2020-2021学年高密市九年级上月考数学试卷(12月)含答案解析

合集下载

2020-2021学年九年级(上)月考数学试卷(附详解)

2020-2021学年九年级(上)月考数学试卷(附详解)

2020-2021学年九年级(上)月考数学试卷一、选择题(本大题共12小题,共36.0分)1.下列方程一定是一元二次方程的是()A. 3x2+2x−1=0 B. 5x2−6y−3=0 C. ax2+bx+c=0 D. 3x2−2x−1=02.某班六名同学体能测试成绩(分)如下:80,90,75,75,80,80,对这组数据表述错误的是()A. 众数是80B. 方差是25C. 平均数是80D. 中位数是753.菱形的两条对角线的分别为60cm和80cm,那么边长是()A. 60cmB. 50cmC. 40cmD. 80cm4.如图,在矩形ABCD中,点A的坐标是(−1,0),点C的坐标是(2,4),则BD的长是()A. 6B. 5C. 3√3D. 4√25.如图,在▱ABCD中,AD=12,AB=8,AE平分∠BAD,交BC边于点E,则CE的长为()A. 8B. 6C. 4D. 26.如图,在正方形ABCD中,点F是AB上一点,CF与BD交于点E.若∠BCF=25°,则∠AED的度数为()A. 60°B. 65°C. 70°D. 75°7.二次函数y=ax2+bx的图象如图所示,则一次函数y=ax+b的图象大致是()A. B.C. D.8.若顺次连接对角线互相垂直的四边形ABCD四边的中点,得到的图形一定是()A. 平行四边形B. 矩形C. 菱形D. 正方形9.若m是方程x2−2x−1=0的根,则1+m−12m2的值为()A. 12B. 1C. 32D. 210.小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为85分、80分、90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是()A. 255分B. 84分C. 84.5分D. 86分11.已知A(x1,y1),B(x2,y2)是二次函数图象上y=ax2−2ax+a−c(a≠0)的两点,若x1≠x2且y1=y2,则当自变量x的值取x1+x2时,函数值为()A. −cB. cC. −a+cD. a−c12.已知二次函数y=−x2+mx+m(m为常数),当−2≤x≤4时,y的最大值是15,则m的值是()A. −19或315B. 6或315或−10 C. −19或6 D. 6或315或−19二、填空题(本大题共6小题,共18.0分)13.已知函数关系式:y=√x−1,则自变量x的取值范围是______.14.已知x1,x2是方程x2+x−1=0的两根,则x2x1+x1x2=______.15.将直线y=2x+1平移后经过点(5,1),则平移后的直线解析式为______.16.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1056张照片,如果全班有x名同学,根据题意,列出方程为______.17.如图,每个小正方形的边长为1,在△ABC中,点D为AB的中点,则线段CD的长为______.18.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(−12,0),对称轴为直线x=1,下列5个结论:①abc<0;②a−2b+4c=0;③2a+b>0;④2c−3b<0;⑤a+b≤m(am+b).其中正确的结论为______.(注:只填写正确结论的序号)三、解答题(本大题共8小题,共66.0分)19.已知一个二次函数的图象经过点A(−1,0)、B(3,0)和C(0,−3)三点.(1)求此二次函数的解析式;(2)求此二次函数的图象的对称轴和顶点坐标.20.解一元二次方程:(1)x2+4x+1=0(配方法);(2)用公式法解方程:2x2+3x−1=0.21.某校八年级学生在一次射击训练中,随机抽取10名学生的成绩如下表,请回答问题:环数6789人数152(1)填空:10名学生的射击成绩的众数是______,中位数是______.(2)求这10名学生的平均成绩.(3)若9环(含9环)以上评为优秀射手,试估计全年级500名学生中有多少是优秀射手?22.如图,矩形ABCD,AB=6,BC=4,过对角线BD中点O的直线分别交AB、CD边于点E,F.(1)求证:四边形DEBF是平行四边形;(2)当四边形DEBF是菱形时,求菱形的边长.23.庆阳市是传统的中药材生产区,拥有丰富的中药材资源,素有“天然药库”“中药之乡”的美称.优越的地理气候条件形成了较独特的资源禀赋,孕育了丰富的中药植物资源和优良品种.某种植户2016年投资20万元种植中药材,到2018年三年共累计投资95万元,若在这两年内每年投资的增长率相同.(1)求该种植户每年投资的增长率;(2)按这样的投资增长率,请你预测2019年该种植户投资多少元种植中药材.24.如图,在平面直角坐标系xOy中,直线y=−43x+4与x轴、y轴分别交于点A、点B,点D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C处.(1)求AB的长;(2)求点C和点D的坐标;(3)y轴上是否存在一点P,使得S△PAB=12S△OCD?若存在,直接写出点P的坐标;若不存在,请说明理由.25.某公司生产一种健身产品在市场上很受欢迎,该公司每年的年产量为6万件,每年可在国内和国外两个市场全部销售,若在国内销售,平均每件产品的利润y1(元)与国内销售量x(万件)的函数关系式为y1={80(0≤x≤1)−x+81(1<x≤6)若在国外销售,平均每件产品的利润为71元.(1)求该公司每年的国内和国外销售的总利润w(万元)与国内销售量x(万件)的函数关系式,并指出x的取值范围.(2)该公司每年的国内国外销售量各为多少时,可使公司每年的总利润最大?最大值是多少?(3)该公司计划在国外销售不低于5万件,并从国内销售的每件产品中捐出2m(5≤m≤10)元给希望工程,从国外销售的每件产品中捐出m元给希望工程,若这时国内国外销售的最大总利润为393万元,求m的值.26.如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.(1)“抛物线三角形”一定是______三角形;(2)若抛物线y=−x2+bx(b>0)的“抛物线三角形”是等腰直角三角形,求b的值;(3)如图,△OAB是抛物线y=−x2+b′x(b′>0)的“抛物线三角形”,是否存在以原点O为对称中心的矩形ABCD?若存在,求出过O、C、D三点的抛物线的表达式;若不存在,说明理由.(4)若抛物线y=−x2+4mx−8m+4与直线y=3交点的横坐标均为整数,是否存在整数m的值使这条抛物线的“抛物线三角形”有一边上的中线长恰好等于这边的长?若存在,直接写出m的值;若不存在,说明理由.答案和解析1.【答案】D【解析】解:A、含有分式,3x2+2x−1=0不是一元二次方程,故此选项不合题意;B、含有2个未知数,5x2−6y−3=0不是一元二次方程,故此选项不合题意;C、当a=0时,ax2+bx+c=0不是一元二次方程,故此选项不合题意;D、3x2−2x−1=0是一元二次方程,故此选项符合题意;故选:D.利用与一元二次方程定义进行分析即可.此题主要考查了一元二次方程定义,关键是掌握判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.2.【答案】D【解析】解:A、80出现的次数最多,所以众数是80,正确,不符合题意;B、方差是:16×[3×(80−80)2+(90−80)2+2×(80−75)2]=25,正确,不符合题意;C、平均数是(80+90+75+75+80+80)÷6=80,正确,不符合题意;D、把数据按大小排列,中间两个数都为80,80,所以中位数是80,错误,符合题意.故选:D.根据众数,方差、平均数,中位数的概念逐项分析即可.本题为统计题,考查方差、众数、平均数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.3.【答案】B【解析】解:∵菱形的两条对角线长分别为60cm和80cm,∴该菱形的边长为√302+402=50,故选:B.由菱形的性质以及两条对角线长可求出其边长.此题考查了菱形的性质与勾股定理.此题比较简单,注意掌握菱形的面积的求解方法是解此题的关键.4.【答案】B 【解析】解:∵点A的坐标是(−1,0),点C的坐标是(2,4),∴线段AC=√(4−0)2+(2+1)2=5,∵四边形ABCD是矩形,∴BD=AC=5,故选:B.利用矩形的性质求得线段AC的长即可求得BD的长.本题考查了矩形的性质,能够求得对角线AC的长是解答本题的关键,难度不大.5.【答案】C【解析】解:∵四边形ABCD是平行四边形,∴BC=AD=12,AD//BC,∴∠DAE=∠BEA,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BEA=∠BAE,∴BE=AB=8,∴CE=BC−BE=4.故选:C.由平行四边形的性质得出BC=AD=12,AD//BC,得出∠DAE=∠BEA,证出∠BEA=∠BAE,得出BE=AB,即可得出CE的长.本题考查了平行四边形的性质、等腰三角形的判定;熟练掌握平行四边形的性质,证出BE=AB是解决问题的关键.6.【答案】C【解析】解:∵四边形ABCD是正方形,∴∠ABC=90°,DC=DA,∠ADE=∠CDE=45°.又DE=DE,∴△ADE≌△CDE(SAS).∴∠DAE=∠DCE=90°−25°=65°.∴∠AED=180°−45°−65°=70°.故选:C.先证明△ABE≌△ADE,得到∠ADE=∠ABE=90°−25°=65°,在△ADE中利用三角形内角和180°可求∠AED度数.本题主要考查了正方形的性质,解决正方形中角的问题一般会涉及对角线平分对角成45°.7.【答案】D【解析】解:由二次函数图象,得出a<0,−b2a<0,b<0,A、一次函数图象,得a>0,b>0,故A错误;B、一次函数图象,得a<0,b>0,故B错误;C、一次函数图象,得a>0,b<0,故C错误;D、一次函数图象,得a<0,b<0,故D正确;故选:D.可先根据二次函数的图象判断a、b的符号,再判断一次函数图象与实际是否相符,判断正误.本题考查了二次函数图象,应该熟记一次函数y=kx+b在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.8.【答案】B【解析】解:如图,AC⊥BD,E、F、G、H分别为各边的中点,连接点E、F、G、H.∵E、F、G、H分别为各边的中点,∴EF//AC,GH//AC,EH//BD,FG//BD(三角形的中位线平行于第三边),∴四边形EFGH是平行四边形(两组对边分别平行的四边形是平行四边形),∵AC⊥BD,EF//AC,EH//BD,∴∠EMO=∠ENO=90°,∴四边形EMON是矩形(有三个角是直角的四边形是矩形),∴∠MEN=90°,∴四边形EFGH是矩形(有一个角是直角的平行四边形是矩形).故选:B.根据三角形中位线的性质,可得到这个四边形是平行四边形,再由对角线垂直,能证出有一个角等于90°,则这个四边形为矩形.本题考查了中点四边形.矩形的判定方法,常用的方法有三种:①一个角是直角的平行四边形是矩形.②三个角是直角的四边形是矩形.③对角线相等的平行四边形是矩形.9.【答案】A【解析】解:∵m是方程x2−2x−1=0的根,∴m2−2m−1=0,∴m2−2m=1,∴1+m−12m2=1−12(m2−2m)=1−12=12,故选:A.根据一元二次方程的解的定义,将x=m代入已知方程后即可求得所求代数式的值.本题考查了一元二次方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.10.【答案】D【解析】【分析】根据题意列出算式,计算即可得到结果.此题考查了加权平均数,熟练掌握加权平均数的求法是解本题的关键.【解答】解:根据题意得:85×22+3+5+80×32+3+5+90×52+3+5=17+24+45=86(分),故选:D.11.【答案】D【解析】【分析】本题考查了二次函数图象与系数的关系.先求出抛物线的对称轴为直线x=1,则可判断A(x1,y1)和B(x2,y2)关于直线x=1对称,所以x2−1=1−x1,即x1+x2=2,然后计算自变量为2对应的函数值即可.【解答】解:抛物线的对称轴为直线x=−−2a2a=1,∵x1≠x2且y1=y2,∴A(x1,y1)和B(x2,y2)关于直线x=1对称,∴x2−1=1−x1,∴x1+x2=2,当x=2时,y=ax2−2ax+a−c=4a−4a+a−c=a−c.故选:D.12.【答案】C【解析】解:∵二次函数y=−x2+mx+m=−(x−m2)2+m24+m,∴抛物线的对称轴为x=m2,∴当m2<−2时,即m<−4,∵当−2≤x≤4时,y的最大值是15,∴当x=−2时,−(−2)2−2m+m=15,得m=−19;当−2≤m2≤4时,即−4≤m≤8时,∵当−2≤x≤4时,y的最大值是15,∴当x=m2时,m24+m=15,得m1=−10(舍去),m2=6;当m2>4时,即m>8,∵当−2≤x≤4时,y的最大值是15,∴当x=4时,−42+4m+m=15,得m=315(舍去);由上可得,m的值是−19或6;故选:C.根据题意和二次函数的性质,利用分类讨论的方法可以求得m的值,从而可以解答本题.本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.13.【答案】x≥1【解析】解:根据题意得,x−1≥0,解得x≥1.故答案为:x≥1.根据被开方数大于等于0列式计算即可得解.本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.14.【答案】−3【解析】解:根据题意得x1+x2=−1,x1x2=−1,所以x2x1+x1x2=x22+x12x1x2=(x1+x2)2−2x2x1x1x2=1+2−1=−3.故答案为−3.根据根与系数的关系得到x1+x2=−1,x1x2=−1,然后利用整体代入的方法计算代数式的值.本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=−ba,x1x2=ca.15.【答案】y=2x−9【解析】解:设平移后的解析式为:y=2x+b,∵将直线y=2x+1平移后经过点(5,1),∴1=10+b,解得:b=−9,故平移后的直线解析式为:y=2x−9.故答案为:y=2x−9.直接利用一次函数平移的性质假设出解析式进而得出答案.此题主要考查了一次函数图象与几何变换,正确假设出解析式是解题关键.16.【答案】x(x−1)=1056【解析】解:∵全班有x名同学,∴每名同学要送出(x−1)张;又∵是互送照片,∴总共送的张数应该是x(x−1)=1056.故答案为:x(x−1)=1056.如果全班有x名同学,那么每名同学要送出(x−1)张,共有x名学生,那么总共送的张数应该是x(x−1)张,即可列出方程.本题考查一元二次方程在实际生活中的应用.计算全班共送多少张,首先确定一个人送出多少张是解题关键.17.【答案】√262【解析】解:根据勾股定理,AB=√12+52=√26,BC=√22+22=2√2,AC=√32+33=3√2,∵AC2+BC2=AB2=26,∴△ABC是直角三角形,∵点D为AB的中点,∴CD=12AB=12×√26=√262.故答案为:√262.根据勾股定理列式求出AB、BC、AC,再利用勾股定理逆定理判断出△ABC是直角三角形,然后根据直角三角形斜边上的中线等于斜边的一半解答即可.本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,勾股定理逆定理的应用,判断出△ABC是直角三角形是解题的关键.18.【答案】②⑤【解析】解:①函数的对称轴在y轴右侧,则ab<0,而c<0,故abc>0,故①错误,不符合题意;②将点(−12,0)代入函数表达式得:a−2b+4c=0,故②正确,符合题意;③函数的对称轴为直线x=−b2a=1,即b=−2a,故2a+b=0,故③错误,不符合题意;④由②③得:a−2b+4c=0,b=−2a,则c=−5a4,故2c−3b=7a2>0,故④错误,不符合题意;⑤当x=1时,函数取得最小值,即a+b+c≤m(am+b)+c,故⑤正确,符合题意;故答案为②⑤.根据二次函数的图象与系数的关系即可求出答案.本题考查二次函数的图象与性质,解题的关键是熟练运用图象与系数的关系,本题属于中等题型.19.【答案】解:(1)设二次函数解析式为y=a(x+1)(x−3),∵抛物线过点C(0,−3),∴−3=a(0+1)(0−3),解得a=1,∴y=(x+1)(x−3),∴y二次函数的解析式=x2−2x−3.(2)由y=x2−2x−3=(x−1)2−4,∴对称轴是直线x=1,顶点坐标是(1,−4).【解析】(1)根据A与B的坐标设出抛物线的解析式,把C坐标代入确定出即可;(2)把解析式化成顶点式即可求得.此题考查了待定系数法求二次函数解析式,二次函数的图象与性质,熟练掌握待定系数法是解本题的关键.20.【答案】解:(1)∵x2+4x+1=0,∴x2+4x+4=3,∴(x+2)2=3,∴x+2=±√3,∴x1=−2+√3,x2=−2−√3;(2)∵a=2,b=3,c=−1,∴△=32−4×2×(−1)=17>0,则x=−3±√174.∴x1=−3+√174,x2=−3−√174.【解析】(1)利用配方法求解可得;(2)利用公式法求解可得.本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.21.【答案】7环7环【解析】解:(1)射击成绩出现次数最多的是7环,共出现5次,因此众数是7环,射击成绩从小到大排列后处在第5、6位的数都是7环,因此中位数是7环,故答案为:7环,7环.(2)6+7×5+8×2+9×210=7.5环,答:这10名学生的平均成绩为7.5环.(3)500×210=100人,答:全年级500名学生中有100名是优秀射手.(1)根据众数、中位数的意义将10名学生的射击成绩排序后找出第5、6位两个数的平均数即为中位数,出现次数最多的数是众数.(2)根据平均数的计算方法进行计算即可,(3)样本估计总体,用样本中优秀人数的所占的百分比估计总体中优秀的百分比,用总人数乘以这个百分比即可.考查平均数、众数、中位数的意义及求法,理解样本估计总体的统计方法.22.【答案】(1)证明:∵四边形ABCD是矩形,O是BD的中点,∴∠A=90°,AD=BC=4,AB//DC,OB=OD,∴∠OBE=∠ODF,∴△BOE≌△DOF(ASA),∴EO=FO,∴四边形BEDF是平行四边形;(2)解:当四边形BEDF是菱形时,BD⊥EF,设BE=x,则DE=x,AE=6−x,在Rt△ADE中,DE2=AD2+AE2,∴x2=42+(6−x)2,解得:x=133,∴菱形的边长为133.【解析】(1)根据平行四边形ABCD的性质,判定△BOE≌△DOF(ASA),得出四边形BEDF的对角线互相平分,进而得出结论;(2)在Rt△ADE中,由勾股定理得出方程,解方程求出DF的长即可求得菱形的边长.本题主要考查了矩形的性质,菱形的性质、勾股定理、全等三角形的判定与性质,熟练掌握矩形的性质和勾股定理,证明三角形全等是解决问的关键.23.【答案】解:(1)设这两年该该种植户每年投资的年平均增长率为x,则2017年种植投资为20(1+x)万元,2018年种植投资为20(1+x)2万元,根题意得:20+20(1+x)+20(1+x)2=95,解得:x=−3.5(舍去)或x=0.5=50%.∴该种植户每年投资的增长率为50%;(2)2019年该种植户投资额为:20(1+50%)3=67.5(万元).【解析】(1)设这两年该该种植户每年投资的年平均增长率为x.根据题意2017年种植投资为20(1+x)万元,2018年种植投资为20(1+x)2万元.根据题意得方程求解;(2)用种植户每年投资的增长率即可预测2019年该种植户投资额.主要考查了一元二次方程的实际应用,解题的关键是掌握增长率问题中的一般公式为a(1+x)n,其中n为共增长了几年,a为第一年的原始数据,x是增长率.24.【答案】解:(1)令x=0得:y=4,∴B(0,4).∴OB=4令y=0得:0=−43x+4,解得:x=3,∴A(3,0).∴OA=3.在Rt△OAB中,AB=√OA2+OB2=5.∴OC=OA+AC=3+5=8,∴C(8,0).设OD=x,则CD=DB=x+4.在Rt△OCD中,DC2=OD2+OC2,即(x+4)2=x2+82,解得:x=6,∴D(0,−6).(3)∵S△PAB=12S△OCD,∴S△PAB=12×12×6×8=12.∵点Py轴上,S△PAB=12,∴12BP⋅OA=12,即12×3BP=12,解得:BP=8,∴P点的坐标为(0,12)或(0,−4).【解析】(1)先求得点A和点B的坐标,则可得到OA、OB的长,然后依据勾股定理可求得AB的长,(2)依据翻折的性质可得到AC的长,于是可求得OC的长,从而可得到点C的坐标;设OD=x,则CD=DB= x+4.,Rt△OCD中,依据勾股定理可求得x的值,从而可得到点D(0,−6).(3)先求得S△PAB的值,然后依据三角形的面积公式可求得BP的长,从而可得到点P的坐标.本题主要考查的是一次函数的综合应用,解答本题主要应用了翻折的性质、勾股定理、待定系数法求函数解析式、三角形的面积公式,依据勾股定理列出关于x的方程是解题的关键.25.【答案】解:(1)w=y1⋅x+71(6−x)={80x +426−71x(0≤x ≤1)−x 2+81x +426−71x(1<x ≤6) ={9x +426(0≤x ≤1)−x 2+10x +426(1<x ≤6) ∴w ={9x +426(0≤x ≤1)−x 2+10x +426(1<x ≤6)(2)由(1)知,当x =1时,9x +426的最大值为435;当1<x ≤6时,−x 2+10x +426的最大值为x =5时的值,即451,451>435∴当该公司每年的国内销售量为5万件国外销售量为1万件时,可使公司每年的总利润最大,最大值是451万元.(3)∵该公司计划在国外销售不低于5万件,而该公司每年的年产量为6万件 ∴该公司每年在国内销售的件数x 的范围为:0≤x ≤1则总利润w =(80−2m)x +(71−m)(6−x)=(9−m)x +426−6m 显然当10≥m ≥9时,w 的值小于393,当5≤m <9时,9−m >0,当x =1时,令w =(9−m)×1+426−6m =393 解得m =6,当x =0时,令w =426−6m =393,解得m =5.5 经验证,发现当5.5≤m ≤6时符合题意,其他值都不符合. ∴m 的值为5.5≤m ≤6.【解析】(1)由利润等于每件的利润乘以件数,代入分段函数解析式,化简可得解; (2)结合(1)分别计算分段利润函数的最大值,最后得出最大值即可; (3)该公司计划在国外销售不低于5万件,而该公司每年的年产量为6万件 则该公司每年在国内销售的件数x 的范围为:0≤x ≤1则总利润w =(80−2m)x +(71−m)(6−x)=(9−m)x +426−6m 按照x 值的范围代入,结合最大利润为393万元,可分析求得.本题考查了二次函数在成本利润问题中的应用,前两问相对比较简单,第三问由于含有两个变量,分析难度较大,总体来说,本题中等难度略大.26.【答案】等腰【解析】解:(1)如图;根据抛物线的对称性,抛物线的顶点A 必在O 、B 的垂直平分线上,所以OA =AB ,即:“抛物线三角形”必为等腰三角形. 故答案为:等腰.(2)当抛物线y =−x 2+bx(b >0)的“抛物线三角形”是等腰直角三角形, 该抛物线的顶点(b 2,b 24),满足b2=b 24(b >0).则b =2.(3)存在.如图,作△OCD 与△OAB 关于原点O 中心对称,则四边形ABCD 为平行四边形.当OA =OB 时,平行四边形ABCD 是矩形, 又∵AO =AB , ∴△OAB 为等边三角形. ∴∠AOB =60°, 作AE ⊥OB ,垂足为E , ∴AE =OEtan∠AOB =√3OE . ∴b′24=√3×b′2(b >0).∴b′=2√3.∴A(√3,3),B(2√3,0). ∴C(−√3,−3),D(−2√3,0).设过点O 、C 、D 的抛物线为y =mx 2+nx ,则 {12m −2√3n =03m −√3n =0, 解得{m =1n =2√3,故所求抛物线的表达式为y =x 2+2√3x. (4)由−x 2+4mx −8m +4=3,x =4m±√16m2−4(8m−1)2=2m ±√4m 2−8m +1,当x 为整数时,须4m 2−8m +1为完全平方数,设4m 2−8m +1=n 2(n 是整数)整理得: (2m −2)2−n 2=3,即(2m −2+n)(2m −2−n)=3两个整数的积为3,∴{2n −2+n =12m −2−n =3或{2m −2+n =32m −2−n =1或{2m −2+n =−12m −2+n =−3或{2m −2+n =−32m −2+n =−1解得:{m =2n =−1或{m =2n =1或{m =0n =1或{m =0n =−1,综上,得:m =2或m =0;根据题意,抛物线的“抛物线三角形”有一边上的中线长恰好等于这边的长,当m =2时,抛物线方程为y =−x 2+8x −12=−(x −4)2+4,满足抛物线三角形的底边长等于这边的中线长;当m=0时,抛物线方程为y=−x2+4,满足抛物线三角形的底边长等于这边的中线长;∴抛物线与直线y=3交点的横坐标均为整数时m=2或m=0.(1)抛物线的顶点必在抛物线与x轴两交点连线的垂直平分线上,因此这个“抛物线三角形”一定是等腰三角形.(2)观察抛物线的解析式,它的开口向下且经过原点,由于b>0,那么其顶点在第一象限,而这个“抛物线三角形”是等腰直角三角形,必须满足顶点坐标的横、纵坐标相等,以此作为等量关系来列方程解出b 的值.(3)由于矩形的对角线相等且互相平分,所以若存在以原点O为对称中心的矩形ABCD,那么必须满足OA= OB,结合(1)的结论,这个“抛物线三角形”必须是等边三角形,首先用b′表示出AE、OE的长,通过△OAB 这个等边三角形来列等量关系求出b′的值,进而确定A、B的坐标,即可确定C、D的坐标,利用待定系数即可求出过O、C、D的抛物线的解析式.(4)联立两个函数的解析式,通过所得方程先求出这个方程的两个根,然后通过这两个根都是整数确定m的整数值.本二次函数综合题融入了新定义的形式,涉及到:二次函数的性质及解析式的确定、等腰三角形的判定和性质、矩形的判定和性质等知识,重在考查基础知识的掌握情况,解题的思路并不复杂,但计算过程较为复杂,间接增大了题目的难度.。

精品解析:九年级上学期12月月考数学试题(解析版)

精品解析:九年级上学期12月月考数学试题(解析版)

