城市燃气输配燃气管网水力计算
城市燃气课件第六章燃气管网水力计算
THANKS
感谢观看
软件具有友好的用户界面,方 便用户进行操作和数据输入。
软件功能
计算功能
软件可以对燃气管网的流量、压 力、温度等参数进行计算,以确
定管网的运行状态。
模拟功能
软件可以对燃气管网的运行进行 模拟,预测管网的性能和表现, 以便及时发现和解决潜在问题。
分析功能
软件可以对燃气管网的数据进行 分析,提供各种图表和报告,帮 助用户更好地理解和掌握管网的
05
CATALOGUE
燃气管网水力计算案例分析
案例一:某城市燃气输配管网的水力计算
总结词
复杂管网模型、多种气源、多级压力
详细描述
该案例针对某城市的燃气输配管网,建立了复杂的水力计算模型,考虑了多种 气源和多级压力的情况,通过计算和分析,确定了管网的输送能力和压力分布 。
案例二:某大型工业园区燃气管网的水力计算
目的
确保管网正常运行,优化燃气分 配,降低运营成本,预防潜在问 题。
计算原理
01
02
03
流体动力学原理
依据流体动力学的基本原 理,分析燃气在管网中的 流动状态和规律。
质量守恒定律
确保管网中燃气质量守恒 ,即流入和流出的燃气量 相等。
能量守恒定律
根据能量守恒定律,分析 燃气在管网中压力和流速 的变化。
混合模型的局限性
模型建立较为复杂,需要具备丰富 的专业知识和经验,同时对于某些 特定场景的适用性仍需进一步验证 。
03
CATALOGUE
燃气管网水力计算方法
节点法
01
节点法是一种基于管网节点压力 平衡的算法,通过求解管网中各 节点的压力和流量,计算出管网 的流量分配和压力损失。
第6章 燃气管网的水力计算 燃气输配 教学课件
径,直至总压力降小于并趋近于允许值为止。
二、环状管网的水力计算
计算步骤
1、绘制管网平面示意图,对节点、管段、环网编号,并标明管道长度、集中负 荷、起源或调压站位置等。
2、计算管网各管段的途泄流量。
3、按气流沿最短路径从供气点流向零点的原则,拟定环网各管段中的燃气流向。 气流方向总是流离供气点,不应逆向流动。
Q=αQ1+Q2
Q—计算流量 Nm3/h
Q1—途泄流量 Nm3/h
Q2—转输流量 Nm3/h
α—流量折算系数
一般来说,流量折算系数α取0.55,故燃气分配管道的计算流量为
Q=0.55Q1+Q2
二、途泄流量的计算 途泄流量包括大量居民用户、小型公共建筑用户及小型工业
用户的流量。 1、根据供气范围内的道路和建筑物的布局划分街区 2、计算各管段单位长度的途泄流量 3、求管段的途泄流量
第六章 燃气管网的水力计算
河北科技大学建工学院
第六章 燃气管网的水力计算
第一节 管道内燃气流动的基本方程式 第二节 城市燃气管道水力计算公式和计算图表 第三节 燃气分配管网计算流量 第四节 管网水力计算
第一节 管道内燃气流动的基本方程式
一、不稳定流动方程式 假设 a、地下燃气管道的温度变化不大,可认为是等温流动 b、地下燃气管道的标高变化不大,可不计管道纵轴方向的重力作用分
三、室内燃气管道的计算 在室内燃气管道计算之前,必须先选定和布置用户燃气用具,并画出管道系统
图。 计算步骤 1、将各管段按顺序编号 2、求各管段的计算流量 3、求得各管段的长度,根据计算流量预选管径 4、算出各管段的局部阻力系数,求出其当量长度,的管段的计算长度。 5、求各管段的阻力损失 6、计算各管段的附加压头 7、求各管段实际的压力损失 8、求室内燃气管道的总压力将 9、以总压力将与允许的计算压力降相比较,如不合适,则可改变个别管段的管
