(完整word版)博弈论期末复习题
(完整word版)经济博弈论期末复习资料(word文档良心出品)
经济博弈论复习资料一、名词解释1、零和博弈:是指参与博弈的各方,在严格竞争下,一方的收益必然意味着另一方的损失,博弈各方的收益和损失相加总和永远为“零”,双方不存在合作可能的博弈。
2、常和博弈:是指各博弈方的得益之和是一个非零常数的博弈。
常和博弈中各博弈方之间利益关系也是对立的,博弈方之间的基本关系也是竞争关系。
3、纳什均衡:在博弈G={}n n u u S S ,,;,,11 中,如果由各个博弈方的各一个策略组成的某个策略组合()**1,,n s s 中,任一博弈方i 的策略*i s ,都是对其余博弈方策略的组合()**1*1*1,,,,,ni i s s s s +- 的最佳对策,也即()()**1**1*1**1**1*1,,,,,,,,,,,,n i ij i i n i i i i s s s s s u s s s s s u +-+-≥ 对任意i ij S s ∈都成立,则称 ()**1,,n s s 为G 的一个纳什均衡。
4、混合策略纳什均衡:包含混合策略的策略组合,构成纳什均衡。
5、纳什定理:在一个有n 个博弈方的博弈G={}n n u u S S ,,;,,11 中,如果n 是有限的,且i S 都是有限集(对i=1, ,n ),则该博弈至少存在一个纳什均衡,但可能包含混合策略。
(这个定理就是说,每一个有限博弈都至少有一个混合策略纳什均衡)6、帕累托上策均衡:是指帕累托效率意义上的优劣关系,因此用这种方法选择出来的纳什均衡,也称为“帕累托上策均衡”。
7、风险上策均衡:如果所有博弈方在预计其他博弈方采用两种纳什均衡的策略的概率相同时,都偏爱其中某一个纳什均衡,则该纳什均衡就是一个风险上策均衡。
8、子博弈:由一个动态博弈第一阶段以外的某阶段开始的后续博弈阶段构成的,有初始信息和进行博弈所需要的全部信息。
9、子博弈完美纳什均衡:如果在一个完美信息的动态博弈中,各博弈方的策略构成一个策略组合满足,在整个动态博弈及它的所有子博弈中都构成纳什均衡,那么这个策略组合称为该动态博弈的一个“子博弈完美纳什均衡”。
博弈期末考试题及答案
博弈期末考试题及答案一、选择题(每题2分,共20分)1. 博弈论中的“纳什均衡”是由哪位数学家提出的?A. 约翰·冯·诺伊曼B. 约翰·纳什C. 保罗·萨缪尔森D. 托马斯·谢林2. 以下哪个不是博弈论中的基本概念?A. 策略B. 收益C. 风险D. 均衡3. 在零和博弈中,一个玩家的损失等于另一个玩家的收益,那么这种博弈的总收益是:A. 正数B. 零C. 负数D. 无法确定4. 囚徒困境中,如果两个囚犯都选择背叛对方,那么:A. 他们都会受到最轻的惩罚B. 他们都会受到最重的惩罚C. 一个受到轻罚,另一个受到重罚D. 一个受到重罚,另一个获得释放5. 以下哪个是博弈论中的动态博弈?A. 石头剪刀布B. 囚徒困境C. 拍卖博弈D. 猎鹿博弈...(此处省略其他选择题)二、简答题(每题10分,共30分)1. 简述博弈论中的完全信息博弈和不完全信息博弈的区别。
2. 解释什么是“混合策略纳什均衡”,并给出一个例子。
3. 描述“公共品博弈”中的囚徒困境现象。
三、计算题(每题15分,共30分)1. 假设有两个玩家A和B,他们可以选择策略X或Y。
收益矩阵如下所示:| | X | Y |||||| X | 3,3 | 2,5 || Y | 5,2 | 4,4 |请计算并找出所有可能的纳什均衡。
2. 考虑一个重复博弈,其中两个玩家在每一轮中可以选择合作或背叛。
如果双方合作,他们各自获得收益R。
如果一方背叛而另一方合作,背叛者获得收益T,合作者获得收益S。
如果双方都背叛,他们各自获得收益P。
已知2R > T + S > R > P。
请证明在无限重复博弈中,存在一个策略组合,使得双方的长期收益都高于单次博弈的背叛收益。
四、论述题(20分)1. 论述博弈论在经济学中的应用,并给出两个具体的例子。
博弈期末考试题答案一、选择题答案1. B2. C3. B4. B5. D...(此处省略其他选择题答案)二、简答题答案1. 完全信息博弈是指所有玩家都完全知道博弈的结构和其他玩家的收益函数,而不完全信息博弈是指至少有一个玩家对博弈的结构或其它玩家的收益函数不完全了解。
博弈论期末考试试题及答案
博弈论期末考试试题及答案# 博弈论期末考试试题及答案一、选择题(每题2分,共20分)1. 博弈论中,参与者在没有沟通的情况下进行决策,这种博弈被称为:A. 完全信息博弈B. 不完全信息博弈C. 零和博弈D. 非零和博弈答案:B2. 纳什均衡是博弈论中的一个概念,它描述了一种什么样的状态?A. 所有参与者都获得最大收益的状态B. 至少有一个参与者能获得更大收益的状态C. 没有参与者能通过单方面改变策略来获得更大收益的状态D. 所有参与者都获得相同收益的状态答案:C3. 以下哪个不是博弈论中的策略类型?A. 纯策略B. 混合策略C. 随机策略D. 确定性策略答案:D4. 博弈论中的囚徒困境指的是:A. 参与者合作可以获得最优结果B. 参与者背叛可以获得最优结果C. 参与者合作可以获得次优结果,但背叛可以获得最优结果D. 参与者背叛可以获得次优结果,但合作可以获得最优结果答案:C5. 以下哪个不是博弈论中的基本概念?A. 参与者B. 策略C. 收益D. 概率答案:D...二、简答题(每题10分,共30分)1. 解释什么是博弈论,并给出一个实际生活中的例子。
答案:博弈论是研究具有冲突和合作特征的决策者之间互动的数学理论。
在实际生活中,博弈论的一个例子是拍卖。
在拍卖中,买家(参与者)需要决定出价(策略)以赢得商品(收益),同时考虑其他买家的出价策略。
2. 描述纳什均衡的概念,并解释为什么它在博弈论中如此重要。