202-2021学年度第一学期12月质量检测初三年级数学试题卷(本试卷共5页,25小题,考试时间120分钟)注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、考室号、座位号填写在答题卡上2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其它答案.答案不能答在试卷上3.非选择题必修用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液,不按以上要求作答的答案无效4.考生必须保持答题卡的整洁,考试结束后,将试卷和答题卡一并交回5.考试时不可使用计算器第一部分选择题一、选择题(本大题共10小题,在每小题给出的四个选项中只有一项是符合题目要求的) 1. 二次函数2(2)3y x =--+的图像的对称轴是( )A. 直线2x =-B. 直线2x =C. 直线3x =-D. 直线3x = 【答案】B【解析】【分析】根据二次函数的顶点式可直接进行求解.【详解】解:由二次函数2(2)3y x =--+,可得该函数图像的对称轴为直线2x =;故选B .【点睛】本题主要考查二次函数的图像与性质,熟练掌握二次函数的图像与性质是解题的关键. 2. 用配方法解关于x 的一元二次方程2690x x +-=时,配方结果正确的是( )A. 2(3)0x +=B. 2(3)0x -=C. 2(3)18x +=D. 2(3)18x -= 【答案】C【解析】【分析】利用完全平方公式进行配方即可得到答案.【详解】解:2690x x +-=,∴26918x x ++=,∴2(3)18x +=;故选:C .【点睛】本题考查了配方法的应用,解题的关键是掌握配方法进行化简.3. 在一个不透明的袋子中装有4个除颜色外相同的小球,其中2个是白球,2个是红球,现从袋中任意抽出2个球,取出的球中至少有一个是红球的概率是( ) A. 12 B. 16 C. 23 D. 56【答案】D【解析】 【分析】把2个白球和2个红球编号为1、2、3、4,根据题意易得任意摸出2个球的可能性有1、2;1、3;1、4;2、3;2、4;3、4六种可能性,则取出的球中至少有一个是红球的的可能性有5种,进而问题可求解.【详解】解:由题意得:把2个白球和2个红球编号为1、2、3、4,则有:任意摸出2个球的可能性有1、2;1、3;1、4;2、3;2、4;3、4六种可能性,则取出的球中至少有一个是红球的的可能性有5种,所以取出的球中至少有一个是红球的概率是56P =; 故选D .【点睛】本题主要考查概率,熟练掌握概率的求法是解题的关键.4. 如图⊙O 中,BAC 60︒∠=, BC=6, 则圆心O 到弦BC 的距离是( )3 B. 3 C. 33 D. 6【答案】A【解析】【分析】连接OB ,OC ,并作OD⊥B C 交BC 于点D ,根据圆周角于圆心角的关系,可求得∠BOC 的度数,根据OD⊥BC ,可求得BD ,在Rt△BDC 中,通过解直角三角形可求得圆心O 到弦BC 的距离.【详解】如图,连接OB ,OC ,并作OD⊥BC 交BC 于点D ,∵∠BAC=60︒,∴∠BOC=120︒,∵OD⊥BC ,∴∠BOD=60︒,∠OBD=30︒,BD=3, ∴OD=3·tan 30333BD ︒=⨯=, 即圆心O 到弦BC 3故选:A .【点睛】本题考察垂径定理,明确垂直弦的直线平分这条弦,解题的关键是构建直角三角形.5. 已知点(212)P a b -+,与点P '()b a ,关于原点对称,则-a b 的值是( ) A. 43 B. 2 C. 8 D. 2-【答案】C【解析】【分析】根据点的坐标关于原点对称的特点可直接进行列式求出a 、b 的值,然后代入求解即可.【详解】解:由点()21,2P a b -+与点P '(),b a 关于原点对称,则有:212a b b a -=-⎧⎨+=-⎩,解得:35a b =⎧⎨=-⎩, ∴8a b -=,故选:C .【点睛】本题主要考查点的坐标关于原点对称,熟练掌握点的坐标关于原点对称的特点是解题的关键. 6. 如图,边长为4的正方形ABCD 各边均与⊙O 相切,正方形EFGH 是⊙O 的内接正方形,则图中阴影部分的面积是( )A. 16π4-B. 4π4-C. 16π8-D. 4π8-【答案】D【解析】【分析】 由题意易得阴影部分的面积=⊙O 的面积减去正方形EFGH 的面积,连接EG ,HF ,进而根据正方形的性质可得AE=EB=BF=FC=CG=DG=DH=AH=2,然后问题可求解.【详解】解:连接EG 、HF ,如图所示:∵四边形ABCD 、EFGH 是正方形,∴HF 与EG 互相垂直且平分,∵AB=4,∴AE=EB=BF=FC=CG=DG=DH=AH=2,∴⊙O 的半径为2,2222EH AE AH =+=, ∴阴影部分的面积为:248EFGH r S ππ-=-正方形;故选D .【点睛】本题主要考查切线的性质及正方形的性质,熟练掌握切线的性质及正方形的性质是解题的关键. 7. 如图,0MON 9︒∠=,ABC 关于OM 的对称图形是111A B C ,111A B C 关于ON 的对称图形是222A B C ,则ABC 与222A B C 的关系是( )A. 平移关系B. 关于O 点成中心对称C. 关于MON ∠的平分线成轴对称D. 关于直线ON 成轴对称【答案】B【解析】【分析】 可设OM 所在直线为y 轴,ON 所在直线为x 轴,再根据平面直角坐标系中轴对称与中心对称的对称点的坐标关系便可求解.【详解】不妨设OM 所在直线为y 轴,ON 所在直线为x 轴,∵△ABC 关于OM 的对称图形是△A 1B 1C 1,∴A 与A 1、B 与B 1、C 与C 1的纵坐标相同,横坐标互为相反数,∵△A 1B 1C 1关于ON 的对称图形是△A 2B 2C 2,∴A 1与A 2、B 1与B 2、C 1与C 2的横坐标相同,纵坐标互为相反数,∴A 与A 2、B 与B 2、C 与C 2的横坐标、纵坐标都互为相反数,则由中心对称图形在平面直角坐标系中对称点的坐标关系可知:△ABC 与△A 2B 2C 2关于O 点成中心对称. 故答案为:B .【点睛】本题考查了轴对称图形的特征和中心对称图形的识别,正确区分两种对称变换的特征是解题的关键.8. 如图,点P 是ABC 外接圆⊙O 上一点,AB=AC ,下列判断中,不正确的是( )A. 当弦AP 最长时,ABP ACP ∠=∠B. 当弦BP 最长时,ABP 是直角三角形C. 当弦BP 最长时,1802A PB BC C =-∠∠︒D. 当弦AP 最长时,且2=AP PC , 则AB BC =【答案】C【解析】【分析】 由圆内接四边形的性质,圆周角定理,圆的定义,等边三角形的判定和性质,分别对每个选项进行判断,即可得到答案.【详解】解:根据题意,则当弦AP 最长时,即AP 为直径,则90ABP ACP ∠=∠=︒,故A 正确;当弦BP 最长时,即BP 是直径,则90BAP ∠=︒,即ABP 是直角三角形,故B 正确;当弦BP 最长时,即BP 是直径,∵AB AC =,∴1802BAC ABC ∠=︒-∠∵BC 与CP 的长度不能确定,∴∠PBC 与∠BAC 不一定相等,∴1802A PB BC C =-∠∠︒不一定成立,故C 错误;当弦AP 最长时,即AP 为直径,∴90ABP ACP ∠=∠=︒,∵2=AP PC ,∴∠PAC=30°,∴∠APC=60°=∠ABC ,∵AB=AC ,∴△ABC 是等边三角形,∴AB BC =,故D 正确;故选:C .【点睛】本题考查了圆内接四边形的性质,圆周角定理,圆的定义,等边三角形的判定和性质,解题的关键是熟练掌握所学的知识,正确的进行判断.9. 当14x -≤≤时,二次函数2(3)y x k =-+函数值的取值范围是( ) A. 16k y k ≤≤+B. 116k y k +≤≤+C. 1k y k ≤≤+D. 1y k ≤+【答案】A【解析】【分析】 求出顶点坐标,得出最小值,然后求出x=-1,x=4时y 的值,即可得到函数值的取值范围.【详解】由二次函数()23y x k =-+可知,抛物线开口向上,顶点坐标为(3,k),∴函数有最小值y=k ,∵当x=-1时,16y k =+,当x=4时,1y k =+,∴函数值的取值范围为:+16k y k ≤≤,故选:A .【点睛】本题考查二次函数的性质、抛物线的对称轴、顶点坐标与抛物线解析式的关系,熟练掌握二次函数相关知识点是解题的关键.10. 如图,AOB 为等腰三角形,AO AB =,顶点A 的坐标()2,5,底边OB 在x 轴上 ①将AOB 绕点B 按顺时针方向旋转一定角度后得A O B '',点A 的对应点A '在x 轴上; ②将A O B ''绕点A '按顺时针方向旋转一定角度后得A O B ''''△,点O '的对应点O ''在x 轴上,则点B '的坐标为( )A. 20,53⎛ ⎝B. 20453⎛ ⎝⎭C. 22453⎛ ⎝⎭D. 22,53⎛ ⎝ 【答案】C【解析】【分析】过点A 作AC OB ⊥于点C ,过点O '作O D A B ''⊥于点D ,根据点A 的坐标求出OC CB =,AC 的长度,再利用勾股定理求出AO 的长度,根据旋转的性质可得4BO OB '==,A BO ABO ''∠=∠,由等腰三角形的面积,可以算出 O D '的长度,再利用勾股定理求出BD 的长度,进而得到点O '与A '的坐标,又根据旋转可知,点O '与B '关于直线7x =是对称的,进而求出点B '的坐标.【详解】过点A 作AC OB ⊥于点C ,过点O '作O D A B ''⊥于点D ,(5A ,AO AB =,∴2OC CB ==,5AC =∴4OB =, Rt AOC △中,由勾股定理得:()2222253AO OC AC =+=+=,由旋转可知:4,3BO OB BA AB OA ''=====,A BO ABO ''∠=∠,ABO A BO S S ''=,12ABO S OB OC =⋅,12A BO S BA O D ''''=⋅, ∴1145322O D ⨯=⨯', ∴55433O D '=⨯=, 在Rt O DB '中,由勾股定理得:2222458433BD BO O D ⎛⎫''=-=-= ⎪ ⎪⎝⎭, ∴203OD OB BD =+=, ∴点O '坐标为20453⎛ ⎝⎭,7OA A B OB ''=+=,∴点A '的坐标为()7,0, 将A O B ''绕点A '按顺时针方向得到A O B ''''△,∴A O B ''≌A B O '''',∴A O B ''与A B O ''''关于直线7x =是对称的,∴点O '与B '关于直线7x =是对称的,∴点B '的横坐标为:20222733⨯-=,∴点B '的坐标为22,33⎛ ⎝⎭.故选:C .【点睛】本题考查了坐标与图形变化,旋转,勾股定理,三角形面积,等腰三角形的性质,作辅助线构造直角三角形是解题的关键.第二部分非选择题二、选择题(本大题共6小题)11. 一元二次方程(2)(3)0x x -+=的根是_______【答案】122,3x x ==-【解析】【分析】根据一元二次方程的解法可直接进行求解.【详解】解:由一元二次方程(2)(3)0x x -+=可得方程的解为122,3x x ==-;故答案为122,3x x ==-.【点睛】本题主要考查一元二次方程的解法,熟练掌握一元二次方程的解法是解题的关键.12. 若点(3,5)-、(5,5)在抛物线21y ax bx =++上,则该抛物线的对称轴是________ 【答案】直线x=1【解析】【分析】根据图象上两点的函数值相等的点关于对称轴对称,即可求得抛物线的对称轴.【详解】解:∵点(3,5)-、(5,5)在抛物线21y ax bx =++上,∴点(3,5)-、(5,5)关于对称轴对称,∴抛物线的对称轴是直线x=352-+= 1, 故答案为:直线x=1.【点睛】本题考查二次函数的对称性,掌握图象上两点的函数值相等的点关于对称轴对称是解答的关键.13. 如图,AB 是半圆O 的直径,C 是半圆上的一点,且OC ⊥AB ,点D 为AC 的中点,则DCO ∠=______【答案】67.5°【解析】【分析】连接AC 、OD ,由题意易得∠ACO=45°,由点D 为AC 的中点可得∠AOD=45°,进而可得∠DCA=22.5°,然后问题可求解.【详解】解:连接AC 、OD ,如图所示:∵OC ⊥AB ,OC=OA ,∴∠ACO=45°,∠AOC=90°,∵点D 是AC 的中点,∴AD DC =,∴∠AOD=45°, ∴122.52ACD AOD ∠=∠=︒, ∴67.5DCO ACD ACO ∠=∠+∠=︒;故答案为67.5︒.【点睛】本题主要考查圆周角定理及圆心角、弧之间的关系,熟练掌握圆周角定理及圆心角、弧之间的关系是解题的关键.14. 有长度为3cm ,5cm ,7cm ,9cm 的四条线段,从中任取三条线段,能够组成三角形的概率是 .【答案】34. 【解析】【分析】由四条线段中任意取3条,共有4种可能结果,每种结果出现的机会相同,满足两边之和大于第三边构成三角形的有3个结果,所以P (取出三条能构成三角形)=34 【详解】从四条线段中任取三条线段的情况有:①3cm ,5cm ,7cm ;②3cm ,5cm , 9cm ;③5cm ,7cm ,9cm ;④3cm , 7cm ,9cm ,能够构成三角形的有①,③,④,故P (取出三条能构成三角形)=3415. 如图,点A 坐标为(2,2)-,点B 坐标为(2,0),点C 坐标为(4,2),点D 坐标为(2,2)-.若线段AB 和线段CD 间存在某种变换关系,即其中一条线段绕某点旋转一个角度后可以得到另一条线段,则这个旋转中心的坐标是____【答案】()1,1-或()2,2【解析】【分析】分点A 的对应点为C 或D 两种情况考虑:①当点A 的对应点为点C 时,连接AC 、BD ,分别作线段AC 、BD 的垂直平分线交于点E ,点E 即为旋转中心;②当点A 的对应点为点D 时,连接AD 、BC ,分别作线段AD 、BC 的垂直平分线交于点N ,则问题可求解.【详解】解:①当点A 的对应点为点C 时,连接AC 、BD ,分别作线段AC 、BD 的垂直平分线交于点E ,如图所示:∵点A 坐标为()2,2-,点B 坐标为()2,0,∴点E 的坐标为()1,1-;②当点A 的对应点为点D 时,连接AD 、BC ,分别作线段AD 、BC 的垂直平分线交于点N ,如图所示:∵点A 坐标为()2,2-,点B 坐标为()2,0,∴点N 的坐标为()2,2,综上所述:这个旋转中心的坐标为()1,1-或()2,2;故答案为()1,1-或()2,2.【点睛】本题主要考查旋转的性质,熟练掌握旋转的性质是解题的关键.16. 如图,在平面直角坐标系中,抛物线31)(5)y x x =+-的顶点为D ,且与x 轴分别交于A 、B 两点(点A 在点B 的左边),P 为抛物线对称轴上的动点,则12AP DP +的最小值是_____【答案】33【解析】【分析】 先把抛物线的解析式化为顶点式,则有点D 的坐标为(2,33,假设对称轴与x 轴的交点为C ,连接BD ,过点P 作PH ⊥BD 于点H ,过点A 作AM ⊥BD 于点M ,根据题意易得BC=3,33DC =得BD=6,进而可得∠CDB=30°,则12PH DP =,所以把求12AP DP +的最小值转化为求AP PH +的最小值,最后由点A 、P 、H 三点共线时取最小,即为AM 的长,则问题可求解. 【详解】解:由抛物线()()3153y x x =-+-可得)232333y x =--+ ∴点D 的坐标为(2,33,点A 的坐标为()1,0-,点B 的坐标为()5,0,假设对称轴与x 轴的交点为C ,连接BD ,过点P 作PH ⊥BD 于点H ,过点A 作AM ⊥BD 于点M ,如图所示:∴AB=6,BC=3,33DC =, 在Rt △DCB 中,226DB DC BC =+=,∴∠BDC=30°,∠DBC=60°,∴12PH DP =, ∴12AP DP +的最小值即为AP PH +的最小值, ∴当点A 、P 、H 三点共线时有最小值,即为AM 的长,∴sin 6033AM AB =⋅︒=,∴12AP DP +的最小值为33; 故答案为33.【点睛】本题主要考查二次函数的几何综合及三角函数,关键是由“胡不归”法进行求解最值,然后利用三角函数进行求解线段的长.三、解答题(本大题共9小题,解答要求写出文字说明、证明过程或计算步骤)17. 解一元二次方程:()330x x x -+-=【答案】x 1=3,x 2=﹣1【解析】【分析】利用因式分解法解一元二次方程即可解答.【详解】解:原方程可化为(x ﹣3)(x+1)=0,则:x ﹣3=0或x+1=0,∴x 1=3,x 2=﹣1.【点睛】本题考查解一元二次方程,熟悉一元二次方程的解法,灵活运用因式分解法求解一元二次方程是解答的关键.18. 如图,⊙O 的直径AB=4,C 为圆外的一点,连结AC 、BC ,AC=AB ,BC 与圆相,交于点D ,若30ABD ︒∠=,求BC 的长【答案】43【解析】【分析】连接AD ,得Rt △ABD ,由AB=4,∠ABD=30°,可求出BD ,再由等腰三角形三线合一可得BC=2BD 便可求解.【详解】连接AD ,∵AB 是⊙O 的直径,∴∠ADB=90°,AD ⊥BC ,则在Rt △ABD 中,AB=4,∠ABD=30°,∴BD cos 4cos3042AB ABD =⋅∠=⨯︒=⨯= ∵AB=AC ,AD ⊥BC ,∴BD=CD ,BC=2BD=2⨯=【点睛】本题考查了直径所对的圆周角为直角、解直角三角形、等腰三角形三线合一的性质,熟记定理并灵活运用是解题的关键.19. 已知关于x 的一元二次方程()2130x k x k ++--= (1)求证:该方程一定有两个不相等的实数根(2)若方程的一个根为4,求另一个根的值【答案】(1)见详解;(2)另一个根为43【解析】【分析】(1)根据一元二次方程根的判别式可直接进行求证;(2)把方程的一个根为4代入方程求出k 的值,然后再进行求解即可.【详解】(1)证明:∵关于x 的一元二次方程()2130x k x k ++--=, ∴()()()222144334b k k c k a ∆=+--==--++,∵()230k +≥,∴()23440k ∆=++≥>,∴该方程一定有两个不相等的实数根(2)解:把方程的一个根为4代入方程得: ()164130k k ++--=,解得:173k =-, ∴方程为2148033x x -+=, 解得:1224,3x x ==, ∴另一个根为43. 【点睛】本题主要考查一元二次方程的解法及根的判别式,熟练掌握一元二次方程的解法及根的判别式是解题的关键.20. 如图,有长为24米的篱笆,一面利用墙(墙的最大长度a 为10 米),围成中间隔有一道篱笆的矩形花圃,设花圃的宽AB 为x 米,面积为S 平方米(1)求S 与x 的函数解析式(2)在所围花圃中种植蝴蝶兰,每平方米的蝴蝶兰售出后可获得500元的利润,当x 为何值时,该花圃种植的蝴蝶兰可获利22500元【答案】(1)2324S x x =-+;(2)当x 为5时,该花圃种植的蝴蝶兰可获利22500元【解析】【分析】(1)根据题意可得围成的矩形花圃的长为()243x -米,进而问题可求解;(2)由(1)可得方程为()250032422500x x -+=,然后求解,最后根据墙的最大长度a 为10米可进行排除答案.【详解】解:(1)由题意得: ()2243324S x x x x =-=-+;(2)由(1)及题意得:()250032422500x x -+=,解得:123,5x x ==,∵墙的最大长度a 为10 米,∴24310x -≤且324x <, 解得1483x ≤<, ∴5x =,答:当x 为5时,该花圃种植的蝴蝶兰可获利22500元.【点睛】本题主要考查二次函数的应用,熟练掌握二次函数的应用是解题的关键.21. 如图,将Rt ABC 绕点A 按顺时针旋转一定角度得到Rt ADE ,点B 的对应点D 恰好落在BC 边上,B 60︒∠=(1)若AC=23,求CD 的长(2)连结CE ,试判断点D 与ACE 的外接圆⊙O 的位置关系,并加以证明【答案】(1)2;(2)点D 在△ACE 的外接圆⊙O 上,证明见解析【解析】【分析】(1)由题意易得AB 、BC 的长,然后由旋转的性质可求解;(2)由(1)及题意易得△ACE 是等边三角形,进而可证△ECD ≌△EAD ,然后根据四点共圆的性质可求证. 【详解】解:(1)∵∠B=60°,∠BAC=90°,AC=23 ∴2tan 60AC AB ==︒, ∴BC=2AB=4,∵将Rt ABC 绕点A 按顺时针旋转一定角度得到Rt ADE ,点B 的对应点D 恰好落在BC 边上, ∴AD AB =,∴△ADB 是等边三角形,∴BD=2,∴CD=2;(2)点D 在△ACE 的外接圆⊙O 上,理由如下:如图所示:由(1)可得∠DAB=60°,CD=AD,∴旋转角度为60°,∴∠EAC=60°,∵AC=AE,∴△ACE是等边三角形,∴EC=EA,∵ED=ED,∴△ECD≌△EAD,∴∠EAD=∠ECD=90°,∴∠ECD与∠EAD互补,∴∠CEA+∠CDA=180°,∴点E、A、D、C四点共圆,∴点D在△ACE的外接圆⊙O上.【点睛】本题主要考查旋转的性质、三角函数及圆内接四边形的性质,熟练掌握旋转的性质、三角函数及圆内接四边形的性质是解题的关键.22. 随着信息技术的迅速发展,人们日常消费购物的支付方式也越来越多样、高效和便捷.学校调查小组对某便利店一天内人们购物的支付方式进行了调查并统计,从调查中将支付方式分为四类:A微信、B支付宝、C现金、D其它,根据调查数据得到以下两张不完整的统计图(1)当天调查小组调查了________名购买者.(2)若该城市有70万消费人群,以当天调查的情况来看,试估计该城市使用“微信”支付方式消费的人数.(3)调查当天,甲、乙两人先后进入该便利店消费,请用列举法求出两个人选择同一种支付方式的概率.【答案】(1)120;(2)使用“微信”支付方式消费的人数为315000人;(3)两个人选择同一种支付方式的概率14【解析】【分析】(1)根据统计图可直接进行求解;(2)由(1)及题意可求出“微信”支付方式所占调查人数的百分比,然后再进行求解即可;(3)由题意易得甲、乙两人选择支付方式的可能性有AA 、AB 、AC 、AD 、BA 、BB 、BC 、BD 、CA 、CB 、CC 、CD 、DA 、DB 、DC 、DD 共16种,选择同一种支付方式的可能性有4种,进而问题可求解.【详解】解:(1)由统计图可得B 类支付方式的有48人,所占百分比为40%,∴48÷40%=120(名);故答案为120;(2)由(1)可得调查人数为120名,而D 类支付人数为6名,∴D 类支付人数所占百分比为6÷120×100%=5%,∴A 类支付人数所占百分比为14010545---=%%%%,∴该城市有70万消费人群中使用“微信”支付方式消费的人数为70000045315000⨯=%(名), 答:使用“微信”支付方式消费的人数为315000人.(3)由题意易得甲、乙两人选择支付方式的可能性有AA 、AB 、AC 、AD 、BA 、BB 、BC 、BD 、CA 、CB 、CC 、CD 、DA 、DB 、DC 、DD 共16种,选择同一种支付方式的可能性有4种,所以概率为41164P ==, 答:两个人选择同一种支付方式的概率14. 【点睛】本题主要考查数据分析与概率,熟练掌握统计图及概率的求法是解题的关键.23. 在一次数学探究学习活动中,某数学兴趣小组计划制作一个圆锥体模型(尺寸大小如下图①,单位为cm ),操作规则是:在一张正方形的纸片上剪出一个扇形和一个圆,使得扇形围成圆锥的侧面时,圆恰好是该圆锥的底面.经过初步商量后,兴趣小组设计了两种方案(如图),最后发现根据方案一无法制作出相关模型.(两方案的图中,两圆圆心1O 、2O 与正方形纸片1O BCD 的顶点C 在同一条直线上)(1)请根据圆锥体模型的尺寸(如图①),求出该圆锥体的全面积.(结果保留π) (2)请说明方案一不可行的理由.(3)兴趣小组根据方案二最终成功制作出圆锥体模型,求方案二中正方形纸片的边长. 【答案】(1)80π;(2)见详解;(3)正方形的边长为1024 【解析】 【分析】(1)由题意易得圆锥的母线长为16,底面圆的半径为4,然后利用圆锥的全面积计算公式直接代入求解即可;(2)由方案一的图可得圆的半径为16,进而可得BD 的长,设圆2O 与正方形相切于点E ,连接2O E ,进而可求出圆2O 的半径,然后求出圆2O 的周长,进而根据底面圆的周长等于圆锥侧面展开图的弧长可进行求证;(3)设圆2O 与正方形相切于点F ,连接2O F ,由方案二的图得出圆1O 和圆2O 的半径,然后再利用圆锥侧面展开图的弧长等于底面圆的周长可求解.【详解】解:(1)由题意得:圆锥的母线长为16,底面圆的半径为4,∴圆锥的全面积为:221148168022r l R ππππ+=⨯+⨯⨯⨯=弧长; (2)设圆2O 与正方形相切于点E ,连接2O E ,如图所示:∴2O E BC ⊥,∵四边形ABCD 是正方形, ∴145O CB ∠=︒, ∴1162O C =, 设2O E r =, ∴22O C r =,∴1162162O C r r =++=,解得:48322r =-, ∴BD 的长为90168180180n r πππ⨯==,圆2O 的周长为()()224832296642r πππ=⨯-=-, ∵()896642ππ≠-,∴方案一不可行;(3)设圆2O 与正方形相切于点F ,连接2O F ,如图所示:设2O F r =,∴由圆锥的侧面展开图的弧长等于底面圆的周长可得:90162180r ππ⨯=,解得:4r =,∴1164422042OC =++=+, ∵四边形ABCD 是正方形, ∴145O CB ∠=︒, ∴1210242BC O C ==+, ∴正方形的边长为1024+.【点睛】本题主要考查圆锥的全面积及弧长计算公式,熟练掌握圆锥全面积及弧长的计算公式是解题的关键.24. 如图,平行四边形ABCD 的三个顶点A 、B 、D 在⊙O 上,线段DG 过圆心且与边AB 交于点E ,与圆相交于点F ,边BC 与圆相交于点H ,DG AB ⊥,2GAB ADE ∠=∠ (1)求证:DCH △是等腰三角形 (2)求证:直线GA 是⊙O 的切线(3)若5ADF 1︒∠=,7AD =,设⊙O 的半径为r ,求2r 的值【答案】(1)见解析;(2)见解析;(3)98493-【解析】 【分析】(1)连接DH ,根据圆内接四边形的外角等于内对角和平行四边形的性质可证得∠DHC=∠C ,再根据等腰三角形的判定即可证得结论;(2)连接OA ,根据圆周角定理可得∠AOE=2∠ADE ,则有∠GAB=∠AOE ,根据直角三角形两锐角互余可得∠AOE+∠OAE=90°,则有∠GAB+∠OAE=90°,即∠GAO=90°,根据切线性质即可证得结论;(3)根据圆心角定理求得∠AOE=30°,利用锐角三角函数解直角三角形可得AE=12r ,OE=2r ,则DE=(12r +,然后在Rt △AED 中,利用勾股定理列方程求解2r 即可. 【详解】(1)证明:连接DH , ∵四边形ABHD 为圆内接四边形, ∴∠DHC=∠DAB ,∵四边形ABCD 是平行四边形, ∴∠C=∠DAB , ∴∠DHC=∠C , ∴DH=DC ,∴△DHC 是等腰三角形;(2)证明:连接OA ,则∠AOE=2∠ADE , ∵∠GAB=2∠ADE , ∴∠GAB=∠AOE , ∵DG ⊥AB ,∴∠AOE+∠OAE=90°, ∴∠GAB+∠OAE=90°, 即∠GAO=90°,∴直线GA 是⊙O 的切线; (3)∵∠ADF=15°,∴∠AOE=2∠ADF=30°,又DG ⊥AB , ∴Rt △AOE 中,AE=AO ·sin30°=12r ,OE=AO ·cos30°=2r ,则DE=(1)2r +,在Rt △AED 中,AD=7,由勾股定理得:22221()(172r r ++=,解得:2r =98493-.【点睛】本题考查圆内接四边形的外角性质、平行四边形的性质、等腰三角形的判定、圆周角定理、切线的判定、直角三角形的性质、锐角三角函数解直角三角形、解一元二次方程,解答的关键是利用数形结合思想,寻找各知识点相关联信息,添加适当辅助线解决问题.25. 抛物线252y ax ax =++(0)a ≠交x 轴与点A 和点B(-4,0),交y 轴于点C ,点P 为抛物线上一动点(P 与B 、C 不重合) (1)求抛物线的解析式.(2)连结CB ,若点P 在直线BC 下方时,求BCP 的面积的最大值.(3)若点M 为直线BC 上一点,是否存在点M ,使以点P 、C 、A 、M 为顶点的四边形为平行四边形?若存在,求出点M 的坐标;若不存在,请说明理由.【答案】(1)215222y x x =++;(2)4;(3)存在,()123M ,,()221M ,-,31737M ,⎛+-+ ⎝⎭,417372M ⎛-- ⎝⎭【解析】 【分析】(1)直接将B(-4,0)代入解析式,通过待定系数法求解即可;(2)先运用待定系数法求解出BC 的解析式,再作PQ ∥y 轴,交BC 于Q 点,从而可根据抛物线和直线的解析式设出P ,Q 的坐标,并表示出PQ ,最后根据PQ 建立出关于BCPS 的二次函数表达式,从而运用函数的性质求解即可;(3)分别考虑AC ,AM ,AP 为对角线,结合平行四边形的对角线互相平分的性质分类求解即可. 【详解】(1)将B(-4,0)代入解析式得:162020a a -+=, 解得:12a =,∴抛物线的解析式为:215222y x x =++; (2)如图所示,由抛物线解析式可得:()1,0A -,()0,2C , 设直线BC 的解析式为:y kx b =+,将B ,C 坐标分别代入得:402k b b -+=⎧⎨=⎩,解得:122k b ⎧=⎪⎨⎪=⎩,∴直线BC 的解析式为:122y x =+, ∵点P 在直线BC 下方,且在抛物线上, ∴设P 的坐标为215222m m,m ⎛⎫⎪⎝+⎭+,其中40m -<<, 此时,作PQ ∥y 轴,交BC 于Q 点,则Q 的坐标为122m m ⎛+⎫ ⎪⎝⎭,,∴2251211222222P m m m m m Q ⎛⎫+-=- ⎪+⎭=-⎝+, ∴()()()2241222110422△BCP C B S m PQ x x m m ⎛⎫=-=-⨯--=-++⎡⎤ ⎪⎣⎦⎝-⎭, ∴当2m =-时,BCP 的面积取得最大值,最大值为4;(3)存在这样的M 点,理由如下: ①如图所示,若以AC 为对角线,可得11APCM ,此时,直线AP ∥BC ,且过点A , 则可设直线AP 的解析式为:12y x b =+, 将A 点代入可得:12b =,∴直线AP 的解析式为:1122y x =+, 令2152211222x x x +=++,解得13,x x =-=-, ∴P 点的横坐标为-3,则代入AP 的解析式得纵坐标为-1, ∴()3,1P --, 设M 的坐标为(),a b ,此时根据平行四边形的性质可得:310102a b -+=-+⎧⎨-+=+⎩,解得:23a b =⎧⎨=⎩,∴()12,3M ;②如图所示,若以AM 为对角线,可得12APM C ,由①可知()3,1P --, 设M 的坐标为(),a b ,此时根据平行四边形的性质可得:130012a b -+=-+⎧⎨+=-+⎩,解得:21a b =-⎧⎨=⎩,∴()221M ,-;③如图所示,若以AP 为对角线,可得33AM PC 和42AM P C , 此时可设1,22M a a ⎛⎫+ ⎪⎝⎭,215222P m m ,m ⎛⎫ ⎪⎝+⎭+,则根据平行四边形的性质可得:21115222222a m a m m =-⎧⎪⎨++=++⎪⎩,解得:32a m ⎧=-+⎪⎨=-⎪⎩32a m ⎧=-⎪⎨=-⎪⎩当3a =-+BC可得:y =33M ⎛-+ ⎝⎭;当3a =-BC可得:y =,即43M ⎛- ⎝⎭; 综上所述,存在M 使得以点P 、C 、A 、M 为顶点的四边形为平行四边形,M 的坐标为:()12,3M ,()221M ,-,317372M ,⎛⎫+-+ ⎪ ⎪⎝⎭,417372M ,⎛⎫--- ⎪ ⎪⎝⎭.【点睛】本题考查待定系数法求解函数的解析式,运用函数的思想求解三角形面积最大值以及平行四边形的判定与性质,前两个问题较为基础,熟练掌握常规方法求解是关键,最后一问中结合平行四边形对角线的性质分类讨论是关键.。

