,X,14,ALL ESYM,,14,ALLNUMMRG,ALL,,,,LOW NUMCMP,ALL FINISH/SOLNSEL,S,,,23,24D,ALL,,,,,,UX,UY,UZ,,, NSEL,S,,,13,14D,ALL,,,,,,UY,UZ,,, NSEL,S,,,1,2F,ALL,FY,-100000 ALLSEL,ALL ACEL,0,10,0, ANTYPE,0SOLVEFINISH/POST1PLDISP,2PLNSOL,U,SUM,0,1PLVECT,U,,,,VECT,NODE,ON,0ETABLE,zhou_i,SMISC,1ETABLE,zhou_j,SMISC,7ETABLE,zhou_i,SMISC,2ETABLE,zhou_j,SMISC,8ETABLE,zhou_i,SMISC,6ETABLE,zhou_j,SMISC,12PRETAB,ZHOU_I,ZHOU_J,JIAN_I,JIAN_J,WAN_I,WAN_J PLLS,ZHOU_I,ZHOU_J,1,0PRNSOL,U,COMPFINISH/EXIT。
基于ANSYS 的连续刚构桥分析(操作篇 )
目录一、工程背景 (1)二、工程模型 (1)三、ANSYS分析 (2)(一)前处理 (2)(1)定义单元类型 (2)(2)定义材料属性 (3)(3)建立工程简化模型 (3)(4)有限元网格划分 (5)(二)模态分析 (5)(1)选择求解类型 (5)(2)建立边界条件 (6)(3)输出设置 (6)(4)求解 (6)(5)读取结果 (6)(6)结果分析 (8)(三)结构试验载荷分析 (8)(1)第二跨跨中模拟车载分析 (8)(2)边跨跨中模拟车载分析 (9)四、结果分析与强度校核 (10)(一)结果分析 (10)(二)简单强度校核 (10)参考文献 (11)连续刚构桥分析一、工程背景:随着我国经济的发展,对交通运输的要求也不断提高;高速路,高铁线等遍布全国,这就免不了要架桥修路。
截至2014年年底,我国公路桥梁总数已达75.71万座,4257.89万延米i。
进百万的桥梁屹立在我国交通线上,其安全便是头等大事。
随着交通运输线的再扩大,连续刚构桥跨越能力大,施工难度小,行车舒顺,养护简便,造价较低等优点将被广泛应用。
二、工程模型:现有某预应力混凝土连续刚构桥,桥梁全长为184m,宽13m,其中车行道宽11.5m,两侧防撞栏杆各0.75m主梁采用C50混凝土。
桥梁设计载荷为公路—— 级。
图2-1桥梁侧立面图上部结构为48m+88m+48m三跨预应力混凝土边界面连续箱梁。
箱梁为单箱双室箱形截面,箱梁根部高5m,中跨梁高2.2m,边跨梁端高2.2m。
箱梁顶板宽12.7m,底板宽8.7m,翼缘板悬臂长2.0m,箱梁高度从距墩中心3.0m处到跨中合龙段处按二次抛物线变化。
0号至3号块长3m(4x3m),4、5号块长3.5m(2x3.5m),6号块到合龙段长4m(6x4m),合龙段长2m。
边跨端部设1.5m横隔板,墩顶0号块设两道厚1.2m横隔板。
0号块范围内箱梁底板厚度为0.90m,1号块范围内底板厚度由0.90m线性变化到0.557m,2号块到合龙段范围内底板厚度由0.557m 线性变化到0.3m。
ANSYS桥梁工程应用实例分析(详细)(图文)
本章介绍桥梁结构的模拟分析。
桥梁是一种重要的工程结构,精确分析桥梁结构在各种受力方式下的响应有较大的工程价值。
模拟不同类型的桥梁需要不同的建模方法,分析内容包括静力分析、动荷载响应分析、施工过程分析等等。
在本章中着重介绍桁架桥、刚架桥和斜拉桥三种类型桥梁。
内容 提要 第6章 ANSYS 桥梁工程应用实例分析本章重点结构分析具体步骤结构静力分析 桁架结构建模方法 结构模态分析本章典型效果图6.1 引言ANSYS通用有限元软件在土木工程应用分析中可发挥巨大的作用。
我们用它来分析桥梁工程结构,可以很好的模拟各种类型桥梁的受力、施工工况、动荷载的耦合等。
ANSYS程序有丰富的单元库和材料库,几乎可以仿真模拟出任何形式的桥梁。
静力分析中,可以较精确的反应出结构的变形、应力分布、内力情况等;动力分析中,也可精确的表达结构的自振频率、振型、荷载耦合、时程响应等特性。
利用有限元软件对桥梁结构进行全桥模拟分析,可以得出较准确的分析结果。
本章介绍桥梁结构的模拟分析。
作为一种重要的工程结构,桥梁的精确分析具有较大的工程价值。
桥梁的种类繁多,如梁桥、拱桥、钢构桥、悬索桥、斜拉桥等等,不同类型的桥梁可以采用不同的建模方法。
桥梁的分析内容又包括静力分析、施工过程模拟、动荷载响应分析等。
可以看出桥梁的整体分析过程比较复杂。
总体上来说,主要的模拟分析过程如下:(1) 根据计算数据,选择合适的单元和材料,建立准确的桥梁有限元模型。
(2) 施加静力或者动力荷载,选择适当的边界条件。
(3) 根据分析问题的不同,选择合适的求解器进行求解。
(4) 在后处理器中观察计算结果。
(5) 如有需要,调整模型或者荷载条件,重新分析计算。
桥梁的种类和分析内容众多,不同类型桥梁的的分析过程有所不同,分析侧重点也不一样。
在这里仅仅给出大致的分析过程,具体内容还要看具体实例的情况。
6.2 典型桥梁分析模拟过程6.2.1 创建物理环境建立桥梁模型之前必须对工作环境进行一系列的设置。
(完整word版)基于ANSYS的连续刚构桥分析(操作篇)
目录一、工程背景 (1)二、工程模型 (1)三、ANSYS分析 (2)(一)前处理 (2)(1)定义单元类型 (2)(2)定义材料属性 (3)(3)建立工程简化模型 (3)(4)有限元网格划分 (5)(二)模态分析 (5)(1)选择求解类型 (5)(2)建立边界条件 (6)(3)输出设置 (6)(4)求解 (6)(5)读取结果 (6)(6)结果分析 (8)(三)结构试验载荷分析 (8)(1)第二跨跨中模拟车载分析 (8)(2)边跨跨中模拟车载分析 (9)四、结果分析与强度校核 (10)(一)结果分析 (10)(二)简单强度校核 (10)参考文献 (11)连续刚构桥分析一、工程背景:随着我国经济的发展,对交通运输的要求也不断提高;高速路,高铁线等遍布全国,这就免不了要架桥修路.截至2014年年底,我国公路桥梁总数已达75.71万座,4257.89万延米i。
进百万的桥梁屹立在我国交通线上,其安全便是头等大事.随着交通运输线的再扩大,连续刚构桥跨越能力大,施工难度小,行车舒顺,养护简便,造价较低等优点将被广泛应用。
二、工程模型:现有某预应力混凝土连续刚构桥,桥梁全长为184m,宽13m,其中车行道宽11.5m,两侧防撞栏杆各0。
75m主梁采用C50混凝土。
桥梁设计载荷为公路-- 级。
图2—1桥梁侧立面图上部结构为48m+88m+48m三跨预应力混凝土边界面连续箱梁。
箱梁为单箱双室箱形截面,箱梁根部高5m,中跨梁高2.2m,边跨梁端高2。
2m。
箱梁顶板宽12。
7m,底板宽8.7m,翼缘板悬臂长2。
0m,箱梁高度从距墩中心3。
0m处到跨中合龙段处按二次抛物线变化。
0号至3号块长3m(4x3m),4、5号块长3。
5m(2x3。
5m),6号块到合龙段长4m(6x4m),合龙段长2m。
边跨端部设1。
5m横隔板,墩顶0号块设两道厚1。
2m横隔板。
0号块范围内箱梁底板厚度为0。
90m,1号块范围内底板厚度由0.90m线性变化到0.557m,2号块到合龙段范围内底板厚度由0.557m线性变化到0。
ansys分析连续梁桥
fini/clear/title,60+100+60 three span continous bridge/prep7!上顶板的关键点位置k,1,0,0k,2,-1.5k,3,-2.5,-0.15k,4,-2.95,-0.15k,5,-3.4,-0.15k,6,-3.8,-0.075k,7,-4.2,0k,8,-4.6,0.075k,9,-5,0.15k,10,-5.4,0.225k,11,-6.1,0.225!下底板的关键点位置k,12,-2.95,-4.5k,13,,-4.5!上顶板关键点15m的位置kgen,4,1,13,1,0,0,5,100!上顶板关键点58m的位置kgen,10,301,311,1,0,0,43/9,100!上顶板关键点60m的位置kgen,2,1,11,1,0,0,60,1300!上顶板关键点62m的位置kgen,2,1,11,1,0,0,62,1400!上顶板关键点62+43m的位置kgen,10,1401,1411,1,0,0,43/9,100!上顶板关键点110m的位置kgen,2,2301,2311,1,0,0,5,100c1=0.0016225 !边、中跨的二次抛物线系数*dim,x1,array,9 !定义边跨的九分点位置*do,i,1,9,1x1(i)=i*43/9*enddo*dim,x2,array,9 !定义中跨的九分点位置*do,i,1,9,1x2(i)=i*43/9*enddo!下底板边跨(58m)九分点关键点的y坐标位置*dim,yb,array,9*do,i,1,9,1yb(i)=c1*x1(i)**2*enddo!下底板中跨(105m)九分点关键点的y坐标位置*dim,ym,array,9*do,i,1,9,1ym(i)=-c1*(x2(i)-43)**2+3*enddo!生成下底边跨(60m)九分点的关键点*do,i,1,9,1kgen,2,312,313,1,0,-yb(i),x1(i),i*100*enddo!下底板60m,62m处关键点kgen,3,1212,1213,1,0,0,2,100!生成下底中跨(62+43m)九分点的关键点*do,i,1,9,1kgen,2,1412,1413,1,0,ym(i),x2(i),i*100*enddo!生成下底中跨110m处关键点kgen,2,2312,2313,1,0,0,5,100!边墩处的横隔板位置kgen,2,1,13,1,0,0,-0.75,50!连成板面!上顶板,板厚0.5met,1,shell63mp,dens,1,2500mp,ex,1,3.5e10mp,prxy,1,0.1667r,1,0.5*do,i,0,23,1a,1+i*100,1+(i+1)*100,2+(i+1)*100,2+i*100*enddoa,1,51,52,2aatt,1,1,1!