城市燃气输配管网系统的水力计算分析
城市燃气输配管网系统的水力计算分析摘要:本文主要介绍了城市燃气输配管网水力计算的意义和计算方法并以实例分析运用和验证了方法的使用。
关键词:燃气输配管网、水力计算。
1水力计算分析的意义管网的水力分析是城市管网科学管理的基础,其任务是在输入节点流量及管长、管材、管径的情况下了解管网各管段的实际流量分配,各节点的压力,以及气源的工作情况,即了解整个管网的实际运行工况,从而得到科学、精确的信息.这样既为改建!扩建管网设计提供准确的数据资料,避免工程的盲目性。
同时,也为城市管网的科学管理提供数据信息,以便有关部门对管网突发事件作出快速反应、能否正确地进行水力计算,直接影响到输配系统的经济性和可靠性。
2水力计算2.1燃气管网的水力计算基本公式2.1.1气体管段流量的基本方程天然气在管内流动时,沿着气体流动方向,压力下降,密度减少,流速不断增大,温度同时也在变化,决定燃气流动状态的参数有:压力p 、密度ρ、流速v 。
为求解这些参数有三个基本方程:连续性、运动方程和气体状态方程。
气体流动方程如下。
利用牛顿运动方程、质量连续性方程、气体状态方程,并假设: a 地下燃气管道的温度变化不大,可以假定燃气在管内等温流动。
b 地下燃气管道的标高变化较小,可以不计算管道纵轴方向的重力作用分力。
得可压缩气体的不稳定流动方程组运动方程 (2.1) 连续性方程 气体状态方程P zg RT ρ=τ---时间;x---离管道始端的距离; v---τ时刻x 处燃气的速度; P---τ时刻x 处燃气的压力;()()222P x x dρυρυλυρτ∂∂∂+++=∂∂∂()0xρυρτ∂∂+=∂∂d---x 处燃气管道的内径; z---压缩系数; g---重力加速度; R---气体常数; T---燃气的绝对温度; ρ---燃气密度。
从理论上讲,上式可用来计算燃气在管道中任何距离,任何时刻的运动参数,实际上这一组非线性偏微分方程很难求解,但可从工程观点出发在忽略某些对计算结果影响不大的项,如略去运动方程中对流项和惯性项,并因有(2.2)及(2.3)式中C 为声速。
燃气管网水力计算
第6章 燃气管网水力计算
第一节 燃气管网设计计算
水力计算的任务
➢ 设计计算:根据计算流量(Q)和允许压力损失 (△P)计算管径(D),进而决定管网投资与金属 消耗量等
➢校核计算:对已有管道进行流量(Q)和压力损失 (△P)的验算,已充分发挥管道的输气能力,或决 定是否需要对原有管道进行改造
➢意义:关系到输配系统经济性和可靠性,是城镇 燃气规划与设计中的一项重要工作
• 转输流量:流经燃气管段,并转送给后续管段的流量 Q2称为转输流量
燃气供应
第6章 燃气管网水力计算
第一节 燃气管网设计计算
(一)燃气分配管网的供气方式
➢ 管段沿途不输出燃气,这种管段的燃气流量是不变的 Q1 = 0, Q2 ≠0
➢ 由管段始端进入的燃气在途中全部供给各个用户 Q1 ≠ 0, Q2 = 0
Z 压缩因子, 当燃气压力小于1.2MPa
(表压)时,取Z =1;
d 管道直径,mm
L 燃气管道的计算长度,km
燃气管道摩擦阻力系数
燃气密度,kg/m3
T 设计中所采用的燃气温度,K
T0 标准状态气体绝对温度,273.15K
燃气供应
第6章 燃气管网水力计算
第一节 燃气管网设计计算
8)由管段的压力降推算管网节点的压力:
节点压力需满足要求,管道压力降过小而不经济时,需调整管
径,重复6)、7)两步计算