答案:纳什均衡是指在非合作博弈中,每个参与者选择自己的最优策略,并且考虑到其他参与者的策略选择时,没有参与者能通过单方面改变策略来获得更大的收益。
纳什均衡在博弈论中非常重要,因为它提供了一种预测参与者行为的方法,即在均衡状态下,参与者没有动机去改变他们的策略。
3. 什么是完全信息博弈和不完全信息博弈?它们之间有什么区别?答案:完全信息博弈是指所有参与者都完全知道博弈的结构和其他参与者的收益函数。
而不完全信息博弈是指至少有一个参与者对博弈的结构或其它参与者的收益函数不完全了解。
博弈论期末复习题及答案
博弈论期末复习题乩设古诺模型中有丹ST厂商。
6为厂商j的产■念=如+…+幺为市场总产为市场出清价格,且己知P = P[Q) = Q_ 0(当时.否ffl'J P= OJo假设厂商f生产缶产■的总成本他"也就是说没有定成本且各厂商的边际成本都相同,为常数c(c <a人假设各厂商同时选择产■,该模型的纳什均衡是什么?当n趙向于无穷大时博弈分析是否仍然有效?(】)报据问题的假设可知各厂底的利润函数为;略=阿,f 5 * (农—比—工一〔G其中1=1,…,叽将利润函数对$求导并令其为0得:帶=& _ _ F _如=0%==(“—另野一门/2根据可个厂商之闾的对称性,可知g;=嘖=…=q:必然成立o 代入上述反应函数可解得:打十i因趾该博弈的纳什均術是所有用个厂商都生产产重—H+1(2)当川趙于无穷時,所分折的市场不再是一个寡头市场而是完全竞争市场』匕肘上述博弈分桁方法其实杲不适用的.史两if获古诺模型屮(a)= “一o等与上题相同,但两个厂商的边际成本不同■分别为G和6心如果。
<心<血2,问纳什均衡产■各为笫少?如果豺<衍<6怛2心>。
+眄•则纳忡均衡产■又为赛少?泰考答案丁(1)两个厂海的利润函数为:九=Z —5一(饶—0 —①)q f—厂忌将利润函数对产皐求导并令开为0得:—=a —7, ~ C, —2q, —0解得两个厂商的反应函数为:。
@ —如—(\ )/2或貝体芻成】Qi ==(吃—G —)/2仗=仏一q、G)/2(2)0 <G <:a/2时*我们粮据上述两个厂商的反应函数、直接求出两个厂商的纳什均衡产量分别为£灯—2门十C:曲-------- 3—a +<1 —2。
毎-一§—■(3)当G V-但2c,>a+c}时,粮据反应函数求出来的厂商2产毘小<0.这倉味晋厂裔2不矣生产”这时厂商1虑了垄断厂裔*厂商1的戢优产量选择是利润最大化的垄断产量,_ ◎—G因此这种情况下前纳什均衡为[3 —门)/2. 0]&=(10°_ % 一仇_ g』)® _ 2® =廻号——5勳=(100 _ Qi ~ Qi — qj)g7—2q2 = —_萇 --- 业血分别对务和他求偏导数并令为0得:说98 —£八矿一^一的"联立两个方稈可解得$ = g =98/3e再代入厂商3的反应函数得缶—(98 —g〔一如)/2 = 98/6o把三个厂商的产量代入各口的利润函数,可得三个厂商的利润分别为4 802/9、4 802/9 和2 401/9°乩三專头垄断帝场有倒转的需求函数为P(Q)=a-e.其中Q =弘+% +如皿是厂商i的产■态一个厂商生产的边际成本为常数耳没有固定成本。
博弈论复习题及答案完整版
博弈论复习题及答案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】一、名词解释(每题7分,共28分)1、逆向选择:逆向选择源于事前的信息不对称,经典例子就是“柠檬市场”——二手车市场,它使得市场资源逐渐流向低质量的产品或要素,最后形成劣货驱逐良货的局面,这种现象称之为“逆向选择”。
2、策略互动:所谓策略互动,就是参与人之间的策略相互影响、相互作用和相互制约。
用策略性思维来分析问题,从中找出合理策略,实现目标最优。
3、纳什均衡:对于博弈方而言,互为最优的策略选择就是纳什均衡。
4、信号发送:是指信息优势方不断发出信息的行为,就叫信号发送。
5、博弈论:研究人们如何进行决策,以及这种决策如何达到均衡(合理策略)的问题。
每个博弈者在决定采取何种行动时,不但要根据自身的利益和目的行事,还必须考虑到他的决策行为对其他人的可能影响,以及其他人的反应行为的可能后果,通过选择最佳行动计划,来寻求收益或效用的最大化。
二、简要回答问题(每题10分,共40分)1、博弈的基本要素有哪些?基本特点是什么?答:博弈的基本要素有:参与人、策略、行动顺序、信息、收益等五个要素。
博弈的基本特点则是需尽可能考虑到博弈对方的决策选择以及对自身的影响,并从中选择出对自身最有利的方案决策,从而达到收益和效用最大化。
2、什么是性别战博弈?请求出其中的纳什均衡?答:性别战博弈是不可调和的博弈,双方只有一方选择满足另外一方的要求才能达成均衡,也就是混合策略纳什均衡;故性别战博弈的纳什均衡会有两种情况,分别是:男生陪女生看电影以及女生陪男生看足球的两种选择。
3、猎鹿博弈反映的基本思想是什么?答:反应的基本思想是需要沟通和互相协调,因为只有合作才能猎到所需猎物。
4、什么是道德风险?有什么办法可以解决道德风险问题?答:道德风险是指委托-代理框架中,由于委托人无法直接观察代理人行动,造成信息不对称,从而出现代理人选择不利于委托人的行为的一种现象;解决道德风险的方法可以用签订合同、派人监督,以及采用激励等方式来进行解决,约束和激励机制。
博弈论期末复习题
一、支付矩阵1、试给出下述战略式表述博弈的纳什均衡BAU D解:由划线解得知有一个纯战略均衡(R D ,)再看看它是否有混合战略均衡 设B 以)1,(γγ-玩混合战略,则有 均衡条件:γγγ-=-+⋅=2)1(21)(U V A γγγ26)1(64)(-=-+⋅=D V A γγ262-=-得14>=γ,这是不可能的,故无混合战略均衡,只有这一个纯战略均衡。
2、试将题一中的支付作一修改使其有混合战略均衡解:由奇数定理,若使它先有两个纯战略均衡,则很可能就有另一个混合战略均衡。