上顶板的加腋,板厚0.8mr,2,0.8*do,i,0,23,1a,2+i*100,2+(i+1)*100,3+(i+1)*100,3+i*100*enddoa,2,52,53,3aatt,1,2,1asel,none!肋板与翼缘交界处,板厚0.95mr,3,0.95*do,i,0,23,1a,3+i*100,3+(i+1)*100,4+(i+1)*100,4+i*100a,4+i*100,4+(i+1)*100,5+(i+1)*100,5+i*100*enddoa,3,53,54,4a,4,54,55,5aatt,1,3,1asel,none!翼缘厚度渐变,下面定义翼缘板的渐变厚度*dim,hd,array,7hd(7)=0.2hd(6)=0.2hd(5)=1/5*0.75+0.2hd(4)=2/5*0.75+0.2hd(3)=3/5*0.75+0.2hd(2)=4/5*0.75+0.2hd(1)=0.95*do,i,1,6,1r,30+i,hd(i),hd(i),hd(i+1),hd(i+1) !定义渐变的翼缘厚度*enddo*do,i,0,23,1*do,k,5,10,1a,k+i*100,k+(i+1)*100,k+1+(i+1)*100,k+1+i*100a,k,k+50,k+1+50,k+1aatt,1,k+26,1asel,none*enddo*enddo!肋板厚度0.9mr,4,0.9*do,i,0,23,1a,4+i*100,4+(i+1)*100,12+(i+1)*100,12+i*100*enddoa,4,54,62,12aatt,1,4,1asel,none!下底板厚度0.4~1.0m按二次抛物线过度c2=0.00035693 !边跨底板厚度变化的二次抛物线系数*dim,h1,array,16 !边跨底板厚度h1(1)=0.4h1(2)=0.4h1(3)=0.4*do,i,4,13,1h1(i)=0.4+c2*((i-4)*43/9)**2*enddoh1(14)=0.4+c2*43**2h1(15)=0.4+c2*43**2!生成边跨的底板单元*do,i,1,14,1r,40+i,h1(i),h1(i),h1(i+1),h1(i+1)a,12+(i-1)*100,12+i*100,13+i*100,13+(i-1)*100aatt,1,40+i,1asel,none*enddoa,12,62,63,13 !横隔板底面aatt,1,41,1*dim,h2,array,11 !中跨底板厚度h2(11)=0.4h2(10)=0.4h2(9)=0.4+c2*(1*43/9)**2h2(8)=0.4+c2*(2*43/9)**2h2(7)=0.4+c2*(3*43/9)**2h2(6)=0.4+c2*(4*43/9)**2h2(5)=0.4+c2*(5*43/9)**2h2(4)=0.4+c2*(6*43/9)**2h2(3)=0.4+c2*(7*43/9)**2h2(2)=0.4+c2*(8*43/9)**2h2(1)=0.4+c2*(9*43/9)**2!生成中跨的底板单元*do,i,1,10,1r,60+i,h2(i),h2(i),h2(i+1),h2(i+1)a,12+(i+13)*100,12+(i+14)*100,13+(i+14)*100,13+(i+13)*100 aatt,1,60+i,1asel,none*enddoallselesize,0.8mshape,0mshkey,1amesh,allnsel,allnsym,x,10000,allesym,x,10000,alllocal,11,0,,,110csys,11allselnsym,z,100000,allesym,z,100000,allallselnummrg,allnumcmp,allcsys,0。
ANSYS结构静力学分析应用实例解析--钢桁架桥的受力分析
ANSYS结构静⼒学分析应⽤实例解析--钢桁架桥的受⼒分析1. 问题描述钢桁架桥简图如下,已知下承式简⽀钢桁架桥长72m,每个节段为12m,桥宽10m,⾼16m。
设桥⾯板为0.3m厚的混凝⼟板。
2. 求解步骤2.1 建⽴⼯作⽂件名和⼯作标题/FILNAME,Structural/TITLE,Truss Bridge Static Analysis2.2 过滤图形界⾯/COM, Structural ! 指定分析类型为结构分析2.3 定义单元类型/PREP7ET,1,BEAM4ET,2,SHELL632.4 定义梁单元截⾯Main Menu>Preprocessor>Sections>Beam>Common SectionsSECTYPE,1,BEAM,I, , 0 ! 定义⼯字型截⾯ SECOFFSET, CENT !截⾯质⼼不偏移SECDATA,0.4,0.4,0.4,0.016,0.016,0.016,0,0,0,0 !定义⼯字型截⾯参数SECTYPE,2,BEAM,I, , 0 ! 定义⼯字型截⾯SECOFFSET, CENT !截⾯质⼼不偏移SECDATA,0.4,0.4,0.4,0.012,0.012,0.012,0,0,0,0 !定义⼯字型截⾯参数SECTYPE,3,BEAM,I, , 0 ! 定义⼯字型截⾯SECOFFSET, CENT !截⾯质⼼不偏移SECDATA,0.3,0.3,0.4,0.012,0.012,0.012,0,0,0,0 !定义⼯字型截⾯参数2.5 定义实常数Main Menu>Preprocessor>Real Constants>Add/Edit/DeleteR,2,0.0141,0.128E-3,0.415E-3,0.4,0.4R,3,0.0117,0.541E-4,0.324E-3,0.3,0.4R,4,0.32.6 定义材料属性MP,EX,1,2.1E11 ! 定义钢材的材料属性MP,PRXY,1,0.3MP,DENS,1,7800MP,EX,2,3.5E10 ! 定义混凝⼟的材料属性MP,PRXY,2,0.1667 MP,DENS,2,25002.7 创建有限元模型2.7.1 ⽣成半跨桥的节点N,,0,0,-5NGEN,4,4,ALL,,,12,,,1NGEN,2,1,ALL,,,,,10,1NGEN,2,1,2,10,4,,16,,1NGEN,2,1,3,11,4,,,-10,12.7.2 ⽣成半跨桥单元TYPE,1MAT,1REAL,1ESYS,0SECNUM,1 !选择截⾯编号TSHAP,LINE !选择线性单元E,11,14 E,12,13TYPE,1MAT,1REAL,2ESYS,0SECNUM,2 !选择截⾯编号TSHAP,LINE !选择线性单元E,2,6 E,6,10E,10,14E,1,5E,5,9E,3,7E,7,11E,4,8E,8,12E,1,2E,3,4E,5,6E,7,8E,9,10E,11,12E,13,14TYPE,1MAT,1REAL,3ESYS,0SECNUM,3 !选择截⾯编号TSHAP,LINE !选择线性单元E,3,6E,6,11E,4,5E,5,12E,2,3E,1,4E,6,7E,5,8E,10,11E,9,12TYPE,2MAT,2REAL,4ESYS,0SECNUM,3 !选择截⾯编号TSHAP,QUAD !选择四边形单元E,1,2,6,5 E,5,6,10,9E,9,10,14,13Main Menu>Preprocessor>Modeling>Reflect>NodesNSYM,X,14,ALL ! 所有节点以YOZ 平⾯对称ESYM,,14,ALL !所有单元以YOZ 平⾯对称2.7.4 合并重合节点和单元NUMMRG,ALL,,,,LOW ! 合并重复节点单元,编号取较⼩者NUMCMP,ALL ! 压缩节点单元等编号2.7.5 保存模型并退出前处理器SA VE,’mo_xing’,’db’FINISH2.8 施加位移约束/SOL2.8.1 施加位移约束NSEL,S,,,23,24 ! 选择左端节点D,ALL,,,,,,UX,UY,UZ ! 对左端节点施加位移约束NSEL,S,,,13,14 ! 选择右端节点D,ALL,,,,,,UY,UZ ! 对右端节点施加位移约束2.8.2 施加集中⼒NSEL,S,,,1,2 ! 选择中间节点F,ALL,FY,-100000 ! 对中间节点施加竖向集中⼒荷载2.8.3 施加重⼒ALLSEL,ALLACEL,0,10,0 ! 施加重⼒2.9 求解计算ANTYPE,0SOLVEFINISH2.10 查看计算结果2.10.1 查看结构变形图/POST1PLDISP,2 ! 显⽰结构变形图2.10.2 云图显⽰位移PLNSOL,U,SUM,0,1 ! 显⽰总位移云图Main Menu>General Postproc>Plot Results>Vector Plot>PredefinedPLVECT,U,,,,VECT,NODE,ON,0 ! 显⽰节点总位移⽮量图2.10.4 显⽰结构内⼒图2.10.4.1 定义单元表Main Menu>General Postproc>Element Table>Define TableETABLE,zhouli_i,SMISC,1 ! 定义单元表轴⼒ETABLE,zhouli_j,SMISC,7ETABLE,jianli_i,SMISC,2 ! 定义单元表剪⼒ETABLE,jianli_j,SMISC,8ETABLE,wanju_i,SMISC,6 ! 定义单元表弯矩ETABLE,wanju_j,SMISC,122.10.4.2 列表单元表结果PRETAB, zhouli_i, zhouli_j, jianli_i, jianli_j, wanju_i, wanju_j ! 列表显⽰单元表结果Main Menu>General Postproc>Plot Results>Contour Plot>Line Elem ResPLLS, zhouli_i, zhouli_j,1,0 ! 显⽰轴⼒图。
用ANSYS进行桥梁结构分析..