苏科版九年级上12月月考数学试卷含答案解析

苏科版九年级上12月月考数学试卷含答案解析

九年级上学期月考数学试卷(12 月份)一、选择题(本大题共有10 小题,每小题3分,共30 分)1.方程x2=2x 的解是()A.x=2 B.x1=2,x2=0 C.x1=﹣,x2=0 D.x=02.若二次函数y=(a﹣1)x2+3x+a2﹣1 的图象经过原点,则a的值必为()A.1 或﹣1 B.1 C.﹣1 D.03.二次函数y=﹣2(x﹣1)2+3 的图象的顶点坐标是()A.(1,3)B.(﹣1,3)C.(1,﹣3)D.(﹣1,﹣3)4.学校组织才艺表演比赛,前6名获奖.有13 位同学参加比赛且他们所得的分数互不相同.某同学知道自己的比赛分数后,要判断自己能否获奖,在这13 名同学成绩的统计量中只需知道一个量,它是()A.众数B.方差C.中位数D.平均数5.已知圆锥的底面的半径为3cm,高为4cm,则它的侧面积为()A.15πcm2 B.16πcm2 C.19πcm2 D.24πcm2A.0 个B.1 个C.2 个D.3 个7.如图,A、D 是⊙O 上的两个点,BC 是直径,若∠D=35°,则∠OAC 的度数是()A.35°B.55°C.65°D.70°8.如图,正△ABC 的边长为3cm,动点P从点A出发,以每秒1cm 的速度,沿A→B→C 的方向运动,到达点C时停止,设运动时间为x(秒),y=PC2,则y关于x的函数的图象大致为()A.B.C.D.9.如图,等边△ABC 的周长为6π,半径是1的⊙O 从与A B 相切于点D的位置出发,在△ABC 外部按顺时针方向沿三角形滚动,又回到与A B 相切于点D的位置,则⊙O 自转了()A.2 周B.3 周C.4 周D.5 周10.二次函数y=x2+bx 的图象如图,对称轴为直线x=1,若关于x的一元二次方程x2+bx﹣t=0(t 为实数)在﹣1<x<4 的范围内有解,则t的取值范围是()A.t≥﹣1B.﹣1≤t<3 C.﹣1≤t<8 D.3<t<8二、填空题(本大题共8小题,每空2分,共16 分)11.圆弧的半径为3,弧所对的圆心角为60°,则该弧的长度为.12.现有甲、乙两个合唱队队员的平均身高为170cm,方差分别是S甲2、S 乙2,且S甲2>S 乙2,则两个队的队员的身高较整齐的是.13.某厂一月份生产某机器100 台,计划三月份生产160 台.设二、三月份每月的平均增长率为x,根据题意列出的方程是.14.一个正多边形的每个外角都是36°,这个正多边形的边数是.15.关于x的一元二次方程x2﹣3x+b=0 有两个不相等的实数根,则b的取值范围是.16.已知二次函数y=ax2+bx+c 的部分图象如图所示,其对称轴为直线x=﹣1.若其与x轴的一个交点为A,则由图象可知,当自变量x的取值范围是时,函数值y<0.17.如图,在矩形A BCD 中,AB=,AD=1,把该矩形绕点A顺时针旋转α度得矩形A B′C′D′,点C′落在A B 的延长线上,则线段C D 扫过部分的面积(图中阴影部分)是.18.如图,已知抛物线y=ax2+bx+c 与x 轴交于A、B 两点,顶点C 的纵坐标为﹣2,现将抛物线向右平移2 个单位,得到抛物线y=a1x2+b1x+c1,则下列结论正确的是.(写出所有正确结论的序号)①b>0②a﹣b+c<0③阴影部分的面积为4④若c=﹣1,则b2=4a.三、解答题(本大题共 10 小题,共 84 分.请在答题卡指定区域内作答,解答时应写出文字说明、 证明过程或演算步骤) 19.解方程:x 2﹣2x ﹣1=0.20.解方程:(x ﹣3)2+4x (x ﹣3)=0.21.在“全民读书月”活动中,小明调查了班级里 40 名同学本学期计划购买课外书的花费情况,并将 结果绘制成如图所示的统计图,请根据相关信息,解答下列问题:(直接填写结果) (1)本次调查获取的样本数据的众数是 ; 这次调查获取的样本数据的中位数是 ; (3)若该校共有学生 1000 人,根据样本数据,估计本学期计划购买课外书花费 50 元的学生有 人.22.一只不透明袋子中装有 1 个红球,2 个黄球,这些球除颜色外都相同,小明搅匀后从中任意摸 出一个球,记录颜色后放回、搅匀,再从中任意摸出 1 个球,用画树状图或列表法列出摸出球的所 有等可能情况,并求两次摸出的球都是红球的概率.23.如图,点 O 为 R t △ABC 斜边 A B 上一点,以 O A 为半径的⊙O 与 B C 切于点 D ,与 A C 交于点 E ,连接 A D .(1)求证:AD 平分∠BAC ; 若∠BAC=60°,OA=2,求阴影部分的面积(结果保留 π).24.如图,在单位长度为 1 的正方形网格中,一段圆弧经过格点 A 、B 、C . (1)画出该圆弧所在圆的圆心 D 的位置(不用写作法,保留作图痕迹),并连接 A D 、CD . 请在(1)的基础上,以点 O 为原点、水平方向所在直线为 x 轴、竖直方向所在直线为 y 轴,建立 平面直角坐标系,完成下列问题: ①⊙D ②若用扇形 A DC 围成一个圆锥的侧面,则该圆锥的底面圆半径是 ;③若E(7,,试判断直线E C 与⊙D 的位置关系并说明你的理由.25.某校部分团员参加社会公益活动,准备购进一批许愿瓶进行销售,并将所得利润捐给慈善机构.这种许愿瓶的进价为6 元/个,根据市场调查,一段时间内的销售量y(个)与销售单价x(元/个)之间的对应关系如图所示:(1)试判断y与x之间的函数关系,并求出函数关系式;按照上述市场调查的销售规律,当利润达到1200 元时,请求出许愿瓶的销售单价x;(3)请写出销售利润w(元)与销售单价x(元/个)之间的函数关系式;若许愿瓶的进货成本不超过900 元,要想获得最大的利润,试确定这种许愿瓶的销售单价,并求出此时的最大利润.26.如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0),其对称轴与x轴相交于点M.(1)求抛物线的解析式和对称轴;在抛物线的对称轴上是否存在一点P,使△PAB 的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;(3)连接A C,在直线A C 的下方的抛物线上,是否存在一点N,使△NAC 的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.27.如图1至图4中,两平行线A B、CD 间的距离均为6,点M为A B 上一定点.思考如图1,圆心为0的半圆形纸片在A B,CD 之间(包括A B,CD),其直径M N 在A B 上,MN=8,点P 为半圆上一点,设∠MOP=α.当α= 度时,点P到C D 的距离最小,最小值为.探究一在图1的基础上,以点M为旋转中心,在A B,CD 之间顺时针旋转该半圆形纸片,直到不能再转动为止,如图2,得到最大旋转角∠BMO= 度,此时点N到C D 的距离是.探究二将如图1中的扇形纸片N OP 按下面对α的要求剪掉,使扇形纸片M OP 绕点M在A B,CD 之间顺时针旋转.(1)如图3,当α=60°时,求在旋转过程中,点P到C D 的最小距离,并请指出旋转角∠BMO 的最大值;如图4,在扇形纸片M OP 旋转过程中,要保证点P能落在直线C D 上,请确定α的取值范围.(参考数椐:sin49°=,cos41°=,tan37°=.)28.在平面直角坐标系中,O 为原点,直线y=﹣2x﹣1 与y轴交于点A,与直线y=﹣x 交于点B,点B关于原点的对称点为点C.(1)求过A,B,C 三点的抛物线的解析式;P 为抛物线上一点,它关于原点的对称点为Q.①当四边形P BQC 为菱形时,求点P的坐标;②若点P的横坐标为t(﹣1<t<1,当t为何值时,四边形P BQC 面积最大?并说明理由.江苏省无锡市宜兴市桃溪中学届九年级上学期月考数学试卷(12 月份)参考答案与试题解析一、选择题(本大题共有10 小题,每小题3分,共30 分)1.方程x2=2x 的解是()A.x=2 B.x1=2,x2=0 C.x1=﹣,x2=0 D.x=0【考点】解一元二次方程-因式分解法.【分析】把右边的项移到左边,用提公因式法因式分解求出方程的根.【解答】解:x2=2x,x2﹣2x=0,x(x﹣2)=0,∴x=0,x﹣2=0,∴x1=0,x2=2,故选:B.【点评】本题考查了运用因式分解法解一元二次方程的方法:先把方程右边化为0,再把方程左边进行因式分解,然后一元二次方程就可化为两个一元一次方程,解两个一元一次方程即可.2.若二次函数y=(a﹣1)x2+3x+a2﹣1 的图象经过原点,则a的值必为()A.1 或﹣1 B.1 C.﹣1 D.0【考点】二次函数图象上点的坐标特征;二次函数的定义.【分析】先把原点坐标代入二次函数解析式得到a的方程,解方程得到a=1 或a=﹣1,根据二次函数的定义可判断a=﹣1.【解答】解:把(0,0)代入y=(a﹣1)x2+3x+a2﹣1,得a2﹣1=0,解得a=1 或a=﹣1,因为a﹣1≠0,所以a≠1,即a=﹣1.故选C.【点评】本题考查了二次函数图象上点的坐标特征:二次函数y=ax2+bx+c(a、b、c 为常数,a≠0)图象上的点的坐标满足其解析式,同时考查了二次函数的定义.3.二次函数y=﹣2(x﹣1)2+3 的图象的顶点坐标是()A.(1,3)B.(﹣1,3)C.(1,﹣3)D.(﹣1,﹣3)【考点】二次函数的性质.【分析】根据二次函数顶点式解析式写出顶点坐标即可.【解答】解:二次函数y=﹣2(x﹣1)2+3 的图象的顶点坐标为(1,3).故选A.【点评】本题考查了二次函数的性质,熟练掌握利用顶点式解析式写出顶点坐标的方法是解题的关键.4.学校组织才艺表演比赛,前6 名获奖.有13 位同学参加比赛且他们所得的分数互不相同.某同学知道自己的比赛分数后,要判断自己能否获奖,在这13 名同学成绩的统计量中只需知道一个量,它是()A.众数B.方差C.中位数D.平均数【考点】统计量的选择.【分析】由于比赛设置了6个获奖名额,共有13 名选手参加,故应根据中位数的意义分析.【解答】解:因为6位获奖者的分数肯定是13 名参赛选手中最高的,而且13 个不同的分数按从小到大排序后,中位数及中位数之后的共有6个数,故只要知道自己的分数和中位数就可以知道是否获奖了.故选C.【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.5.已知圆锥的底面的半径为3cm,高为4cm,则它的侧面积为()A.15πcm2 B.16πcm2 C.19πcm2 D.24πcm2【考点】圆锥的计算;弧长的计算;扇形面积的计算.【专题】计算题.【分析】先利用勾股定理计算出母线长PA,然后根据圆锥的侧面展开图为扇形,扇形的弧长等于圆锥的底面圆的周长,扇形的半径等于圆锥的母线长,利用扇形的面积公式计算即可.【解答】解:如图,OA=3cm,高P O=4cm,在Rt△PAO 中,PA== =5,∴圆锥的侧面积= •2π•3×5=15π(cm2).故选A.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的弧长等于圆锥的底面圆的周长,扇形的半径等于圆锥的母线长.也考查了扇形的面积公式以及勾股定理.A.0 个B.1 个C.2 个D.3 个【分析】等弧必须同圆中长度相等的弧;不在同一直线上任意三点确定一个圆;在等圆中相等的圆心角所对的弦相等;外心在三角形的一条边上的三角形是直角三角形.【解答】解:①等弧必须同圆中长度相等的弧,故本选项错误.②不在同一直线上任意三点确定一个圆,故B本项错误.③在等圆中相等的圆心角所对的弦相等,故本选项错误.④外心在三角形的一条边上的三角形是直角三角形,故本选项正确.所以只有④一项正确.故选B.7.如图,A、D 是⊙O 上的两个点,BC 是直径,若∠D=35°,则∠OAC 的度数是()A.35°B.55°C.65°D.70°【考点】圆周角定理.【分析】在同圆和等圆中,同弧所对的圆心角是圆周角的2倍,所以∠AOC=2∠D=70°,而△AOC 中,AO=CO,所以∠OAC=∠OCA,而180°﹣∠AOC=110°,所以∠OAC=55°.【解答】解:∵∠D=35°,∴∠AOC=2∠D=70°,∴∠OAC=(180°﹣∠AOC)÷2=110°÷2=55°.故选:B.【点评】本题考查同弧所对的圆周角和圆心角的关系.规律总结:解决与圆有关的角度的相关计算时,一般先判断角是圆周角还是圆心角,再转化成同弧所对的圆周角或圆心角,利用同弧所对的圆周角相等,同弧所对的圆周角是圆心角的一半等关系求解,特别地,当有一直径这一条件时,往往要用到直径所对的圆周角是直角这一条件.8.如图,正△ABC 的边长为3cm,动点P从点A出发,以每秒1cm 的速度,沿A→B→C 的方向运动,到达点C时停止,设运动时间为x(秒),y=PC2,则y关于x的函数的图象大致为()A .B .C .D .【考点】动点问题的函数图象. 【专题】压轴题.【分析】需要分类讨论:①当 0≤x ≤3,即点 P 在线段 A B 上时,根据余弦定理知 c osA=, 所以将相关线段的长度代入该等式,即可求得 y 与 x 的函数关系式,然后根据函数关系式确定该函 数的图象.②当 3<x ≤6,即点 P 在线段 B C 上时,y 与 x 的函数关系式是 y =(6﹣x )2=(x ﹣6)2 (3<x ≤6,根据该函数关系式可以确定该函数的图象.【解答】解:∵正△ABC 的边长为 3cm , ∴∠A=∠B=∠C=60°,AC=3cm . ①当 0≤x ≤3 时,即点 P 在线段 A B 上时,AP=xcm (0≤x ≤3); 根据余弦定理知 c osA=, 即 = ,解得,y=x 2﹣3x+9(0≤x ≤3); 该函数图象是开口向上的抛物线;解法二:过 C 作 C D ⊥AB ,则 A D=1.5cm ,CD=cm ,点 P 在 A B 上时,AP=x cm ,PD=|1.5﹣x|cm ,∴y=PC 2=()2+(1.5﹣x )2=x 2﹣3x+9(0≤x ≤3) 该函数图象是开口向上的抛物线;②当 3<x ≤6 时,即点 P 在线段 B C 上时,PC=(6﹣x )cm (3<x ≤6);则y=(6﹣x)2=(x﹣6)2(3<x≤6),∴该函数的图象是在3<x≤6 上的抛物线;故选:C.【点评】本题考查了动点问题的函数图象.解答该题时,需要对点P的位置进行分类讨论,以防错选.9.如图,等边△ABC 的周长为6π,半径是1的⊙O 从与A B 相切于点D的位置出发,在△ABC 外部按顺时针方向沿三角形滚动,又回到与A B 相切于点D的位置,则⊙O 自转了()A.2 周B.3 周C.4 周D.5 周【考点】直线与圆的位置关系;等边三角形的性质.【专题】压轴题.【分析】该圆运动可分为两部分:在三角形的三边运动以及绕过三角形的三个角,分别计算即可得到圆的自传周数.【解答】解:圆在三边运动自转周数:=3,圆绕过三角形外角时,共自转了三角形外角和的度数:360°,即一周;可见,⊙O 自转了3+1=4 周.故选:C.【点评】本题考查了圆的旋转与三角形的关系,要充分利用等边三角形的性质及圆的周长公式解答.10.二次函数y=x2+bx 的图象如图,对称轴为直线x=1,若关于x的一元二次方程x2+bx﹣t=0(t 为实数)在﹣1<x<4 的范围内有解,则t的取值范围是()A.t≥﹣1B.﹣1≤t<3 C.﹣1≤t<8 D.3<t<8【考点】二次函数与不等式(组).【专题】压轴题.【分析】根据对称轴求出b的值,从而得到x=﹣1、4 时的函数值,再根据一元二次方程x2+bx﹣t=0 (t 为实数)在﹣1<x<4 的范围内有解相当于y=x2+bx 与y=t 在x的范围内有交点解答.【解答】解:对称轴为直线x=﹣=1,解得b=﹣2,所以,二次函数解析式为y=x2﹣2x,y=(x﹣1)2﹣1,x=﹣1 时,y=1+2=3,x=4 时,y=16﹣2×4=8,∵x2+bx﹣t=0 相当于y=x2+bx 与直线y=t 的交点的横坐标,∴当﹣1≤t<8 时,在﹣1<x<4 的范围内有解.故选:C.【点评】本题考查了二次函数与不等式,把方程的解转化为两个函数图象的交点的问题求解是解题的关键,作出图形更形象直观.二、填空题(本大题共8小题,每空2分,共16 分)11.圆弧的半径为3,弧所对的圆心角为60°,则该弧的长度为π.【考点】弧长的计算.【分析】利用弧长公式即可直接求解.【解答】解:弧长是:=π.故答案是:π.【点评】本题考查了弧长的计算公式,正确记忆公式是关键.12.现有甲、乙两个合唱队队员的平均身高为170cm,方差分别是S甲2、S 乙2,且S甲2>S 乙2,则两个队的队员的身高较整齐的是乙.【考点】方差.【分析】利用方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,进而分析得出答案.【解答】解:∵S 甲2>S 乙2,∴两个队的队员的身高较整齐的是:乙.故答案为:乙.【点评】此题主要考查了方差的意义,正确理解方差的意义是解题关键.13.某厂一月份生产某机器100 台,计划三月份生产160 台.设二、三月份每月的平均增长率为x,根据题意列出的方程是100(1+x)2=160 .【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】设二,三月份每月平均增长率为x,根据一月份生产机器100 台,三月份生产机器160 台,可列出方程.【解答】解:设二,三月份每月平均增长率为x,100(1+x)2=160.故答案为:100(1+x)2=160.【点评】本题考查理解题意的能力,本题是个增长率问题,发生了两次变化,先找出一月份的产量和三月份的产量,从而可列出方程.14.一个正多边形的每个外角都是36°,这个正多边形的边数是10 .【考点】多边形内角与外角.【分析】多边形的外角和等于360°,因为所给多边形的每个外角均相等,故又可表示成36°n,列方程可求解.【解答】解:设所求正n边形边数为n,则36°n=360°,解得n=10.故正多边形的边数是10.【点评】本题考查根据多边形的外角和求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.15.关于x的一元二次方程x2﹣3x+b=0 有两个不相等的实数根,则b的取值范围是b<.【考点】根的判别式.【专题】计算题.【分析】根据判别式的意义得到△=(﹣3)2﹣4b>0,然后解不等式即可.【解答】解:根据题意得△=(﹣3)2﹣4b>0,解得b<.故答案为:b<.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.16.已知二次函数y=ax2+bx+c 的部分图象如图所示,其对称轴为直线x=﹣1.若其与x轴的一个交点为A,则由图象可知,当自变量x 的取值范围是x>2 或x<﹣4 时,函数值y<0.【考点】抛物线与x轴的交点..【分析】利用二次函数的对称性,得出图象与 x 轴的另一个交点坐标,再结合图象,得出 y 的取值 小于 0 时,图象为 x 轴下方部分,即可得出自变量 x 的取值范围. 【解答】解:∵二次函数对称轴为直线 x =﹣1,与 x 轴交点为 A , ∴根据二次函数的对称性,可得到图象与 x 轴的另一个交点坐标为(﹣4,0), 又∵函数开口向下,x 轴下方部分 y <0, ∴x >2 或 x <﹣4, 故答案为:x >2 或 x <﹣4.【点评】此题主要考查了二次函数的对称性,以及结合二次函数图象观察函数的取值问题.17.如图,在矩形 A BCD 中,AB=,AD=1,把该矩形绕点 A 顺时针旋转 α 度得矩形 A B ′C ′D ′,点 C ′落在 A B 的延长线上,则线段 C D 扫过部分的面积(图中阴影部分)是.【考点】扇形面积的计算;旋转的性质.【分析】根据图示知,S 阴影=S 扇形 ACC ′﹣S △AEC ′+(S 矩形 A BCD ﹣S 扇形 A DD ′﹣S △AD ′E ).根据图形的面 积公式、旋转的性质以及勾股定理求得相关数据代入即可求得阴影部分的面积. 【解答】解:如图,连接 A C . 在矩形 A BCD 中,AB=CD=,AD=1,则 A C==2. 根据旋转的性质得到:∠DAD ′=∠CAC ′=α,AD=AD ′=1,C ′D ′=CD= . 所以S 阴影=S 扇形 ACC ′﹣S △AEC ′+(S 矩形 A BCD ﹣S 扇形 A DD ′﹣S △AD ′E ) =S 扇形 ACC ′﹣S △AC ′D ′+S 矩形 A BCD ﹣S 扇形 A DD ′, = ﹣ ×1× + ×1× ﹣=∵α=∠CAC'=30°, ∴=. 故答案是:.【点评】此题主要考查了矩形的性质以及旋转的性质以及扇形面积公式等知识,此题利用了“分割法”对不规则图形进行面积的计算.18.如图,已知抛物线y=ax2+bx+c 与x 轴交于A、B 两点,顶点C 的纵坐标为﹣2,现将抛物线向右平移2 个单位,得到抛物线y=a1x2+b1x+c1,则下列结论正确的是③④.(写出所有正确结论的序号)①b>0②a﹣b+c<0③阴影部分的面积为4④若c=﹣1,则b2=4a.【考点】二次函数图象与几何变换;二次函数图象与系数的关系.【专题】压轴题.【分析】①首先根据抛物线开口向上,可得a>0;然后根据对称轴为x=﹣>0,可得b<0,据此判断即可.②根据抛物线y=ax2+bx+c 的图象,可得x=﹣1 时,y>0,即a﹣b+c>0,据此判断即可.③首先判断出阴影部分是一个平行四边形,然后根据平行四边形的面积=底×高,求出阴影部分的面积是多少即可.④根据函数的最小值是,判断出c=﹣1 时,a、b 的关系即可.【解答】解:∵抛物线开口向上,∴a>0,又∵对称轴为x=﹣>0,∴b<0,∴结论①不正确;∵x=﹣1 时,y>0,∴a﹣b+c>0,∴结论②不正确;∵抛物线向右平移了2 个单位,∴平行四边形的底是2,∵函数y=ax2+bx+c 的最小值是y=﹣2,∴平行四边形的高是2,∴阴影部分的面积是:2×2=4,∴结论③正确;∵,c=﹣1,∴b2=4a,∴结论④正确.综上,结论正确的是:③④.故答案为:③④.【点评】(1)此题主要考查了二次函数的图象与几何变换,要熟练掌握,解答此类问题的关键是要明确:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.此题还考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向和大小:当a>0 时,抛物线向上开口;当a<0 时,抛物线向下开口;②一次项系数b和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab>0),对称轴在y 轴(简称:左同右异)③常数项c决定抛物线与y轴左;当a与b异号时(即a b<0),对称轴在y轴右.交点.抛物线与y轴交于(0,c).三、解答题(本大题共10 小题,共84 分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.解方程:x2﹣2x﹣1=0.【考点】解一元二次方程-公式法.【专题】计算题.【分析】先整理成一元二次方程的一般形式再利用求根公式求解,或者利用配方法求解皆可.【解答】解:解法一:∵a=1,b=﹣2,c=﹣1∴b2﹣4ac=4﹣4×1×(﹣1)=8>0∴∴,;解法二:(x﹣1)2=2∴∴,..(b2﹣4ac≥0)20.解方程:(x﹣3)2+4x(x﹣3)=0.【考点】解一元二次方程-因式分解法.【专题】压轴题;因式分解.【分析】方程的左边提取公因式x﹣3,即可分解因式,因而方程利用因式分解法求解.【解答】解:原式可化为:(x﹣3)(x﹣3+4x)=0∴x﹣3=0 或5x﹣3=0解得.【点评】本题考查了一元二次方程的解法,解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.21.在“全民读书月”活动中,小明调查了班级里40 名同学本学期计划购买课外书的花费情况,并将结果绘制成如图所示的统计图,请根据相关信息,解答下列问题:(直接填写结果)(1)本次调查获取的样本数据的众数是30 元;这次调查获取的样本数据的中位数是50 元;(3)若该校共有学生1000 人,根据样本数据,估计本学期计划购买课外书花费50 元的学生有250 人.【考点】条形统计图;用样本估计总体;中位数;众数.【分析】(1)众数就是出现次数最多的数,据此即可判断;中位数就是大小处于中间位置的数,根据定义判断;(3)求得调查的总人数,然后利用1000 乘以本学期计划购买课外书花费50 元的学生所占的比例即可求解.【解答】解:(1)众数是:30 元,故答案是:30 元;中位数是:50 元,故答案是:50 元;(3)调查的总人数是:6+12+10+8+4=40(人),则估计本学期计划购买课外书花费50 元的学生有:1000×=250(人).故答案是:250.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.一只不透明袋子中装有1 个红球,2 个黄球,这些球除颜色外都相同,小明搅匀后从中任意摸出一个球,记录颜色后放回、搅匀,再从中任意摸出1 个球,用画树状图或列表法列出摸出球的所有等可能情况,并求两次摸出的球都是红球的概率.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的球都是红球的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有9种等可能的结果,两次摸出的球都是红球的只有1种情况,∴两次摸出的球都是红球的概率为:.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.23.如图,点O为R t△ABC 斜边A B 上一点,以O A 为半径的⊙O 与B C 切于点D,与A C 交于点E,连接A D.(1)求证:AD 平分∠BAC;若∠BAC=60°,OA=2,求阴影部分的面积(结果保留π).【考点】切线的性质;扇形面积的计算.【分析】(1)由R t△ABC 中,∠C=90°,⊙O 切B C 于D,易证得A C∥OD,继而证得A D 平分∠CAB.如图,连接E D,根据(1)中A C∥OD 和菱形的判定与性质得到四边形A EDO 是菱形,则△AEM≌△DMO,则图中阴影部分的面积=扇形EOD 的面积.【解答】(1)证明:∵⊙O 切B C 于D,∴OD⊥BC,∵AC⊥BC,∴AC∥OD,∴∠CAD=∠ADO,∵OA=OD,∴∠OAD=∠ADO,∴∠OAD=∠CAD , 即 A D 平分∠CAB ;设 E O 与 A D 交于点 M ,连接 E D . ∵∠BAC=60°,OA=OE , ∴∠AEO 是等边三角形, ∴AE=OA ,∠AOE=60°, ∴AE=AO=OD ,又由(1)知,AC ∥OD 即 AE ∥OD ,∴四边形 AEDO 是菱形,则△AEM ≌△DMO ,∠EOD=60°, ∴S △AEM =S △DMO ,【点评】此题考查了切线的性质、等腰三角形的性质.此题难度适中,注意掌握辅助线的作法,注 意数形结合思想的应用.24.如图,在单位长度为 1 的正方形网格中,一段圆弧经过格点 A 、B 、C . (1)画出该圆弧所在圆的圆心 D 的位置(不用写作法,保留作图痕迹),并连接 A D 、CD . 请在(1)的基础上,以点 O 为原点、水平方向所在直线为 x 轴、竖直方向所在直线为 y 轴,建立 平面直角坐标系,完成下列问题: ①⊙D 的半径为 2(结果保留根号);②若用扇形 ADC 围成一个圆锥的侧面,则该圆锥的底面圆半径是 ;③若 E (7,0),试判断直线 E C 与⊙D 的位置关系并说明你的理由.【考点】圆的综合题.【分析】(1)根据题意建立平面直角坐标系,然后作出弦 A B 的垂直平分线,以及 B C 的垂直平分 线,两直线的交点即为圆心 D ,连接 A D ,CD ; ①根据第一问画出的图形即可得出 C 及 D 的坐标; ②在直角三角形 A OD 中,由 O A 及 O D 的长,利用勾股定理求出 A D 的长,即为圆 O 的半径;∴S 阴影=S 扇形== .③直线C E 与圆O的位置关系是相切,理由为:由圆的半径得出D C 的长,在直角三角形C EF 中,由C F 及F E 的长,利用勾股定理求出C E 的长,再由D E 的长,利用勾股定理的逆定理得出三角形DCE 为直角三角形,即E C 垂直于D C,可得出直线C E 为圆O的切线.【解答】解:(1)根据题意画出相应的图形,如图所示:①在R t△AOD 中,OA=4,OD=2,根据勾股定理得:AD= =2 ,则⊙D 的半径为2;②AC= =2 ,CD=2 ,AD2+CD2=AC2,∴∠ADC=90°.扇形A DC 的弧长= = π,圆锥的底面的半径= ;③直线E C 与⊙D 的位置关系为相切,理由为:在R t△CEF 中,CF=2,EF=1,根据勾股定理得:CE= = ,在△CDE 中,CD=2,CE= ,DE=5,∵CE2+CD2=()2+2=5+20=25,DE2=25,∴CE2+CD2=DE2,∴△CDE 为直角三角形,即∠DCE=90°,则CE 与圆D相切.【点评】此题考查了直线与圆的位置关系,涉及的知识有:坐标与图形性质,垂径定理,勾股定理及逆定理,切线的判定,利用了数形结合的思想,根据题意画出相应的图形是解本题的关键.25.某校部分团员参加社会公益活动,准备购进一批许愿瓶进行销售,并将所得利润捐给慈善机构.这种许愿瓶的进价为6 元/个,根据市场调查,一段时间内的销售量y(个)与销售单价x(元/个)之间的对应关系如图所示:(1)试判断y与x之间的函数关系,并求出函数关系式;按照上述市场调查的销售规律,当利润达到1200 元时,请求出许愿瓶的销售单价x;。

2020-2021学年九年级(上)月考数学试卷 (含答案) (10)

2020-2021学年九年级(上)月考数学试卷 (含答案) (10)

2020-2021学年九年级(上)月考数学试卷 一、选择题(每题3分,共24分) 1. 下列各组线段中,能成比例的是( )(A)1 ㎝,3 ㎝,4 ㎝,6 ㎝. (B)2 ㎝,1 ㎝,4 ㎝,1.5 ㎝.(C) 0.1 ㎝,0.2 ㎝,0.3 ㎝,0.4 ㎝. (D)3 ㎝,4 ㎝,6 ㎝,8 ㎝.2.若关于x 的一元二次方程2304kx x --=有实数根,则实数k 的取值范围是( ) A .0k = B .13k ≥- C .13k ≥-且0k ≠ D .13k >- 3.如图123L //L //L ,AB 4=,DE 3=,EF 6=,则BC 的长( )A .4B .6C .8D .10(第 3 题) (第 7 题) (第 8 题)4. 下列 4×4 的正方形网格中,小正方形的边长均为 1,三角形的顶点都在格点上,则与△ABC 相似的三角形所在的网格图形是( )5.教学楼在地面上的影子长为24米,此时测得2米高的标杆在地面上的影子长为3米,则教学楼的高度是( )A .16米B .27米C .36米D .72米 6.小明沿着与地面成30º的坡面向下走了2米,那么他下降( )A .1米B .3米C .23米D .23米 7.如图,在54⨯的正方形网格中,每个小正方形的边长都是1,ABC ∆的顶点都在这些小正方形的顶点上,则sin BAC ∠的值为( )A.43B.34C.35D.458.如图,△ABO的顶点A在函数y=kx(x>0)的图象上,∠ABO=90°,过AO边的三等分点M、N分别作x轴的平行线交AB于点P、Q.若△ANQ的面积为1,则k的值为()A.9 B.12 C.15 D.18二、填空题(每题3分,共18分)9.若ab=13,则a+bb的值为___________.10.如图菱形ABCD中,对角线AC交BD于O,AB=8,E是CD的中点,则OE的等于___________.(第 10 题)(第 11 题)(第 12题)11.如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC于点F,若4AB=,3AD=,则CF的长为________.12.如图已知线段AB两个端点的坐标分别为(6,6)A,(8,4)B,以原点O为位似中心,在第一象限内将线段AB缩小为原来的12后得到线段CD,则端点D的坐标为____.13. 如图点 A、B 的坐标分别为(1,2)、(3,0),将△AOB 沿 x 轴向右平移,得到△CDE. 已知点 D 在的点 B 左侧,且 DB=1,则点 C 的坐标为____. .(第13 题)(第14 题)14.如图已知正方形DEFG的顶点D、E在△ABC的边BC上,顶点G、F分别在边AB、AC上.如果BC=4,△ABC的BC边上的高是3,那么这个正方形的边长是_____.三、解答题15.(6分)解方程:2450x x--=.FECA BD16. (6分) 计算 tan260°+cos230°﹣sin245°tan45°.17.(6分) 如图,在R t△ABC中,∠C=90°,BC=6,AC=8.AB的垂直平分线DE交AB于点D,交AC于点E.(1)求证:△ABC ∽△AED.(2)求DE 的长.18.(7分)图①、图②均是5×5的正方形网格,每个小正方形的顶点称为格点,△ABC的顶点均在格点上.在图①、图②给定网格中按要求作图,只用无刻度的直尺,并保留适当的作图痕迹.(1)在图①中△ABC的边AC上确定一点P,连结BP,使BP平分△ABC的面积.(2)在图②中△ABC的边AC上确定一点Q,连结BQ,使BQ平分△ABC的周长.19.(7分)如图,为了测量旗杆的高度BC,在距旗杆底部B点10米的A处,用高1.5米的测角仪DA测得旗杆顶端C的仰角∠CDE为52°.求旗杆BC的高度.(结果精确到0.1米)【参考数据:sin52° =0.79,cos52° =0.62,tan52° =1.28】20. (7分)某服装店销售一种服装,每件进货价为40元,当以每件80元销售的时候,每天可以售出50件,为了增加利润,减少库存,服装店准备适当降价.据测算,该服装每降价1元,图①图②(第18题)52°ACD每天可多售出2件.如果要使每天销售该服装获利2052元,每件应降价多少元?21.(8分)已知A、B两地之间有一条长240千米的公路.甲车从A地出发匀速开往B地,甲车出发两小时后,乙车从B地出发匀速开往A地,两车同时到达各自的目的地.两车行驶的路程之和y(千米)与甲车行驶的时间x(时)之间的函数关系如图所示.(1)甲车的速度为千米/时,a的值为.(2)求乙车出发后,y与x之间的函数关系式.(3)当甲、乙两车相距100千米时,求甲车行驶的时间.22.(9分)如图,△ABC 中,∠C=90°,AC=3cm,BC=4cm,动点 P 从点 B 出发以 2cm/s 速度向点 c 移动,同时动点 Q 从 C 出发以 1cm/s 的速度向点 A 移动,设它们的运动时间为 t.(1)根据题意知:CQ= ,CP= ;(用含 t 的代数式表示)(2)t 为何值时,△CPQ 的面积等于1?(3)运动几秒时,△CPQ 与△CBA 相似?23.(10分)探究:如图①,点 A、点 D 在直线 BC 上方,且 AB⊥BC,DC⊥BC. 点 E 是线段BC 上的点,AE⊥DE.求证:△ABE∽△ECD.应用:如图①,在探究的条件下,若 BE=2,CD=4,DE=6,求 AE 的长.拓展:如图②,矩形 ABCD 中,AB=12,BC=8. 将矩形 ABCD 翻折,使点 A 落在边 CD上的点DC,则BN = ________.E 处,折痕为 MN.若DE=13-24.(12分)如图,在△ABC中,∠ACB =90°,AB=10, AC=8,CD是边AB的中线.动点P从点C出发,以每秒5个单位长度的速度沿折线CD-DB向终点B运动.过点P作PQ⊥AC于点Q ,以PQ 为边作矩形PQMN ,使点C 、N 始终在PQ 的异侧,且23PN PQ .设矩形PQMN 与△ACD 重叠部分图形的面积是S ,点P 的运动时间为(s)t (t>0).(1)当点P 在边CD 上时,用含t 的代数式表示PQ 的长.(2)当点N 落在边AD 上时,求t 的值.(3)当点P 在CD 上时,求S 与t 之间的函数关系式.(4)连结DQ ,当直线DQ 将矩形PQMN 分成面积比为1:2的两部分时,直接写出t 的值.N M D Q P BA C (第24题)。