BAU D将博弈改成上述模型,则)1(64)1(25γγγγ-+=-+ γγ2632-=+ 得 54=γ 同样,设A 的混合战略为)1,(θθ-,则2)1(25)1(16θθθθ-+=-⋅+θθ3251+=+ 21=θ 于是混合战略均衡为⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛51,54,21,21。
二、逆向归纳法1、用逆向归纳法的思路求解下述不完美信息博弈的子博弈精炼均衡1(5,8) (6,7) (2,0) (3,4) (1,2) (3,4) 解 1(5,8) (6,7) (2,0) (3,4) (1,2) (3,4) 设在1的第二个信息集上,1认为2选a 的概率为P ,则1选L '的支付P P P 32)1(25+=-+=1选R '的支付P P P P 3233)1(36+>+=-+=3故1必选R '。
⇒ 给定1在第二个决策结上选R ',2在左边决策结上会选a ,故子博弈精炼均衡为{}),(,,d a R L '四、两个厂商生产相同产品在市场上进行竞争性销售。
第1个厂商的成本函数为11q c =,其中1q 为厂商1的产量。
第2个厂商的成本函数为22cq c =,其中2q 为厂商2的产量,c 为其常数边际成本。
两个厂商的固定成本都为零。
厂商2的边际成本c 是厂商2的“私人信息”,厂商1认为c 在⎥⎦⎤⎢⎣⎡23,21上呈均匀分布。
博弈论复习题及答案
一、名词解释(每题7分,共28分)1、逆向选择:逆向选择源于事前的信息不对称,经典例子就是“柠檬市场”——二手车市场,它使得市场资源逐渐流向低质量的产品或要素,最后形成劣货驱逐良货的局面,这种现象称之为“逆向选择”。
2、策略互动:所谓策略互动,就是参与人之间的策略相互影响、相互作用和相互制约。
用策略性思维来分析问题,从中找出合理策略,实现目标最优。
3、纳什均衡:对于博弈方而言,互为最优的策略选择就是纳什均衡。
4、信号发送:是指信息优势方不断发出信息的行为,就叫信号发送。
5、博弈论:研究人们如何进行决策,以及这种决策如何达到均衡(合理策略)的问题。
每个博弈者在决定采取何种行动时,不但要根据自身的利益和目的行事,还必须考虑到他的决策行为对其他人的可能影响,以及其他人的反应行为的可能后果,通过选择最佳行动计划,来寻求收益或效用的最大化。
二、简要回答问题(每题10分,共40分)1、博弈的基本要素有哪些?基本特点是什么?答:博弈的基本要素有:参与人、策略、行动顺序、信息、收益等五个要素。
博弈的基本特点则是需尽可能考虑到博弈对方的决策选择以及对自身的影响,并从中选择出对自身最有利的方案决策,从而达到收益和效用最大化。
2、什么是性别战博弈?请求出其中的纳什均衡?答:性别战博弈是不可调和的博弈,双方只有一方选择满足另外一方的要求才能达成均衡,也就是混合策略纳什均衡;故性别战博弈的纳什均衡会有两种情况,分别是:男生陪女生看电影以及女生陪男生看足球的两种选择。
3、猎鹿博弈反映的基本思想是什么?答:反应的基本思想是需要沟通和互相协调,因为只有合作才能猎到所需猎物。
4、什么是道德风险?有什么办法可以解决道德风险问题?答:道德风险是指委托-代理框架中,由于委托人无法直接观察代理人行动,造成信息不对称,从而出现代理人选择不利于委托人的行为的一种现象;解决道德风险的方法可以用签订合同、派人监督,以及采用激励等方式来进行解决,约束和激励机制。
博弈论复习题及答案
博弈论复习题及答案1. 博弈论中,非合作博弈与合作博弈的主要区别是什么?答案:非合作博弈是指参与者之间没有约束性协议的博弈,每个参与者都独立地选择自己的策略以最大化自己的利益。
而合作博弈则允许参与者之间形成具有约束力的协议,共同合作以达到共同的目标。
2. 什么是纳什均衡?答案:纳什均衡是指在一个博弈中,每个参与者都选择了最优策略,并且考虑到其他参与者的策略后,没有参与者有动机单方面改变自己的策略。
3. 零和博弈与非零和博弈有何不同?答案:零和博弈是指博弈中所有参与者的收益总和为零,即一个参与者的收益必然导致另一个参与者的损失。
非零和博弈则是指参与者的收益总和不为零,参与者之间可能存在合作共赢的情况。
4. 如何判断一个博弈是否存在纯策略纳什均衡?答案:可以通过构建博弈的收益矩阵,然后寻找每个参与者在其他参与者策略给定的情况下的最佳响应策略。
如果存在一组策略,使得每个参与者在其他参与者策略不变的情况下,都没有动机改变自己的策略,那么这个策略组合就是一个纯策略纳什均衡。
5. 混合策略纳什均衡与纯策略纳什均衡有何不同?答案:纯策略纳什均衡是指参与者在均衡状态下选择的策略是确定的,而混合策略纳什均衡则是指参与者在均衡状态下选择的策略是随机的,每个策略都有一定的概率被选择。
6. 什么是支配策略?答案:支配策略是指在博弈中,无论其他参与者选择什么策略,某个参与者选择该策略都能获得比其他策略更好的结果。
7. 博弈论中的“囚徒困境”说明了什么?答案:“囚徒困境”说明了即使合作对所有参与者都有利,但由于缺乏信任和沟通,参与者可能会选择对自身最有利的策略,导致集体结果不是最优的。
8. 什么是博弈论中的“倒后归纳法”?答案:“倒后归纳法”是一种解决动态博弈的方法,通过从博弈的最后阶段开始,逆向分析每个阶段的最优策略,直到博弈的初始阶段。
9. 博弈论在经济学中的应用有哪些?答案:博弈论在经济学中的应用非常广泛,包括但不限于市场结构分析、拍卖理论、合同理论、产业组织、宏观经济政策分析等。
大学经济博弈论期末考试卷