用ANSYS进行桥梁结构分析谢宝来华龙海引言:我院现在进行桥梁结构分析主要用桥梁博士和BSACS,这两种软件均以平面杆系为计算内核,多用来解决平面问题。
近来偶然接触到ANSYS,发现其结构分析功能强大,现将一些研究心得写出来,并用一个很好的学习例子(空间钢管拱斜拉桥)作为引玉之砖,和同事们共同研究讨论,共同提高我院的桥梁结构分析水平而努力。
【摘要】本文从有限元的一些基本概念出发,重点介绍了有限元软件ANSYS平台的特点、使用方法和利用APDL语言快速进行桥梁的结构分析,最后通过工程实例来更近一步的介绍ANSYS进行结构分析的一般方法,同时进行归纳总结了各种单元类型的适用范围和桥梁结构分析最合适的单元类型。
【关键词】ANSYS有限元 APDL结构桥梁工程单元类型一、基本概念有限元分析(FEA)是利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。
还利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。
有限元模型是真实系统理想化的数学抽象。
真实系统有限元模型自由度(DOFs)用于描述一个物理场的响应特性。
节点和单元1、每个单元的特性是通过一些线性方程式来描述的。
2、作为一个整体,单元形成了整体结构的数学模型。
3、信息是通过单元之间的公共节点传递的。
4、节点自由度是随连接该节点单元类型变化的。
单元形函数1、FEA 仅仅求解节点处的DOF 值。
2、单元形函数是一种数学函数,规定了从节点DOF 值到单元内所有点处DOF 值的计算方法。
3、因此,单元形函数提供出一种描述单元内部结果的“形状”。
4、单元形函数描述的是给定单元的一种假定的特性。
5、单元形函数与真实工作特性吻合好坏程度直接影响求解精度。
6、DOF 值可以精确或不太精确地等于在节点处的真实解,但单元内的平均值与实际情况吻合得很好。
7、这些平均意义上的典型解是从单元DOFs 推导出来的(如,结构应力,热梯度)。
基于ANSYS的连续刚构桥地震响应分析
该连续刚构桥在模拟震动条件下全桥最大的位移响应与内力响应 。 研 究结果表明: 连续刚构桥 在 地震 波的影 响 下 , 墩 梁 固结处 内力 响应 较其他 位 置响 应 最为 明显 ; 就地 震 波对 连 续刚构 桥 影
响程 度 而言 , 纵桥 向地震 波影 响程 度 大 于竖桥 向及 横桥 向地 震 波 ; 在连 续刚构桥 设 计施 工过 程 中,建议 严格 控制 墩 梁 固结处材 料 选 用及 施 工质 量控 制 ,保 证桥 梁在震 动情 况 下仍 处安 全 状
2 0 1 4年 第 1 期
罗 强: 基于A NS YS的连 续 刚构桥地 震 响应 分析
1 . 2 E _ 旬l 1 . 0 B删 & 6 . a }0 已 屯 0 眦 Z a Q ' 彻
・ 6 7 ・
节点划分及材料赋值基本参数如表 2 所示 。
表2 A N S Y s 计算模型单元格划分及材料参数
形式为单箱单室截面 , 截面呈现抛物线形变化分布 , 其基 本 参数 如表 1 所示。
表 1 连 续 刚 构 桥 基 本 参 数
i边跨 1
中跨
边跨 2
桥墩
梁宽 混凝土等级
震动状态条件下 , 其主跨跨 中、 墩梁固结处 的位移以 及 加 速度 以及 内力 响应 ,为连续 刚构 桥设 计及 施 工 过程 中质量控制提供一定的理论依据和技术参考 。
际 问题 的步骤一 般 如下 :
a 1 采用前 处理模块 P R E P 7 定义参 数与建立有
限元 三维模 型 。
力合理 以及外观美观 , 是大型桥梁建设发展的关键 , 也是桥梁工作者研究的重点。本研究为了较好地分 析连续刚构桥在地震作用条件下 ,整桥 内力及位移 等响应变化情况 , 通过采用 A N S Y S 有限元命令流将
基于 ANSYS 的变截面连续钢构桥梁分析
基于ANSYS 的变截面连续钢构桥梁分析摘要:本文主要基于大型通用有限元软件ANSYS,对某高速公路段上三跨变截面连续钢构桥梁进行三维仿真并对其进行力学分析。
通过其后处理器及其它操作绘制出墩梁固结处弯矩影响线和跨中弯矩及挠度影响线,以便于确定最不利布载位置以及为更进一步的分析做基础。
关键词:ANSYS变截面连续钢构桥梁分析引言为加快国家经济的发展亟待兴建高速公路以满足日益增加的交通需求,当面对需要跨越高山峡谷地带则需修建桥梁。
而对于需要修建高墩才能够满足要求时且跨径在200m 左右的桥梁,连续钢构桥梁无疑是最佳选择,而用变截面形式不仅减轻了结构自重增大跨度又节约了成本。
在兴建之前对桥梁进行分析,就是要找出最不利位置,然后在最不利位置处加载得出结构的极限承载力,然后在此基础上进行设计。
而绘制结构内力影响线是找出结构最不利位置的方法之一,也是比较容易实现的。
所谓影响线,即单位力在结构上移动时,随着其位置的改变,结构中的某一量值(如支座反力、杆件截面内力或结点位移等)也将相应地产生变化规律的函数图形(曲线),称为结构中某量值的影响线。
而当实际荷载移动到某个位置时使得某量值达到最大(或最小)值,此时的荷载位置即为该量值的最不利荷载位置。
一、建模思想及过程绘制影响线的方法有静力法和机动法两种。
根据影响方程来绘制影响线的方法叫静力法,用绘制位移图的方法来得到影响线的方法叫机动法。
而基于ANSYS 平台绘制影响线主要步骤有:(1) 建立有限元模型,(2) 用循环语句进行加载,(3) 进入后处理器提取数据并加以分析,绘制出结构某量值的影响线。
现对某高速公路段处(32+188+32m)三跨变截面连续钢构桥梁进行分析。
为简化计算,本模型选取可自定义截面的BEAM189 三维梁单元进行建模。
下图Ⅰ和图Ⅱ分别为桥梁整体有限元模型和箱梁局部有限元模型。
其建模关键命令流如下:/PREP7 ! 进入前处理器*DO,I,1,60 ! 建立截面循环SECTYPE,I,BEAM,MESH! 定义截面类型SECREAD,%I%,,,MESH !I 端自定义截面SECOFFSET,USER,0,(I+1)*(I-1.5)/100! 用户自定义梁截面偏移SECREAD,%T%,,,MESH!J 端自定义截面SECOFFSET,USER,0,I*(I+2.5)/100! 用户自定义梁截面偏移SECTYPE, I,TAPER ! 定义变截面梁*ENDDO/SOLU*DO,I,1,252 ! 循环施加荷载FDELE,ALL,ALLALLSELNSEL,S,LOC,X,I*1 ! 选择施加单位荷载的节点F,ALL,FY,-1! 施加单位力ALLSELNSUBST,1OUTRES,ALL,ALLSOLVE*ENDDOFINISH城市建设理论研究•93•城市建设理论研究2011 年8 月 5 日ChengShiJianSheLiLunYanJiu•理论研究•图 1. 桥梁整体有限元模型图 4.跨中挠度影响线图 2. 箱梁局部有限元模型二、变截面连续刚构桥梁分析进入ANSYS 后处理器,通过PLV AR 命令可以绘制图形,亦可通过PRV AR 命令提取数据后通过三方绘图软件(ORIGIN)绘制量值影响线。
基于ANSYS的桥梁结构自重仿真分析(图文)
基于ANSYS的桥梁结构自重仿真分析(图文)论文导读:桥梁结构本身的自重时常占桥梁结构所受荷载的很大部分。
本文用大型通用软件ANSYS模拟某连续刚构桥箱梁桥自重为例来说明ANSYS软件在这方面的应用。
关键词:有限元,ANSYS,箱梁桥,自重在桥梁结构分析中,桥梁结构本身的自重时常占桥梁结构所受荷载的很大部分,准确模拟桥梁结构自重是常遇问题,桥梁中对等截面连续梁可看成均布荷载,但如果结构形状复杂—例如,变截面连续梁等,若沿桥梁轴线方向按均布荷载处理就不甚合理。
本文用大型通用软件ANSYS模拟某连续刚构桥箱梁桥自重为例来说明ANSYS软件在这方面的应用。
1.ANSYS软件及其工作流程ANSYS软件是融结构、流体、电场、磁场、声场分析于一体的大型通用有限元分析软件,由世界上最大的有限元分析软件公司之一的美国ANSYS开发,对自然界四大场—力场、流场、热场、磁场实现全面分析;ANSYS用户涵盖了机械、航空航天、能源、交通运输、土木建筑、水利、电子、地矿、生物医学、教学科研等众多领域,ANSYS是这些领域进行国际国内分析设计技术交流的分析平台,是一个功能强大的有限元分析程序[1,2,3]。
ANSYS主要由前置处理(Preprocessing)、解题程序(solution)、后置处理(Postprocessing)以及时间历程等组成,在前处理方面,ANSYS的实体建模功能比较完善,提供了完整的布尔运算,还提供了拖拉、延伸、旋转、移动、延伸和拷贝实体模型图元的功能[1,2,3]。
论文参考。
在此,采用了ANSYS对该桥的温度效应进行仿真分析。
ANSYS具有丰富的单元库和材料库,可以对任意结构形式的桥梁进行全桥仿真分析,较为精确的反映出桥梁在各种因素下的综合特征,如桥梁的应力应变分布、变形等等。
2.工程实例某桥桥梁全长287.54m。
主桥上部采用35m+60m+90m+60m+35m 预应力混凝土刚构-连续箱梁体系;主桥主墩采用双薄壁式墩,主桥边墩采用板式桥墩。
基于 ANSYS 的变截面异形连续梁桥裂缝和挠度验算
1 . 2 顶、 底板 裂 缝
顶、 底 板裂缝主要分为横 向裂 缝和纵 向裂缝 。顶板 的横 向裂 形 。箱梁腹板在 畸变 的作用 下会 产生 竖 向正 应力 导致 腹板 出现 。 缝 主要 出现于桥墩 支座位置附近 , 底板 的横 向裂缝 主要 出现于跨 水 平 裂 缝 J
中和 L / 4位 置 附近 。顶 、 底板 横缝 严重 时还 会延 伸 至腹 板 , 使腹 2 . 2 顶、 底 板 裂缝 的产 生原 因
箱梁桥裂缝 的主要类型、 分 布以及 处理措施 , 为实际工程应 用提供参考 。 关键词 : P C连 续箱梁桥 , 裂缝 , 原 因, 主拉应 力, 加固
中 图分 类 号 : U 4 4 9 . 7 文献 标 识 码 : A
0 引言
板 出现 竖 向裂 缝 。 顶 板 纵 向 裂 缝 通 常 出 现 于 跨 中 合 龙 段 以 及 接
2 P C 连续 箱 梁桥 常见 裂缝产 生原 因分析 1 . 1 腹 板 裂 缝 腹板裂缝按其形态 可以分为斜 向裂缝 和水 平裂缝 , 其 裂缝分 2 . 1 腹板 裂缝 的产 生原 因
布大致可 以分为 3种情况 : 1 ) 腹板斜 向裂缝一般 出现 于边 跨和 中 腹板斜裂缝最 主要 的原因是主拉应 力过大 , 超过 了混凝 土 的
1 P C 连续箱 梁 桥 常见裂 缝分 布情 况
通常情况下 , 预应力混 凝 土连 续箱 梁桥 的 腹板 、 顶板、 底板、
1 . 4 横 隔板 裂缝
横隔板过人孔周 围会 出现放 射状裂缝 , 除 了此放射 状裂缝 还
会在过人孔正上方 和两侧出现竖向裂缝 。
横 隔板以及锚 固齿板会 出现不同形式 的裂缝 。