人教版2021年九年级上月考数学试卷(12月份)含答案

人教版2021年九年级上月考数学试卷(12月份)含答案

九年级(上)月考数学试卷(12月份)一、选择题(本大题共10小题,每小题3分,共30分.)1.(3分)方程x2=﹣x的解是()A.x=1B.x=0C.x1=﹣1或x2=0D.x1=1或x2=02.(3分)下列图形中,是中心对称图形的是()A.B.C.D.3.(3分)将抛物线y=x2﹣6x+1向上平移2个单位长度,再向右平移1个单位长度后,得到的抛物线解析式是()A.y=(x﹣4)2﹣6B.y=(x﹣4)2﹣2C.y=(x﹣2)2﹣2D.y=(x﹣1)2﹣34.(3分)关于x的一元二次方程x2+2(m﹣1)x+m2=0的两个实数根分别为x1,x2,且x1+x2>0,x1x2>0,则m的取值范围是()A.m≤B.m≤且m≠0C.m<1D.m<1且m≠05.(3分)下列命题中假命题的个数是()①三点确定一个圆;②三角形的内心到三边的距离相等;③相等的圆周角所对的弧相等;④平分弦的直径垂直于弦;⑤垂直于半径的直线是圆的切线.A.4B.3C.2D.16.(3分)如图所示,边长为2的正三角形A BO的边OB在x轴上,将△ABO绕原点O逆时针旋转30°得到三角形OA1B1,则点A1的坐标为()A.(,1)B.(,﹣1)C.(1,﹣)D.(2,﹣1)7.(3分)如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则AB的长为()A.2B.4C.6D.88.(3分)如图,将⊙O沿弦AB折叠,圆弧恰好经过圆心O,点P 是优弧上一点,则∠APB的度数为()A.45°B.30°C.75°D.60°9.(3分)已知抛物线y=ax2+bx+c(a<0)过A(2,0)、O(0,0)、B(﹣3,y1)、C(3,y2)四点,则y1与y2的大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能确定10.(3分)如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a﹣b+c>0;②3a+b=0;③b2=4a(c﹣n);④一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根.其中正确结论的个数是()A.1B.2C.3D.4二、填空题(每小题3分,共18分)11.(3分)抛物线y=2(x﹣4)2+1的顶点坐标为.12.(3分)关于x的一元二次方程(a﹣1)x2+x+a2+3a﹣4=0有一个实数根是x=0,则a的值为.13.(3分)某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元.如果平均每月增长率为x,则由题意列方程应为.14.(3分)⊙O的半径r=5cm,圆心到直线l的距离OM=4cm,在直线l上有一点P,且PM=4cm,则点P与⊙O的位置关系是:点P在⊙O.15.(3分)若一个圆锥的底面圆半径为3cm,其侧面展开图的圆心角为120°,则圆锥的母线长是cm.16.(3分)如图,直线l:y=﹣x,点A1坐标为(﹣3,0).过点A1作x轴的垂线交直线l于点B1,以原点O为圆心,OB1长为半径画弧交x轴负半轴于点A2,再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,OB2长为半径画弧交x轴负半轴于点A3,…,按此做法进行下去,点A2021的坐标为.三、解答题(共8小题,72分)17.(6分)解下列方程.(1)(x﹣2)2+2x(x﹣2)=0(2)2x2﹣1=3x.18.(8分)如图,点E是正方形ABCD的边DC上一点,把△ADE 顺时针旋转到△ABF的位置.(1)旋转中心是点,旋转角度是度;(2)若四边形AECF的面积为16,DE=3,求EF的长.19.(8分)已知关于x的方程x2+mx+n+3=0的一根为2(1)求n关于m的关系式(2)求证:抛物线y=x2+mx+n与x轴有两个交点.20.(8分)如图,∠BAC的平分线交△ABC的外接圆于点D,∠ABC的平分线交AD于点E.(1)求证:DE=DB;(2)若∠BAC=90°,BD=4,求△ABC外接圆的半径.21.(10分)已知关于x的一元二次方程x2﹣(2m+3)x+m2+2=0.(1)若方程有实数根,求实数m的取值范围;(2)若方程两实数根分别为x1、x2,且满足x12+x22=31+|x1x2|,求实数m的值.22.(10分)某商店经销一种学生用双肩包,已知这种双肩包的成本价为每个30元,市场调查发现,这种双肩包每天的销售量y(个)与销售单价x(元)有如下关系:y=﹣x+60(30≤x≤60).设这种双肩包每天的销售利润为w元.(1)求w与x之间的函数解析式;(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种双肩包的销售单价不高于42元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?23.(10分)如图所示,AB是⊙O的直径,AE是弦,C是劣弧AE 的中点,过C作CD⊥AB于点D,CD交AE于点F,过C作CG ∥AE交BA的延长线于点G.(1)求证:CG是⊙O的切线.(2)求证:AF=CF.(3)若∠EAB=30°,CF=2,求GA的长.24.(12分)如图,已知抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C,且OC=OB.(1)求此抛物线的解析式;(2)若点E为第二象限抛物线上一动点,连接BE,CE,求四边形BOCE面积的最大值,并求出此时点E的坐标;(3)点P在抛物线的对称轴上,若线段PA绕点P逆时针旋转90°后,点A的对应点A′恰好也落在此抛物线上,求点P的坐标.参考答案一、选择题1.C.2.C.3.A.4.B.5.A.6.B.7.D.8.D.9.C.10.C.二、填空题11.(4,1).12.﹣4.13.200[1+(1+x)+(1+x)2]=1000.14.外.15.9.16.(,0).三、解答题17.【解答】解:(1)(x﹣2)(x﹣2+2x)=0,x﹣2=0或x﹣2+2x=0,所以x1=2,x2=;(2)2x2﹣3x﹣1=0,△=(﹣3)2﹣4×2×(﹣1)=17,x=,所以x1=,x2=.18.【解答】解:(1)∵把△ADE顺时针旋转到△ABF的位置是绕点A 顺时针旋转,∴旋转中心是点A,∵四边形ABCD是正方形,∴∠DAB=90°∴旋转角度是90度.故答案为:A;90;(2)由旋转变换的性质可知:△ADE≌△ABF,∴S四边形AECF=S正方形ABCD=16,BF=DE=3,∴AD=DC=BC=4,FC=FB+BC=7,∴EC=DC﹣D E=1,∴EF==5.19.【解答】解:(1)将x=2代入方程,得:4+2m+n+3=0,整理可得n=﹣2m﹣7;(2)∵△=m2﹣4(n+3)=m2﹣4(﹣2m﹣7)=m2+8m+28=(m+4)2+12>0,∴一元二次方程x2+mx+n=0有两个不相等的实根,∴抛物线y=x2+mx+n与x轴有两个交点.20.【解答】(1)证明:∵AD平分∠BAC,BE平分∠ABC,∴∠ABE=∠CBE,∠BAE=∠CAD,∴,∴∠DBC=∠CAD,∴∠DBC=∠BAE,∵∠DBE=∠CBE+∠DBC,∠DEB=∠ABE+∠BAE,∴∠DBE=∠DEB,∴DE=DB;(2)解:连接CD,如图所示:由(1)得:,∴CD=BD=4,∵∠BAC=90°,∴BC是直径,∴∠BDC=90°,∴BC==4,∴△ABC外接圆的半径=×4=2.21.【解答】解:(1)根据题意得(2m+3)2﹣4(m2+2)≥0,解得m≥﹣;(2)根据题意x1+x2=2m+3,x1x2=m2+2,因为x1x2=m2+2>0,所以x12+x22=31+x1x2,即(x1+x2)2﹣3x1x2﹣31=0,所以(2m+3)2﹣3(m2+2)﹣31=0,整理得m2+12m﹣28=0,解得m1=﹣14,m2=2,而m≥﹣;所以m=2.22.【解答】解:(1)w=(x﹣30)•y=(﹣x+60)(x﹣30)=﹣x2+30x+60x﹣1800=﹣x2+90x﹣1800,w与x之间的函数解析式w=﹣x2+90x﹣1800;(2)根据题意得:w=﹣x2+90x﹣1800=﹣(x﹣45)2+225,∵﹣1<0,当x=45时,w有最大值,最大值是225.(3)当w=200时,﹣x2+90x﹣1800=200,解得x1=40,x2=50,∵50>42,x2=50不符合题意,舍,答:该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为40元.23.【解答】(1)证明:连结OC,如图,∵C是劣弧AE的中点,∴OC⊥AE,∵CG∥AE,∴CG⊥OC,∴CG是⊙O的切线;(2)证明:连结AC、BC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠2+∠BCD=90°,而CD⊥AB,∴∠B+∠BCD=90°∴∠B=∠2,∵C是劣弧AE的中点,∴=,∴∠1=∠B,∴∠1=∠2,∴AF=CF;(3)解:在Rt△ADF中,∠DAF=30°,FA=FC=2,∴DF=AF=1,∴AD=DF=,∵AF∥CG,∴DA:AG=DF:CF,即:AG=1:2,∴AG=2.24.【解答】解:(1)∵抛物线y=ax2+bx+c(a≠0)与x轴交于点A (1,0)和点B(﹣3,0),∴OB=3,∵OC=OB,∴OC=3,∴c=3,∴,解得:,∴所求抛物线解析式为:y=﹣x2﹣2x+3;(2)如图2,过点E作EF⊥x轴于点F,设E(a,﹣a2﹣2a+3)(﹣3<a<0),∴EF=﹣a2﹣2a+3,BF=a+3,OF=﹣a,∴S四边形BOCE=BF•EF+(OC+EF)•OF,=(a+3)•(﹣a2﹣2a+3)+(﹣a2﹣2a+6)•(﹣a),=﹣﹣a+,=﹣(a+)2+,∴当a=﹣时,S四边形BOCE最大,且最大值为.此时,点E坐标为(﹣,);(3)∵抛物线y=﹣x2﹣2x+3的对称轴为x=﹣1,点P在抛物线的对称轴上,∴设P(﹣1,m),∵线段PA绕点P逆时针旋转90°后,点A的对应点A′恰好也落在此抛物线上,①当m≥0时,∴PA=PA1,∠APA1=90°,如图3,过A1作A1N⊥对称轴于N,设对称轴于x轴交于点M,∴∠NPA1+∠MPA=∠NA1P+∠NPA1=90°,∴∠NA1P=∠NPA,在△A1NP与△PMA中,,∴△A1NP≌△PMA,∴A1N=PM=m,PN=AM=2,∴A1(m﹣1,m+2),代入y=﹣x2﹣2x+3得:m+2=﹣(m﹣1)2﹣2(m﹣1)+3,解得:m=1,m=﹣2(舍去),②当m<0时,要使P2A=P2A,2,由图可知A2点与B点重合,∵∠AP2A2=90°,∴MP2=MA=2,∴P2(﹣1,﹣2),∴满足条件的点P的坐标为P(﹣1,1)或(﹣1,﹣2).精品Word 可修改欢迎下载。

2020-2021学年九年级(上)月考数学试卷 (含答案) (3)

2020-2021学年九年级(上)月考数学试卷 (含答案) (3)

2020-2021学年九年级(上)月考数学试卷一.选择题(共10小题,共30分)1.(3分)用配方法解一元二次方程2x2﹣3x﹣1=0,配方正确的是()A.(x﹣)2=B.(x﹣)2=C.(x﹣)2=D.(x﹣)2=2.(3分)下列说法不正确的是()A.一组同旁内角相等的平行四边形是矩形B.一组邻边相等的菱形是正方形C.有三个角是直角的四边形是矩形D.对角线相等的菱形是正方形3.(3分)若关于x的一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,则一次函数y =kx+b的大致图象可能是()A.B.C.D.4.(3分)如图,在菱形ABCD中,CE⊥AB于点E,E点恰好为AB的中点,则菱形ABCD 的较大内角度数为()A.100°B.120°C.135°D.150°5.(3分)某市“菜篮子工程”蔬菜基地2018年产量为100吨,预计到2020年产量可达121吨.设该基地蔬菜产量的年平均增长率为x,则可列方程为()A.100(1+x)2=121B.121(1﹣x)2=100C.100(1+2x)=121D.100(1+x2)=1216.(3分)如图,在菱形ABCD中,∠A=60°,点E、F分别为AD、DC上的动点,∠EBF =60°,点E从点A向点D运动的过程中,AE+CF的长度()A.逐渐增加B.逐渐减小C.保持不变且与EF的长度相等D.保持不变且与AB的长度相等7.(3分)四边形ABCD的对角线AC,BD相交于点O,能判定它是矩形的是()A.AO=CO,BO=OD B.AB=BC,AO=COC.AO=CO,BO=DO,AC⊥DB D.AO=CO=BO=DO8.(3分)如图,平行四边形ABCD中,对角线AC,BD相交于点O,下列条件:(1)∠1+∠DBC=90°;(2)OA=OB;(3)∠1=∠2,其中能判定平行四边形ABCD是菱形的条件有()A.0个B.1个C.2个D.3个9.(3分)如图,矩形ABCD的对角线AC,BD交于点O,AB=6,BC=8,过点O作OE ⊥AC,交AD于点E,过点E作EF⊥BD,垂足为F,则OE+EF的值为()A.B.C.D.10.(3分)如图,在正方形ABCD中,对角线AC,BD交于点O,AG平分∠BAC交BD于G,DE⊥AG于点H.下列结论:①AD=2AE:②FD=AG;③CF=CD:④四边形FGEA 是菱形;⑤OF=BE,正确的有()A.2个B.3个C.4个D.5个二.填空题(共5小题,共15分)11.(3分)一元二次方程x2=5x的根.12.(3分)如图,四边形ABCD是菱形,AC=24,BD=10,DH⊥AB于点H,则线段DH 的长为.13.(3分)若关于x的方程(k﹣1)x2+4x+1=0有实数解,则k的取值范围是.14.(3分)如图,在边长为2的正方形ABCD中,点E,F分别是边AB,BC的中点,连接EC,FD,点G,H分别是EC,FD的中点,连接GH,则GH的长度为.15.(3分)如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为.三.解答题(共8小题,共75分)16.(16分)用恰当的方法解下列方程:(1)x2+4x﹣2=0;(2)4x2﹣25=0;(3)(2x+1)2+4(2x+1)+4=0;(4)(x﹣1)(x﹣3)=8.17.(8分)如图,在四边形ABCD中,AD∥BC,对角线BD的垂直平分线与边AD、BC分别相交于点M、N.(1)求证:四边形BNDM是菱形;(2)若BD=24,MN=10,求菱形BNDM的周长.18.(8分)关于x的一元二次方程x2﹣3x+x=0有实数根.(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程(x﹣1)x2+x+x﹣3=0与方程x2﹣3x+x=0有一个相同的根,求此时m的值.19.(8分)如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AE⊥BC于点E,延长BC至F,使CF=BE,连接DF.(1)求证:四边形AEFD是矩形;(2)若AC=10,∠ABC=60°,则矩形AEFD的面积是.20.(8分)某旅行社的一则广告如下:甲公司想分批组织员工到延安红色旅游学习.(1)如果第一批组织40人去学习,则公司应向旅行社交费元;(2)如果公司计划用29250元组织第一批员工去学习,问这次旅游学习应安排多少人参加?21.(8分)如图,在菱形ABCD中,AB=3,∠DAB=60°,点E是AD边的中点,点M 是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD,AN.(1)求证:四边形AMDN是平行四边形;(2)填空:①当AM的值为时,四边形AMDN是矩形;②当AM的值为时,四边形AMDN是菱形.22.(8分)阅读探究:“任意给定一个矩形A,是否存在另一个矩形B,它的周长和面积分别是已知矩形周长和面积的一半?”(完成下列空格)(1)当已知矩形A的边长分别为6和1时,小亮同学是这样研究的:设所求矩形的两边分别是x和y,由题意得方程组,消去y化简得:2x2﹣7x+6=0,∵b2﹣4ac=49﹣48>0,∴x1=,x2=,∴满足要求的矩形B存在.(2)如果已知矩形A的边长分别为2和1,请你仿照小亮的方法研究是否存在满足要求的矩形B.(3)如果矩形A的边长为m和n,请你研究满足什么条件时,矩形B存在?23.(11分)四边形ABCD是正方形,△BEF是等腰直角三角形,∠BEF=90°,BE=EF,连接DF,G为DF的中点,连接EG,CG,EC.(1)问题发现如图1,若点E在CB的延长线上,直接写出EG与GC的位置关系及的值;(2)操作探究将图1中的△BEF绕点B顺时针旋转至图2所示位置,请问(1)中所得的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)解决问题将图1中的△BEF绕点B顺时针旋转,若BE=1,AB=,当E,F,D三点共线时,请直接写出CE的长.参考答案与试题解析一.选择题(共10小题,共30分)1.(3分)用配方法解一元二次方程2x2﹣3x﹣1=0,配方正确的是()A.(x﹣)2=B.(x﹣)2=C.(x﹣)2=D.(x﹣)2=【分析】化二次项系数为1后,把常数项﹣右移,应该在左右两边同时加上一次项系数﹣的一半的平方.【解答】解:由原方程,得x2﹣x=,x2﹣x+=+,(x﹣)2=,故选:A.2.(3分)下列说法不正确的是()A.一组同旁内角相等的平行四边形是矩形B.一组邻边相等的菱形是正方形C.有三个角是直角的四边形是矩形D.对角线相等的菱形是正方形【分析】利用正方形的判定、平行四边形的性质,菱形的性质,矩形的判定分别判断后即可确定正确的选项.【解答】解:A、一组同旁内角相等的平行四边形是矩形,正确;B、一组邻边相等的菱形是正方形,错误;C、有三个角是直角的四边形是矩形,正确;D、对角线相等的菱形是正方形,正确.故选:B.3.(3分)若关于x的一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,则一次函数y =kx+b的大致图象可能是()A.B.C.D.【分析】根据一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,得到根的判别式大于0,求出kb的符号,对各个图象进行判断即可.【解答】解:∵x2﹣2x+kb+1=0有两个不相等的实数根,∴△=4﹣4(kb+1)>0,解得kb<0,A.k>0,b=0,即kb=0,故A不正确;B.k>0,b<0,即kb<0,故B正确;C.k>0,b>0,即kb>0,故C不正确;D.k<0,b<0,即kb>0,故D不正确.故选:B.4.(3分)如图,在菱形ABCD中,CE⊥AB于点E,E点恰好为AB的中点,则菱形ABCD 的较大内角度数为()A.100°B.120°C.135°D.150°【分析】连接AC,证明△ABC是等边三角形,得出∠B=60°,则∠D=60°,∠BAD =∠BCD=120°,即可得出答案.【解答】解:连接AC,如图:∵四边形ABCD是菱形,∴AB=BC,∠BAD=∠BCD,∠B=∠D,AD∥BC,∴∠BAD+∠B=180°,∵CE⊥AB,点E是AB中点,∴BC=AC=AB,∴△ABC是等边三角形,∴∠B=60°,∴∠D=60°,∠BAD=∠BCD=120°;即菱形ABCD的较大内角度数为120°;故选:B.5.(3分)某市“菜篮子工程”蔬菜基地2018年产量为100吨,预计到2020年产量可达121吨.设该基地蔬菜产量的年平均增长率为x,则可列方程为()A.100(1+x)2=121B.121(1﹣x)2=100C.100(1+2x)=121D.100(1+x2)=121【分析】利用增长后的量=增长前的量×(1+增长率),设平均每次增长的百分率为x,根据“从100吨增加到121吨”,即可得出方程.【解答】解:由题意知,设该基地蔬菜产量的年平均增长率为x,根据2018年产量为100吨,则2019年蔬菜产量为100(1+x)吨,2020年蔬菜产量为100(1+x)(1+x)吨,预计2020年产量可达121吨,即:100(1+x)(1+x)=121或100(1+x)2=121.故选:A.6.(3分)如图,在菱形ABCD中,∠A=60°,点E、F分别为AD、DC上的动点,∠EBF =60°,点E从点A向点D运动的过程中,AE+CF的长度()A.逐渐增加B.逐渐减小C.保持不变且与EF的长度相等D.保持不变且与AB的长度相等【分析】证明△ABE≌△DBF(AAS),可得AE=DF,根据线段的和可知:AE+CF=AB,是一定值,可作判断.【解答】解:连接BD,∵四边形ABCD是菱形,∴AB=AD=CD,∵∠A=60°,∴△ABD是等边三角形,∴AB=BD,∠ABD=60°,∵DC∥AB,∴∠CDB=∠ABD=60°,∴∠A=∠CDB,∵∠EBF=60°,∴∠ABE+∠EBD=∠EBD+∠DBF,∴∠ABE=∠DBF,在△ABE和△DBF中,∵,∴△ABE≌△DBF(AAS),∴AE=DF,∴AE+CF=DF+CF=CD=AB,故选:D.7.(3分)四边形ABCD的对角线AC,BD相交于点O,能判定它是矩形的是()A.AO=CO,BO=OD B.AB=BC,AO=COC.AO=CO,BO=DO,AC⊥DB D.AO=CO=BO=DO【分析】根据平行四边形的判定,矩形的判定,菱形的判定逐个判断即可.【解答】解:A、∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,不能推出四边形ABCD是矩形,故本选项不符合题意;B、根据AB=BC,AO=CO不能推出四边形ABCD是矩形,故本选项不符合题意;C、∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,∵AC⊥BD,∴平行四边形ABCD是菱形,不能推出四边形ABCD是矩形,故本选项不符合题意;D、∵OA=OB=OC=OD,∴OA=OC,OB=OD,AC=BD,∴四边形ABCD是平行四边形,∵AC=BD,∴四边形ABCD是矩形,故本选项符合题意;故选:D.8.(3分)如图,平行四边形ABCD中,对角线AC,BD相交于点O,下列条件:(1)∠1+∠DBC=90°;(2)OA=OB;(3)∠1=∠2,其中能判定平行四边形ABCD是菱形的条件有()A.0个B.1个C.2个D.3个【分析】由平行四边形的性质、菱形的判定、矩形的判定即可得出结论.【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,AD∥BC,∴∠1=∠BCO,若∠1+∠DBC=90°时,则∠BCO+∠DBC=90°,∴∠BOC=90°,∴AC⊥BD,∴四边形ABCD是菱形;(1)能判定平行四边形ABCD是菱形;若OA=OB,则AC=BD,∴四边形ABCD是矩形;(2)不能判定平行四边形ABCD是菱形;若∠1=∠2,则∠2=∠BCO,∴AB=CB,∴四边形ABCD是菱形;(3)能判定平行四边形ABCD是菱形;故选:C.9.(3分)如图,矩形ABCD的对角线AC,BD交于点O,AB=6,BC=8,过点O作OE ⊥AC,交AD于点E,过点E作EF⊥BD,垂足为F,则OE+EF的值为()A.B.C.D.【分析】依据矩形的性质即可得到△AOD的面积为12,再根据S△AOD=S△AOE+S△DOE,即可得到OE+EF的值.【解答】解:∵AB=6,BC=8,∴矩形ABCD的面积为48,AC==10,∴AO=DO=AC=5,∵对角线AC,BD交于点O,∴△AOD的面积为12,∵EO⊥AO,EF⊥DO,∴S△AOD=S△AOE+S△DOE,即12=AO×EO+DO×EF,∴12=×5×EO+×5×EF,∴5(EO+EF)=24,∴EO+EF=,故选:C.10.(3分)如图,在正方形ABCD中,对角线AC,BD交于点O,AG平分∠BAC交BD于G,DE⊥AG于点H.下列结论:①AD=2AE:②FD=AG;③CF=CD:④四边形FGEA 是菱形;⑤OF=BE,正确的有()A.2个B.3个C.4个D.5个【分析】①根据正方形的性质和角平分线的定义得:∠BAG=∠CAG=22.5°,由垂直的定义计算∠AED=90°﹣22.5°=67.5°,∠EAD=∠EAD=22.5°,得ED是AG的垂直平分线,则AE=EG,△BEG是等腰直角三角形,则AD=AB>2AE,可作判断;②证明△DAF≌△ABG(ASA),可作判断;③分别计算∠CDF=∠CFD=67.5°,可作判断;④根据对角线互相平分且垂直的四边形是菱形可作判断;⑤设BG=x,则AF=AE=x,表示OF和BE的长,可作判断.【解答】解:①∵四边形ABCD是正方形,∴∠BAD=90°,∠BAC=45°,∵AG平分∠BAC,∴∠BAG=∠CAG=22.5°,∵AG⊥ED,∴∠AHE=∠EHG=90°,∴∠AED=90°﹣22.5°=67.5°,∴∠ADE=22.5°,∵∠ADB=45°,∴∠EDG=22.5°=∠ADE,∵∠AHD=∠GHD=90°,∴∠DAG=∠DGA,∴AD=DG,AH=GH,∴ED是AG的垂直平分线,∴AE=EG,∴∠EAG=∠AGE=22.5°,∴∠BEG=45°=∠ABG,∴∠BGE=90°,∴AE=EG<BE,∴AD=AB>2AE,故①不正确;②∵四边形ABCD是正方形,∴AD=AB,∠DAF=∠ABG=45°,∵∠ADF=∠BAG=22.5°,∴△DAF≌△ABG(ASA),∴DF=AG,故②正确;③∵∠CDF=45°+22.5°=67.5°,∠CFD=∠AFE=90°﹣22.5°=67.5°,∴∠CDF=∠CFD,∴CF=CD,故③正确;④∵∠EAH=∠F AH,∠AHE=∠AHF,∴∠AEF=∠AFE,∴AE=AF,∴EH=FH,∵AH=GH,AG⊥EF,∴四边形FGEA是菱形;故④正确;⑤设BG=x,则AF=AE=x,由①知△BEG是等腰直角三角形,∴BE=x,∴AB=AE+BE=x+x=(+1)x,∴AO==,∴OF=AO﹣AF=﹣x=,∴==,∴OF=BE;故⑤正确;本题正确的结论有:②③④⑤;故选:C.二.填空题(共5小题,共15分)11.(3分)一元二次方程x2=5x的根x1=0,x2=5.【分析】先移项,然后通过提取公因式x对等式的左边进行因式分解.【解答】解:由原方程,得x2﹣5x=0,则x(x﹣5)=0,解得x1=0,x2=5.故答案是:x1=0,x2=5.12.(3分)如图,四边形ABCD是菱形,AC=24,BD=10,DH⊥AB于点H,则线段DH 的长为.【分析】直接利用菱形的性质得出AO,DO的长,再利用三角形面积以及勾股定理得出答案.【解答】解:∵四边形ABCD是菱形,AC=24,BD=10,∴S菱形ABCD=×AC×BD=120,AO=12,OD=5,AC⊥BD,∴AD=AB==13,∵DH⊥AB,∴AO×BD=DH×AB,∴12×10=13×DH,∴DH=.故答案为:.13.(3分)若关于x的方程(k﹣1)x2+4x+1=0有实数解,则k的取值范围是k≤5.【分析】分k﹣1=0和k﹣1≠0两种情况,其中k﹣1≠0时根据题意列出关于k的不等式求解可得.【解答】解:当k﹣1=0时,方程为4x+1=0,显然有实数根;当k﹣1≠0,即k≠1时,△=42﹣4×(k﹣1)×1≥0,解得k≤5且k≠1;综上,k≤5.故答案为:k≤5.14.(3分)如图,在边长为2的正方形ABCD中,点E,F分别是边AB,BC的中点,连接EC,FD,点G,H分别是EC,FD的中点,连接GH,则GH的长度为1.【分析】方法一:连接CH并延长交AD于P,连接PE,根据正方形的性质得到∠A=90°,AD∥BC,AB=AD=BC=2,根据全等三角形的性质得到PD=CF=,根据勾股定理和三角形的中位线定理即可得到结论.方法二:设DF,CE交于O,根据正方形的性质得到∠B=∠DCF=90°,BC=CD=AB,根据线段中点的定义得到BE=CF,根据全等三角形的性质得到CE=DF,∠BCE=∠CDF,求得DF⊥CE,根据勾股定理得到CE=DF==,点G,H分别是EC,FD的中点,根据相似三角形的判定和性质定理即可得到结论.【解答】解:方法一:连接CH并延长交AD于P,连接PE,∵四边形ABCD是正方形,∴∠A=90°,AD∥BC,AB=AD=BC=2,∵E,F分别是边AB,BC的中点,∴AE=CF=×2=,∵AD∥BC,∴∠DPH=∠FCH,∵∠DHP=∠FHC,∵DH=FH,∴△PDH≌△CFH(AAS),PD=CF=,∴AP=AD﹣PD=,∴PE===2,∵点G,H分别是EC,FD的中点,∴GH=EP=1;方法二:设DF,CE交于O,∵四边形ABCD是正方形,∴∠B=∠DCF=90°,BC=CD=AB,∵点E,F分别是边AB,BC的中点,∴BE=CF,∴△CBE≌△DCF(SAS),∴CE=DF,∠BCE=∠CDF,∵∠CDF+∠CFD=90°,∴∠BCE+∠CFD=90°,∴∠COF=90°,∴DF⊥CE,∴CE=DF==,∵点G,H分别是EC,FD的中点,∴CG=FH=,∵∠DCF=90°,CO⊥DF,∴∠DCO+∠FCO=∠DCO+∠CDO=90°,∴∠FCO=∠CDO,∵∠DCF=∠COF=90°,∴△COF∽△DOC,∴=,∴CF2=OF•DF,∴OF===,∴OH=,OD=,∵∠COF=∠COD=90°,∴△COF∽△DOC,∴,∴OC2=OF•OD,∴OC==,∴OG=CG﹣OC=﹣=,∴HG===1,故答案为:1.15.(3分)如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为16或4.【分析】根据翻折的性质,可得B′E的长,根据勾股定理,可得CE的长,根据等腰三角形的判定,可得答案.【解答】解:(i)当B′D=B′C时,过B′点作GH∥AD,则∠B′GE=90°,当B′C=B′D时,AG=DH=DC=8,由AE=3,AB=16,得BE=13.由翻折的性质,得B′E=BE=13.∴EG=AG﹣AE=8﹣3=5,∴B′G===12,∴B′H=GH﹣B′G=16﹣12=4,∴DB′===4(ii)当DB′=CD时,则DB′=16(易知点F在BC上且不与点C、B重合).(iii)当CB′=CD时,则CB=CB′,由翻折的性质,得EB=EB′,∴点E、C在BB′的垂直平分线上,∴EC垂直平分BB′,由折叠,得EF也是线段BB′的垂直平分线,∴点F与点C重合,这与已知“点F是边BC上不与点B,C重合的一个动点”不符,故此种情况不存在,应舍去.综上所述,DB′的长为16或4.故答案为:16或4.三.解答题(共8小题,共75分)16.(16分)用恰当的方法解下列方程:(1)x2+4x﹣2=0;(2)4x2﹣25=0;(3)(2x+1)2+4(2x+1)+4=0;(4)(x﹣1)(x﹣3)=8.【分析】(1)利用公式法求解可得;(2)利用直接开平方法求解可得;(3)利用换元法求解可得;(4)整理成一般式,再利用公式法求解可得.【解答】解:(1)∵a=1,b=4,c=﹣2,∴△=42﹣4×1×(﹣2)=24>0,则x==﹣2±,即x1=﹣2+,x2=﹣2﹣;(2)∵4x2=25,∴x2=,解得x1=,x2=﹣;(3)令2x+1=a,则a2+4a+4=0,∴(a+2)2=0,解得a=﹣2,∴2x+1=﹣2,解得x1=x2=﹣1.5;(4)方程整理为一般式,得:x2﹣4x﹣5=0,解得:(x﹣5)(x+1)=0,则x﹣5=0或x+1=0,解得x1=5,x2=﹣1.17.(8分)如图,在四边形ABCD中,AD∥BC,对角线BD的垂直平分线与边AD、BC分别相交于点M、N.(1)求证:四边形BNDM是菱形;(2)若BD=24,MN=10,求菱形BNDM的周长.【分析】(1)证△MOD≌△NOB(AAS),得出OM=ON,由OB=OD,证出四边形BNDM 是平行四边形,进而得出结论;(2)由菱形的性质得出BM=BN=DM=DN,OB=BD=12,OM=MN=5,由勾股定理得BM=13,即可得出答案.【解答】(1)证明:∵AD∥BC,∴∠DMO=∠BNO,∵MN是对角线BD的垂直平分线,∴OB=OD,MN⊥BD,在△MOD和△NOB中,,∴△MOD≌△NOB(AAS),∴OM=ON,∵OB=OD,∴四边形BNDM是平行四边形,∵MN⊥BD,∴四边形BNDM是菱形;(2)解:∵四边形BNDM是菱形,BD=24,MN=10,∴BM=BN=DM=DN,OB=BD=12,OM=MN=5,在Rt△BOM中,由勾股定理得:BM===13,∴菱形BNDM的周长=4BM=4×13=52.18.(8分)关于x的一元二次方程x2﹣3x+x=0有实数根.(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程(x﹣1)x2+x+x﹣3=0与方程x2﹣3x+x=0有一个相同的根,求此时m的值.【分析】(1)利用判别式的意义得到△=(﹣3)2﹣4k≥0,然后解不等式即可;(2)先确定k=2,再解方程x2﹣3x+2=0,解得x1=1,x2=2,然后分别把x=1和x =2代入元二次方程(x﹣1)x2+x+x﹣3=0可得到满足条件的m的值.【解答】解:(1)根据题意得△=(﹣3)2﹣4k≥0,解得k≤;(2)满足条件的k的最大整数为2,此时方程x2﹣3x+x=0变形为方程x2﹣3x+2=0,解得x1=1,x2=2,当相同的解为x=1时,把x=1代入方程(x﹣1)x2+x+x﹣3=0得m﹣1+1+m﹣3=0,解得m=;当相同的解为x=2时,把x=2代入方程(x﹣1)x2+x+x﹣3=0得4(m﹣1)+2+m﹣3=0,解得m=1,而m﹣1≠0,不符合题意,舍去,所以m的值为.19.(8分)如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AE⊥BC于点E,延长BC至F,使CF=BE,连接DF.(1)求证:四边形AEFD是矩形;(2)若AC=10,∠ABC=60°,则矩形AEFD的面积是25.【分析】(1)根据菱形的性质得到AD∥BC且AD=BC,等量代换得到BC=EF,推出四边形AEFD是平行四边形,根据矩形的判定定理即可得到结论;(2)根据全等三角形的判定定理得到Rt△ABE≌Rt△DCF(HL),求得矩形AEFD的面积=菱形ABCD的面积,根据等腰三角形的性质得到结论.【解答】(1)证明:∵四边形ABCD是菱形,∴AD∥BC,AD=BC,∵CF=BE,∴BC=EF,∴AD∥EF,AD=EF,∴四边形AEFD是平行四边形,∵AE⊥BC,∴∠AEF=90°,∴平行四边形AEFD是矩形;(2)解:∵AB=CD,BE=CF,∠AEB=∠DFC=90°,∴Rt△ABE≌Rt△DCF(HL),∴矩形AEFD的面积=菱形ABCD的面积,∵∠ABC=60°,∴△ABC是等边三角形,∵AC=10,∴AE=AC=5,AB=10,BO=5,∵AD=EF=10,∴矩形AEFD的面积=菱形ABCD的面积=×10×10=50,故答案为:50.20.(8分)某旅行社的一则广告如下:甲公司想分批组织员工到延安红色旅游学习.(1)如果第一批组织40人去学习,则公司应向旅行社交费28000元;(2)如果公司计划用29250元组织第一批员工去学习,问这次旅游学习应安排多少人参加?【分析】(1)首先表示出40人是平均每人的费用,进而得出总费用;(2)表示出每人平均费用为:800﹣10(x﹣30),进而得出等式求出答案.【解答】解:(1)∵人数多于30人,那么每增加1人,人均收费降低10元,∴第一批组织40人去学习,则公司应向旅行社交费:40×[800﹣(40﹣30)×10]=28000(元);故答案为:28000;(2)设这次旅游应安排x人参加,∵30×800=24000<29250,∴x>30,根据题意得:x[800﹣10(x﹣30)]=29250,整理得,x2﹣110x+2925=0,解得:x1=45,x2=65∵800﹣10(x﹣30)≥500,∴x≤60.∴x=45.答:这次旅游应安排45人参加.21.(8分)如图,在菱形ABCD中,AB=3,∠DAB=60°,点E是AD边的中点,点M 是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD,AN.(1)求证:四边形AMDN是平行四边形;(2)填空:①当AM的值为 1.5时,四边形AMDN是矩形;②当AM的值为3时,四边形AMDN是菱形.【分析】(1)求出△DNE≌△AME,根据全等及时向的性质得出NE=ME,根据平行四边形的判定得出即可;(2)①根据等边三角形的判定得出△ABD是等边三角形,根据等边三角形的性质求出DM⊥AB,根据矩形的判定得出即可;②求出△ABD是等边三角形,求出M和B重合,根据菱形的判定得出即可..【解答】(1)证明:∵点E是AD边的中点,∴AE=DE,∵四边形ABCD是菱形,∴DC∥AB,∴∠DNE=∠AME,在△DNE和△AME中,∴△DNE≌△AME(AAS),∴NE=ME,∵AE=DE,∴四边形AMDN是平行四边形;(2)解:①当AM=1.5时,四边形AMDN是矩形,理由是:连接BD,∵四边形ABCD是菱形,∴AD=AB=3,∵∠DAB=60°,∴△ADB是等边三角形,∴AD=BD=3,∵AM=1.5,AB=3,∴AM=BM,∴DM⊥AB,即∠DMA=90°,∵四边形AMDN是平行四边形,∴四边形AMDN是矩形,即当AM=1.5时,四边形AMDN是矩形,故答案为:1.5;②当AM=3时,四边形AMDN是菱形,理由是,此时AM=AB=3,即M和B重合,∵由①知:△ABD是等边三角形,∴AM=MD,∵四边形AMDN是平行四边形,∴四边形AMDN是菱形,故答案为:3.22.(8分)阅读探究:“任意给定一个矩形A,是否存在另一个矩形B,它的周长和面积分别是已知矩形周长和面积的一半?”(完成下列空格)(1)当已知矩形A的边长分别为6和1时,小亮同学是这样研究的:设所求矩形的两边分别是x和y,由题意得方程组,消去y化简得:2x2﹣7x+6=0,∵b2﹣4ac=49﹣48>0,∴x1=,x2=2,∴满足要求的矩形B存在.(2)如果已知矩形A的边长分别为2和1,请你仿照小亮的方法研究是否存在满足要求的矩形B.(3)如果矩形A的边长为m和n,请你研究满足什么条件时,矩形B存在?【分析】(1)利用求根公式即可求出方程的两根;(2)仿照(1)找准关于x的一元二次方程,由根的判别式△=﹣7<0,可得出方程无解,即不存在满足要求的矩形B;(3)仿照(1)找准关于x的一元二次方程,由根的判别式△≥0,可找出m、n之间的关系.【解答】解:(1)利用求根公式可知:x1==,x2==2.故答案为:;2.(2)设所求矩形的两边分别是x和y,根据题意得:,消去y化简得:2x2﹣3x+2=0.∵b2﹣4ac=(﹣3)2﹣4×2×2=﹣7<0,∴该方程无解,∴不存在满足要求的矩形B.(3)设所求矩形的两边分别是x和y,根据题意得:,消去y化简得:2x2﹣(m+n)x+mn=0.∵矩形B存在,∴b2﹣4ac=[﹣(m+n)]2﹣4×2mn≥0,∴(m﹣n)2≥4mn.故当m、n满足(m﹣n)2≥4mn时,矩形B存在.23.(11分)四边形ABCD是正方形,△BEF是等腰直角三角形,∠BEF=90°,BE=EF,连接DF,G为DF的中点,连接EG,CG,EC.(1)问题发现如图1,若点E在CB的延长线上,直接写出EG与GC的位置关系及的值;(2)操作探究将图1中的△BEF绕点B顺时针旋转至图2所示位置,请问(1)中所得的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)解决问题将图1中的△BEF绕点B顺时针旋转,若BE=1,AB=,当E,F,D三点共线时,请直接写出CE的长.【分析】(1)过G作GH⊥EC于H,推出EF∥GH∥DC,求出H为EC中点,根据梯形的中位线求出EG=GC,GH=(EF+DC)=(EB+BC),推出GH=EH=BC,根据直角三角形的判定推出△EGC是等腰直角三角形即可;(2)延长EG到H,使EG=GH,连接CH,过E作BC的垂线EQ,证△EFG≌△HDG,推出DH=EF=BE,∠FEG=∠DHG,求出∠EBC=∠HDC,证出△EBC≌△HDC,推出CE=CH,∠BCE=∠DCH,求出△ECH是等腰直角三角形,即可得出答案;(3)分两种情况:①CE在BC的上方,如图3,作辅助线,构建等腰直角三角形,求出cos∠DBE=,推出∠DBE=60°,证明△GDC≌△EBC(ASA),则EC=CG,DG=EB=1,从而得结论;②CE在BC的下方,如图4,同理可得结论.【解答】解:(1)EG⊥CG,;理由是:如图1,过G作GH⊥EC于H,∵∠FEB=∠DCB=90°,∴EF∥GH∥DC,∵G为DF中点,∴H为EC中点,∴EG=GC,GH=(EF+DC)=(EB+BC)=CE,即GH=EH=HC,∴∠EGC=90°,即△EGC是等腰直角三角形,;(2)结论还成立,理由是:如图2,延长EG到H,使EG=GH,连接CH,过E作BC的垂线EQ,延长CB交EQ于R,延长CD,交EH于N,在△EFG和△HDG中,,∴△EFG≌△HDG(SAS),∴DH=EF=BE,∠FEG=∠DHG,∴EF∥DH,同理得ER∥CD,∴∠1=∠2,∴∠1=∠2=90°﹣∠3=∠4,∴∠EBC=180°﹣∠4=180°﹣∠1=∠HDC,在△EBC和△HDC中,,∴△EBC≌△HDC(SAS).∴CE=CH,∠BCE=∠DCH,∴∠ECH=∠DCH+∠ECD=∠BCE+∠ECD=∠BCD=90°,∴△ECH是等腰直角三角形,∵G为EH的中点,∴EG⊥GC,,即(1)中的结论仍然成立;(3)分两种情况:①如图3,连接BD,过C作CG⊥EC,交ED的延长线于G,∵AB=,正方形ABCD,∴BD=2,Rt△BED中,cos∠DBE=,∴∠DBE=60°,∠BDF=30°∵tan∠BDE==,∴DE=BE=,∵∠ABD=45°,∴∠ABE=60°﹣45°=15°,∴∠EBC=90°+15°=105°,∵∠EDC=∠BDE+∠CDB=30°+45°=75°,∴∠CDG=180°﹣75°=105°,∴∠CDG=∠CBE,∵∠ECG=∠BCD=90°,∴∠DCG=∠BCE,∵BC=CD,∴△GDC≌△EBC(ASA),∴EC=CG,DG=EB=1,∴△ECG是等腰直角三角形,∴EG=CE,∵EG=ED+DG=+1,∴CE==;②如图4,连接BD,过C作CH⊥EC,交ED于H,同理得△DHC≌△BEC(ASA),∴EC=CH,DH=EB=1,同理可知:DE=,∴EH=DE﹣DH=﹣1,∵△ECH是等腰直角三角形,∴EH=CE,∴CE==;综上,CE的长为.。