大学经济博弈论期末考试卷一、选择题(每题2分,共20分)1. 博弈论中,参与者在决策时考虑其他参与者的策略,这被称为:A. 完全信息博弈B. 不完全信息博弈C. 零和博弈D. 非零和博弈2. 以下哪个不是博弈论中的基本概念?A. 策略B. 收益C. 效用D. 利润3. 在博弈论中,如果一个策略组合是所有参与者的最优反应,那么这个策略组合被称为:A. 纳什均衡B. 帕累托效率C. 混合策略D. 支配策略4. 以下哪个博弈是典型的囚徒困境?A. 猎鹿博弈B. 石头剪刀布C. 公共品博弈D. 斗鸡博弈5. 以下哪个是博弈论中的动态博弈?A. 零和博弈B. 重复博弈C. 非零和博弈D. 静态博弈6. 博弈论中,如果一个参与者的策略选择只依赖于其他参与者的策略,这称为:A. 独立性B. 依赖性C. 互惠性D. 对称性7. 以下哪个是博弈论中的合作博弈?A. 猎鹿博弈B. 囚徒困境C. 石头剪刀布D. 斗鸡博弈8. 在博弈论中,如果一个策略组合在任何其他策略组合的替代下都不会使任何参与者的收益增加,那么这个策略组合是:A. 纳什均衡B. 帕累托效率C. 混合策略D. 支配策略9. 以下哪个是博弈论中的非合作博弈?A. 猎鹿博弈B. 囚徒困境C. 石头剪刀布D. 所有选项都是10. 博弈论中,如果一个参与者能够通过改变自己的策略来改善自己的收益,那么这个策略不是:A. 纳什均衡B. 帕累托效率C. 混合策略D. 支配策略二、简答题(每题10分,共30分)1. 请简述博弈论中纳什均衡的概念及其重要性。
2. 解释什么是完全信息博弈和不完全信息博弈的区别。
3. 请描述囚徒困境的博弈情境,并解释为什么它在经济学中具有重要意义。
三、计算题(每题25分,共50分)1. 假设有两个公司A和B,它们可以选择高成本生产或低成本生产。
如果两家公司都选择高成本生产,它们的利润都是100万元;如果一家公司选择高成本而另一家选择低成本,低成本的公司利润为200万元,而高成本的公司利润为0;如果两家公司都选择低成本生产,它们的利润都是50万元。
《经济博弈论》期末考试复习题及参考答案
《经济博弈论》期末考试复习题及参考答案一、单项选择题1、博弈论中,参与人的策略有()A 有限的B 无限的C 有限和无限两种情况D 以上都不对参考答案:C解释:在博弈论中,参与人的策略可以是有限的,也可以是无限的,具体取决于博弈的类型和设定。
2、下列属于完全信息静态博弈的是()A 囚徒困境B 斗鸡博弈C 市场进入博弈D 以上都是参考答案:D解释:囚徒困境、斗鸡博弈和市场进入博弈都属于完全信息静态博弈。
3、在一个两人博弈中,如果双方都知道对方的策略空间和收益函数,这被称为()A 完全信息博弈B 不完全信息博弈C 静态博弈D 动态博弈参考答案:A解释:完全信息博弈意味着博弈中的参与人对彼此的策略空间和收益函数都有清晰的了解。
4、占优策略均衡一定是纳什均衡,纳什均衡()是占优策略均衡。
A 一定B 不一定C 一定不D 以上都不对参考答案:B解释:占优策略均衡是一种更强的均衡概念,占优策略均衡一定是纳什均衡,但纳什均衡不一定是占优策略均衡。
5、对于“囚徒困境”博弈,()A 双方都独立依照自身利益行事,结果限于最不利的局面B 双方都独立依照自身利益行事,导致最好的选择C 双方进行合作,得到了最好的结果D 以上说法都不对参考答案:A解释:在“囚徒困境”中,每个囚徒都从自身利益出发选择坦白,最终导致双方都受到较重的惩罚,这是一种个体理性导致集体非理性的结果。
二、多项选择题1、以下属于博弈构成要素的有()A 参与人B 策略C 收益D 信息E 均衡参考答案:ABCDE解释:博弈的构成要素通常包括参与人、策略、收益、信息和均衡等。
参与人是进行博弈的主体;策略是参与人在博弈中可选择的行动方案;收益是参与人采取不同策略所得到的结果;信息是参与人对博弈局面的了解程度;均衡是博弈的稳定状态。
2、常见的博弈类型有()A 完全信息静态博弈B 完全信息动态博弈C 不完全信息静态博弈D 不完全信息动态博弈参考答案:ABCD解释:这四种博弈类型是根据信息是否完全和博弈的进行时态来划分的。
博弈论复习题及答案
博弈论复习题及答案博弈论是研究决策者在相互影响的情况下如何做出决策的理论。
以下是一些博弈论的复习题及答案,供学习者参考:一、选择题1. 博弈论中最基本的博弈类型是什么?A. 零和博弈B. 非零和博弈C. 完全信息博弈D. 不完全信息博弈答案: A. 零和博弈2. 在博弈论中,纳什均衡指的是什么?A. 一种博弈的最终结果B. 一种博弈的初始状态C. 一种策略组合,其中没有任何一个参与者能够通过单方面改变策略而获得更好的结果D. 一种策略组合,其中所有参与者都希望改变策略以获得更好的结果答案: C. 一种策略组合,其中没有任何一个参与者能够通过单方面改变策略而获得更好的结果3. 囚徒困境中,两个囚犯的最优策略是什么?A. 相互合作B. 相互背叛C. 一个合作,一个背叛D. 一个背叛,一个合作答案: B. 相互背叛二、简答题1. 解释什么是“混合策略”并给出一个例子。
答案:混合策略是指参与者在博弈中选择不同策略的概率分布。
例如,在石头、剪刀、布的游戏中,一个玩家可能会以1/3的概率选择石头,1/3的概率选择剪刀,和1/3的概率选择布,这就是一个混合策略的例子。
2. 描述什么是“重复博弈”以及它与单次博弈的区别。
答案:重复博弈是指同样的博弈结构在一定时间内多次进行。
与单次博弈相比,重复博弈允许参与者根据对手过去的行动来调整自己的策略,这可能会导致合作行为的出现,因为参与者会考虑到未来博弈的潜在收益。
三、论述题1. 论述博弈论在经济学中的应用,并给出至少两个具体的例子。
答案:博弈论在经济学中有广泛的应用。
例如:- 拍卖理论:博弈论可以用来分析拍卖中的竞价行为,确定最优的拍卖机制。
- 竞争策略:企业在制定市场进入、定价和广告策略时,会使用博弈论来预测竞争对手的行为并做出相应的决策。
2. 讨论囚徒困境在现实世界中可能的应用场景,并解释为什么合作有时是困难的。
答案:囚徒困境在现实世界中的应用场景包括但不限于:- 国际关系:国家之间的军备竞赛可以看作是囚徒困境的一种形式,合作减少军备可以带来共同的利益,但由于缺乏信任,每个国家都倾向于增加自己的军备。