之间腹板上缘 ; 3 ) 腹 板斜 向裂 缝 和水 平裂应力也会引起腹板斜裂缝 。
(整理)利用ANSYS生成变截面箱梁.
利用ANSYS生成变截面箱梁Beam188/189 支持自定义的变截面1、首先建立变截面箱梁截面,并保存截面。
必须保证每个截面的关键点号相同,而且为保证生成的准确性,应尽量的使得关键点有足够多的数目。
2、要对截面进行面积分块,并指定各线段的段数,这样才能做出规整的箱梁截面网格划分,也就保证了变截面箱梁桥各截面的网格模式相同,建议对于变化急剧的两边截面应使得线足够的短。
并不是划分越密越可能成功,而是线越短越可能成功3。
通过梁节段两端对应的截面建立taper截面,定义好桥的线形后,指定每段线对应的taper截面。
4、可以用slist命令查看生成截面的性质,加深对secread 命令的理解以下例进行说明:Ⅰ-Ⅰ截面图全梁1/2图示Ⅰ-Ⅰ截面命令流finish/clear/prep7k,1k,2,2750k,3,3350,2400k,4,5450,2750k,5,6700,2850k,6,6700,3050k,7,0,3050k,8,0,280k,9,2359,280k,10,2886,2400k,11,1836,2750k,12,0,2750l,1,2l,2,3l,3,4l,4,5l,5,6l,6,7l,8,9l,9,10l,10,11l,11,12l,1,8l,7,12al,allarsym,x,all aadd,1,2 nummrg,all numcmp,all adele,1l,2,9l,13,20l,14,19l,10,3l,1,8al,22,17,25,19 al,25,1,21,7 lcomb,15,20 wpoffs,-5450,2750 wprota,,,90 lsbw,18wpcsys,-1 wpoffs,-3350,2400 wprota,,,90 lsbw,20wpcsys,-1 wpoffs,-2886,2400 wprota,,,90 lsbw,18wpcsys,-1l,15,18l,14,21l,19,22l,7,12al,14,13,18,26 al,18,12,29,27 al,29,23,30,28 al,30,15,31,20 lcomb,9,10 wpoffs,5450,2750 wprota,,,90 lsbw,6wpcsys,-1 wpoffs,3350,2400wprota,,,90 lsbw,32 wpcsys,-1 wpoffs,2886,2400 wprota,,,90 lsbw,6wpcsys,-1l,4,11l,3,23l,10,24al,5,4,6,10al,3,6,33,35al,24,35,34,36 al,9,36,32,31 ldiv,16,,,4 ldiv,11,,,4 ldiv,2,,,4ldiv,8,,,4l,30,27l,29,26l,28,25l,36,33l,35,32l,34,31al,23,42,49,39 al,49,41,50,38 al,50,40,51,37 al,51,11,22,16 al,24,48,52,45 al,52,47,53,44 al,53,46,54,43 al,54,8,21,2 nummrg,all numcmp,allet,1,82lesize,1,,,4 lesize,17,,,4 lesize,19,,,4 lesize,7,,,4 lesize,22,,,1 lesize,21,,,1 lesize,25,,,1 mshape,1,2d mshkey,2amesh,2 lesize,23,,,1 lesize,42,,,1 lesize,39,,,1 lesize,49,,,1 lesize,41,,,1 lesize,50,,,1 lesize,38,,,1 lesize,40,,,1 lesize,37,,,1 lesize,51,,,1 lesize,11,,,1 lesize,16,,,1 lesize,22,,,1 lesize,24,,,1 lesize,45,,,1 lesize,48,,,1 lesize,52,,,1 lesize,44,,,1 lesize,47,,,1 lesize,53,,,1 lesize,43,,,1 lesize,46,,,1 lesize,54,,,1 lesize,2,,,1 lesize,8,,,1 lesize,21,,,1 mshape,0,2d mshkey,1 amesh,11 amesh,12 amesh,13 amesh,14 amesh,15 amesh,16 amesh,17 amesh,18 lesize,13,,,2 lesize,26,,,2 lesize,14,,,1 lesize,18,,,1 mshape,1,2d mshkey,2lesize,12,,,3 lesize,27,,,3 lesize,18,,,1 lesize,29,,,1 mshape,1,2d mshkey,2 amesh,4 lesize,23,,,1 lesize,29,,,1 lesize,30,,,1 lesize,28,,,1 mshape,0,2d mshkey,2 amesh,5 lesize,30,,,1 lesize,20,,,4 lesize,31,,,1 lesize,15,,,4 mshape,1,2d mshkey,2 amesh,6 lesize,31,,,1 lesize,9,,,4 lesize,36,,,1 lesize,32,,,4 mshape,1,2d mshkey,2 amesh,10 lesize,35,,,1 lesize,34,,,1 lesize,24,,,1 lesize,36,,,1 mshape,0,2d mshkey,2 amesh,9 lesize,6,,,1 lesize,35,,,1 lesize,3,,,3 lesize,33,,,3 mshape,1,2d mshkey,2 amesh,8 lesize,6,,,1lesize,5,,,1lesize,10,,,2lesize,4,,,2 mshape,1,2dmshkey,2amesh,7secwrite,mybox1主命令流finish/clear/prep7k,5000,7800k,5001,8851k,5002,9899k,5003,10800k,5004,12300k,5005,0l,5000,5001l,5001,5002l,5002,5003l,5003,5004l,5000,5005k,100,8300,4000k,101,9500,4000k,102,10000,4000et,1,beam189mp,ex,1,3.0e10mp,prxy,1,0.167 sectype,1,beam,mesh secread,mybox1,,,mesh sectype,2,beam,mesh secread,mybox2,,,mesh sectype,3,taper secdata,1,7800 secdata,2,8851et,2,beam189mp,ex,2,3.0e10mp,prxy,2,0.167 sectype,4,beam,mesh secread,mybox2,,,mesh sectype,5,beam,mesh secread,mybox3,,,mesh sectype,6,taper secdata,4,8851secdata,5,9899et,3,beam189mp,ex,3,3.0e10mp,prxy,3,0.167 sectype,7,beam,mesh secread,mybox3,,,mesh sectype,8,beam,mesh secread,mybox4,,,mesh sectype,9,taper secdata,7,9899 secdata,8,10800et,4,beam189mp,ex,4,3.0e10mp,prxy,4,0.167 sectype,10,beam,mesh secread,mybox4,,,mesh et,5,beam189mp,ex,5,3.0e10mp,prxy,5,0.167 sectype,11,beam,mesh secread,mybox1,,,mesh lesize,1,,,2lesize,2,,,2lesize,3,,,2lesize,4,,,2lesize,5,,,8allsellsel,s,line,,1latt,1,,1,,100,,3 allsellsel,s,line,,2latt,2,,2,,101,,6 allsellsel,s,line,,3latt,3,,3,,102,,9allsellsel,s,line,,4latt,4,,4,,102,,10lsel,s,line,,5 latt,5,,5,,102,,11 lmesh,1,5,1allsellmesh,1,5,1/eshape,1eplot。
基于 ANSYS 的变截面异形连续梁桥裂缝和挠度验算
基于 ANSYS 的变截面异形连续梁桥裂缝和挠度验算张四国;闫旭【摘要】Based on the knowledge of FEM,3D Solid model of a special shaped continuous beam bridge was built using ANSYS considering the dead load,vehicle live load and temperature load conditions. Bridge deck stress distribution was explored under single operating condition and the most unfavorable conditions combination. Results were compared with the allowable values. Research shows that the bridge works in good condi-tion and longitudinal cracks,0. 08 mm in width,appeares at some parts of the bridge. The maximum crack width meet the specification requirements.%基于有限元法的相关知识,利用ANSYS软件对某异形连续梁桥进行了实体有限元建模及静力分析,考虑了恒载、车辆活载和温度荷载等工况,探索了桥梁在单一工况及最不利工况组合下桥面板的应力分布情况,并与规范容许值进行了对比和抗裂验算,结果表明,桥面受力状况良好,部分区域出现宽度为0.08 mm的纵向裂缝,但最大裂缝宽度满足规范要求。