2020-2021学年九年级(上)月考数学试卷 (含答案) (4)

2020-2021学年九年级(上)月考数学试卷 (含答案) (4)

2020-2021学年九年级(上)月考数学试卷一、选择题(本大题共8小题,每题3分,共24分)1.已知α为锐角,且,则α的度数为A.30︒B.45︒ C.60︒D.90︒2.下列事件中,是必然事件的是A.从一个只有白球的盒子里摸出一个球是白球B.任意买一张电影票,座位号是3的倍数C.掷一枚质地均匀的硬币,正面向上D.汽车走过一个红绿灯路口时,前方正好是绿灯3.比萨斜塔是意大利的著名建筑,其示意图如图所示,设塔顶中心点为点B,塔身中心线AB与垂直中心线AC的夹角为∠A,过点B向垂直中心线AC引垂线,垂足为点D.通过测量可得AB、BD、AD的长度,利用测量所得的数据计算∠A的三角函数值,进而可求∠A的大小.下列关系式正确的是A.sin A=B.cos A=C.tan A=D.sin A=(第3题)4.在一个不透明的袋子里装有红球、黄球共20个,这些球除颜色外都相同.小明通过多次试验发现,摸出红球的频率稳定在0.25左右,则袋子中红球的个数最有可能是A.5B.10C.12D.155.现有三张正面分别标有数字﹣1,2,3的不透明卡片,它们除数字外其余完全相同,将它们背而面朝上洗均匀,随机抽取一张,记下数字后放回,背面朝上洗均匀,再随机抽取一张记下数字,前后两次抽取的数字分别记为m,n,则点P(m,n)在第二象限的概率为A.12B.13C.23D.296.如图,在下列网格中,小正方形的边长均为1,点A,B,O都在格点上,则AOB∠的正弦值是A.31010B.12C.13D.1010(第6题) (第7题) (第8题)7.如图,斜面AC 的坡度为1:2,AC =35米,坡顶有一旗杆BC ,旗杆顶端B 点与A 点有一条彩带相连,若AB =10米,则旗杆BC 的高度为A .5 米B .6米C .8米D .(3+5)米8.如图,将一块菱形ABCD 硬纸片固定后进行投针训练.已知AE ⊥BC 于E ,CF ⊥AD 于F ,4sin 5D =.若随意投出一针命中了菱形纸片,则命中矩形区域的概率是 A .15 B .25 C .35 D .45二、填空题(本大题共6小题,每小题3分,共18分)9.若关于x 的一元二次方程x 2﹣2x +m =0有两个相等的实数根,则实数m 的值为 . 10.一个不透明的袋子中装有5个小球,其中2个红球,3个绿球,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球,则摸出的小球是红球的概率是 .11.一只不透明袋子中装有1个白球和若干个红球,这些球除颜色外都相同,某课外学习小组做摸球试验:将球搅匀后从中任意摸出1个球,记下颜色后放回、搅匀,不断重复这个过程,获得数据如下:摸球的次数 200 300 400 1000 1600 2000 摸到白球的频数 72 93 130 334 532 667 摸到白球的频率0.36000.31000.32500.33400.33250.3335该学习小组发现,摸到白球的频率在一个常数附近摆动,这个常数是 (精确到0.01). 12.有三张大小、形状完全相同的卡片.卡片上分别写有数字4、5、6,搅匀后从这三张卡片中同时抽取两张,则抽取的两张卡片上数字之和为奇数的概率是 .(第13题) (第14题)13.如图,在四边形ABCD 中,AB =10,BD ⊥A D .若将△BCD 沿BD 折叠,点C 与边AB 的中点E恰好重合,则四边形BCDE 的周长为 .14.如图,在Rt ABC ∆中,90C ∠=︒,点E 在AC 边上.将A ∠沿直线BE 翻折,点A 落在点A '处,连接A B ',交AC 于点F .若A E AE '⊥,4cos 5A =,则A F BF '= .三、解答题(本大题共10小题,共78分)15.(6分)计算:112726cos30 3-⎛⎫++--︒ ⎪⎝⎭16. (6分)现有三张不透明的卡片,其中两张卡片的正面图案为“神舟首飞”,第三张卡片的正面图案为“保卫和平”,卡片除正面图案不同外,其余均相同.将这三张卡片背面向上洗匀,从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图(或列表)的方法,求两次抽出的卡片上的图案都是“保卫和平”的概率.(图案为“神舟首飞”的两张卡片分别记为A1、A2,图案为“保卫和平”的卡片记为B)17.(6分)如图,为测量某建筑物的高度AB,在离该建筑物底部24米的点C处,目测建筑物顶端A处,视线与水平线夹角∠ADE为39°,且高C D为1.5米,求建筑物的高度AB.(结果精确到0.1米)(参考数据:sin39°≈0.63,cos39°≈0.78,tan39°≈0.81)18.(7分)如图,在□ABCD中,O是对角线AC、BD的交点,BE⊥AC,DF⊥AC,垂足分别为点E、F.(1)求证:OE=OF.(2)若BE=5,OF=2,求tan∠OBE的值.19.(7分)如图,方格纸中每个小正方形的边长均为1,线段AB和线段CD的端点均在小正方形的顶点上.(1)在图中画出以AB为边的正方形ABEF,点E和点F均在小正方形的顶点上;(2)在图中画出以CD为边的等腰三角形CDG,点G在小正方形的顶点上,且△CDG的周长为10+10.(3)连接EG,请直接写出线段EG= .20.(7分)小明和小亮玩一个游戏,游戏规则是:在三张完全相同的卡片上分别标记4、5、6三个数字,一人先从三张卡片中随机抽出一张,记下数字后放回,另一人再从中随机抽出一张,记下数字,若抽出的两张卡片标记的数字之和为偶数,则小明获胜,若抽出的两张卡片标记的数字之和为奇数,则小亮获胜.你认为这个游戏公平吗?请说明理由.21.(8分)如图,在Rt△ABC中,∠C=90°,D为BC上一点,AB=5,BD=1,tan B=34.(1)求AD的长;22.(9分)某种机器工作前先将空油箱加满,然后停止加油立即开始工作,当停止工作时,油箱中油量为5L.在整个过程中,油箱里的油量y(单位:L)与时间x(单位:min)之间的关系如图所示.(1)机器每分钟加油量为L,机器工作的过程中每分钟耗油量为L.(2)求机器工作时y关于x的函数解析式,并写出自变量x的取值范围.(3)直接写出油箱中油量为油箱容积的一半时x 的值.23.(10分)【问题情境】如图①,在Rt △ABC 中,∠ACB =90°,AC =BC ,点D 为AB 中点,连结CD ,点E 为CB 上一点,过点E 且垂直于DE 的直线交AC 于点F .易知BE 与CF 的数量关系为____________.【探索发现】如图②,在Rt △ABC 中,∠ACB =90°,AC =BC ,点D 为AB 中点,连结CD ,点E 为CB 的延长线上一点,过点E 且垂直于DE 的直线交AC 的延长线于 点F .【问题情境】中的结论还成立吗?请说明理由.【类比迁移】如图③,在等边△ABC 中,AB =4,点D 是AB 中点,点E 是射线AC 上一点(不与点A 、C 重合),将射线DE 绕点D 逆时针旋转60°交BC 于点F . 当CF =2CE 时,CE =____________.24.(12分)如图,在矩形 ABCD 中,AB =2cm ,∠ADB =30°.P 、Q 两点分别从 A , B 同时出发,点 P 沿折线 AB ﹣BC 运动,在 AB 上的速度是 2cm/s ,在 BC 上的速度是23 cm/s ;点 Q 在 BD 上以 2cm/s 的速度向终点 D 运动,过点P 作 PN ⊥AD ,垂足为点 N .连接 PQ ,以 PQ ,PN 为邻边作□PQMN .设运动的时间为x (s ),□PQMN 与矩形 ABCD 重叠部分的图形面积为 y (cm 2).(1)当 PQ ⊥AB 时,x = .(2)若直线MQ 与AD 交于点E ,当43x 时,求EQ 的长; (3)求 y 关于x 的函数解析式,并写出x 的取值范围;(4)直线AM将矩形ABCD 的面积分成1:3 两部分时,直接写出x 的值.数学答案一、1.B; 2.A; 3.A; 4.A; 5.D; 6.D;7.A;8.B.二、9.1;10.25;11.0.33;12.23;13. 20;14.13.三、15.5;16.解:树状图如下:(1 = 9P两次抽取的卡片上图案都是“保卫和平”)列表法如下表:(1 = 9P两次抽取的卡片上图案都是“保卫和平”)17.∵DE⊥AB∴四边形BCDE为矩形DE=BC=24米,CD=BE=1.5米,在Rt△ADE中,∵∠ADE=39°∴AE=DE⋅tan39°≈24×0.81=19.44(米)∴AB=AE+EB=19.44+1.5=20.94≈20.9(米).答:建筑物的高度AB约为20.9米. 18.(1)证明:∵四边形ABCD是平行四边形∴OB=OD∵BE⊥AC,DF⊥AC∴∠OEB=∠OFD=90°∵∠DOF=∠BOE∴△OEB≌△OFD∴OE=OF(2)由(1)得:OE=OF∵OF=2∴OE=2∵∠OEB=90°∴tan∠OBE=25 OEBE=19. (1)如图所示,正方形ABEF即为所求.(2).如图所示,即为所求.(3)由勾股定理,得22125EG=+=.21. (1)在Rt △ABC 中,∠C=90°,AB=5,tanB=34, 设3AC k =(k >0),则BC=4k ,由勾股定理,得 222AC BC AB +=,即222(3)(4)5k k +=, 整理,得2=1k , ∵0k > ∴=1k∴BC=4k=4,AC=3k=3 ∵BD=1,∴CD=BC-BD=4-1=3, 在Rt △ACD 中,22223332AD AC CD =+=+=,即AD 的长为32;(2)过点D 作DE ⊥AB 于点E ,如图:在Rt △BDE 中,BD=1,tanB=34,可设DE=3x(x >0), 则BE=4x ,由勾股定理,222DE BE BD +=, 即222(3)(4)1x x +=,整理,得2125x =, ∵0x >,∴15x =, ∴DE=3x=35在Rt △ADE 中,325sin 1032DE AD α=== 22.(1)机器每分钟加油量为303(L)10=机器工作的过程中每分钟耗油量为0.5()601050L ==-.(2)设机器工作时y 关于x 的函数关系式为y kx b =+把(10,30),(60,5)代入上式,得1030605k b k b +=⎧⎨+=⎩解得0.535k b =-⎧⎨=⎩∴机器工作时y 关于x 的函数关系式为0.535y x =-+自变量x 的取值范围为1060x ≤≤(3)综上,=5x 或=40x 时,油箱中油量为油箱容积的一半. 23.【问题情境】BE =CF ; 【探索发现】成立,理由:∵在Rt △ABC 中,D 为AB 中点,∴CD =BD , 又∵AC =BC , ∴DC ⊥AB ,∴∠DBC =∠DCB =45°, ∵DE ⊥DF , ∴∠EDF =90∘,∴∠EDB +∠BDF =∠CDF +∠BDF =90°, ∴∠CDF =∠BDE , ∴∠ADF =∠CDE , ∴AF =CE , ∴CF =BE ;【类比迁移】33-或17-+ 24. (1)当PQ ⊥AB 时,BQ =2PB ,∴2x =2(2−2x ),∴x =23s . (2)EQ=54;(3)①如图1中,当203x <≤时,重叠部分是四边形PQMN .22323y x x x =⋅=.②如图2中,当23x ≤<1时,重叠部分是四边形PQEN .11 21322)3322y x x x x x =-+⋅=+( ③如图3中,当x 1<<2时,重叠部分是四边形PNEQ .21322)[323(1)]334322y x x x x x x =-+⋅--=++( 综上所述222223(0)3323()2333343()2x x x x x y x x x ⎧⎪⎪⎪+≤⎪=⎨⎪⎪++⎪⎪⎩<≤<11<<2 (4)当25x =或47x =时,直线AM 将矩形ABCD 的面积分成1:3两部分.。

九年级(上)月考数学试卷(12月份)(解析版)

九年级(上)月考数学试卷(12月份)(解析版)