博弈论复习题及答案完整版
博弈论复习题及答案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】一、名词解释(每题7分,共28分)1、逆向选择:逆向选择源于事前的信息不对称,经典例子就是“柠檬市场”——二手车市场,它使得市场资源逐渐流向低质量的产品或要素,最后形成劣货驱逐良货的局面,这种现象称之为“逆向选择”。
2、策略互动:所谓策略互动,就是参与人之间的策略相互影响、相互作用和相互制约。
用策略性思维来分析问题,从中找出合理策略,实现目标最优。
3、纳什均衡:对于博弈方而言,互为最优的策略选择就是纳什均衡。
4、信号发送:是指信息优势方不断发出信息的行为,就叫信号发送。
5、博弈论:研究人们如何进行决策,以及这种决策如何达到均衡(合理策略)的问题。
每个博弈者在决定采取何种行动时,不但要根据自身的利益和目的行事,还必须考虑到他的决策行为对其他人的可能影响,以及其他人的反应行为的可能后果,通过选择最佳行动计划,来寻求收益或效用的最大化。
二、简要回答问题(每题10分,共40分)1、博弈的基本要素有哪些?基本特点是什么?答:博弈的基本要素有:参与人、策略、行动顺序、信息、收益等五个要素。
博弈的基本特点则是需尽可能考虑到博弈对方的决策选择以及对自身的影响,并从中选择出对自身最有利的方案决策,从而达到收益和效用最大化。
2、什么是性别战博弈?请求出其中的纳什均衡?答:性别战博弈是不可调和的博弈,双方只有一方选择满足另外一方的要求才能达成均衡,也就是混合策略纳什均衡;故性别战博弈的纳什均衡会有两种情况,分别是:男生陪女生看电影以及女生陪男生看足球的两种选择。
3、猎鹿博弈反映的基本思想是什么?答:反应的基本思想是需要沟通和互相协调,因为只有合作才能猎到所需猎物。
4、什么是道德风险?有什么办法可以解决道德风险问题?答:道德风险是指委托-代理框架中,由于委托人无法直接观察代理人行动,造成信息不对称,从而出现代理人选择不利于委托人的行为的一种现象;解决道德风险的方法可以用签订合同、派人监督,以及采用激励等方式来进行解决,约束和激励机制。
《博弈论》期末考试试题
《博弈论》期末考试试题2003年12月,适用于:工商管理2000限选、全校2001任选1、鹰-鸽(Hawk-Dove)博弈(30分)两动物为某一食物而争斗。
每只动物都能象鸽或鹰那样行动。
对每只动物来说最坏的结果是两个都象鹰一样,此时的争斗使得双方都吃不到食物;如果两只动物合作起来象鸽一样行动,则每只动物都可吃到3个单位的食物;如果自己象鸽而对手象鹰,则自己只能吃到1个单位而对手可吃到4个单位。
假设两只动物进行的是一次性完全信息静态博弈,请回答如下问题:(1)请作出此博弈的支付矩阵,并明确描述出博弈的参与人和他的行动空间。
(2)请求解此博弈的全部纳什均衡(纯策略或混合策略纳什均衡)。
(3)请举一个现实生活中的例子并用鹰-鸽博弈进行解释。
2、狩猎博弈(20分)卢梭在他的《论人类不平等的起源和基础》中说到:如果一群猎人出发去猎一头鹿,他们完全意识到,为了成功,他们必须都要忠实地坚守自己的位置;然而如果一只野兔碰巧经过他们中的一个人附近,毫无疑问他会毫不迟疑地追逐它,一旦他获得了自己的猎物,他就不太关心他的同伴是否错失了他们的目标。
现在对上述描述简化。
假设只有两个猎人,他们必须同时决定是猎鹿还是野兔。
如果两个人均决定猎鹿,那么他们会获得一头鹿(价值1000元),并在他们之中进行平分;如果两个人均猎野兔,那么他们每个人可以获得一只野兔(价值100元);如果一个猎兔而另一个猎鹿,则前者获得一只野兔,后者将一无所获。
如果每个人都希望自己得到尽可能多的猎物,请作出支付矩阵并分析此博弈的纯策略纳什均衡。
3、设一四阶段两博弈方之间的动态博弈如下图所示,请回答下列问题。
(30分)(1)试找出全部子博弈;(2)讨论该博弈中的可信性问题;(3)求解子博弈精练纳什均衡和博弈的结果。
4、试运用所学知识解释下列现象(20分):根据经济学的基本原理,一般商品都是价格越低购买者越多,但为什么在现实生活中会出现低价不好销售、提高价格后反而更好销售的现象呢?你认为什么样的商品容易出现这种反常现象?。
《经济博弈论》期末考试复习题
《经济博弈论》期末考试复习资料第一章导论1.博弈的概念:博弈即一些个人、队组或其他组织,面对一定的环境条件,在一定的规则下,同时或先后,一次或多次,从各自允许选择的行为或策略中进行选择并加以实施,并从中各自取得相应结果的过程。
它包括四个要素:参与者,策略,次序和得益。
2.一个博弈的构成要素:博弈模型有下列要素:(1)博弈方。
即博弈中决策并承但结果的参与者.包括个人或组织等:(2)策略。
即博弈方决策、选择的内容,包括行为取舍、经济活动水平或多种行为的特定组合等。
各博弈方的策略选择范围称策略空间。
每个博弈方各选一个策略构成一个策略组合。
(3)进行博弈的次序:次序不同一般就是不同的博弈,即使博弈的其他方面都相同。
(4)得益。
各策略组合对应的各博弈方获得的数值结果,可以是经济利益,也可以是非经济利益折算的效用等。
3.合作博弈和非合作博弈的区别:合作博弈:允许存在有约束力协议的博弈;非合作博弈:不允许存在有约束力协议的博弈。
主要区别:人们的行为互相作用时,当事人能否达成一个具有约束力的协议。
假设博弈方是两个寡头企业,如果他们之间达成一个协议,联合最大化垄断利润,并且各自按这个协议生产,就是合作博弈。
如果达不成协议,或不遵守协议,每个企业都只选择自己的最优产品(价格),则是非合作博弈。
合作博弈:团体理性(效率高,公正,公平)非合作博弈:个人理性,个人最优决策(可能有效率,可能无效率)4.完全理性和有限理性:完全理性:有完美的分析判断能力和不会犯选择行为的错误。
有限理性:博弈方的判断选择能力有缺陷。