【期刊名称】《山西建筑》【年(卷),期】2015(000)019【总页数】3页(P151-152,153)【关键词】有限元;变截面;连续梁;结构分析【作者】张四国;闫旭【作者单位】天津市市政工程设计研究院,天津 300051;天津市市政工程设计研究院,天津 300051【正文语种】中文【中图分类】U441公路桥涵的设计要满足技术先进、安全可靠、耐久适用和经济合理等要求[1],其中安全性是设计的第一原则。
钢筋混凝土变截面梁有限元仿真分析
钢筋混凝土变截面梁有限元仿真分析打开文本图片集摘要:变截面构件在工程实践中得到了越来越广泛的应用,尤其是在大跨度桥主梁设计中,常采用变截面。
其优点在于构件随着弯矩及剪力的分布变化而合理地变化截面,从而达到了节约材料、降低成本的目的。
利用大型有限元软件ANSYS对变截面梁进行了静力分析,以期为相关工程提供参考。
关键词:桥梁;变截面连续箱梁;有限元分析Keyword:bridge;continuoubo某girderwithvariablecroection;finiteelementanalyi0引言桥梁作为线路的一个重要组成部分,随着时间的流逝,每当运输工具发生改变时,都会对桥梁的性能等各方面提出更高的要求,由此便推动了桥梁工程技术的发展。
在新桥设计、桥梁施工监控和成桥试验检测中,应力、应变,挠度计算都极其重要。
随着桥梁结构的日益复杂,传统计算方法由于耗时耗力,效率低下且精确度低,已经无法满足现代桥梁施工的需要,ANSYS具有计算功能强大、建模方便及计算结果直观等优点,近年来,得到越来越多桥梁建设者和研究者的重视[1]。
本文利用ANSYS10.0软件对某钢筋砼变截面连续箱梁桥进行有限元分析,将一个连续介质体的问题近似地离散为由适当选取的有限个单元、有限个结点连接起来的集合体加以分析,用主梁的一些重要截面的弯矩作为控制条件,首先简化工程问题,抽象模型,确定定解数据,然后根据待分析问题的数学力学模型和有限元软件的功能,输入待分析问题的定解数据,并进行有限元剖分,形成分析问题的有限元模型,使用选定的有限元软件进行分析。
主要包括单元分析,约束处理,求解,计算结果的后处理,得到其应力、变形分布规律。
1有限元模型某桥梁全长1161.8m,上部构造主桥为(60+3某96+60)m。
桥面宽度是13.7m保持不变,如图1。
纵梁的截面,如图2所示。
本文采用实体建模,自由分网。
采用单元类型是SOLID65。
为计算简便和建模方便,在整个建模及分析过程中,材料视为单一材料的混凝土,即将其简化为匀质,不考虑钢筋、预应力及预应力拱的作用。
变截面连续钢箱梁桥计算说明
钢箱梁桥结构整体分析计算说明一、工程概况由于详细地形图暂时空缺,桥梁的结构形式采用变截面连续梁,桥梁分跨暂定为45m+130m+45m,桥宽定为10m。
二、结构建模2.1 确定横断面全桥主梁采用变截面钢箱梁,箱梁断面如下:待定参数有顶板厚度t1,加劲肋厚度t2,腹板厚度t3,底板厚度t4,梁高h。
由于目前仅进行纵向整体计算,截面的挑梁和腹板加劲肋并未绘出。
全桥t2定为16mm,t3定为20mm,支点处h定为5.4m,跨中处h定为2.5m。
2.2 截面、材料、单元采用Midas Civil软件进行结构建模分析,选用Q420钢。
截面采用截面特性计算器导入cad中的箱梁线型,再定义宽度并计算截面特性。
以1m一个单元对结构进行划分,并在支点左右各1-2m处按0.5m划分单元,单元划分图如下:2.3 边界条件在两边跨处均设置活动支座,在1号墩处设置固定支座,在2号墩处设置活动支座,全桥的边界条件如下图:2.4 作用及荷载组合全桥计算考虑的作用有:自重、二恒、人群、工程抢险车的荷载、整体升温、整体降温、压重、支座不均匀沉降。
其中自重作用考虑横隔板以及腹板加劲肋的重量,自重系数采用1.2;二恒分为铺装,灯以及栏杆作用,其中6m宽度采用20kN/m2计算,4m宽度采用8kN/m2计算,合计得到为152kN/m;人群荷载采用4.5kN/m2计算,宽度为6.0m,求得为27kN/m;工程抢险车荷载考虑为一列城-A车道荷载;整体升降温分别定为30℃;压重的荷载由模型不考虑压重荷载计算得边跨的支座负反力得,在边跨10m 范围内填满砼进行压重,求得为362.5kN/m;支座不均匀沉降定为5mm。
荷载组合时人群荷载和车道荷载不叠加,整体升温和整体降温不叠加,所以荷载组合分别为:(1)自重+二恒+人群+升温+支座沉降+压重;(2)自重+二恒+城-A+升温+支座沉降+压重;(3)自重+二恒+人群+降温+支座沉降+压重;(4)自重+二恒+城-A+降温+支座沉降+压重;最后对组合1~4进行包络得到最后的荷载组合取值。
连续梁桥ansys命令流(仅供参考)
!!连续梁桥/prep7et,1,4 !!!!定义梁单元et,2,21 !!!!定义mass21单元!!定义粱材料!!泊松比!!密度mp,ex,2,3.45e10 !!直线段梁材料和1M段梁材料mp,nuxy,2,0.2mp,dens,2,3302.153125mp,ex,3,3.45e10mp,nuxy,3,0.2mp,dens,3,3301.658695mp,ex,4,3.45e10mp,nuxy,4,0.2mp,dens,4,3299.906778mp,ex,5,3.45e10mp,nuxy,5,0.2mp,dens,5,3298.327219mp,ex,6,3.45e10mp,nuxy,6,0.2mp,dens,6,3292.351605mp,ex,7,3.45e10mp,nuxy,7,0.2mp,dens,7,3284.137255mp,ex,8,3.45e10mp,nuxy,8,0.2mp,dens,8,3271.802136mp,ex,9,3.45e10mp,nuxy,9,0.2mp,dens,9,3260.41903mp,ex,10,3.45e10mp,nuxy,10,0.2mp,dens,10,3248.193657mp,ex,11,3.45e10mp,nuxy,11,0.2mp,dens,11,3235.117644mp,ex,12,3.45e10mp,nuxy,12,0.2mp,dens,12,3221.585664mp,ex,13,3.45e10mp,nuxy,13,0.2mp,dens,13,3208.826871mp,ex,14,3.45e10mp,nuxy,14,0.2mp,dens,14,3194.279207mp,ex,15,3.45e10mp,nuxy,15,0.2mp,dens,15,3179.924673mp,ex,16,3.45e10mp,nuxy,16,0.2mp,dens,16,3166.445716mp,ex,17,3.45e10mp,nuxy,17,0.2mp,dens,17,3152.555731mp,ex,18,3.45e10mp,nuxy,18,0.2mp,dens,18,3138.312105mp,ex,19,3.45e10mp,nuxy,19,0.2mp,dens,19,3124.795334mp,ex,20,3.45e10mp,nuxy,20,0.2mp,dens,20,3110.7135mp,ex,21,3.45e10mp,nuxy,21,0.2mp,dens,21,3097.080875mp,ex,22,3.45e10mp,nuxy,22,0.2mp,dens,22,3083.186268mp,ex,23,3.45e10mp,nuxy,23,0.2mp,dens,23,3068.968824mp,ex,24,3.45e10mp,nuxy,24,0.2mp,dens,24,3055.612436mp,ex,25,3.45e10mp,nuxy,25,0.2mp,dens,25,3045.857147mp,ex,26,3.45e10mp,nuxy,26,0.2mp,dens,26,3035.174287mp,ex,27,3.45e10mp,nuxy,27,0.2mp,dens,27,3026.696551mp,ex,28,3.45e10mp,nuxy,28,0.2mp,dens,28,3015.795365mp,ex,29,3.45e10mp,nuxy,29,0.2mp,dens,29,3007.710181mp,ex,30,3.45e10mp,nuxy,30,0.2mp,dens,30,3000.513837mp,ex,31,3.45e10mp,nuxy,31,0.2mp,dens,31,2978.611375 mp,ex,32,3.45e10mp,nuxy,32,0.2mp,dens,32,2958.618861mp,ex,33,3.45e10mp,nuxy,33,0.2mp,dens,33,2937.888072mp,ex,34,3.45e10mp,nuxy,34,0.2mp,dens,34,2919.475751mp,ex,35,3.45e10mp,nuxy,35,0.2mp,dens,35,2903.359983 !!6700处mp,ex,36,3.45e10mp,nuxy,36,0.2mp,dens,36,3302.153125 !!可以不用mp,ex,37,3.45e10mp,nuxy,37,0.2mp,dens,37,3302.153125mp,ex,38,3.45e10 !!-700处梁mp,nuxy,38,0.2mp,dens,38,3180.578901mp,ex,39,3.45e10 !!边支点横隔板mp,nuxy,39,0.2mp,dens,39,2868.674818mp,ex,40,3.45e10 !!合拢段横隔板mp,nuxy,40,0.2mp,dens,40,2868.674818mp,ex,41,3.45e10 !!中支点横隔板mp,nuxy,41,0.2mp,dens,41,2757.470588mp,ex,1,3.25e10 !!!!定义墩材料属性mp,nuxy,1,0.2mp,dens,1,2650!!定义实常数编号,面积,IYY,IZZ,宽,高,,RMORE,,抗扭惯距!!主梁截面r,1,11.851,28.52,215.151,16.95,4,, !!直线段rmore,,56.8972r,2,11.862,28.57,215.458,16.95,4.001,, !!