2020-2020福建省莆田二十五中九级(上)月考数学试卷(12月份)一、选择题(每小题4分,共40分)1.(4分)如图,AB为⊙O直径,CD为弦,AB⊥CD,如果∠BOC=70°,那么∠A的度数为()A.70° B.35° C.30° D.20°【分析】由于直径AB⊥CD,由垂径定理知B是的中点,进而可根据等弧所对的圆心角和圆周角的数量关系求得∠A的度数.【解答】解:∵直径AB⊥CD,∴B是的中点;∴∠A=∠BOC=35°;故选:B.【点评】此题主要考查的是垂径定理和圆周角定理的综合应用,理解等弧所对的圆周角是圆心角的一半是解决问题的关键.2.(4分)一次函数y=kx+k与反比例函数y=在同一平面直角坐标系中的图象大致是()A. B.C. D.【分析】分别根据反比例函数及一次函数图象的特点对各选项进行逐一分析即可.【解答】解:A、由反比例函数的图象在二、四象限可知k<0,由一次函数的图象与y轴交点在y轴的正半轴可知k>0,两结论相矛盾,故本选项错误;B、由反比例函数的图象在一、三象限可知k>0,由一次函数的图象过一、二、三象限可知k>0,两结论一致,故本选项正确;C、由反比例函数的图象在一、三象限可知k>0,由一次函数的图象过二、四象限可知k<0,两结论相矛盾,故本选项错误;D、由反比例函数的图象在二、四象限知k<0,由一次函数图象与y 轴的交点在正半轴知k>0,两结论相矛盾,故本选项错误;故选:B.【点评】本题考查的是一次函数与反比例函数图象的特点,熟知一次函数与反比例函数的性质是解答此题的关键.3.(4分)如图,已知AB是⊙O的直径,CD是弦,AB⊥CD于点E,若AB=10,CD=6,则BE的长是()A.4 B.3 C.2 D.1【分析】连接OC,如图,根据垂径定理由AB⊥CD得到CE=DE=3,再在Rt△OCE中根据勾股定理计算出OE=4,然后利用BE=OB﹣OE进行计算即可.【解答】解:连接OC,如图,∵AB⊥CD,∴CE=DE=CD=×6=3,在Rt△OCE中,∵OC=5,CE=3,∴OE==4,∴BE=OB﹣OE=5﹣4=1.故选:D.【点评】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.也考查了勾股定理.4.(4分)一个扇形的圆心角为60°,它所对的弧长为2πcm,则这个扇形的半径为()A.6cm B.12cm C.2cm D. cm【分析】由已知的扇形的圆心角为60°,它所对的弧长为2πcm,代入弧长公式即可求出半径R.【解答】解:由扇形的圆心角为60°,它所对的弧长为2πcm,即n=60°,l=2π,根据弧长公式l=,得2π=,即R=6cm.故选:A.【点评】此题考查了弧长的计算,解题的关键是熟练掌握弧长公式,理解弧长公式中各个量所代表的意义.5.(4分)已知甲、乙两地相距s(km),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t(h)与行驶速度v(km/h)的函数关系图象大致是()A. B. C.D.【分析】根据实际意义,写出函数的解析式,根据函数的类型,以及自变量的取值范围即可进行判断.【解答】解:根据题意有:v?t=s;故v与t之间的函数图象为反比例函数,且根据实际意义v>0、t>0,其图象在第一象限.故选:C.【点评】现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限.6.(4分)“射击运动员射击一次,命中靶心”这个事件是()A.确定事件B.必然事件C.不可能事件 D.不确定事件【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:“射击运动员射击一次,命中靶心”这个事件是随机事件,属于不确定事件,故选:D.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7.(4分)圆的最大的弦长为12cm,如果直线与圆相交,且直线与圆心的距离为d,那么()A.d<6 cm B.6 cm<d<12 cm C.d≥6 cm D.d>12 cm 【分析】根据直线与圆的位置关系来判定.圆最长弦为12,则可知圆的直径为12,那么圆的半径为6.至此可确定直线与圆相交时,d 的取值范围.【解答】解:由题意得圆的直径为12,那么圆的半径为6.则当直线与圆相交时,直线与圆心的距离d<6cm.故选:A.【点评】本题考查了直线与圆的位置关系.解决本题的关键是确定圆的半径,进而可知直线与圆心的距离d的取值范围.8.(4分)已知正六边形的边长为2,则它的内切圆的半径为()A.1 B.C.2 D.2【分析】根据题意画出图形,利用正六边形中的等边三角形的性质求解即可.【解答】解:如图,连接OA、OB,OG;∵六边形ABCDEF是边长为2的正六边形,∴△OAB是等边三角形,∴OA=AB=2,∴OG=OA?sin60°=2×=,∴边长为2的正六边形的内切圆的半径为.故选:B.【点评】本题考查学生对正多边形的概念掌握和计算的能力.解答这类题往往一些学生因对正多边形的基本知识不明确,将多边形的半径与内切圆的半径相混淆而造成错误计算,记住基本概念是解题的关键,属于中考常考题型.9.(4分)下列函数中,y是x的反比例函数的是()A.y=B.y=C.y=D.y=【分析】根据反比例函数的定义,形如y=(k≠0)的函数是反比例函数,直接选取答案.【解答】解:根据反比例函数定义,y=是反比例函数.故选:D.【点评】本题主要考查反比例函数的定义,熟记定义的形式是解本题的关键.10.(4分)如图,已知矩形ABCD的长AB为5,宽BC为4,E是BC 边上的一个动点,AE⊥EF,EF交CD于点F.设BE=x,FC=y,则点E 从点B运动到点C时,能表示y关于x的函数关系的大致图象是()A.B.C.D.【分析】利用三角形相似求出y关于x的函数关系式,根据函数关系式进行分析求解.【解答】解:∵BC=4,BE=x,∴CE=4﹣x.∵AE⊥EF,∴∠AEB+∠CEF=90°,∵∠CEF+∠CFE=90°,∴∠AEB=∠CFE.又∵∠B=∠C=90°,∴Rt△AEB∽Rt△EFC,∴,即,整理得:y=(4x﹣x2)=﹣(x﹣2)2+∴y与x的函数关系式为:y=﹣(x﹣2)2+(0≤x≤4)由关系式可知,函数图象为一段抛物线,开口向下,顶点坐标为(2,),对称轴为直线x=2.故选:A.【点评】本题考查了动点问题的函数图象问题,根据题意求出函数关系式是解题关键.二、填空题.(每小题4分)11.(4分)四边形ABCD是⊙O的内接四边形,且∠A:∠B:∠C=2:3:6,则∠D= 112.5 度.【分析】根据圆内接四边形的对角互补列出方程,解方程即可.【解答】解:设∠A、∠B、∠C分别为2x、3x、6x,则2x+6x=180°,解得,x=22.5°,则∠B=3x=67.5°,∴∠D=180°﹣∠B=112.5°,故答案为:112.5.【点评】本题考查的是圆内接四边形的性质,掌握圆内接四边形的对角互补是解题的关键.12.(4分)有一枚材质均匀的正方体骰子,它的六个面上分别有1点、2点、…6点的标记,掷一次骰子,向上的一面出现的点数是3的倍数的概率是.【分析】共有6种等可能的结果数,其中点数是3的倍数有3和6,从而利用概率公式可求出向上的一面出现的点数是3的倍数的概率.【解答】解:掷一次骰子,向上的一面出现的点数是3的倍数的概率==.故答案为.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.13.(4分)反比例函数y=的图象经过点(﹣1,2),则k= ﹣3 .【分析】直接把点(﹣1,2)代入反比例函数y=,求出k的值即可.【解答】解:∵反比例函数y=的图象经过点(﹣1,2),∴k+1=(﹣1)×2,解得k=﹣3.故答案是:﹣3【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.14.(4分)已知⊙O的半径为5cm,则圆中最长的弦长为10 cm.【分析】根据直径为圆的最长弦求解.【解答】解:∵⊙O的半径为5cm,∴⊙O的直径为10cm,即圆中最长的弦长为10cm.故答案为10.【点评】本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).15.(4分)已知直角三角形的两直角边分别为5,12,则它的外接圆半径R= 6.5 .【分析】利用勾股定理可以求得该直角三角形的斜边长为13,然后由“直角三角形的外接圆是以斜边中点为圆心,斜边长的一半为半径的圆”来求该直角三形外接圆半径.【解答】解:∵直角三角形的两条直角边分别为5和12,∴根据勾股定理知,该直角三角的斜边长为=13;∴其外接圆半径长为 6.5;故答案是:6.5.【点评】本题考查了三角形的外接圆与外心、勾股定理.直角三角形的外接圆半径为斜边边长的一半.16.(4分)如图,PA、PB分别切圆O于A、B,并与圆O的切线DC 分别相交于C、D.已知△PCD的周长等于14cm,则PA= 7 cm.【分析】由于DA、DC、BC都是⊙O的切线,可根据切线长定理,将△PCD的周长转换为PA、PB的长,然后再进行求解.【解答】解:如图,设DC与⊙O的切点为E;∵PA、PB分别是⊙O的切线,且切点为A、B;∴PA=PB;同理,可得:DE=DA,CE=CB;(cm);则△PCD的周长=PD+DE+CE+PC=PD+DA+PC+CB=PA+PB=14∴PA=PB=7cm,故答案为:7.【点评】此题主要考查了切线长定理的应用,能够将△PCD的周长转换为切线PA、PB的长是解答此题的关键.三.解答题.(共86分),求证:17.(8分)已知AB为⊙O的弦,C、D在AB上,且AC=CD=DB∠AOC=∠DOB.【分析】先根据等腰三角形的性质由OA=OB得到∠A=∠B,再利用“SAS”证明△OAC≌△OBD,然后根据全等三角形的性质得到结论.【解答】证明:∵OA=OB,∴∠A=∠B,在△OAC和△OBD中,,∴△OAC≌△OBD(SAS),∴∠AOC=∠DOB【点评】本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).也考查了全等三角形的判定与性质.18.(8分)如图,已知圆O中, AB=CD,连结AC、BD.求证:AC=BD.【分析】欲证明AC=BD,只要证明=即可;【解答】证明:∵AB=CD,∴=,∴=,∴BD=AC.【点评】本题考查圆心角、弧、弦的关系,解题的关键是熟练掌握基本知识,属于中考基础题.19.(8分)已知y=y1+y2,y1与x+1成正比例,y2与x成反比例,且当x=1时,y=0;当x=4时,y=9.(1)求y与x之间的函数关系式;(2)当x=﹣2时,求y的值.【分析】(1)根据正比例与反比例的定义设出y与x之间的函数关系式,然后利用待定系数法求函数解析式计算即可得解;(2)把x=2代入(1)中所求函数解析式,易求y.【解答】解:(1)根据题意,得y1=a(x+1),y2=,∴y=ax+a+,把(1,0)、(4,9)代得,解得.∴所求函数解析式是y=2(x+1)﹣;(2)当x=2时,y=2(x+1)﹣=4.【点评】本题考查了待定系数法求反比例解析式,解题的关键是理解正比例、反比例的含义.20.(8分)在压力不变的情况下,某物体承受的压强P(p a)是受力面积S(m2)的反比例函数,其图象如图所示.(1)写出P与S之间的函数关系式;(2)当S=0.5时,求物体承受的压强P.【分析】(1)观察图象易知P与S之间的是反比例函数关系,所以可以设 P=,依据图象上点A的坐标可以求得P与S之间的函数关系式.(2)将S代入上题求得的反比例函数的解析式即可求得压强.【解答】解:(1)设 P=,∵点(0.1,1000)在这个函数的图象上,∴1000=,∴k=100,∴P与S的函数关系式为 P=(S>0);(2)当S=0.5m2时,P==200(pa).【点评】本题考查了反比例函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.21.(10分)如图,一次函数y1=ax+b和反比例函数y2=的图象交于A(1,3),B(﹣3,m)两点.(1)求这两个函数的解析式;(2)请你利用图象直接回答:当x取什么值时,y1>y2?【分析】(1)先把A点的坐标代入反比例函数的解析式求出k,即可得出反比例函数的解析式,求出B点的坐标,代入求出一次函数的解析式即可;(2)根据A、B的坐标结合图形得出答案即可.【解答】解:(1)∵反比例函数y2=的图象过点A(1,3),B(﹣3,m),∴k=3×1=3,即反比例函数的解析式是y2=,∴m==﹣1,即B(﹣3,﹣1),把A、B的坐标代入y1=ax+b得:,解得:a=1,b=2,即一次函数的解析式为y1=x+2;(2)根据图象可知:当x>1或﹣3<x<0时,y1>y2.【点评】本题考查了一次函数与反比例函数的交点问题、用待定系数法求一次函数、反比例函数的解析式等知识点,能综合运用知识点进行推理和计算是解此题的关键.22.(10分)如图.AB为⊙O的直径,点E在⊙O上,点C为BE弧的中点,过点C作直线CD⊥AE于点D,连接AC、BC.(1)证明:直线CD是⊙O的切线;(2)若点E是AD的中点,且AD=2,AC=.求AB的长.【分析】(1)连接OC,证明OC∥AD,根据平行线的性质得到CD⊥OC,根据切线的判定定理证明结论;(2)证明△ACB∽△ADC,根据相似三角形的性质列出比例式,计算即可.【解答】(1)证明:连接OC,∵点C为BE弧的中点,∴∠BAC=∠DAC,∵OC=OA,∴∠BAC=∠OCA,∴∠OCA=∠DAC,∴OC∥AD,又CD⊥AE,∴CD⊥OC,∴直线CD是⊙O的切线;(2)连接CE,∵∠BAC=∠DAC,∠ACB=∠ADC=90°,∴△ACB∽△ADC,∴=,∴AB==3.【点评】本题考查的是相似三角形的判定和性质、切线的判定定理,掌握切线的判定定理、相似三角形的判定定理和性质定理是解题的关键.23.(10分)如图,要把破残的圆片复制完整,已知弧上的三点A,B,C.(1)试确定BAC所在圆的圆心O(保留作图痕迹);(2)设△ABC是等腰三角形,底边BC=8cm,腰AB=2cm,求圆片的半径R.【分析】(1)作出AB,BC的中垂线,交点即为圆心O;(2)连接OA,连接AO交BC于D,连接OB,由△ABC是等腰三角形,推出DB=DC,根据垂径定理确定AD的延长线过O点,再由BC=8cm,腰AB=2cm,根据勾股定理推出AD长,由R2=42+(R﹣2)2,即可求出R的值.【解答】解:(1)如图所示,圆心O即为所求.(2)如图,连接AO交BC于D,连接OB,∵△ABC是等腰三角形,∴DB=DC,AD⊥BC,∵AB=AC=2cm,BC=8cm,∴BD=4cm,∴AD==2cm,∵OB=OA=R,∴R2=42+(R﹣2)2,∴R=5,即圆片的半径R为5cm.【点评】本题主要考查垂径定理,勾股定理等性质定理,关键在于熟练运用各性质定理,正确的画出辅助线,认真的进行计算.24.(10分)如图,有三张不透明的卡片,除正面写有不同的数字外,其它均相同.将这三张卡片背面向上洗匀,从中随机抽取一张,记录数字后放回,重新洗匀后再从中随机抽取一张,记录数字.试用列表或画树状图的方法,求抽出的两张卡片上的数字都是正数的概率.【分析】依据题意先用列表法或画树状图法分析所有等可能和出现所有结果的可能,然后根据概率公式求出该事件的概率.【解答】解:用下表列举所有可能:﹣3 1 2第二次第一次﹣3 (﹣3,﹣(1,﹣3)(2,﹣3)3)1 (﹣3,1)(1,1)(2,1)2 (﹣3,2)(1,2)(2,2)由上表知,共有9种情况,每种情况发生的可能性相同,两张卡片都是正数的情况出现了4次.因此,两张卡片上的数都是正数的概率P=.(10分)【点评】考查概率的概念和求法,用树状图或表格表达事件出现的可能性是求解概率的常用方法.用到的知识点为:概率=所求情况数与总情况数之比.25.(14分)如图,AB为⊙O的直径,点C为AB延长线上一点,动点P从点A出发沿AC方向以lcm/s的速度运动,同时动点Q从点C 出发以相同的速度沿CA方向运动,当两点相遇时停止运动,过点P 作AB的垂线,分别交⊙O于点M和点N,已知⊙O的半径为l,设运动时间为t秒.(1)若AC=5,则当t= 时,四边形AMQN为菱形;当t=时,NQ与⊙O相切;(2)当AC的长为多少时,存在t的值,使四边形AMQN为正方形?请说明理由,并求出此时t的值.【分析】(1)AP=t,CQ=t,则PQ=5﹣2t,由于NM⊥AB,根据垂径定理得PM=PN,根据菱形的判定方法,当PA=PQ时,四边形AMQN为菱形,即t=5﹣2t,然后解一元一次方程可求t的值;根据切线的判定定理,当∠ONQ=90°时,NQ与⊙O相切,如图,此时OP=t﹣1,OQ=AC ﹣OA﹣QC=4﹣t,再证明Rt△ONP∽Rt△OQN,利用相似比可得t2﹣5t+5=0,然后解一元二次方程可得到t的值;(2)当四边形AMQN为正方形.则∠MAN=90°,根据圆周角定理得到MN为⊙O的直径,而∠MQN=90°,又可判断AQ为直径,于是得到点.P在圆心,所以t=AP=1,CQ=t=1,则可得到此时AC=AQ+CQ=3【解答】解:(1)AP=t,CQ=t,则PQ=5﹣2t,∵NM⊥AB,∴PM=PN,∴当PA=PQ时,四边形AMQN为菱形,即t=5﹣2t,解得t=;当∠ONQ=90°时,NQ与⊙O相切,如图,OP=t﹣1,OQ=AC﹣OA﹣QC=5﹣1﹣t=4﹣t,∵∠NOP=∠QON,∴Rt△ONP∽Rt△OQN,∴=,即=,整理得t2﹣5t+5=0,解得t1=,t2=(1≤t≤2.5,故舍去),即当t=时,NQ与⊙O相切;故答案为,;(2)当AC的长为3时,存在t=1,使四边形AMQN为正方形.理由如下:∵四边形AMQN为正方形.∴∠MAN=90°,∴MN为⊙O的直径,而∠MQN=90°,∴点Q在⊙O上,∴AQ为直径,∴点P在圆心,∴MN=AQ=2,AP=1,∴t=AP=1,CQ=t=1,.∴AC=AQ+CQ=2+1=3【点评】本题考查了切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了菱形和正方形的判定.。

2020—2021年人教版九年级数学上册月考考试卷及答案【完美版】

2020—2021年人教版九年级数学上册月考考试卷及答案【完美版】

2020—2021年人教版九年级数学上册月考考试卷及答案【完美版】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣3的绝对值是( )A .﹣3B .3C .-13D .132.已知一个布袋里装有2个红球,3个白球和a 个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出1个球,是红球的概率为13,则a 等于( )A .1B .2C .3D .4 3.若关于x 的方程333x m m x x ++--=3的解为正数,则m 的取值范围是( ) A .m <92 B .m <92且m ≠32 C .m >﹣94 D .m >﹣94且m ≠﹣344.已知1x 、2x 是一元二次方程220x x -=的两个实数根,下列结论错误..的是( )A .12x x ≠B .21120x x -=C .122x x +=D .122x x ⋅=5.一个整数815550…0用科学记数法表示为8.1555×1010,则原数中“0”的个数为( )A .4B .6C .7D .106.对于一个函数,自变量x 取a 时,函数值y 也等于a ,我们称a 为这个函数的不动点.如果二次函数y =x 2+2x +c 有两个相异的不动点x 1、x 2,且x 1<1<x 2,则c 的取值范围是( )A .c <﹣3B .c <﹣2C .c <14D .c <17.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )A .30°B .25°C .20°D .15°8.如图,AB 、是函数12y x =上两点,P 为一动点,作//PB y 轴,//PA x 轴,下列说法正确的是( )①AOP BOP ∆≅∆;②AOP BOP S S ∆∆=;③若OA OB =,则OP 平分AOB ∠;④若4BOP S ∆=,则16ABP S ∆=A .①③B .②③C .②④D .③④ 9.如图将直尺与含30°角的三角尺摆放在一起,若120∠=︒,则2∠的度数是( )A .30B .40︒C .50︒D .60︒10.如图,四边形ABCD 内接于⊙O ,F 是CD 上一点,且DF BC =,连接CF 并延长交AD 的延长线于点E ,连接AC .若∠ABC=105°,∠BAC=25°,则∠E 的度数为( )A .45°B .50°C .55°D .60°二、填空题(本大题共6小题,每小题3分,共18分)1.计算:23a a ⋅=______________.2.分解因式:x 2-9=______.3.若函数y =(a -1)x 2-4x +2a 的图象与x 轴有且只有一个交点,则a 的值为_____.4.在锐角三角形ABC 中.BC=32,∠ABC=45°,BD 平分∠ABC .若M ,N 分别是边BD ,BC 上的动点,则CM +MN 的最小值是__________.5.如图,在矩形纸片ABCD 中,AD =10,AB =8,将AB 沿AE 翻折,使点B 落在B '处,AE 为折痕;再将EC 沿EF 翻折,使点C 恰好落在线段EB '上的点C '处,EF 为折痕,连接AC '.若CF =3,则tan B AC ''∠=__________.6.如图,已知正方形ABCD 的边长为5,点E 、F 分别在AD 、DC 上,AE=DF=2,BE 与AF 相交于点G ,点H 为BF 的中点,连接GH ,则GH 的长为__________.三、解答题(本大题共6小题,共72分)1.解分式方程:3213x x x --=-2.已知关于x 的一元二次方程x 2+(2m+3)x+m 2=0有两根α,β.(1)求m 的取值范围;(2)若111αβ+=-,则m 的值为多少?3.如图,已知抛物线y=ax 2+bx+c (a ≠0)经过点A (3,0),B (﹣1,0),C (0,﹣3).(1)求该抛物线的解析式;(2)若以点A 为圆心的圆与直线BC 相切于点M ,求切点M 的坐标;(3)若点Q 在x 轴上,点P 在抛物线上,是否存在以点B ,C ,Q ,P 为顶点的四边形是平行四边形?若存在,求点P 的坐标;若不存在,请说明理由.4.如图,在正方形ABCD 中,点E 是BC 的中点,连接DE ,过点A 作AG ED ⊥交DE 于点F ,交CD 于点G .(1)证明:ADG DCE ∆∆≌;(2)连接BF,证明:AB FB=.5.胜利中学为丰富同学们的校园生活,举行“校园电视台主待人”选拔赛,现将36名参赛选手的成绩(单位:分)统计并绘制成频数分布直方图和扇形统计图,部分信息如下:请根据统计图的信息,解答下列问题:(1)补全频数分布直方图,并求扇形统计图中扇形D对应的圆心角度数;(2)成绩在D区域的选手,男生比女生多一人,从中随机抽取两人临时担任该校艺术节的主持人,求恰好选中一名男生和一名女生的概率.6.为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的32倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.(1)甲、乙两工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、B4、D5、B6、B7、B8、B9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、a52、(x+3)(x-3)3、-1或2或14、45、1 46三、解答题(本大题共6小题,共72分)1、95 x=2、(1)34m≥-;(2)m的值为3.3、(1)y=x2﹣2x﹣3;(2)M(﹣35,﹣65);(3)存在以点B,C,Q,P为顶点的四边形是平行四边形,P的坐标为(3)或(13)或(2,﹣3).4、(1)略;(2)略.5、(1)补图见解析;50°;(2)3 5 .6、(1)乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米.(2)10天.。

2020-2021学年九年级(上)月考数学试卷 (含答案) (6)

2020-2021学年九年级(上)月考数学试卷 (含答案) (6)

2020-2021学年九年级(上)月考数学试卷一.选择题:(每小题3分 共36分)1.一元二次方程0142=--x x 配方后可化为( )A .3)2(2=+x B.5)2(2=+x C.3)2(2=-x D.5)2(2=-x2.菱形的两条对角线长分别是6和8,则此菱形的周长是( ) A .5 B .20C .24D .323.一元二次方程x 2+2x +1=0的解是( ) A .x 1=1,x 2=﹣1B .x 1=x 2=1C .x 1=x 2=﹣1D .x 1=﹣1,x 2=24.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,过点D 作DH ⊥AB 于点H ,连接OH ,若OA =6,OH =4,则菱形ABCD 的面积为( ) A .72 B .24C .48D .965. x =1是关于的一元二次方程x 2+ax +2b =0的解,则2a +4b =( ) A. -2 B. -3 C. 4 D. -66.若关于x 的方程x 2+2x +a =0不存在实数根,则a 的取值范围是(B) A .a <1 B .a >1 C .a≤1 D .a≥17.如图,正方形ABCD 的边长为4,点E 在AB 上且BE=1,F 为对角线AC 上一动点,则△BFE 周长的最小值为( ). A. 5 B. 6 C. 7 D. 88.若方程x 2﹣2x ﹣4=0的两个实数根为α,β,则α2+β2的值为( ) A .12 B .10C .4D .﹣49.如果顺次连接四边形的各边中点得到的四边形是矩形,那么原来四边形的对角线一定满足的条件是( )A .互相平分B .相等C .互相垂直D .互相垂直平分10.已知x 1.x 2是一元二次方程了x 2﹣2x =0的两个实数根,下列结论错误的是( ) A .x 1≠x 2 B .x 12﹣2x 1=0 C .x 1+x 2=2 D .x 1·x 2=211.如图,矩形ABCD 中,对角线AC 的垂直平分线EF 分别交BC ,AD 于点E ,F ,若BE =3,AF =5,则AC 的长为( ) A .4B .4C .10D .812.在平行四边形ABCD 中,AB=10,BC=14,E ,F 分别为边BC ,AD 上的点,若四边形AECF 为正方形,则AE 的长为( ) A .6或8 B .4或10 C .5或9 D .7 二、填空题(每小题4分 共24分)13.(1)一元二次方程(x-2)(x-3)=0的根是 .(2)以正方形ABCD 的边AD 作等边△ADE ,则∠BEC 的度数是_________.14..菱形一对角线长为8,其边长是方程x 2﹣9x +20=0的一个根,则菱形周长为 .15.如图,在矩形ABCD 中,AD =8,对角线AC 与BD 相交于点O , AE ⊥BD ,垂足为点E ,且AE 平分∠BAC ,则AB 的长为 . 16.已知实数m、n(m≠n)满足._______,027,02722=+=+-=+-nmm n n n m m 则17.如图,三个边长均为2的正方形重叠在一起,O 1,O 2是其中两个正方形的对角线交点,若把这样的n 个小正方形按如图所示方式摆放,则重叠部分的面积为________.18.如图,在矩形ABCD 中,AB =3,BC =4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点B′处,当△CEB′为直角三角形时,BE 的长为__________.三.解答题 (解答要写出必要的文字说明或演算步骤 共60分.) 19.解方程(每小题5分 本题满分10分)(1)09102=+-x x (2) 05232=--x x20、(本题满分10分)如图,AE∥BF,BD平分∠ABC交AE于点D,点C在BF上且BC=AB,连接CD.求证:四边形ABCD是菱形..21.(本题满分8分)已知关于x的一元二次方程0a+a,其中a、b、c分别为△+x cbx+c()2)(2=-ABC三边的长.(1)如果x=-1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;22.(本题满分10分)关于x的一元二次方程x2﹣3x+k=0有实数根.(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程(m﹣1)x2+x+m﹣3=0与方程x2﹣3x+k=0有一个相同的根,求此时m的值23.(本题满分10分)如图1,在正方形ABCD中,E,F分别是AD,CD上两点,BE交AF于点G,且DE=CF.(1)写出BE与AF之间的关系,并证明你的结论;(2)如图2,若AB=2,点E为AD的中点,连接GD,试证明GD是∠EGF的角平分线,并求出GD的长.24.(本题满分12分)如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.数学答案一.选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DB CCABBACDAA二.填空题(每小题4分,共24分) 13. 14. 20 15.16.17. n-1 18.三.解答题:(解答要写出必要的文字说明或演算步骤. 共60分) 19.解方程(每小题5分,本题满分10分)(1)09102=+-x x (2) 05232=--x x X1=1 x2=9 x2=-—120.(本题满分10分)证明:∵AE ∥BF , ∴∠ADB =∠DBC , ∵BD 平分∠ABC , ∴∠DBC =∠ABD , ∴∠ADB =∠ABD , ∴AB =AD , 又∵AB =BC , ∴AD =BC ,∵AE ∥BF ,即AD ∥BC , ∴四边形ABCD 为平行四边形, 又∵AB =AD ,∴四边形ABCD 为菱形.21.(本题满分8分)解:(1)△ABC是等腰三角形;理由:把x=﹣1代入方程得a+c﹣2b+a﹣c=0,则a=b,所以△ABC为等腰三角形;,......4分(2)△ABC为直角三角形;理由:根据题意得△=(2b)2﹣4(a+c)(a﹣c)=0,即b2+c2=a2,所以△ABC为直角三角形;,......8分22.(本题满分10分)解:(1)根据题意得△=(﹣3)2﹣4k≥0,解得k ≤,......5分(2)k的最大整数为2,方程x2﹣3x+k=0变形为x2﹣3x+2=0,解得x1=1,x2=2,∵一元二次方程(m﹣1)x2+x+m﹣3=0与方程x2﹣3x+k=0有一个相同的根,∴当x=1时,m﹣1+1+m﹣3=0,解得m =;当x=2时,4(m﹣1)+2+m﹣3=0,解得m=1,而m﹣1≠0,∴m 的值为.,......10分23.(本题满分12分)(1)证明:∵DE⊥BC,∴∠DFB=90°,∵∠ACB=90°,∴∠ACB=∠DFB,∴AC∥DE,......1分∵MN∥AB,即C E∥AD,∴四边形ADEC是平行四边形,∴CE=AD;......4分(2)解:四边形BECD是菱形,......5分理由是:∵D为AB中点,∴AD=BD,∵CE=AD,∴BD=CE,∵BD∥CE,∴四边形BECD是平行四边形∵∠ACB=90°,D为AB中点,∴CD=BD,∴四边形BECD是菱形;......8分(3)当∠A=45°时,四边形BECD是正方形,......9分理由是:解:∵∠ACB=90°,∠A=45°,∴∠ABC=∠A=45°,∴AC=BC∵D为BA中点,∴CD⊥AB,∴∠CDB=90°,∵四边形BECD是菱形,∴四边形BECD是正方形,......12分即当∠A=45°时,四边形BECD是正方形24.(本题满分10分)解:(1)BE=AF,BE⊥AF,理由:四边形ABCD是正方形,∴BA=AD=CD,∠BAE=∠D=90°,∵DE=CF,∴AE=DE,∴△BAE≌△ADF(SAS),∴BE=AF,∠ABE=∠DAF,∵∠ABE+∠AEB=90°,∴∠DAE+∠AEB=90°,∴∠BGA=90°,∴BE⊥AF,,......5分(2)如图2,过点D作DN⊥AF于N,DM⊥BE交BE的延长线于M,在Rt△ADF中,根据勾股定理得,AF=,∵S△ADF=AD×FD=AD×DN,∴DN=,∵△BAE≌△ADF,∴S△BAE=S△ADF,∵BE=AF,∴AG=DN,易证,△AEG≌△DEM(AAS),∴AG=DM,∴DN=DM,∵DM⊥BE,DN⊥AF,∴GD平分∠MGN,∴∠DGN=∠MGN=45°,∴△DGN是等腰直角三角形,∴GD=DN=;,......10分。

2020—2021年人教版九年级数学上册月考试卷【及参考答案】

2020—2021年人教版九年级数学上册月考试卷【及参考答案】

2020—2021年人教版九年级数学上册月考试卷【及参考答案】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2019-=()A.2019 B.-2019 C.12019D.12019-2.某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为()A.80(1+x)2=100 B.100(1﹣x)2=80C.80(1+2x)=100 D.80(1+x2)=1003.若正多边形的一个外角是60︒,则该正多边形的内角和为()A.360︒B.540︒C.720︒D.900︒4.2018年10月24日港珠澳大桥全线通车,港珠澳大桥东起香港国际机场附近的香港口岸人工岛,向西横跨伶仃洋海域后连接珠海和澳门人工岛,止于珠海洪湾,它是世界上最长的跨海大桥,被称为“新世界七大奇迹之一”,港珠澳大桥总长度55000米,则数据55000用科学记数法表示为()A.55×105B.5.5×104C.0.55×105D.5.5×1055.一个整数815550…0用科学记数法表示为8.1555×1010,则原数中“0”的个数为()A.4 B.6 C.7 D.106.若关于x的一元一次方程x−m+2=0的解是负数,则m的取值范围是()A.m≥2 B.m>2 C.m<2 D.m≤27.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为()A .32B .3C .1D .438.如图,正方形ABCD 的边长为2cm ,动点P ,Q 同时从点A 出发,在正方形的边上,分别按A D C →→,A B C →→的方向,都以1/cm s 的速度运动,到达点C 运动终止,连接PQ ,设运动时间为x s ,APQ ∆的面积为2y cm ,则下列图象中能大致表示y 与x 的函数关系的是( )A .B .C .D .9.如图,有一块含有30°角的直角三角形板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是( )A .14°B .15°C .16°D .17°10.如图,矩形ABCD 的对角线AC ,BD 交于点O ,6AB =,8BC =,过点O 作OE AC ⊥,交AD 于点E ,过点E 作EF BD ⊥,垂足为F ,则OE EF +的值为( )A .485B .325C .245D .125二、填空题(本大题共6小题,每小题3分,共18分)1.4的算术平方根是__________.2.分解因式:2x 2﹣8=_______.3.若关于x 的分式方程2222x m m x x+=--有增根,则m 的值为_______. 4.如图是抛物线型拱桥,当拱顶离水面2m 时,水面宽4m ,水面下降2m ,水面宽度增加__________m.5.如图,点P 是正方形ABCD 内一点,且点P 到点A 、B 、C 的距离分别为23,2,4则正方形ABCD 的面积为__________.6.如图,正方形ABCD 中,ABC ∆绕点A 逆时针旋转到AB C ''∆,AB ',AC '分别交对角线BD 于点,E F ,若4AE =,则EF ED ⋅的值为___________.三、解答题(本大题共6小题,共72分)1.解方程23111x x x -=--2.已知关于x 的一元二次方程2(3)0x m x m ---=.(1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为1x ,2x ,且2212127x x x x +-=,求m 的值.3.如图,矩形ABCD 中,AB =6,BC =4,过对角线BD 中点O 的直线分别交AB ,CD 边于点E ,F .(1)求证:四边形BEDF 是平行四边形;(2)当四边形BEDF 是菱形时,求EF 的长.4.如图,已知二次函数y=ax 2+bx+c (a ≠0)的图象经过A (-1,0)、B (4,0)、C (0,2)三点.(1)求该二次函数的解析式;(2)点D 是该二次函数图象上的一点,且满足∠DBA=∠CAO (O 是坐标原点),求点D 的坐标;(3)点P 是该二次函数图象上位于一象限上的一动点,连接PA 分别交BC ,y 轴与点E 、F ,若△PEB 、△CEF 的面积分别为S 1、S 2,求S 1-S 2的最大值.5.“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.6.某商店以每件40元的价格进了一批商品,出售价格经过两个月的调整,从每件50元上涨到每件72元,此时每月可售出188件商品.(1)求该商品平均每月的价格增长率;(2)因某些原因,商家需尽快将这批商品售出,决定降价出售.经过市场调查发现:售价每下降一元,每个月多卖出一件,设实际售价为x元,则x为多少元时销售此商品每月的利润可达到4000元.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、A3、C4、B5、B6、C7、A8、A9、C10、C二、填空题(本大题共6小题,每小题3分,共18分) 1、2.2、2(x+2)(x ﹣2)3、14、42-45、4314+6、16三、解答题(本大题共6小题,共72分)1、2x =2、(1)证明见解析(2)1或23、(1)略;(2)4133. 4、(1)抛物线解析式为213222y x x =-++;(2)点D 的坐标为(3,2)或(-5,-18);(3)当t=85时,有S 1-S 2有最大值,最大值为165. 5、(1)600(2)见解析(3)3200(4)6、(1)20%;(2)60元。

十二月月考答案

十二月月考答案

2020—2021学年度上学期九年级数学十二月质量检测参考答案及评分细则二、填空题(每小题3分, 共18分)11. 4 12. (3, -4) 13. 140 14. 4 15. ①②④ 16. 272+ 三、解答题(共8小题, 共72分)17. 解:a =1, b =-4, c =-3 ………………………………………………………………………3分 △=b 2-4ac =(-4)2-4×1×(-3)=28>0 ……………………………………4分 ∴方程有两个不相等的实数根x =722284242±=±=-±-a ac b b ……………………………………………6分 ∴x 1=2+7, x 2=2-7 ……………………………………………………………8分 18. 证明:连接OC∵C 为AB ︵ 的中点 ∴AC ︵ =BC ︵∴∠AOC =∠BOC ………………2分 ∵D 、E 分别是OA 、OB 中点 ∴OD =21OA , OE =21OB ………………3分 又OA =OB ∴OD =OE ……………………………………4分 在△COD 和△COE 中⎪⎩⎪⎨⎧=∠=∠=OE OD BOCAOC COCO∴△COD ≌△COE (SAS ) ………………7分 ∴CD =CE ………………………………………………………………………8分19. (1) 设每轮传染中平均一个人传染x 个人,由题意得:1+x +x (1+x )=121 …………………………………………………………2分 解得:x 1=10, x 2=-12 ……………………………………………………………3分 ∵ x >0 ∴ x 2=-12不合题意, 舍去 ∴ x =10 ………………………4分 答:每轮传染中平均一个人传染10个人. ………………………………………………5分 (2) 1331 …………………………………………………………………………………8分20. 如图(1)…………………2分 (2)………………5分 (3) …………………8分21. (1)证明:连接OD∵CB 与⊙O 相切于点B∴OB ⊥BC ………………………………………………………………………1分∵AD ∥OC∴∠A =∠COB ,∠ADO =∠DOC ∵OA =OD∴∠A =∠ADO =∠COB =∠DOC∴△DOC ≌△BOC (SAS ) ……………………………………………………3分 ∴∠ODC =∠OBC =90° ∴OD ⊥DC 又OD 为⊙O 半径∴CD 为⊙O 的切线…………………………………………………………………4分(2)解:设CB =x ∵AE ⊥EB∴AE 为⊙O 的切线 …………………………………5分 ∵CD 、CB 为⊙O 的切线∴ED =AE =4, CD =CB =x , ∠DOC =∠BCO∴BD ⊥OC ………………………………… 6分过点E 作EM ⊥BC 于M , 则EM =12, CM = x -4 ∴(4+x )2=122+(x -4)2 解得 x =9∴CB =9…………………………………………………………………………………7分 ∴OC =1339622=+ ∴BF =131318=•OC BC OB ……………………………………………………………8分22. 解:(1)y =60-2x …………………………………………………………………………1分16≤x <30 ………………………………………………………………………3分(2) S =x (60-2x )=-2x 2+60x=-2(x -15)2+450 ……………………………………………………………4分 ∵a =-2<0∴开口向下 …………………………………………………………………………5分 ∵对称轴为x =15∴当16≤x <30时, S 随x 增大而减小 ……………………………………………6分 ∴当x =16时, S 有最大值, 最大值为448 ………………………………………7分(3) 0<a ≤34………………………………………………………………………10分23. (1) 过点E 作EM ⊥AD 交AD 延长线于点M∵四边形ABCD 为正方形 ∴CD =AD =2, ∠ADC =90° ∵∠DEF =90°, DE =EF∴∠CDE =45°=∠MDE , DE =2∴DM =ME =1∴AE =10132222=+=+ME AM …………………………………………………3分 (2) 延长EM 至Q , 使EM =MQ , 连接AE 、AQ∵BM =MF , ∠BMQ =∠FME∴△BMQ ≌△FME (SAS ) ………………4分 ∴BQ =EF =DE , ∠BQM =∠FEM∴BQ ∥EF ……………………………5分 延长QB , ED 交于点N ∴∠QND =90° ∴∠1=∠2 ∴∠ABQ =∠ADE∴△ABQ ≌△ADE (SAS ) ……………………………………………………………6分 ∴AQ =AE , ∠QAE =90°∴AM =ME , AM ⊥ME ………………………………………………………………7分 (3)4-23 ………………………………………………………………………10分24. (1) (4, 0) ………………1分 y =221412--x x………………3分 (2) 延长DC 交x 轴于点M∵∠DCA =2∠CAB ∴∠CAB =∠CMA ∴CA =CM ………………4分 过点C 作CQ ⊥AM 于点Q 则QM =AQ =8 ∴点M 坐标为(14, 0) ……………5分 ∴直线DM 的解析式为:y =721+-x…………………………………………………6分 由⎪⎪⎩⎪⎪⎨⎧--=+-=221417212x x y x y 得⎩⎨⎧=-=10611y x 或⎩⎨⎧==4622y x (舍)∴点D 坐标为(-6, 10) ……………………………………………………………7分 (3)设直线CE 解析式为:y =kx -6k +4 则点M (0, -6k +4)由⎪⎩⎪⎨⎧+-=--=46221412k kx y x x y 得06621412=-+⎪⎭⎫⎝⎛+-k x k x ∴x C +x E =2+4k∴x E =4k -4 ① …………………………………………………………………………8分 同理设直线CF 的解析式为:y =tx -6t +4 则点N (0, -6t +4) 即x F =4t -4 ② ……9分由⎪⎩⎪⎨⎧+=--=n mx y x x y 221412得0221412=--⎪⎭⎫ ⎝⎛+-n x m x ∴x E +x F =4m +2 ③ x E ·x F =-8-4n ④将①②代入③④得⎪⎪⎩⎪⎪⎨⎧+-=+=+14125n m kt m t k……………………………………………………10分 又OM ·ON =3∴()()()31624364646=-++-=-+-t k kt t k ∴9534-=m n ……………………………………………………………………………11分 ∴95349534-⎪⎭⎫ ⎝⎛+=-+=+=x m m mx n mx y 当34-=x 时, 95-=y∴直线EF 经过定点且定点坐标为⎪⎭⎫ ⎝⎛--95,34…………………………………………12分。