区分两者的重要性在于如果决策者是有限理性的,那么他们的策略行为和博弈结果通常与在博弈方有完全理想假设的基础上的预测有很大差距,以完全理性为基础的博弈分析可能会失效。
所以不能简单地假设各博弈方都完全理性。
5.个体理性和集体理性:个体理性:以个体利益最大为目标;集体理性:追求集体利益最大化。
第一章课后题:2、4、52.设定一个博弈模型必须确定哪几个方面?设定一个博弈必须确定的方面包括:(1)博弈方,即博弈中进行决策并承担结果的参与者;(2)策略(空间),即博弈方选择的内容,可以是方向、取舍选择,也可以是连续的数量水平等;(3)得益或得益函数,即博弈方行为、策略选择的相应后果、结果,必须是数量或者能够折算成数量;(4)博弈次序,即博弈方行为、选择的先后次序或者重复次数等;(5)信息结构,即博弈方相互对其他博弈方行为或最终利益的了解程度;(6)行为逻辑和理性程度,即博弈方是依据个体理性还是集体理性行为,以及理性的程度等。
博弈论经济学考试题及答案
博弈论经济学考试题及答案博弈论是经济学中的一个重要分支,它研究具有冲突和合作特征的决策者之间的互动。
以下是一套博弈论经济学的考试题及答案,供参考。
一、选择题(每题2分,共20分)1. 以下哪项不是博弈论的基本概念?A. 纳什均衡B. 完全信息C. 零和游戏D. 边际效用答案:D2. 囚徒困境中,如果两个囚犯都选择不合作,他们将各自获得什么结果?A. 最大利益B. 最小损失C. 纳什均衡D. 合作结果答案:C3. 以下哪个不是博弈论中的策略类型?A. 纯策略B. 混合策略C. 随机策略D. 确定性策略答案:D4. 博弈论中的“支配策略”指的是什么?A. 总是最优的策略B. 总是最差的策略C. 只在某些情况下最优的策略D. 只在对手采取特定策略时最优的策略答案:A5. 重复博弈中,以下哪个概念不是用于描述博弈的长期行为?A. 信誉B. 惩罚C. 一次性博弈D. 合作答案:C二、简答题(每题10分,共30分)1. 请简述什么是纳什均衡,并给出一个例子。
答案:纳什均衡是博弈论中的一个概念,指的是在一个非合作博弈中,每个参与者选择了自己的策略,并且没有一个人可以通过改变自己的策略而单方面获得更好的结果。
例如,在囚徒困境中,如果两个囚犯都选择沉默,那么他们各自获得的结果比互相揭发要好,即使他们知道如果都揭发对方,结果会更糟。
这种情况下,沉默就是他们的纳什均衡。
2. 解释“完全信息”和“不完全信息”博弈的区别。
答案:完全信息博弈是指所有参与者都完全知道博弈的结构和所有其他参与者的收益函数。
而不完全信息博弈是指至少有一个参与者对博弈的结构或至少一个其他参与者的收益函数不完全了解。
例如,在拍卖中,如果所有竞拍者都知道拍卖品的真实价值,这就是完全信息博弈;如果竞拍者对拍卖品的价值只有部分信息,这就是不完全信息博弈。
3. 什么是混合策略均衡?请举例说明。
答案:混合策略均衡是指在博弈中,参与者以一定的概率选择不同的策略,使得没有参与者可以通过改变自己的策略选择而获得更好的结果。
博弈论期末试题及答案
博弈论期末试题及答案一、选择题(每题2分,共40分)1. 博弈论的核心概念是:A. 均衡分析B. 策略分析C. 利润分析D. 收益分析2. Nash均衡是指:A. 所有玩家达到最优结果B. 没有玩家可以通过改变策略获得更好结果C. 所有玩家都选择相同的策略D. 所有玩家都选择不同的策略3. 在零和博弈中,一方的收益是另一方的:A. 收益的相反数B. 收益的平方C. 收益的负数D. 收益的倒数4. 最优响应策略是指:A. 在对手的策略给定时,玩家自己的最优策略B. 在对手的策略给定时,对手的最优策略C. 利用数学模型计算得到的最优策略D. 随机选择的策略5. 以下哪个是非合作博弈的扩展形式:A. 矩阵形式B. 博弈树形式C. 序列形式D. 重复博弈形式6. 当两位玩家在重复博弈中都选择合作策略时,他们的总收益是:A. 最大化的B. 最小化的C. 平均化的D. 不确定7. 最优子博弈在博弈树中的作用是:A. 寻找博弈的子集B. 确定博弈过程的时间C. 减少博弈的复杂性D. 避免剪枝8. 以下哪个是非合作博弈的解决概念:A. 纳什均衡B. 支配策略C. 策略剖析D. 相对策略9. 在纳什均衡中,每个玩家都是:A. 个体理性的B. 无知的C. 合作的D. 随机的10. 在博弈论中,支配策略指的是:A. 无论对手选择什么策略,都能带来最好结果的策略B. 无论自己选择什么策略,都能带来最好结果的策略C. 无论对手选择什么策略,都会带来最坏结果的策略D. 无论自己选择什么策略,都会带来最坏结果的策略二、简答题(每题10分,共20分)1. 请解释什么是零和博弈,并举例说明。
零和博弈是一种博弈模型,其中一个玩家的收益等于另一个玩家的损失,总收益为零,也就是说一方的利益必然导致另一方的损失。
举例来说,两个商家在一个市场上销售相同的商品,他们之间的竞争就可以看作是零和博弈。
一方的销售额的增加必然导致另一方的销售额减少。
博弈论期末考
博弈论期末考一、判断题。
(2*10=20)1.因为零和博弈中博弈方之间的关系都是竞争性的、对立的,因此零和博弈就是合作博弈;X2.凡是博弈方的选择、行为有先后次序的博弈一定是动态博弈;X3.多人博弈中的“破坏者”会对所有博弈方的利益产生不利影响;X4.合作博弈就是博弈方采取相互合作态度的博弈;X5.纳什均衡即任一博弈方单独改变策略都只能得到更小利益的策略组合;√6.如果一博弈有两个纯策略纳什均衡,则一定还存在一个混合策略均衡;√7.纯策略纳什均衡和混合策略纳什均衡都不一定存在;X8.一致占优均衡是帕累托最优的均衡;√9.在动态博弈中,因为后行动的博弈方可以先观察对方行动后再行,因此总是有利的;X10.动态博弈本身也是自己的子博弈之一;X(上面10题考的概率20%,下面考的概率80%)11.囚徒困境说明个人的理性选择不一定是集体的理性选择。