截面100处rmore,,56.905r,3,11.871,28.91,215.622,16.95,4.009,,rmore,,57.345r,4,11.903,29.03,215.78,16.95,4.025,,rmore,,57.938r,5,11.932,29.626,215.88,16.95,4.049,,rmore,,58.502r,6,12.043,30.402,217.093,16.95,4.081,,rmore,,59.768r,7,12.199,31.407,218.899,16.95,4.121,,rmore,,61.445r,8,12.441,32.716,221.806,16.95,4.169,,rmore,,63.652r,9,12.673,34.21,224.418,16.95,4.226,,rmore,,66.058r,10,12.932,35.94,227.279,16.95,4.290,,rmore,,68.801r,11,13.221,37.941,230.512,16.95,4.362,,rmore,,71.948r,12,13.534,40.233,233.872,16.95,4.442,,rmore,,75.432r,13,13.843,42.747,237.133,16.95,4.530,,rmore,,79.173r,14,14.213,45.688,241.054,16.95,4.627,,rmore,,83.484r,15,14.598,48.964,245.004,16.95,4.731,,rmore,,88.155r,16,14.979,52.547,248.817,16.95,4.843,,rmore,,93.111r,17,15.393,56.562,252.927,16.95,4.963,,rmore,,98.528r,18,15.842,61.069,257.347,16.95,5.092,,rmore,,104.47r,19,16.293,65.992,261.673,16.95,5.228,,rmore,,110.742r,20,16.791,71.484,266.426,16.95,5.372,,rmore,,117.648r,21,17.303,77.568,271.225,16.95,5.525,, rmore,,124.861r,22,17.858,84.282,276.363,16.95,5.685,, rmore,,132.631r,23,18.464,91.768,281.923,16.95,5.854,, rmore,,141.068r,24,19.072,99.936,287.364,16.95,6.03,, rmore,,149.875r,25,19.524,108.482,291.159,16.95,6.214,, rmore,,158.46r,26,20.084,118.046,295.597,16.95,6.407,, rmore,,167.857r,27,20.536,128.202,298.9,16.95,6.607,, rmore,,177.137r,28,21.148,139.669,303.86,16.95,6.816,, rmore,,187.495r,29,21.626,151.737,307.186,16.95,7.032,, rmore,,197.507r,30,22.07,164.734,310.057,16.95,7.257,, rmore,,207.681r,31,23.541,182.225,323.433,16.95,7.490,, rmore,,223.527r,32,25.066,201.932,336.467,16.95,7.730,, rmore,,241.046r,33,26.871,223.700,351.448,16.95,7.979,, rmore,,257.765r,34,28.707,247.928,365.663,16.95,8.235,, rmore,,275.922r,35,30.533,274.36,378.934,16.95,8.500,, rmore,,294.461r,46,14.58,35.599,238.702,16.95,4,, rmore,,238.702!!横隔板截面!!边支点r,36,35.376,54.393,339.84,16.95,4.00,, rmore,,128.747!!合拢段r,37,35.376,53.405,339.84,16.95,4.00,, rmore,,127.015!!中支点r,38,71.981,454.871,543.871,16.95,8.5,, rmore,,684.565!!主墩截面!!截面1(实心)r,39,39.932,82.876,212.138,8,5,, rmore,,203.709!!截面(1/2空心)r,40,23.863,72.571,168.024,8,5,, rmore,,168.491!!截面3(空心)r,41,14.236,52.366,114.529,8,5,, rmore,,116.391!!边墩截面!!截面1(实心1)r,42,36.113,66.217,177.703,7.7,4.7,, rmore,,165.119!!截面2(空心1/2)r,43,20.753,35.743,99.711,7,4,, rmore,,88.486!!截面3(空心)r,44,9.103,16.082,45.911,6.5,3.5,, rmore,,39.39!!截面4(实心2)r,45,22.673,23.005,79.361,6.5,3.5,, rmore,,61.527!!截面5(1/2)空心2r,49,16,21.958,68.708,6.5,3.5,, rmore,,55.682!!建立第一跨梁节点xl=atan(1.029/80) n,1,0,n,2,2.25,2.25*xln,3,6,6*xln,4,9,9*xln,5,11,11*xln,6,13,13*xl-0.0045 n,7,15,15*xl-0.0135 n,8,17,17*xl-0.023 n,9,19,19*xl-0.038 n,10,21,21*xl-0.062 n,11,23,23*xl-0.092 n,12,25,25*xl-0.1275 n,13,27,27*xl-0.167 n,14,29,29*xl-0.2115 n,15,31,31*xl-0.261 n,16,33,33*xl-0.314 n,17,35,35*xl-0.3715 n,18,37,37*xl-0.435 n,19,39,39*xl-0.502 n,20,41,41*xl-0.5725 n,21,43,43*xl-0.648 n,22,45,45*xl-0.728 n,23,47,47*xl-0.8115 n,24,49,49*xl-0.8995 n,25,51,51*xl-0.9925 n,26,53,53*xl-1.0895 n,27,55,55*xl-1.1905 n,28,57,57*xl-1.325 n,29,59,59*xl-1.433 n,30,61,61*xl-1.5155 n,31,63,63*xl-1.6325 n,32,65,65*xl-1.7535 n,33,67,67*xl-1.879 n,34,69,69*xl-2.007 n,35,71,71*xl-2.1325 n,36,73,73*xl-2.2635 n,37,75,75*xl-2.399 n,38,77,77*xl-2.533 n,39,79,79*xl-2.631xl2=atan(0.7/140)local,11,0,80,80*xl-2.631,0,xl2nsym,x,35,5,39,1 !!复制粱结点从5到39结点编号增加35 csys,0n,75,149.6,0.15852local,12,0,150,0.15852,0,xl2nsym,x,36,40,75,1local,13,0,220,-1.6027,0nsym,x,111,1,111,1csys,0n,500,80,80*xl-2.631n,501,220,-1.6027n,502,360,-1.6148csys,0 !!返回普通坐标!!建立墩结点!!PM112边墩截面n,300,0,-2.165 !!(实心)2米长n,301,0,-4.365n,302,0,-9.365 !!(1/2空心)5M长n,303,0,-13.365n,304,0,-17.365n,305,0,-21.365n,306,0,-24.93n,307,0,-28.93n,308,0,-30.63!!PM113主敦截面n,309,80,0.5-6.665-0.8n,310,80,0.5-3.5-6.665 !!(实心)3.5mn,311,80,0.5-8.5-6.665 !!(1/2空心)5mn,312,80,0.5-12.5-6.665 !!(空心)4Mn,313,80,0.5-16.5-6.665 !!n,314,80,0.5-18.594-6.665n,315,80,0.5-22.594-6.665n,316,80,0.5-24.594-6.665+0.4!(实心)2m!!pm114主墩截面n,350,220,0.5-6.665-0.8 !n,351,220,0.5-3.5-6.665 !!(1/2空心)5m n,352,220,0.5-8.5-6.665 !!(空心)5mn,353,220,0.5-12.5-6.665 !!(空心)6.064M n,354,220,0.5-16.5-6.665 !!(1/2空心)4M n,355,220,0.5-19.294-6.665 !!(实心)2M n,356,220,0.5-23.294-6.665n,357,220,0.5-25.294-6.665+0.4local,13,0,220,-1.6027,0nsym,x,17,300,316,1csys,0!!生成边跨1mat,39real,36e,1,2mat,38real,46e,2,3mat,2real,1e,3,4e,4,5mat,2real,2e,5,6*do,i,3,35,1mat,ireal,ie,3+i,4+i*enddo*do,i,3,35,1mat,ireal,ie,38+i,39+i*enddo*do,i,3,35,1 mat,ireal,ie,74+i,75+i *enddo*do,i,3,35,1 mat,ireal,ie,114+i,115+i *enddo*do,i,3,35,1 mat,ireal,ie,149+i,150+i *enddo*do,i,3,35,1 mat,ireal,ie,185+i,186+i *enddomat,41 real,38e,39,500mat,41 real,38e,500,74mat,2real,2e,41,40mat,2real,1e,40,75mat,40 real,37 e,75,111mat,2 real,1 e,111,76mat,2 real,2 e,76,77mat,41 real,38 e,110,501mat,41 real,38 e,501,221mat,2 real,2 e,188,187mat,2 real,1 e,187,222mat,41 real,37 e,222,186mat,2 real,1 e,186,151mat,2 real,2 e,151,152mat,41 real,38 e,185,502mat,41 real,38 e,502,150mat,39 real,36 e,112,113mat,38 real,46 e,113,114mat,2 real,1e,114,115 e,115,116mat,2 real,2e,116,117!!