2020—2021学年高密市九年级上月考数学试卷含答案解析

2020—2021学年高密市九年级上月考数学试卷含答案解析

2020—2021学年高密市九年级上月考数学试卷含答案解析一、选择题(共8小题,每小题3分,满分24分)1.正六边形的边心距为,则该正六边形的边长是()A.B.2 C.3 D.22.下列关于x的方程有实数根的是()A.x2﹣x+1=0 B.x2+x+1=0 C.(x﹣1)(x+2)=0 D.(x﹣1)2+1=03.若a(a≠0)是关于x的方程x2+bx﹣2a=0的根,则a+b的值为()A.1 B.2 C.﹣1 D.﹣24.一个扇形的圆心角为60°,弧长为2π厘米,则那个扇形的半径为()A.6厘米B.12厘米C.厘米 D.厘米5.若α、β是一元二次方程x2+2x﹣6=0的两根,则α2+β2=()A.﹣8 B.32 C.16 D.406.若关于x的一元二次方程(m﹣1)x2+5x+m2﹣1=0的常数项为0,则m的值等于()A.1 B.﹣1 C.±1 D.07.已知m,n是关于x的一元二次方程x2﹣3x+a=0的两个解,若(m﹣1)(n﹣1)=﹣6,则a的值为()A.﹣10 B.4 C.﹣4 D.108.某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x 株,则能够列出的方程是()A.(3+x)(4﹣0.5x)=15 B.(x+3)(4+0.5x)=15 C.(x+4)(3﹣0.5x)=15 D.(x+1)(4﹣0.5x)=15二、填空题(共8小题,每小题3分,满分24分)9.一元二次方程(x﹣2)(x+3)=1化为一样形式是.10.函数y=中,自变量x的取值范畴是.11.如图,在△ABC中,点I是内心,且∠BIC=124°,则∠A=°.12.若把代数式x2﹣2x﹣3化为(x﹣m)2+k的形式,其中m,k为常数,则m+k=.13.某商品通过连续两次降价,销售单价由原先的125元降到80元,则平均每次降价的百分率为.14.方程x2﹣mx﹣n=0的两根分别为1、2,那么二次三项式x2﹣mx﹣n能够分解为.15.如图,在边长为的正方形ABCD的一边BC上,有一点P从B点运动到C点,设PB=x,四边形APCD的面积为y.写出y与x之间的关系式为(要写出自变量的取值范畴).16.如图,两个半径均为的⊙O1与⊙O2相交于A、B两点,且每个圆都通过另一个圆的圆心,则图中阴影部分的面积为.(结果保留π)三、解答题(共4小题,满分52分)17.用适当的方法解方程(1)(3x﹣1)2=4(2x﹣3)2(2)x2﹣(2+1)x+2=0(3)x2﹣3x﹣10=0(4)16x2+8x+1=0.18.某村打算建筑如图所示的矩形蔬菜温室,要求长与宽的比为2:1.在温室内,沿前侧内墙保留3m宽的空地,其它三侧内墙各保留1m宽的通道.当矩形温室的长与宽各为多少时,蔬菜种植区域的面积是288m2?19.关于x的方程kx2+(k+2)x+=0有两个不相等的实数根;(1)求k的取值范畴;(2)是否存在实数k,使方程的两个实数根的倒数和等于0?若存在,求出k的值;若不存在,请说明理由.20.某移动公司采纳分段计费的方法来运算话费,月通话时刻x(分钟)与相应话费y(元)之间的函数图象如图所示:(1)月通话为100分钟时,应交话费元;(2)当x≥100时,求y与x之间的函数关系式;(3)月通话为280分钟时,应交话费多少元?2020-2021学年山东省潍坊市高密市九年级(上)月考数学试卷(12月份)参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.正六边形的边心距为,则该正六边形的边长是()A.B.2 C.3 D.2【考点】正多边形和圆;勾股定理.【专题】几何图形问题.【分析】运用正六边形的性质,正六边形边长等于外接圆的半径,再利用勾股定明白得决.【解答】解:∵正六边形的边心距为,∴OB=,AB=OA,∵OA2=AB2+OB2,∴OA2=(OA)2+()2,解得OA=2.故选:B.【点评】本题要紧考查了正六边形和圆,注意:外接圆的半径等于正六边形的边长.2.下列关于x的方程有实数根的是()A.x2﹣x+1=0 B.x2+x+1=0 C.(x﹣1)(x+2)=0 D.(x﹣1)2+1=0【考点】根的判别式.【专题】运算题.【分析】分别运算A、B中的判别式的值;依照判别式的意义进行判定;利用因式分解法对C进行判定;依照非负数的性质对D进行判定.【解答】解:A、△=(﹣1)2﹣4×1×1=﹣3<0,方程没有实数根,因此A选项错误;B、△=12﹣4×1×1=﹣3<0,方程没有实数根,因此B选项错误;C、x﹣1=0或x+2=0,则x1=1,x2=﹣2,因此C选项正确;D、(x﹣1)2=﹣1,方程左边为非负数,方程右边为0,因此方程没有实数根,因此D选项错误.故选:C.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.3.若a(a≠0)是关于x的方程x2+bx﹣2a=0的根,则a+b的值为()A.1 B.2 C.﹣1 D.﹣2【考点】一元二次方程的解.【分析】将x=a代入方程,然后将方程的左边因式分解即可得到答案.【解答】解:∵a(a≠0)是关于x的方程x2+bx﹣2a=0的根,∴a2+ab﹣2a=0,∴a(a+b﹣2)=0,∴a=0或a+b﹣2=0,∵a≠0,∴a+b﹣2=0,∴a+b=2.故选B.【点评】考查了一元二次方程的解,解题的关键是代入后将方程的左边因式分解.4.一个扇形的圆心角为60°,弧长为2π厘米,则那个扇形的半径为()A.6厘米B.12厘米C.厘米 D.厘米【考点】弧长的运算.【分析】代入弧长公式,解出扇形的半径R即可.【解答】解:l=,由题意得,2π=,解得:R=6cm.故选A.【点评】本题考查了弧长的运算,属于基础题,熟练把握弧长的运算公式是关键.5.若α、β是一元二次方程x2+2x﹣6=0的两根,则α2+β2=()A.﹣8 B.32 C.16 D.40【考点】根与系数的关系.【专题】运算题.【分析】依照根与系数的关系得到α+β=﹣2,αβ=﹣6,再利用完全平方公式得到α2+β2=(α+β)2﹣2αβ,然后利用整体代入的方法运算.【解答】解:依照题意得α+β=﹣2,αβ=﹣6,因此α2+β2=(α+β)2﹣2αβ=(﹣2)2﹣2×(﹣6)=16.故选:C.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=﹣,x1•x2=.6.若关于x的一元二次方程(m﹣1)x2+5x+m2﹣1=0的常数项为0,则m的值等于()A.1 B.﹣1 C.±1 D.0【考点】一元二次方程的一样形式;一元二次方程的定义.【分析】常数项为零即m2﹣1=0,再依照二次项系数不等于0,即可求得m的值.【解答】解:一元二次方程(m﹣1)x2+5x+m2﹣1=0的常数项为m2﹣1=0,因此m=±1,又因为二次项系数不为0,因此m=﹣1.故选B.【点评】本题考查了一元二次方程的一样形式是:ax2+bx+c=0(a,b,c是常数且a≠0)专门要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一样形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.7.已知m,n是关于x的一元二次方程x2﹣3x+a=0的两个解,若(m﹣1)(n﹣1)=﹣6,则a的值为()A.﹣10 B.4 C.﹣4 D.10【考点】根与系数的关系.【专题】运算题.【分析】利用根与系数的关系表示出m+n与mn,已知等式左边利用多项式乘多项式法则变形,将m+n与mn的值代入即可求出a的值.【解答】解:依照题意得:m+n=3,mn=a,∵(m﹣1)(n﹣1)=mn﹣(m+n)+1=﹣6,∴a﹣3+1=﹣6,解得:a=﹣4.故选C【点评】此题考查了根与系数的关系,熟练把握根与系数的关系是解本题的关键.8.某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x 株,则能够列出的方程是()A.(3+x)(4﹣0.5x)=15 B.(x+3)(4+0.5x)=15 C.(x+4)(3﹣0.5x)=15 D.(x+1)(4﹣0.5x)=15【考点】由实际问题抽象出一元二次方程.【专题】销售问题.【分析】依照已知假设每盆花苗增加x株,则每盆花苗有(x+3)株,得出平均单株盈利为(4﹣0.5x)元,由题意得(x+3)(4﹣0.5x)=15即可.【解答】解:设每盆应该多植x株,由题意得(3+x)(4﹣0.5x)=15,故选:A.【点评】此题考查了一元二次方程的应用,依照每盆花苗株数×平均单株盈利=总盈利得出方程是解题关键.二、填空题(共8小题,每小题3分,满分24分)9.一元二次方程(x﹣2)(x+3)=1化为一样形式是x2+x﹣7=0.【考点】一元二次方程的一样形式.【分析】一元二次方程的一样形式是:ax2+bx+c=0(a,b,c是常数且a≠0),第一把方程左边的两式相乘,移项使方程右边变为0,然后合并同类项即可.【解答】解:一元二次方程(x﹣2)(x+3)=1化为一样形式是x2+x﹣7=0.【点评】去括号的过程中要注意符号的变化,以及注意不能漏乘,移项时要注意变号.10.函数y=中,自变量x的取值范畴是x<.【考点】函数自变量的取值范畴.【分析】依照二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,能够求出x的范畴.【解答】解:由题意,得3﹣5x>0,解得x<,故答案为:x<.【点评】本题考查了函数自变量的取值范畴,函数自变量的范畴一样从三个方面考虑:当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.11.如图,在△ABC中,点I是内心,且∠BIC=124°,则∠A=68°.【考点】三角形的内切圆与内心.【专题】推理填空题.【分析】依照三角形的内心是三条角平分线的交点,∠BIC=124°,可得∠B+∠C的度数,从而得到∠A的度数.【解答】解:∵在△ABC中,点I是内心,且∠BIC=124°,∴∠IBC+∠ICB=180°﹣124°=56°,∴∠B+∠C=112°,∴∠A=180°﹣(∠B+∠C)=180°﹣112°=68°.故答案为:68.【点评】本题考查三角形的内切圆和内心,解题的关键是明确三角形的内心是三条角平分线的交点.12.若把代数式x2﹣2x﹣3化为(x﹣m)2+k的形式,其中m,k为常数,则m+k=﹣3.【考点】完全平方公式.【专题】配方法.【分析】依照完全平方公式的结构,按照要求x2﹣2x﹣3=x2﹣2x+1﹣4=(x﹣1)2﹣4,可知m=1.k=﹣4,则m+k=﹣3.【解答】解:∵x2﹣2x﹣3=x2﹣2x+1﹣4=(x﹣1)2﹣4,∴m=1,k=﹣4,∴m+k=﹣3.故答案为:﹣3.【点评】本题要紧考查完全平方公式的变形,熟记公式结构是解题的关键.完全平方公式:(a±b)2=a2±2ab+b2.13.某商品通过连续两次降价,销售单价由原先的125元降到80元,则平均每次降价的百分率为20%.【考点】一元二次方程的应用.【专题】增长率问题.【分析】解答此题利用的数量关系是:商品原先价格×(1﹣每次降价的百分率)2=现在价格,设出未知数,列方程解答即可.【解答】解:设这种商品平均每次降价的百分率为x,依照题意列方程得,125(1﹣x)2=80,解得x1=0.2=20%,x2=1.8(不合题意,舍去);故答案为:20%【点评】本题考查了一元二次方程的应用,此题列方程得依据是:商品原先价格×(1﹣每次降价的百分率)2=现在价格.14.方程x2﹣mx﹣n=0的两根分别为1、2,那么二次三项式x2﹣mx﹣n能够分解为(x﹣1)(x ﹣2).【考点】解一元二次方程-因式分解法.【专题】运算题;一次方程(组)及应用.【分析】依照已知方程的解确定出m与n的值,代入原式分解即可.【解答】解:依照题意得:m=1+2=3,n=﹣1×2=﹣2,则原式=x2﹣3x+2=(x﹣1)(x﹣2),故答案为:(x﹣1)(x﹣2)【点评】此题考查了解一元二次方程﹣因式分解法,熟练把握因式分解的方法是解本题的关键.15.如图,在边长为的正方形ABCD的一边BC上,有一点P从B点运动到C点,设PB=x,四边形APCD的面积为y.写出y与x之间的关系式为y=﹣x+2(0≤x<)(要写出自变量的取值范畴).【考点】函数关系式.【分析】依照正方形的性质和梯形面积公式即可求出y与x的函数关系式,容易确定自变量的取值范畴.【解答】解:∵PB=x,正方形边长为,∴梯形APCD的面积y=×(+﹣x)×=﹣x+2,∴y与x的函数关系式为:y=﹣x+2(0≤x<).故答案为:y=﹣x+2(0≤x<).【点评】本题考查了函数关系式的确定、正方形的性质、梯形面积的运算,属于基础题,关键是依照梯形面积公式求出y与x的函数关系式.16.如图,两个半径均为的⊙O1与⊙O2相交于A、B两点,且每个圆都通过另一个圆的圆心,则图中阴影部分的面积为2π﹣3.(结果保留π)【考点】扇形面积的运算;等边三角形的判定与性质;相交两圆的性质.【专题】几何图形问题.【分析】依照题意得出一部分弓形的面积,得出=﹣S进而得出即可.【解答】解:连接O1O2,过点O1作O1C⊥AO2于点C,由题意可得:AO1=O1O2=AO2=,∴△AO1O2是等边三角形,∴CO1=O1O2sin60°=,∴S=××=,==,∴=﹣S=﹣,∴图中阴影部分的面积为:4(﹣)=2π﹣3.故答案为:2π﹣3.【点评】此题要紧考查了扇形的面积公式应用以及等边三角形的判定与性质,熟练经历扇形面积公式是解题关键.三、解答题(共4小题,满分52分)17.用适当的方法解方程(1)(3x﹣1)2=4(2x﹣3)2(2)x2﹣(2+1)x+2=0(3)x2﹣3x﹣10=0(4)16x2+8x+1=0.【考点】解一元二次方程-因式分解法;解一元二次方程-配方法;解一元二次方程-公式法.【分析】(1)(2)(3)利用因式分解求得方程的解即可;(4)利用完全平方公式因式分解,进一步开方得出答案即可.【解答】解:(1)(3x﹣1)2=4(2x﹣3)2,(3x﹣1)2﹣4(2x﹣3)2=0,[(3x﹣1)+2(2x﹣3)][(3x﹣1)﹣2(2x﹣3)]=0,(x﹣1)(x﹣5)=0,x﹣1=0或x﹣5=0,解得:x1=1,x2=5;(2)x2﹣(2+1)x+2=0(x﹣2)(x﹣1)=0x﹣2=0,x﹣1=0解得:x1=2,x2=1;(3)x2﹣3x﹣10=0(x﹣5)(x+2)=0x﹣5=0,x+2=0解得:x1=5,x2=﹣2;(4)16x2+8x+1=0(4x+1)2=04x+1=0解得:x1=x2=﹣.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直截了当开平方法,配方法,公式法,因式分解法,要依照方程的特点灵活选用合适的方法.18.某村打算建筑如图所示的矩形蔬菜温室,要求长与宽的比为2:1.在温室内,沿前侧内墙保留3m宽的空地,其它三侧内墙各保留1m宽的通道.当矩形温室的长与宽各为多少时,蔬菜种植区域的面积是288m2?【考点】一元二次方程的应用.【专题】几何图形问题.【分析】本题有多种解法.设的对象不同则列的一元二次方程不同.设矩形温室的宽为xm,则长为2xm,依照矩形的面积运算公式即可列出方程求解.【解答】解:解法一:设矩形温室的宽为xm,则长为2xm,依照题意,得(x﹣2)•(2x﹣4)=288,∴2(x﹣2)2=288,∴(x﹣2)2=144,∴x﹣2=±12,解得:x1=﹣10(不合题意,舍去),x2=14,因此x=14,2x=2×14=28.答:当矩形温室的长为28m,宽为14m时,蔬菜种植区域的面积是288m2.解法二:设矩形温室的长为xm,则宽为xm.依照题意,得(x﹣2)•(x﹣4)=288.解那个方程,得x1=﹣20(不合题意,舍去),x2=28.因此x=28,x=×28=14.答:当矩形温室的长为28m,宽为14m时,蔬菜种植区域的面积是288m2.【点评】解答此题,要运用含x的代数式表示蔬菜种植矩形长与宽,再由面积关系列方程.19.关于x的方程kx2+(k+2)x+=0有两个不相等的实数根;(1)求k的取值范畴;(2)是否存在实数k,使方程的两个实数根的倒数和等于0?若存在,求出k的值;若不存在,请说明理由.【考点】根的判别式;根与系数的关系.【分析】(1)由于x的方程kx2+(k+2)x+=0有两个不相等的实数根,由此能够得到判别式是正数,如此就能够得到关于k的不等式,解不等式即可求解;(2)不存在符合条件的实数k.设方程kx2+(k+2)x+=0的两根分别为x1、x2,由根与系数关系有:x1+x2=﹣,x1•x2=,又+=,然后把前面的等式代入其中即可求k,然后利用(1)即可判定结果【解答】解:(1)由△=[(k+2)]2﹣4×k•>0,∴k>﹣1又∵k≠0,∴k的取值范畴是k>﹣1,且k≠0;(2)不存在符合条件的实数k理由:设方程kx2+(k+2)x+=0的两根分别为x1、x2,由根与系数关系有:x1+x2=﹣,x1•x2=,又∵+==0,∴=0,解得k=﹣2,由(1)知,k=﹣2时,△<0,原方程无实解,∴不存在符合条件的k的值.【点评】此题要紧考查了一元二次方程的判别式和根与系数的关系,解题时将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.20.某移动公司采纳分段计费的方法来运算话费,月通话时刻x(分钟)与相应话费y(元)之间的函数图象如图所示:(1)月通话为100分钟时,应交话费40元;(2)当x≥100时,求y与x之间的函数关系式;(3)月通话为280分钟时,应交话费多少元?【考点】一次函数的应用.【专题】综合题.【分析】(1)依照函数图形能够得到当x取100时y的值,指出来即可;(2)从x的取值范畴中找到直线通过的两点,用待定系数法求出函数的解析式即可;(3)将x的值代入上题求得的函数解析式即可求出应缴话费.【解答】解:(1)40元;(2)设y与x之间的函数关系式为y=kx+b由图上知:x=100时,y=40;x=200时,y=60则有解之得∴所求函数关系式为;(3)把x=280代入关系式∴y=+20=76【点评】本题考查了一次函数的综合应用,解题的关键是将函数的图象与函数的解析式正确地结合在一起.。

2024-2025学年山东省潍坊市高密市九年级上学期月考数学试卷及参考答案(10月份)

2024-2025学年山东省潍坊市高密市九年级上学期月考数学试卷及参考答案(10月份)

2024-2025学年山东省潍坊市高密市九年级上学期月考数学试卷(10月份)时间:120分钟,满分150分一、单选题(本题共8小题,每小题选对得4分,共32分.)1.下一元二次方程2650x x −+=配方后可化为( ) A.()234x −=−B.()2314x +=−C.()234x −=D.()2314x +=2.在ABC ∆中,A ∠、B ∠均为锐角,且(2tan 2sin 0B A +=,则ABC ∆是( )A.钝角三角形B.等边三角形C.直角三角形D.等腰直角三角形3.如图,已知点B ,D ,C 在同一直线的水平地面上,在点C 处测得建筑物AB 的顶端A 的仰角为α,在点D 处测得建筑物AB 的顶端A 的仰角为β,若CD α=,则建筑物AB 的高度为( )A.tan tan ααβ− B.tan tan αβα− C.tan tan tan tan ααβαβ⋅−D.tan tan tan tan ααββα⋅−4.如图,在ABC ∆中,1sin 3B =,tan 2C =,3AB =,则AC 的长为( )B.2C.2D.25.已知关于x 的方程()()212110k x k x k +−++−=有实数根,则k 的取值范围是( ) A.5k 4≥−B.k 1≠−C.5k 4>−且k 1≠− D.5k 4≥−且k 1≠− 6.阅读材料:如果a ,b 是一元二次方程2x 10x +−=的两个实数根,则有210a a +−=,210b b +−=.创新应用:如果m ,n 是两个不相等的实数,且满足23m m −=,23n n −=,那么代数式2222009n mn m −++的值为( ) A.2019B.2020C.2021D.20227.某公司今年4月的营业额为2500万元,按计划第二季度的总营业额要达到9100万元,该公司5,6月份的营业额的月平均增长率为x ,根据题意列方程正确的是( ) A.()2250019100x +=B.()225001%9100x +=C.()()225001250019100x x +++=D.()()2250025001250019100x x ++++=8.如图,一艘船由A 港沿北偏东60方向航行10km 至B 港,然后再沿北偏西30方向航行10km 至C 港.则A ,C 两港之间的距离( )A.B.C.10kmD.5km二、多选题(本题共4小题,每小题5分,共20分.)9.如图,在Rt ABC ∆中,90A ∠=,AD 是BC 边上的高,则下列选项中可以表示tan B 的是( )A.AC ABB.AD BDC.CD ADD.AB BC10.如图,点A 、B 、C 在边长为1的正方形网格格点上,下列结论正确的是( )A.1sin 3B =B.sin C =C.1tan 2B =D.22sin sin 1B C +=11.若等腰三角形的一边长是3,另两边的长是关于x 的方程240x x k −+=的两个根,则k 的值可能为( ) A.3B.4C.6D.712.某商场将进货价为20元的玩具以30元售出,平均每天可售出300件.经调查发现,该玩具的单价每上涨1元,平均每天就少售出10件.若商场要想平均每天获得3750元利润,则每件玩具应涨价多少元?设每件玩具应涨价x 元,则下列说法正确的是( ) A.涨价后每件玩具的售价是30x +()元 B.涨价后平均每天销售玩具30010x −()件C.涨价后平均每天少售出玩具10x 件D.根据题意可列方程为30300103750x x +−=()()三、填空题:(每小题5分,共20分)13.若关于x 的一元二次方程()2210a x a x a −+−=有一个根是1x =,则a 的值为__________14.如图,某小区要在长为16m ,宽为12m 的矩形空地上建造一个花坛,使花坛四周小路的宽度相等,且花坛所占面积为空地面积的一半,则小路宽为__________m.15.如果三角形有一边上的中线长等于这边的长,那么称这个三角形为“好玩三角形”,若Rt ABC ∆是“好玩三角形”,且A 90∠=,则tan ABC ∠=__________16.如图,要在宽AB 为20米的瓯海大道两边安装路灯,路灯的灯臂CD 与灯柱BC 成120角,灯罩的轴线OD 与灯臂CD 垂直,当灯罩的轴线DO 通过公路路面的中心线(即O 为AB 的中点)时照明效果最佳,若CD =米,则路灯的灯柱BC 高度应该设计为__________米(计算结果保留根号).四、解答题:(共78分)17.计算题阅读材料:数学课上,老师在求代数式245x x −+的最小值时,利用公式()2222a ab b a b ±+=±,对式子作如下变化()2224544121x x x x x −+=−++=−+,因为()220x −≥,所以()2211x −+≥,当2x =时,()2211x −+=, 因此()221x −+有最小值1,即245x x −+的最小值为1. 通过阅读,解下列问题:(1)代数式2x 612x ++的最小值为__________; (2)求代数式229x x −++的最大或最小值;(3)试比较代数式232x x −与2237x x +−的大小,并说明理由. 18.计算题(每题5分,共20分) (1)()2921210x −−=(2)24630x x −−=(配方法)(3)()235210x x ++=(公式法)(4()33tan3064−19.已知关于x 的一元二次方程()22110mx m x m +++−=有两个实数根. (1)求m 的取值范围;(2)若该方程的两个实数根分别为1x ,2x ,且22128x x +=,求m 的值.20.某头盔经销商统计了某品牌头盔4月份到6月份的销量,该品牌头盔4月份销售150个,6月份销售216个,且从4月份到6月份销售量的月增长率相同. (1)求该品牌头盔销售量的月增长率;(2)若此种头盔的进价为30元个,测算在市场中,当售价为40元个时,月销售量为600个,若在此基础上售价每上涨1元/个,则月销售量将减少10个,为使月销售利润达到10000元,而且尽可能让顾客得到实惠,则该品牌头盔的实际售价应定为多少元个?21.如图,在绿化工程中,要修建一个中间隔有一道篱笆的长方形花圃,该花圃一面利用墙(墙的最大可用长度为16米),其余部分由篱笆围成.为了出入方便,在建造花圃时,在长边上用其他材料建造了宽为1米的两个小门,其余部分刚好用完长为28米的篱笆.(1)设花圃的一边AB 为x ,请你用含有x 的式子表示另一边BC 的长为__________ 并求出x 的取值范围为__________(2)若此时花圃的面积为72平方米,求此时花圃的长和宽.22.某数学兴趣小组自制测角仪到公园进行实地测量,活动过程如下:(1)探究原理:制作测角仪时,将细线一端固定在量角器圆心O 处,另一端系小重物G 测量时,使支杆OM 、量角器90刻度线ON 与铅垂线OG 相互重合(如图①),绕点O 转动量角器,使观测目标P 与直径两端点A 、B 共线(如图②),此时目标P 的仰角是图②中的∠_____。

潍坊市高密市2020届九年级上期中数学试卷含答案解析(样卷全套)

潍坊市高密市2020届九年级上期中数学试卷含答案解析(样卷全套)