(√)12.子博弈精炼纳什均衡不是一个纳什均衡。
(×)13.若一个博弈出现了皆大欢喜的结局,说明该博弈是一个合作的正和博弈。
( X )14.博弈中知道越多的一方越有利。
(×)15.纳什均衡一定是上策均衡。
(×)16.上策均衡一定是纳什均衡。
(√)17.在一个博弈中只可能存在一个纳什均衡。
(×)18.在一个博弈中博弈方可以有很多个。
(√)19.在一个博弈中如果存在多个纳什均衡则不存在上策均衡。
(√)20.在博弈中纳什均衡是博弈双方能获得的最好结果。
(×)21.在博弈中如果某博弈方改变策略后得益增加则另一博弈方得益减少。
(×)22.上策均衡是帕累托最优的均衡。
(×)23.因为零和博弈中博弈方之间关系都是竞争性的、对立的,因此零和博弈就是非合作博弈。
(×)24.在动态博弈中,因为后行动的博弈方可以先观察对方行为后再选择行为,因此总是有利的。
(×)25.囚徒的困境博弈中两个囚徒之所以会处于困境,无法得到较理想的结果,是因为两囚徒都不在乎坐牢时间长短本身,只在乎不能比对方坐牢的时间更长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、支付矩阵1、试给出下述战略式表述博弈的纳什均衡BAU D解:由划线解得知有一个纯战略均衡(R D ,)再看看它是否有混合战略均衡 设B 以)1,(γγ-玩混合战略,则有 均衡条件:γγγ-=-+⋅=2)1(21)(U V A γγγ26)1(64)(-=-+⋅=D V A γγ262-=-得14>=γ,这是不可能的,故无混合战略均衡,只有这一个纯战略均衡。
2、试将题一中的支付作一修改使其有混合战略均衡解:由奇数定理,若使它先有两个纯战略均衡,则很可能就有另一个混合战略均衡。
BAU D将博弈改成上述模型,则)1(64)1(25γγγγ-+=-+ γγ2632-=+得 54=γ同样,设A 的混合战略为)1,(θθ-,则)1(25)1(16θθθθ-+=-⋅+ θθ3251+=+21=θ于是混合战略均衡为⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛51,54,21,21.二、逆向归纳法1、用逆向归纳法的思路求解下述不完美信息博弈的子博弈精炼均衡1(5,8) (6,7) (2,0) (3,4) (1,2) (3,4) 解 1(5,8) (6,7) (2,0) (3,4) (1,2) (3,4) 设在1的第二个信息集上,1认为2选a 的概率为P ,则1选L '的支付P P P 32)1(25+=-+=1选R '的支付P P P P 3233)1(36+>+=-+= 故1必选R '。
⇒ 给定1在第二个决策结上选R ',2在左边决策结上会选a ,故子博弈精炼均衡为{}),(,,d a R L '四、两个厂商生产相同产品在市场上进行竞争性销售.第1个厂商的成本函数为11q c =,其中1q 为厂商1的产量。
第2个厂商的成本函数为22cq c =,其中2q 为厂商2的产量,c 为其常数边际成本.两个厂商的固定成本都为零.厂商2的边际成本c 是厂商2的“私人信息”,厂商1认为c 在⎥⎦⎤⎢⎣⎡23,21上呈均匀分布。
设市场需求函数为214q q P --=,其中P 为价格,两个厂商都以其产量为纯战略,问纯战略贝叶斯均衡为何?解:给定2q ,厂商1的问题是12111)14( )1(max 1q q q q P q ---=-=π因)(22c q q =。
厂商1不知道c ,故目标函数为⎥⎦⎤⎢⎣⎡--=---⎰⎰2/3212112/3121211211)(3max )1)(4(max dc c q q q q dcq c q q q q一阶条件:0)(232/32121=--⎰dc c q q得 ⎰-=2/32121)(2123dc c q q (1)厂商2的问题是:2221222122)4( )4( )(max 2q q q q c q c q q q c P q ---=---=-=π一阶条件:02)4(21=---q q c 得 24)(12q c c q --=(2) 代入式(1):43 2123814423 41242123 24212312212/32/312/311212121q q cdcq dc q c q +=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+--=+--=---=⎰⎰⎰得11=q代入式(2):23)(2cc q -=若1=c ,则121==q q121==ππ若信息是完全的且1=c ,则古诺博弈均衡为15321<==q q ,1252721>==ππ.这说明信息不完全带来的高效率.2、完美信息动态博弈。
会用策略式表达、扩展式表达。
用方框找纳什均衡,用树找子博弈精炼均衡。
讲理由,看例题。
该博弈中有三个纳什均衡:不进入,(进入,进入)进入,(不进入,进入)进入,(不进入,不进入)前两个均衡的结果(进入,不进入),即A进入,B不进入;第二个均衡结果是(不进入,进入),即A不进入,B进入如果理论得到这样的结果,无助于预测博弈参与人的行为。
此外,纳什均衡假定,每一个参与人选择的最优战略是在所有其他参与人的战略选择给定时的最优反应,即参与人并不考虑自己的选择对其他人选择的影响,因而纳什均衡很难说是动态博弈的合理解。
必须在多个纳什均衡中剔除不合理的均衡解,即所谓“不可置信威胁”。
子博弈精炼纳什均衡是对纳什均衡概念的最重要的改进。
它的目的是把动态博弈中的“合理纳什均衡"与“不合理纳什均衡”分开。
正如纳什均衡是完全信息静态博弈解的基本慨念一样,子博弈精炼纳什均衡是完全信息动态博弈解的基本概念。
①{不进入,(进入,进入)}②{进入,(不进入,进入)}③{进入,(不进入,不进入)}前边得到的三个纳什均衡中,均衡①意味着当A不进入时,B 选择进入;而当A选择进入时,B仍选择进入(B威胁无论如何都要进入市场)。