建立桥墩!!边墩1 mat,1 real,42 e,300,301mat,1 real,43 e,301,302mat,1 real,44 e,302,303mat,1 real,44e,303,304mat,1 real,44 e,304,305mat,1 real,44 e,305,306mat,1 real,49 e,306,307mat,1 real,45 e,307,308!!主墩1 mat,1 real,39 e,309,310mat,1 real,40 e,310,311mat,1 real,41 e,311,312mat,1 real,41 e,312,313mat,1 real,41 e,313,314mat,1 real,40 e,314,315mat,1 real,39 e,315,316!!主墩2 mat,1 real,39 e,350,351mat,1 real,40 e,351,352mat,1 real,41 e,352,353mat,1 real,41 e,353,354mat,1 real,41 e,354,355mat,1 real,40 e,355,356mat,1 real,39 e,356,357!!主墩3 mat,1 real,39 e,326,327mat,1 real,40 e,327,328mat,1 real,41 e,328,329mat,1 real,41 e,329,330mat,1 real,41 e,330,331mat,1 real,40 e,331,332mat,1 real,39 e,332,333!!边墩2 mat,1 real,42 e,317,318mat,1 real,43 e,318,319mat,1 real,44 e,319,320mat,1 real,44 e,320,321mat,1 real,44 e,321,322mat,1real,44e,322,323mat,1real,49e,323,324mat,1real,45e,324,325!!添加质量惯距!!两米段质量惯距r,100,,,,1293348.4 !!100米处和直线段的质量惯距r,101,,,,1296019.6r,102,,,,1297493r,103,,,,1301181.8r,104,,,,1311723r,105,,,,1326622r,106,,,,1348967r,107,,,,1370728r,108,,,,1395061r,109,,,,1422801r,110,,,,1452757r,111,,,,1483258r,112,,,,1519733r,113,,,,1558030r,114,,,,1597229r,115,,,,1640292r,116,,,,1687605r,117,,,,1736625r,118,,,,1790923r,119,,,,1848602r,120,,,,1911418r,121,,,,1980562r,122,,,,2052690r,123,,,,2118097r,124,,,,2192307r,125,,,,2263641r,126,,,,2350704r,127,,,,2432292r,128,,,,2516392r,129,,,,2679987r,130,,,,2853514r,131,,,,3048284r,132,,,,3252032r,133,,,,3462506!!边跨直线3米段r,148,,,,1293348.4*3/2!!-700处3.75米段的质量惯距r,134,,,,2725866.2!!边支点横隔r,135,,,,2246142.5!!合龙段横隔r,136,,,,833679/2!!中支点横隔r,137,,,,5292760!!添加边墩质量惯距从上到下!!变截面实心2米段r,138,,,,1163498!!1/2空心5米段r,139,,,,1794766!!空心段4米r,140,,,,657211!!1/2空心4米段r,141,,,,1085079!!实心2米段r,142,,,,1064567!!添加主墩质量惯性距从上到下!!实心3米段r,143,,,,2345361!!1/2空心5米段r,144,,,,2869095!!空心4米段r,145,,,,1769087!!1/2空心4米段r,146,,,,2869095*4/5!!实心2米段r,147,,,,2345361*2/3!!在结点处加入质量惯性距!!边跨合龙段!左边边跨type,2real,135e,2type,2real,134e,3type,2real,148e,4type,2real,100e,5!!右边边跨type,2real,135e,113type,2real,134e,114type,2real,148e,115type,2real,100e,116!!对第一个主跨的循环*do,i,6,39,1type,2real,94+ie,i*enddo!!对第二个主跨的循环*do,i,41,74,1type,2real,59+ie,i*enddo!!对第3个循环*do,i,77,110,1type,2real,33+ie,i*enddo!!对第4个循环*do,i,188,221,1 type,2real,(-88)+ie,i*enddo!!对第5个循环*do,i,152,185,1 type,2real,i-52e,i*enddo!!对第6个循环*do,i,117,150,1 type,2real,(-17)+ie,i*enddo!!添加质量惯距到桥墩!!左边墩type,2real,138e,301type,2real,139e,302type,2real,140e,303type,2real,140e,304type,2real,140e,305type,2real,140e,306type,2 real,141 e,307type,2 real,142 e,308!!右边墩type,2 real,138 e,318type,2 real,139 e,319type,2 real,140 e,320type,2 real,140 e,321type,2 real,140 e,322type,2 real,140 e,323type,2 real,141 e,324type,2real,142e,325!!左边主墩type,2real,143e,310type,2real,144e,311type,2real,145e,312type,2real,145e,313type,2r,400,,,,1769087*3/4 e,314type,2real,146e,315type,2real,147e,316!!中间主墩type,2real,143e,351type,2real,144e,352type,2real,145e,353type,2real,145e,354type,2r,400,,,,1769087*3/4 e,355type,2real,146e,356type,2real,147e,357!!右边主墩type,2real,143e,327type,2real,144e,328type,2real,145e,329type,2real,145e,330type,2r,400,,,,1769087*3/4e,331type,2real,146e,332type,2real,147e,333!!添加横隔板处质量惯性距!!中支点type,2real,137e,500type,2real,137e,501type,2real,137e,502!!合龙段1type,2real,136e,75type,2real,136e,111type,2r,411,,,,1293348.4*3/10 e,40type,2r,412,,,,1293348.4*3/10 e,76!!合龙段2type,2real,136e,222type,2real,136e,186type,2r,411,,,,1293348.4*3/10 e,187type,2r,412,,,,1293348.4*3/10 e,151!!偶合结点cp,1,uy,1,300cp,2,uz,1,300cp,3,rotx,1,300cp,4,uy,309,500cp,5,uz,309,500cp,6,rotx,309,500cp,7,ux,350,501cp,8,uy,350,501cp,9,uz,350,501cp,10,rotx,350,501 cp,11,roty,350,501cp,12,uy,326,502cp,13,uz,326,502cp,14,rotx,326,502cp,15,uy,317,112cp,16,uz,317,112cp,17,rotx,317,112!!!!加约束d,308,all,all,0d,316,all,all,0d,357,all,all,0d,333,all,all,0d,325,all,all,0allselfinish!!!!求解/soluantype,2 !模态分析acel,,9.8 !加载重力modopt,subsp,20 !提取前30阶模态mxpand,20,,,0LUMPM,1solvefinish/post1set,list。
ANSYS分析钢筋混凝土桥塔
ANSYS分析钢筋混凝土桥塔本文件是同济大学老农同志计算成桥3年后恒荷载+活荷载工况1作用下的结构,推荐给大家:/prep7!—---—--————-———-—-—--——-———-—-------——-—-—-———-—-——--—-——--——-ET,1,SOLID187 !定义单元类型,采用10节点四面体单元!混凝土C40MP,EX,1,3。
25e4MP,NUXY,1,0。
2MP,DENS,1,2.5e—6!钢材MP,EX,2,2.06e5MP,NUXY,2,0。