2020-2021学年山东省潍坊市高密市九年级(上)期中数学试卷一、选择题(共12小题,每小题3分,满分36分)1.下列四个方程①x2﹣9=0;②(2x+1)(2x﹣1)=0;③x2=0;④=1中,不是一元二次方程的是()A.①B.②C.③D.④2.在Rt△ABC中,∠C=90°,若AB=2AC,则sinA的值是()A.B.C.D.3.边长为a的正六边形的内切圆的半径为()A.2a B.a C.D.4.若∠A+∠B=90°,且cosB=,则sinA的值为()A.B.C.D.5.如图,点A,B,C,在⊙O上,∠ABO=32°,∠ACO=38°,则∠BOC等于()A.60°B.70°C.12020D.140°6.一个公共房门前的台阶高出地面1.2米,台阶拆除后,换成供轮椅行走的斜坡,数据如图所示,则下列关系或说法正确的是()A.斜坡AB的坡度是10°B.斜坡AB的坡度是tan10°C.AC=1.2tan10°米D.AB=米7.若n(n≠0)是关于x的方程x2+mx+2n=0的根,则m+n的值为()A.1 B.2 C.﹣1 D.﹣28.如图,▱ABCD的顶点A、B、D在⊙O上,顶点C在⊙O的直径BE上,连接AE,∠E=36°,则∠ADC的度数是()A.44°B.54°C.72°D.53°9.已知:岛P位于岛Q的正西方,由岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上,符合条件的示意图是()A.B.C.D.10.如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠ABC=12020OC=3,则的长为()A.πB.2πC.3πD.5π11.如图,为测量某物体AB的高度,在D点测得A点的仰角为30°,朝物体AB方向前进2020到达点C,再次测得点A的仰角为60°,则物体AB的高度为()A.10米B.10米C.20米D.米12.如图所示,直线PA,PB是⊙O的两条切线,A,B分别为切点,∠APB=12020OP=10cm,则弦AB的长为()A.5cm B.5cm C.10cm D.cm二、填空题(共8小题,每小题3分,满分24分)13.cos245°+sin245°=.14.如图,在矩形ABCD中,AB=6,BC=4,⊙O是以AB为直径的圆,则直线BC与⊙O 的位置关系是.15.把方程(2x+1)(3x﹣2)=x2+2化为一元二次方程的一般形式,则它的二次项为.16.在半径为5cm圆内有两条互相平行的弦,一条弦长为8cm,另一条弦长为6cm,则这两条弦之间的距离为.17.在Rt△ABC中,∠C=90°,sinA=,BC=6,则AB=.18.如图,AB与⊙O相切于点C,∠A=∠B,⊙O的半径为6,AB=16,则OA的长为.19.如图,在2×2正方形网格中,以格点为顶点的△ABC的面积等于,则sin∠CAB=.2020图,将△ABC放在每个小正方形的边长为1的网格中,点A、B、C均落在格点上,用一个圆面去覆盖△ABC,能够完全覆盖这个三角形的最小圆面的半径是.三、解答题(共6小题,满分60分)21.对于二次三项式x2﹣10x+36,小颖同学作出如下结论:无论x取什么实数,它的值一定大于零.你是否同意她的说法?说明你的理由.22.如图,在△ABC中,∠A=30°,∠B=45°,AB=12+12,求△ABC的面积.23.用适当的方法解方程:(1)2x2+2x+1=0(2)16x2+8x+1=0(3)(3x﹣1)2=4(2x﹣3)2(4)x2﹣(2+1)x+2=0.24.如图,AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,MD恰好经过圆心O,连接MB.(1)若CD=16,BE=4,求⊙O的直径;(2)若∠M=∠D,求∠D的度数.25.小明坐于堤边垂钓,如图,河堤AC的坡角为30°,AC长米,钓竿AO的倾斜角是60°,其长为3米,若AO与钓鱼线OB的夹角为60°,求浮漂B与河堤下端C之间的距离.26.如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,AC=CD,∠ACD=12020(1)求证:CD是⊙O的切线;(2)若⊙O的半径为2,求图中阴影部分的面积.2020-2021学年山东省潍坊市高密市九年级(上)期中数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.下列四个方程①x2﹣9=0;②(2x+1)(2x﹣1)=0;③x2=0;④=1中,不是一元二次方程的是()A.①B.②C.③D.④【考点】一元二次方程的定义.【分析】根据一元二次方程的定义:未知数的最高次数是2;二次项系数不为0;是整式方程;含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【解答】解:①x2﹣9=0是一元二次方程;②(2x+1)(2x﹣1)=0是一元二次方程;③x2=0是一元二次方程;④=1是无理方程;故选:D.2.在Rt△ABC中,∠C=90°,若AB=2AC,则sinA的值是()A.B.C.D.【考点】特殊角的三角函数值;含30度角的直角三角形.【分析】在RT△ABC中,根据AB=2AC,可得出∠B=30°,∠A=60°,从而可得出sinA的值.【解答】解:∵∠C=90°,AB=2AC,∴∠B=30°,∠A=60°,故可得sinA=.故选C.3.边长为a的正六边形的内切圆的半径为()A.2a B.a C.D.【考点】正多边形和圆.【分析】解答本题主要分析出正多边形的内切圆的半径,即为每个边长为a的正三角形的高,从而构造直角三角形即可解.【解答】解:边长为a的正六边形可以分成六个边长为a的正三角形,而正多边形的内切圆的半径即为每个边长为a的正三角形的高,所以正多边形的内切圆的半径等于.故选C.4.若∠A+∠B=90°,且cosB=,则sinA的值为()A.B.C.D.【考点】特殊角的三角函数值.【分析】根据互余两角锐角函数的关系,可得答案.【解答】解:由题意,得sinA=cosB=,故选:B.5.如图,点A,B,C,在⊙O上,∠ABO=32°,∠ACO=38°,则∠BOC等于()A.60°B.70°C.12020D.140°【考点】圆周角定理.【分析】过A、O作⊙O的直径AD,分别在等腰△OAB、等腰△OAC中,根据三角形外角的性质求出θ=2α+2β.【解答】解:过A作⊙O的直径,交⊙O于D;在△OAB中,OA=OB,则∠BOD=∠OBA+∠OAB=2×32°=64°,同理可得:∠COD=∠OCA+∠OAC=2×38°=76°,故∠BOC=∠BOD+∠COD=140°.故选D6.一个公共房门前的台阶高出地面1.2米,台阶拆除后,换成供轮椅行走的斜坡,数据如图所示,则下列关系或说法正确的是()A.斜坡AB的坡度是10°B.斜坡AB的坡度是tan10°C.AC=1.2tan10°米D.AB=米【考点】解直角三角形的应用-坡度坡角问题.【分析】根据坡度是坡角的正切值,可得答案.【解答】解:斜坡AB的坡度是tan10°=,故B正确;故选:B.7.若n(n≠0)是关于x的方程x2+mx+2n=0的根,则m+n的值为()A.1 B.2 C.﹣1 D.﹣2【考点】一元二次方程的解.【分析】把x=n代入方程得出n2+mn+2n=0,方程两边都除以n得出m+n+2=0,求出即可.【解答】解:∵n(n≠0)是关于x的方程x2+mx+2n=0的根,代入得:n2+mn+2n=0,∵n≠0,∴方程两边都除以n得:n+m+2=0,∴m+n=﹣2.故选D.8.如图,▱ABCD的顶点A、B、D在⊙O上,顶点C在⊙O的直径BE上,连接AE,∠E=36°,则∠ADC的度数是()A.44°B.54°C.72°D.53°【考点】圆周角定理;平行四边形的性质.【分析】首先根据直径所对的圆周角为直角得到∠BAE=90°,然后利用四边形ABCD是平行四边形,∠E=36°,得到∠BEA=∠DAE=36°,从而得到∠BAD=126°,求得到∠ADC=54°.【解答】解:∵BE是直径,∴∠BAE=90°,∵四边形ABCD是平行四边形,∠E=36°,∴∠BEA=∠DAE=36°,∴∠BAD=126°,∴∠ADC=54°,故选:B.9.已知:岛P位于岛Q的正西方,由岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上,符合条件的示意图是()A.B.C.D.【考点】方向角.【分析】根据方向角的定义,即可解答.【解答】解:根据岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上,故D符合.故选:D.10.如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠ABC=12020OC=3,则的长为()A.πB.2πC.3πD.5π【考点】切线的性质;弧长的计算.【分析】连接OB,由于AB是切线,那么∠ABO=90°,而∠ABC=12020易求∠OBC,而OB=OC,那么∠OBC=∠OCB,进而求出∠BOC的度数,再利用弧长公式即可求出的长.【解答】解:连接OB,∵AB与⊙O相切于点B,∴∠ABO=90°,∵∠ABC=12020∴∠OBC=30°,∵OB=OC,∴∠OCB=30°,∴∠BOC=12020∴的长为==2π,故选B.11.如图,为测量某物体AB的高度,在D点测得A点的仰角为30°,朝物体AB方向前进2020到达点C,再次测得点A的仰角为60°,则物体AB的高度为()A.10米B.10米C.20米D.米【考点】解直角三角形的应用-仰角俯角问题.【分析】首先根据题意分析图形;本题涉及到两个直角三角形,应利用其公共边AB及CD=DC﹣BC=2020方程关系式,进而可解,即可求出答案.【解答】解:∵在直角三角形ADB中,∠D=30°,∴=tan30°∴BD==AB∵在直角三角形ABC中,∠ACB=60°,∴BC==AB∵CD=2020CD=BD﹣BC=AB﹣AB=2020得:AB=10.故选A.12.如图所示,直线PA,PB是⊙O的两条切线,A,B分别为切点,∠APB=12020OP=10cm,则弦AB的长为()A.5cm B.5cm C.10cm D.cm【考点】切线的性质;勾股定理;垂径定理.【分析】先由题意得出△AOB为等边三角形,再根据勾股定理即可得出.【解答】解:连OA,OB,∵直线PA,PB是⊙O的两条切线,∴OA⊥PA,OB⊥PB,∵∠APB=12020∴∠AOB=60°,∵OA=OB,则△AOB为等边三角形,由直角三角形中30°角所对的直角边等于斜边的一半可得:PA=5cm,再由勾股定理OA==5cm,从而得AB=5(cm).故选A.二、填空题(共8小题,每小题3分,满分24分)13.cos245°+sin245°=1.【考点】特殊角的三角函数值.【分析】根据特殊角三角函数值,可得答案.【解答】解:cos245°+sin245°=+=1,故答案为:1.14.如图,在矩形ABCD中,AB=6,BC=4,⊙O是以AB为直径的圆,则直线BC与⊙O 的位置关系是相切.【考点】直线与圆的位置关系;矩形的性质.【分析】首先要明确圆心到直线的距离和圆的半径;再根据直线和圆的位置关系与数量之间的联系进行分析:若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离.【解答】解:根据题意,得圆心到直线BC的距离等于3.又圆的半径是3,则圆心到直线的距离等于半径,得直线和圆相切.故答案为:相切.15.把方程(2x+1)(3x﹣2)=x2+2化为一元二次方程的一般形式,则它的二次项为5x2.【考点】一元二次方程的一般形式.【分析】一元二次方程的一般系数是:ax2+bx+c=0(a≠0),其中,ax2是二次项,bx是一次项,c是常数项,根据以上知识点得出即可.【解答】解:(2x+1)(3x﹣2)=x2+2,6x2﹣4x+3x﹣2﹣x2﹣2=0,5x2﹣x﹣4=0,即方程的二次项是5x2,故答案为:5x2.16.在半径为5cm圆内有两条互相平行的弦,一条弦长为8cm,另一条弦长为6cm,则这两条弦之间的距离为1cm或7cm.【考点】垂径定理.【分析】分两种情况进行讨论:①弦A和CD在圆心同侧;②弦A和CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理求解即可.【解答】解:①当弦A和CD在圆心同侧时,如图,∵AB=8cm,CD=6cm,∴AE=4cm,CF=3cm,∵OA=OC=5cm,∴EO=3cm,OF=4cm,∴EF=OF﹣OE=1cm;②当弦A和CD在圆心异侧时,如图,∵AB=8cm,CD=6cm,∴AF=4cm,CE=3cm,∵OA=OC=5cm,∴EO=4cm,OF=3cm,∴EF=OF+OE=7cm.故答案为:1cm或7cm.17.在Rt△ABC中,∠C=90°,sinA=,BC=6,则AB=10.【考点】解直角三角形.【分析】根据三角函数的定义即可得出结果.【解答】解:∵∠C=90°,sinA==,BC=6,∴AB=BC=×6=10;故答案为:10.18.如图,AB与⊙O相切于点C,∠A=∠B,⊙O的半径为6,AB=16,则OA的长为10.【考点】切线的性质;等腰三角形的判定与性质;勾股定理.【分析】连接OC,根据切线的性质得出OC⊥AB,求出AC,根据勾股定理求出即可.【解答】解:连接OC,∵AB与⊙O相切于点C,∴OC⊥AB,∴∠ACO=90°,∵∠A=∠B,∴OA=OB,∴AC=BC=AB=16=8,∵OC=6,∴由勾股定理得:OA===10,故答案为:10.19.如图,在2×2正方形网格中,以格点为顶点的△ABC的面积等于,则sin∠CAB=.【考点】锐角三角函数的定义;三角形的面积.【分析】作CD⊥AB于D,根据勾股定理求出AB,根据三角形的面积公式求出CD,根据正弦的定义解答即可.【解答】解:作CD⊥AB于D,AB==,∴××CD=,解得,CD=,∴sin∠CAB==,故答案为:.2020图,将△ABC放在每个小正方形的边长为1的网格中,点A、B、C均落在格点上,用一个圆面去覆盖△ABC,能够完全覆盖这个三角形的最小圆面的半径是.【考点】三角形的外接圆与外心.【分析】根据题意得出△ABC的外接圆的圆心位置,进而利用勾股定理得出能够完全覆盖这个三角形的最小圆面的半径.【解答】解:如图所示:点O为△ABC外接圆圆心,则AO为外接圆半径,故能够完全覆盖这个三角形的最小圆面的半径是:.故答案为:.三、解答题(共6小题,满分60分)21.对于二次三项式x2﹣10x+36,小颖同学作出如下结论:无论x取什么实数,它的值一定大于零.你是否同意她的说法?说明你的理由.【考点】配方法的应用;非负数的性质:偶次方.【分析】利用配方法将原式变形为(x﹣5)2+11,再根据偶次方的非负性即可得出结论.【解答】解:同意,理由如下:x2﹣10x+36=x2﹣10x+25+11=(x﹣5)2+11,∵(x﹣5)2≥0,∴x2﹣10x+36≥11,∴小颖同学的结论正确.22.如图,在△ABC中,∠A=30°,∠B=45°,AB=12+12,求△ABC的面积.【考点】解直角三角形.【分析】作CH⊥AB于H,如图,设CH=x,在Rt△ACH中利用含30度的直角三角形三边的关系得AH=CH=x,在Rt△CBH中,根据等腰直角三角形的性质得BH=CH=x,则AB=BH+AH=x+x,原式可得到方程x+x=12+12,解方程得到x=12,然后根据三角形面积公式求解.【解答】解:作CH⊥AB于H,如图,设CH=x,在Rt△ACH中,∵∠A=30°,∴AH=CH=x,在Rt△CBH中,∵∠B=45°,∴BH=CH=x,∴AB=BH+AH=x+x,∴x+x=12+12,∴x=12,∴△ABC的面积=CH•AB=×12×(12+12)=72+72.23.用适当的方法解方程:(1)2x2+2x+1=0(2)16x2+8x+1=0(3)(3x﹣1)2=4(2x﹣3)2(4)x2﹣(2+1)x+2=0.【考点】解一元二次方程-因式分解法.【分析】(1)公式法求解可得;(2)因式分解法求解可得;(3)直接开平方法求解可得;(4)因式分解法求解可得.【解答】解:(1)∵a=2,b=2,c=1,∴△=2020×2×1=12>0,∴x==;(2)(4x+1)2=0,∴4x+1=0,解得:x=﹣;(3)3x﹣1=±2(2x﹣3),即3x﹣1=2(2x﹣3)或3x﹣1=﹣2(2x﹣3),解得:x=1或x=5;(4)(x﹣1)(x﹣2)=0,∴x﹣1=0或x﹣2=0,解得:x=1或x=2.24.如图,AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,MD恰好经过圆心O,连接MB.(1)若CD=16,BE=4,求⊙O的直径;(2)若∠M=∠D,求∠D的度数.【考点】垂径定理;勾股定理;圆周角定理.【分析】(1)先根据CD=16,BE=4,得出OE的长,进而得出OB的长,进而得出结论;(2)由∠M=∠D,∠DOB=2∠D,结合直角三角形可以求得结果;【解答】解:(1)∵AB⊥CD,CD=16,∴CE=DE=8,设OB=x,又∵BE=4,∴x2=(x﹣4)2+82,解得:x=10,∴⊙O的直径是2020(2)∵∠M=∠BOD,∠M=∠D,∴∠D=∠BOD,∵AB⊥CD,∴∠D=30°.25.小明坐于堤边垂钓,如图,河堤AC的坡角为30°,AC长米,钓竿AO的倾斜角是60°,其长为3米,若AO与钓鱼线OB的夹角为60°,求浮漂B与河堤下端C之间的距离.【考点】解直角三角形的应用-坡度坡角问题.【分析】延长OA交BC于点D.先由倾斜角定义及三角形内角和定理求出∠CAD=180°﹣∠ODB﹣∠ACD=90°,解Rt△ACD,得出AD=AC•tan∠ACD=米,CD=2AD=3米,再证明△BOD是等边三角形,得到BD=OD=OA+AD=4.5米,然后根据BC=BD﹣CD即可求出浮漂B与河堤下端C之间的距离.【解答】解:延长OA交BC于点D.∵AO的倾斜角是60°,∴∠ODB=60°.∵∠ACD=30°,∴∠CAD=180°﹣∠ODB﹣∠ACD=90°.在Rt△ACD中,AD=AC•tan∠ACD=•=(米),∴CD=2AD=3米,又∵∠O=60°,∴△BOD是等边三角形,∴BD=OD=OA+AD=3+=4.5(米),∴BC=BD﹣CD=4.5﹣3=1.5(米).答:浮漂B与河堤下端C之间的距离为1.5米.26.如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,AC=CD,∠ACD=12020(1)求证:CD是⊙O的切线;(2)若⊙O的半径为2,求图中阴影部分的面积.【考点】扇形面积的计算;等腰三角形的性质;切线的判定;特殊角的三角函数值.【分析】(1)连接OC.只需证明∠OCD=90°.根据等腰三角形的性质即可证明;(2)阴影部分的面积即为直角三角形OCD的面积减去扇形COB的面积.【解答】(1)证明:连接OC.∵AC=CD,∠ACD=12020∴∠A=∠D=30°.∵OA=OC,∴∠2=∠A=30°.∴∠OCD=180°﹣∠A﹣∠D﹣∠2=90°.即OC⊥CD,∴CD是⊙O的切线.(2)解:∵∠A=30°,∴∠1=2∠A=60°.=.∴S扇形BOC在Rt△OCD中,∵,∴.∴.∴图中阴影部分的面积为:.2020年12月28日。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021学年山东省潍坊市高密市九年级(上)月考数学试卷(12月份)一、选择题(共8小题,每小题3分,满分24分)1.正六边形的边心距为,则该正六边形的边长是()A.B.2 C.3 D.22.下列关于x的方程有实数根的是()A.x2﹣x+1=0 B.x2+x+1=0 C.(x﹣1)(x+2)=0 D.(x﹣1)2+1=03.若a(a≠0)是关于x的方程x2+bx﹣2a=0的根,则a+b的值为()A.1 B.2 C.﹣1 D.﹣24.一个扇形的圆心角为60°,弧长为2π厘米,则这个扇形的半径为()A.6厘米B.12厘米C.厘米 D.厘米5.若α、β是一元二次方程x2+2x﹣6=0的两根,则α2+β2=()A.﹣8 B.32 C.16 D.406.若关于x的一元二次方程(m﹣1)x2+5x+m2﹣1=0的常数项为0,则m的值等于()A.1 B.﹣1 C.±1 D.07.已知m,n是关于x的一元二次方程x2﹣3x+a=0的两个解,若(m﹣1)(n﹣1)=﹣6,则a的值为() A.﹣10 B.4 C.﹣4 D.108.某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x 株,则可以列出的方程是()A.(3+x)(4﹣0.5x)=15 B.(x+3)(4+0.5x)=15 C.(x+4)(3﹣0.5x)=15 D.(x+1)(4﹣0.5x)=15二、填空题(共8小题,每小题3分,满分24分)9.一元二次方程(x﹣2)(x+3)=1化为一般形式是.10.函数y=中,自变量x的取值范围是.11.如图,在△ABC中,点I是内心,且∠BIC=124°,则∠A=°.12.若把代数式x2﹣2x﹣3化为(x﹣m)2+k的形式,其中m,k为常数,则m+k=.13.某商品经过连续两次降价,销售单价由原来的125元降到80元,则平均每次降价的百分率为.14.方程x2﹣mx﹣n=0的两根分别为1、2,那么二次三项式x2﹣mx﹣n可以分解为.15.如图,在边长为的正方形ABCD的一边BC上,有一点P从B点运动到C点,设PB=x,四边形APCD的面积为y.写出y与x之间的关系式为(要写出自变量的取值范围).16.如图,两个半径均为的⊙O1与⊙O2相交于A、B两点,且每个圆都经过另一个圆的圆心,则图中阴影部分的面积为.(结果保留π)三、解答题(共4小题,满分52分)17.用适当的方法解方程(1)(3x﹣1)2=4(2x﹣3)2(2)x2﹣(2+1)x+2=0(3)x2﹣3x﹣10=0(4)16x2+8x+1=0.18.某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2:1.在温室内,沿前侧内墙保留3m宽的空地,其它三侧内墙各保留1m宽的通道.当矩形温室的长与宽各为多少时,蔬菜种植区域的面积是288m2?19.关于x的方程kx2+(k+2)x+=0有两个不相等的实数根;(1)求k的取值范围;(2)是否存在实数k,使方程的两个实数根的倒数和等于0?若存在,求出k的值;若不存在,请说明理由.2020移动公司采用分段计费的方法来计算话费,月通话时间x(分钟)与相应话费y(元)之间的函数图象如图所示:(1)月通话为100分钟时,应交话费元;(2)当x≥100时,求y与x之间的函数关系式;(3)月通话为280分钟时,应交话费多少元?2020-2021学年山东省潍坊市高密市九年级(上)月考数学试卷(12月份)参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.正六边形的边心距为,则该正六边形的边长是()A.B.2 C.3 D.2【考点】正多边形和圆;勾股定理.【专题】几何图形问题.【分析】运用正六边形的性质,正六边形边长等于外接圆的半径,再利用勾股定理解决.【解答】解:∵正六边形的边心距为,∴OB=,AB=OA,∵OA2=AB2+OB2,∴OA2=(OA)2+()2,解得OA=2.故选:B.【点评】本题主要考查了正六边形和圆,注意:外接圆的半径等于正六边形的边长.2.下列关于x的方程有实数根的是()A.x2﹣x+1=0 B.x2+x+1=0 C.(x﹣1)(x+2)=0 D.(x﹣1)2+1=0【考点】根的判别式.【专题】计算题.【分析】分别计算A、B中的判别式的值;根据判别式的意义进行判断;利用因式分解法对C进行判断;根据非负数的性质对D进行判断.【解答】解:A、△=(﹣1)2﹣4×1×1=﹣3<0,方程没有实数根,所以A选项错误;B、△=12﹣4×1×1=﹣3<0,方程没有实数根,所以B选项错误;C、x﹣1=0或x+2=0,则x1=1,x2=﹣2,所以C选项正确;D、(x﹣1)2=﹣1,方程左边为非负数,方程右边为0,所以方程没有实数根,所以D选项错误.故选:C.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.3.若a(a≠0)是关于x的方程x2+bx﹣2a=0的根,则a+b的值为()A.1 B.2 C.﹣1 D.﹣2【考点】一元二次方程的解.【分析】将x=a代入方程,然后将方程的左边因式分解即可得到答案.【解答】解:∵a(a≠0)是关于x的方程x2+bx﹣2a=0的根,∴a2+ab﹣2a=0,∴a(a+b﹣2)=0,∴a=0或a+b﹣2=0,∵a≠0,∴a+b﹣2=0,∴a+b=2.故选B.【点评】考查了一元二次方程的解,解题的关键是代入后将方程的左边因式分解.4.一个扇形的圆心角为60°,弧长为2π厘米,则这个扇形的半径为()A.6厘米B.12厘米C.厘米 D.厘米【考点】弧长的计算.【分析】代入弧长公式,解出扇形的半径R即可.【解答】解:l=,由题意得,2π=,解得:R=6cm.故选A.【点评】本题考查了弧长的计算,属于基础题,熟练掌握弧长的计算公式是关键.5.若α、β是一元二次方程x2+2x﹣6=0的两根,则α2+β2=()A.﹣8 B.32 C.16 D.40【考点】根与系数的关系.【专题】计算题.【分析】根据根与系数的关系得到α+β=﹣2,αβ=﹣6,再利用完全平方公式得到α2+β2=(α+β)2﹣2αβ,然后利用整体代入的方法计算.【解答】解:根据题意得α+β=﹣2,αβ=﹣6,所以α2+β2=(α+β)2﹣2αβ=(﹣2)2﹣2×(﹣6)=16.故选:C.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=﹣,x1•x2=.6.若关于x的一元二次方程(m﹣1)x2+5x+m2﹣1=0的常数项为0,则m的值等于()A.1 B.﹣1 C.±1 D.0【考点】一元二次方程的一般形式;一元二次方程的定义.【分析】常数项为零即m2﹣1=0,再根据二次项系数不等于0,即可求得m的值.【解答】解:一元二次方程(m﹣1)x2+5x+m2﹣1=0的常数项为m2﹣1=0,所以m=±1,又因为二次项系数不为0,所以m=﹣1.故选B.【点评】本题考查了一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.7.已知m,n是关于x的一元二次方程x2﹣3x+a=0的两个解,若(m﹣1)(n﹣1)=﹣6,则a的值为() A.﹣10 B.4 C.﹣4 D.10【考点】根与系数的关系.【专题】计算题.【分析】利用根与系数的关系表示出m+n与mn,已知等式左边利用多项式乘多项式法则变形,将m+n与mn的值代入即可求出a的值.【解答】解:根据题意得:m+n=3,mn=a,∵(m﹣1)(n﹣1)=mn﹣(m+n)+1=﹣6,∴a﹣3+1=﹣6,解得:a=﹣4.故选C【点评】此题考查了根与系数的关系,熟练掌握根与系数的关系是解本题的关键.8.某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x 株,则可以列出的方程是()A.(3+x)(4﹣0.5x)=15 B.(x+3)(4+0.5x)=15 C.(x+4)(3﹣0.5x)=15 D.(x+1)(4﹣0.5x)=15【考点】由实际问题抽象出一元二次方程.【专题】销售问题.【分析】根据已知假设每盆花苗增加x株,则每盆花苗有(x+3)株,得出平均单株盈利为(4﹣0.5x)元,由题意得(x+3)(4﹣0.5x)=15即可.【解答】解:设每盆应该多植x株,由题意得(3+x)(4﹣0.5x)=15,故选:A.【点评】此题考查了一元二次方程的应用,根据每盆花苗株数×平均单株盈利=总盈利得出方程是解题关键.二、填空题(共8小题,每小题3分,满分24分)9.一元二次方程(x﹣2)(x+3)=1化为一般形式是x2+x﹣7=0.【考点】一元二次方程的一般形式.【分析】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0),首先把方程左边的两式相乘,移项使方程右边变为0,然后合并同类项即可.【解答】解:一元二次方程(x﹣2)(x+3)=1化为一般形式是x2+x﹣7=0.【点评】去括号的过程中要注意符号的变化,以及注意不能漏乘,移项时要注意变号.10.函数y=中,自变量x的取值范围是x<.【考点】函数自变量的取值范围.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:由题意,得3﹣5x>0,解得x<,故答案为:x<.【点评】本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.11.如图,在△ABC中,点I是内心,且∠BIC=124°,则∠A=68°.【考点】三角形的内切圆与内心.【专题】推理填空题.【分析】根据三角形的内心是三条角平分线的交点,∠BIC=124°,可得∠B+∠C的度数,从而得到∠A的度数.【解答】解:∵在△ABC中,点I是内心,且∠BIC=124°,∴∠IBC+∠ICB=180°﹣124°=56°,∴∠B+∠C=112°,∴∠A=180°﹣(∠B+∠C)=180°﹣112°=68°.故答案为:68.【点评】本题考查三角形的内切圆和内心,解题的关键是明确三角形的内心是三条角平分线的交点.12.若把代数式x2﹣2x﹣3化为(x﹣m)2+k的形式,其中m,k为常数,则m+k=﹣3.【考点】完全平方公式.【专题】配方法.【分析】根据完全平方公式的结构,按照要求x2﹣2x﹣3=x2﹣2x+1﹣4=(x﹣1)2﹣4,可知m=1.k=﹣4,则m+k=﹣3.【解答】解:∵x2﹣2x﹣3=x2﹣2x+1﹣4=(x﹣1)2﹣4,∴m=1,k=﹣4,∴m+k=﹣3.故答案为:﹣3.【点评】本题主要考查完全平方公式的变形,熟记公式结构是解题的关键.完全平方公式:(a±b)2=a2±2ab+b2.13.某商品经过连续两次降价,销售单价由原来的125元降到80元,则平均每次降价的百分率为2020.【考点】一元二次方程的应用.【专题】增长率问题.【分析】解答此题利用的数量关系是:商品原来价格×(1﹣每次降价的百分率)2=现在价格,设出未知数,列方程解答即可.【解答】解:设这种商品平均每次降价的百分率为x,根据题意列方程得,125(1﹣x)2=80,解得x1=0.2=2020x2=1.8(不合题意,舍去);故答案为:2020【点评】本题考查了一元二次方程的应用,此题列方程得依据是:商品原来价格×(1﹣每次降价的百分率)2=现在价格.14.方程x2﹣mx﹣n=0的两根分别为1、2,那么二次三项式x2﹣mx﹣n可以分解为(x﹣1)(x﹣2).【考点】解一元二次方程-因式分解法.【专题】计算题;一次方程(组)及应用.【分析】根据已知方程的解确定出m与n的值,代入原式分解即可.【解答】解:根据题意得:m=1+2=3,n=﹣1×2=﹣2,则原式=x2﹣3x+2=(x﹣1)(x﹣2),故答案为:(x﹣1)(x﹣2)【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.15.如图,在边长为的正方形ABCD的一边BC上,有一点P从B点运动到C点,设PB=x,四边形APCD的面积为y.写出y与x之间的关系式为y=﹣x+2(0≤x<)(要写出自变量的取值范围).【考点】函数关系式.【分析】根据正方形的性质和梯形面积公式即可求出y与x的函数关系式,容易确定自变量的取值范围.【解答】解:∵PB=x,正方形边长为,∴梯形APCD的面积y=×(+﹣x)×=﹣x+2,∴y与x的函数关系式为:y=﹣x+2(0≤x<).故答案为:y=﹣x+2(0≤x<).【点评】本题考查了函数关系式的确定、正方形的性质、梯形面积的计算,属于基础题,关键是根据梯形面积公式求出y与x的函数关系式.16.如图,两个半径均为的⊙O1与⊙O2相交于A、B两点,且每个圆都经过另一个圆的圆心,则图中阴影部分的面积为2π﹣3.(结果保留π)【考点】扇形面积的计算;等边三角形的判定与性质;相交两圆的性质.【专题】几何图形问题.【分析】根据题意得出一部分弓形的面积,得出=﹣S进而得出即可.【解答】解:连接O1O2,过点O1作O1C⊥AO2于点C,由题意可得:AO1=O1O2=AO2=,∴△AO1O2是等边三角形,∴CO1=O1O2sin60°=,∴S=××=,==,∴=﹣S=﹣,∴图中阴影部分的面积为:4(﹣)=2π﹣3.故答案为:2π﹣3.【点评】此题主要考查了扇形的面积公式应用以及等边三角形的判定与性质,熟练记忆扇形面积公式是解题关键.三、解答题(共4小题,满分52分)17.用适当的方法解方程(1)(3x﹣1)2=4(2x﹣3)2(2)x2﹣(2+1)x+2=0(3)x2﹣3x﹣10=0(4)16x2+8x+1=0.【考点】解一元二次方程-因式分解法;解一元二次方程-配方法;解一元二次方程-公式法.【分析】(1)(2)(3)利用因式分解求得方程的解即可;(4)利用完全平方公式因式分解,进一步开方得出答案即可.【解答】解:(1)(3x﹣1)2=4(2x﹣3)2,(3x﹣1)2﹣4(2x﹣3)2=0,[(3x﹣1)+2(2x﹣3)][(3x﹣1)﹣2(2x﹣3)]=0,(x﹣1)(x﹣5)=0,x﹣1=0或x﹣5=0,解得:x1=1,x2=5;(2)x2﹣(2+1)x+2=0(x﹣2)(x﹣1)=0x﹣2=0,x﹣1=0解得:x1=2,x2=1;(3)x2﹣3x﹣10=0(x﹣5)(x+2)=0x﹣5=0,x+2=0解得:x1=5,x2=﹣2;(4)16x2+8x+1=0(4x+1)2=04x+1=0解得:x1=x2=﹣.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.18.某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2:1.在温室内,沿前侧内墙保留3m宽的空地,其它三侧内墙各保留1m宽的通道.当矩形温室的长与宽各为多少时,蔬菜种植区域的面积是288m2?【考点】一元二次方程的应用.【专题】几何图形问题.【分析】本题有多种解法.设的对象不同则列的一元二次方程不同.设矩形温室的宽为xm,则长为2xm,根据矩形的面积计算公式即可列出方程求解.【解答】解:解法一:设矩形温室的宽为xm,则长为2xm,根据题意,得(x﹣2)•(2x﹣4)=288,∴2(x﹣2)2=288,∴(x﹣2)2=144,∴x﹣2=±12,解得:x1=﹣10(不合题意,舍去),x2=14,所以x=14,2x=2×14=28.答:当矩形温室的长为28m,宽为14m时,蔬菜种植区域的面积是288m2.解法二:设矩形温室的长为xm,则宽为xm.根据题意,得(x﹣2)•(x﹣4)=288.解这个方程,得x1=﹣2020合题意,舍去),x2=28.所以x=28,x=×28=14.答:当矩形温室的长为28m,宽为14m时,蔬菜种植区域的面积是288m2.【点评】解答此题,要运用含x的代数式表示蔬菜种植矩形长与宽,再由面积关系列方程.19.关于x的方程kx2+(k+2)x+=0有两个不相等的实数根;(1)求k的取值范围;(2)是否存在实数k,使方程的两个实数根的倒数和等于0?若存在,求出k的值;若不存在,请说明理由.【考点】根的判别式;根与系数的关系.【分析】(1)由于x的方程kx2+(k+2)x+=0有两个不相等的实数根,由此可以得到判别式是正数,这样就可以得到关于k的不等式,解不等式即可求解;(2)不存在符合条件的实数k.设方程kx2+(k+2)x+=0的两根分别为x1、x2,由根与系数关系有:x1+x2=﹣,x1•x2=,又+=,然后把前面的等式代入其中即可求k,然后利用(1)即可判定结果【解答】解:(1)由△=[(k+2)]2﹣4×k•>0,∴k>﹣1又∵k≠0,∴k的取值范围是k>﹣1,且k≠0;(2)不存在符合条件的实数k理由:设方程kx2+(k+2)x+=0的两根分别为x1、x2,由根与系数关系有:x1+x2=﹣,x1•x2=,又∵+==0,∴=0,解得k=﹣2,由(1)知,k=﹣2时,△<0,原方程无实解,∴不存在符合条件的k的值.【点评】此题主要考查了一元二次方程的判别式和根与系数的关系,解题时将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.2020移动公司采用分段计费的方法来计算话费,月通话时间x(分钟)与相应话费y(元)之间的函数图象如图所示:(1)月通话为100分钟时,应交话费40元;(2)当x≥100时,求y与x之间的函数关系式;(3)月通话为280分钟时,应交话费多少元?【考点】一次函数的应用.【专题】综合题.【分析】(1)根据函数图形可以得到当x取100时y的值,指出来即可;(2)从x的取值范围中找到直线经过的两点,用待定系数法求出函数的解析式即可;(3)将x的值代入上题求得的函数解析式即可求出应缴话费.【解答】解:(1)40元;(2)设y与x之间的函数关系式为y=kx+b由图上知:x=100时,y=40;x=2020,y=60则有解之得∴所求函数关系式为;(3)把x=280代入关系式∴y=+20206【点评】本题考查了一次函数的综合应用,解题的关键是将函数的图象与函数的解析式正确地结合在一起.。

相关文档
最新文档