显然,当A选择进入时,B仍选择进入是不合理的,如果A进入市场,B选择“不进入”比选择“进入"收益要更大,理性的B不会选择进入,而A知道B是理性的,因此也不会把该战略视为B会选择的战略.因此,B的战略(进入,进入)是不可置信威胁。
①{不进入,(进入,进入)}②{进入,(不进入,进入)}③{进入,(不进入,不进入)}均衡③意味着当A 进入时,B 选择不进入;而当A 选择不进入时,B 仍选择进入(B 威胁无论如何都不进入市场).显然,当A 选择不进入时,B 仍选择不进入是不合理的,B 的战略是不可置信的。
只有均衡②是合理的:如果A 进入,B 不进入;如果A 不进入,B 进入。
因为A 是先行动者,理性的A 会选择“进入"(他知道B 是理性的,B 不会选择“进入”),而理性的B 选择“不进入"。
观察博弈树上的三个均衡中,B 的不可置信战略中的反应,在第二阶段B 开始行动的两个子博弈中不是最优;而合理的纳什均衡中,B 的战略在所有子博弈中都是最优的,与A 的第一阶段可能选择的行动构成该子博弈的纳什均衡.五、试给出下述信号博弈的纯战略均衡中的混同均衡和分离均衡(8,1) (1,2)(10,8) ( (4,1)2a 2t 2a(7,3) (3,7)解:有四种可能:混同均衡 11m t →,12m t → 21m t →,22m t → 分离均衡 11m t →,22m t → 21m t →,12m t → 设)(i m u 为接收者看见i m 时 认为发送者是1t 的后验概率。
看11m t →,12m t →则5.0)(1=m u ,非均衡路径上]1,0[)(2=m u 当接收者看见1m ,选1a 的支付为 5.115.025.0=⨯+⨯选2a 的支付为5.15.775.085.0>=⨯+⨯ 故选2a 。
当接收者看见2m ,选1a 的支付为)(455))(1(1)(222m u m u m u -=⨯-+⨯ 选2a 的支付为)(433))(1(7)(222m u m u m u +=⨯-+⨯当1t 选1m ,接收者会选2a ,1t 得支付10,要求1t 不选2m ,对)(2m u 无要求,因1t 总会选1m 。
当2t 选1m ,接收者会选2a ,2t 得支付3,要求2t 不选2m 是不可能的,因2t 选2m 是占优于选1m 的,故此混同均衡11m t →,12m t →不存在。
再看混同均衡 21m t →,22m t →此时]1,0[)(1=m u 为非均衡路径上的后验概率,5.0)(2=m u当接收者看见2m ,选1a 的支付为355.015.0=⨯+⨯ 选2a 的支付为3535.075.0>=⨯+⨯ 故接收者必选2a 。
当接收者看见1m 时,选1a 的支付为 )(11)(1(2)(111m u m u m u +=⋅-+⋅选2a 的支付为)(1)(77)(1(8)(1111m u m u m u m u +>+=⋅-+⋅ 故必选2a 。
这样,无论发送者发出1m 或2m 信号,接收者总选2a ,⇒给定接收者总是选2a 。
1t 会选1m ,2t 会选2m .⇒故21m t →,22m t →不是混同均衡。
看分离均衡11m t →,22m t → 1)(1=m u ,0)(2=m u 接收者看见1m 时,必选2a 接收者看见2m 时,必选1a 此时,1t 选1m ,2t 选2m⇒故11m t →,22m t →是一个分离均衡。
最后看分离均衡21m t →,12m t → 0)(1=m u ,1)(2=m u 接收者看见1m 时,必选2a接收者看见2m 时,必选2a⇒给定接收者总选2a11m t →,22m t →⇒故21m t →,12m t →不是分离均衡。
故只有一个纯战略子博弈精炼分离均衡 11m t → 22m t →鹰—鸽(Hawk-Dove )博弈(1) 参与人:争食的两只动物-动物1和动物2。
动物1和动物2的行动空间都是一样的,即:Ai={鹰,鸽} i=1,2 支付矩阵如下:(2) 此博弈属于完全信息静态博弈,根据奇数定理知道共有三个纳什均衡,两个纯策略纳什均衡和一个混合策略纳什均衡。
两个纯策略纳什均衡是:(鹰,鸽)和(鸽,鹰).混合策略纳什均衡是:动物1和动物2分别以50%的概率随机地选择鹰(象鹰一样行动)或者鸽(象鸽一样行动)。
纯策略纳什均衡可以用划线法或箭头法求解.混合策略纳什均衡则可根据无差异原则求解概率分布,即: 首先,动物1应该以q 的概率选择鹰,以1—q 的概率选择鸽,使得动物2在鹰或者鸽之间无差异,那么可得q *:由4(1—q) = q+3(1-q) 得q *=50%;其次,动物2应该以a 的概率选择鹰,以1-a 的概率选择鸽,使得动物1在鹰或者鸽之间无差异,那么可得a *:由4(1—a ) = a+3(1-a ) 得a *=50%。
(3) 此博弈实际就是一个斗鸡博弈,在现实生活许多现象都与此类似,如市场进入、前苏联与美国在世界各地争抢地盘等。
七、狩猎博弈此博弈同样是一个完全信息静态博弈,参与人是两个猎人,他们的行动是选择猎鹿或者猎兔。
支付矩阵如下:根据划线或箭头法我们可以很容易地知道此博弈有两个纯策略纳什均衡,即:(鹿,鹿)和(兔,兔),也就是两个猎人同时猎鹿或同时猎兔都是纯策略纳什均衡。
由于存在两个纯策略纳什均衡,现实中究竟哪个均衡会出现就是一个问题,这是多重纳什均衡下的困境。
但是,比较两个纳什均衡,很容易发现两人都猎鹿帕累托优于两人都猎兔,所以,对两个猎人而言,都猎鹿是一个“更好”的纳什均衡,因此,在现实中两个人都决定猎鹿的可能性要更大一些。
然而,正如卢梭所言,如果一只野兔碰巧经过他们中的一个人附近,那么也许这个人会去猎兔而使猎鹿失败,因为两个人都猎兔也是一个纳什均衡,这就是人的自私性。
此外,在多个纳什均衡下,博弈之外的其他因素有助于我们判断哪个均衡会出现。