3MP,DENS,2,7.85e—6!———-—-—--————---——---—————-—-—-----——-——————--—--——----——-—--—!下面开始实体建模!-—-———-—-————--—--—-—-—--———-—---—--——-—-—-—-—————-—————--—---!桩承台k,1,0, 0,0k,2,11000,0,0k,3,11000, 3500,0k,4,0, 3500,0k,5,0,0,2000k,6,11000,0,2000k,7,11000, 3500,2000k,8,0, 3500,2000V,1,2,3,4,5,6,7,8k,15,1000 ,0,3000k,16,10000,0,3000k,17,10000,2500,3000k,18,1000 , 2500,3000V,5,6,7,8,15,16,17,18k,21,3200 ,0 ,3000k,22,6850 ,0 ,3000k,23,6850 ,0 ,10920k,24,3200 ,0 ,10920k,25,3200 ,1500, 3000k,26,6850 ,1500, 3000k,27,6850 ,1100,10920k,28,3200 ,1100,10920V,21,22,23,24,25,26,27,28!------—--—-—----——----—-—---———-—---—--—-——-----—-—--———-———-—!主杆牛腿以下部分k,31,4200 ,0 ,3000k,32,4200 ,0 ,9120k,33,4200 ,1500, 9120k,34,4200 ,1500,3000A,31,32,33,34k,35,3200 ,0 ,10320k,36,3200 ,1500,10320A,32,33,36,35k,41,5592 ,0 ,6220k,42,5200 ,0 ,10920k,43,5592 ,1500,6200k,44,5200 ,1500,10920A,41,42,44,43k,45,6850 ,0 ,5065k,46,6850 ,1500,5065L,45,46LARC,41,45,23,1260,LARC,43,46,27,1260,AL,43,45,44,46ASEL,,,,18,21VSBA,3,allALLSEL,ALLVDELE,4VDELE,5NUMCMP,VOLU!-----———---—---——--—-——---—-———-—---——-—---—-——-———————---——-—!主杆牛腿以上部分k,51,4200 ,0 ,10920k,52,5200 ,0 ,10920k,53,5200 ,0 ,26600k,54,4200 ,0 ,26600k,55,4200 ,1100 ,10920k,56,5200 ,1100 ,10920k,57,5200 ,1100 ,26600k,58,4200 ,1100 ,26600V,51,52,53,54,55,56,57,58!-—----—-—----—-—--—-—--————————-—-—-—-———-——————-——-—-———————-!附杆牛腿以上部分k,61,5200 ,0 ,10920k,62,9050 ,0 ,10920k,63,9050 ,0 ,28000k,64,5200 ,0 ,28000k,65,5200 ,400 ,10920k,66,9050 ,400 ,10920k,67,9050 ,400 ,28000k,68,5200 ,400 ,28000V,61,62,63,64,65,66,67,68 k,69,5700 ,0 ,28000k,70,5700 ,400 ,28000L,69,70k,71,6798.82,0,25000k,72,6798.82,400,25000L,71,72LARC,69,71,61,45566, LARC,70,72,65,45566,AL,79,81,80,82k,73,8122.9,0,20000k,74,8122.9,400,20000L,73,74LARC,71,73,61,45566, LARC,72,74,65,45566,AL,80,84,83,85k,75,8861。
ANSYS变截面梁
注:此为网上下载文档,其中有许多看不太明白的地方,故按个人想法进行了更改,更改后的文档也许看的亦不明白,大概了解方法即可。
文档所在网址:/view/04e43ebbfd0a79563c1e722d.html一、前言变截面梁,即两端截面不同的梁。
在工程中通常将梁受力吃紧的一端采用较大的截面,另一端采用较小的截面,以实现等强度设计,节省原材料。
这种变截面梁生活中普遍存在,远至古代娶亲用的花轿轿杆、农村大车车辕,直至当今建筑钢结构中各种采光大蓬横梁(包括弯曲横梁)、各种连杆摇臂结构等。
特别是悬臂梁几乎处处可见,就连输电用的水泥电杆也做成根粗尖细的。
由于这种变截面梁在工程中普遍存在,在ANSYS程序结构分析中,专门设置了变截面梁单元的功能,使用起来特别方便。
具体操作过程在下面的实例分析中详细介绍。
自由度耦合即构件连接处两个节点的自由度(包括移动自由度和转动自由度)变化是一致的,主节点如何变化,从节点随着同样变化。
自由度耦合在静力分析时常用在连接件上,特别用在具有转动的连接件上。
例如:汽车挂挡手柄连接端的球铰,各种销钉与耳环的连接,各种转盘与转轴的连接等。
自由度耦合的概念与自由度释放的概念正好相反。
在ANSYS程序中没有自由度释放功能,只有自由度耦合功能,但用自由度耦合功能完全可以达到自由度释放的目的。
这种功能具体操作过程,也在下面的实例分析中详细介绍。
二、雨蓬计算分析该雨蓬结构是由11根变截面工字钢梁、1根等截面工字钢梁、3根圆管钢梁、1根槽钢梁和6根拉杆钢组成。
其结构如下:图1雨蓬结构1.原始数据(1)坐标数据关键点号XYZ1:0,0,02:0,0,63003:0,4500,0 (第一拉杆上端点)4:0,1000,0 (变截面梁Z轴方向)5:0,1000,0 (第一排工字钢Z轴方向)6:0,1000,6300(第六排槽钢Z轴方向)7: 0,0,4200 (拉杆与雨棚连接点,亦自由度耦合处)(2)材料数据主钢梁变截面工字钢:大端300×150×8×6,小端150×150×8×6第一横梁工字钢:150×100×8×6第二、第三、第四横梁圆管钢:Φ102×4 Ri=47 R0=51第五横梁槽钢:160×80×8×6拉杆:Φ102×4A=1231.5 =0.0001(3) 载荷由玻璃均布载荷计算而得:中间节点: F=5560N边节点: F=2780N角节点: F=1690N(4) 单元梁单元: BEAM188杆单元: LINK8(5) 边界条件主梁固定于墙上:位移和转角全约束;拉杆与主梁连接: 位移耦合,转角自由;拉杆与墙连接: 位移约束, 转角自由。
ANSYS软件分析钢结构
构件中点处的荷载-挠度 曲线,当荷载达到欧拉临 界荷载时,挠度突然增加。
构件顶点的荷载-位移曲线, 当荷载达到临界荷载时, 该点位移突然增加,向下移动。
把-27000改为-56000,得到屈曲前后的图像,注意, 改后的值不能过大。 • Finish$/clear$/prep7 • b=0.03$h=0.05$l=3$e=2.1e11$et,1,beam189 • mp,ex,1,e$mp,prxy,1,0.3 • sectype,1,beam,rect$secdata,b,h • k,1$k,2,,l$k,10,0,l/2,l/2$l,1,2 • latt,1,,1,,10,,1$lesize,all,,,20$lmesh,all • finish$/solu$dk,1,ux,,,,uy,uz,roty$dk,2,ux,,,,uz,roty • fk,2,fy,-56000$f,10,fx,50$pstres,on • solve$finish$/solu$antype,static$nlgeom,on • outres,all,all$nsubst,50$autots,on$lnsrch,on • solve$finish$/post26$/gropt,divy,10$/color,axes,8 • /color,curve,2$/axlab,x,deflection$/axlab,y,force • rforce,3,1,f,y$nsol,4,10,u,x$xvar,4$plvar,3 • /axlab,x,force$/axlab,y,displacement • rforce,5,1,f,y$nsol,6,2,u,y$xvar,5$plvar,6
跨中最大弯矩 其中
M0 Ql 4
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于NSYS 的变截面连续钢构桥梁分析并对其进行力学分析。
通过其后处理器及其它操作绘制出墩梁固结处弯矩影响线和跨中弯矩及挠度影响线,以便于
确定最不利布载位置以及为更进一步的分析做基础。
引言
为加快GJ经济的进展亟待兴建高速公路以满足
日益增加的交通需求,当面对需要跨越高山峡谷地带则
需修建桥梁。
而对于需要修建高墩才能够满足要求时且
跨径在200m 左右的桥梁,连续钢构桥梁无疑是最佳选
择,而用变截面形式不仅减轻了结构自重增大跨度又节
约了成本。
在兴建之前对桥梁进行分析,就是要找出最不利
位置,然后在最不利位置处加载得出结构的极限承载力,然后在此基础上进行设计。
而绘制结构内力影响线是找
出结构最不利位置的方法之一,也是比较容易实现的。
所谓影响线,即单位力在结构上移动时,随着其位置的
改变,结构中的某一量值(如支座反力、杆件截面内力
或结点位移等)也将相应地产生变化规律的函数图形(曲线),称为结构中某量值的影响线。
而当实际荷载移动
到某个位置时使得某量值达到最大(或最小)值,此时
的荷载位置即为该量值的最不利荷载位置。
一、建模思想及过程
绘制影响线的方法有静力法和机动法两种。
根据
影响方程来绘制影响线的方法叫静力法,用绘制位移图
的方法来得到影响线的方法叫机动法。
而基于NSYS
平台绘制影响线主要步骤有:(1) 建立有限元模型,(2) 用循环语句进行加载,(3) 进入后处理器提取数据并加
以分析,绘制出结构某量值的影响线。
现对某高速公路段处(32+188+32m)三跨变截面
连续钢构桥梁进行分析。
为简化计算,本模型选取可自
定义截面的BEM189 三维梁单元进行建模。
下图Ⅰ和
图Ⅱ分别为桥梁整体有限元模型和箱梁局部有限元模型。
其建模关键命令流如下:图1. 桥梁整体有限元模型图4.跨中挠度影响线
图2. 箱梁局部有限元模型
二、变截面连续刚构桥梁分析
进入NSYS 后处理器,通过PLVR 命令可以绘
制图形,亦可通过PRVR 命令提取数据后通过三方绘
图软件(ORIGIN)绘制量值影响线。
图Ⅲ和图Ⅳ为各
量值弯矩影响线。
由图3 和图4 可知,墩梁固结1 处弯矩、墩梁固
结2 处弯矩、跨中弯矩、跨中挠度影响值最大(或最小)分别为6.07573、4.40873、-9.30678、-9.68E-09。
并且能够从图中清楚地看出此时荷载所在的位置,即最不利
荷载位置。
荷载布置时只需根据已有量值的影响线使得
操纵截面所计算值达到最大即可。
三、结束语
本文利用NSYS 平台的二次开发功能,运用PDL 编写并绘制了变截面连续钢构桥梁的各量值的影
响线,并在此基础上得出荷载最不利布载方式。
基于本
方法讨论变截面连续钢构桥梁简单直观,对类似工程的
研究有一定借鉴意义,并且此种方法亦可用于大跨径桥
梁上,如斜拉桥的最不利荷载位置。