燃气供应
第6章 燃气管网水力计算
第二节 室内燃气管道的设计计算
一、室内燃气管道及燃具的布置
(一)燃气用户引入管 (二)室内燃气管道 (三)燃气计量表的布置 (四)燃具的布置
燃气供应
Q1 - 途泄流量,m3 /h Q2 - 转输流量,m3 /h
燃气工程-第6章燃气管网水力计算
环状管网的计算步骤
5)根据管网允许压力降和供气点至零点的管 道计算长度(局部阻力通常取沿程损失的 5%-10%),求得单位长度允许压力降,根 据流量和单位长度允许压力降查附图即可 选择管径。
(一)燃气分配管网供气方式
(3)最常见的分配管段供气情况。
(二)燃气分配管段途泄流量的确定
▪ 在城镇燃气管网计算中可以认为,途泄流 量是沿管段均匀输出的。管段单位长度途 泄流量为:
管段途泄流量计算
计算管段途泄流量
▪ 1-2管段
▪ 1-6管段
(三)燃气分配管段计算流量确定
▪ 管段上既有途泄流量又有转输流量的变负 荷管段,其计算流量可按下式求得:
Q 2 -30 .5 5 1 8 05 0 1 4 9
Q 1 -4 0 .5 5 3 9 5 2 8 4 5 0 2
Q 4-30 .559050100
(4)求计算流量
▪ 对于Ⅱ环:
Q 1 -6 0 .5 5 2 9 4 4 9 8 6 6 0
Q 6-50.55216083
Q 4-50.55144079
(1)环状管网的计算特点 (2)环状管网的计算步骤
(1)环状管网的计算特点
(2)环状管网的计算步骤
1)绘制管网平面示意图,管网布置应使管道 负荷较为均匀。然后对节点、环网、管段 进行编号,标明管道长度、燃气负荷、气 源或调用站位置等。
2)计算各管段的途泄流量。
环状管网的计算步骤
3)按气流沿着最短路径从供气点流向零点(零 点是指各环中燃气沿顺时针流动与逆时针 流动的交汇点,此点为各环压力的最低点) 的原则,拟定环状管网燃气流动方向。但 在同一环内,必须有两个相反的流向。
第六章 燃气管网水力计算
零点:指各环中燃气沿顺时针流动与逆时针流动的交汇 点,此点为各环压力的最低点。
❖ (4)推算每一管段的初步计算流量
❖ (5)选择管径
由已知的管网计算压力降和供气点至零点的管道长度, 求得单位长度沿程阻力平均压力降;
选择各管段的管径。
第六章
26
❖ (6)算各管段实际压力降及各环压力闭合差
解:(1)在平面图上编号、标注
第六章
30
100Nm3/h
3
300 4
400
5
600
600
FⅠ=15
FⅡ=20
300 2
400 6
1
450
FⅢ=24
8
7
第六章
31
450
❖ (2)计算各环单位长度途泄流量q
各环用气量(气化率100%)、周长、q。
第六章
32
❖ (3)定各环零点、流向
零点:每环只有一个零点, 使供气点到各用户的路线最 短——3、5、8。
(6)检查计算结果:若总压力降≤允许值,合格;否则
应适当变动管径,直到总压力降≤允许值为止。
第六章
24
6.3.2 环状管网的水力计算
1. 计算特点
(1)供气量任意: 环网任一节点均可由相邻两管段或多管段供气; 供给量任意分配——节点处流量代数和为零即可;
(2)管径变则流量重新分配: 引起管网流量的重新分配 并改变各节点的压力值;
P12
P22 L
1.271010 Q02
d5
0
T T0
Z
Re wd
w
Q0
d2
P12
P22 L
f (Q0 , d, 0 ,T ,T0 , Z, K, v)
城市燃气输配燃气管网水力计算(1)
城市燃气输配燃气管网水力计算(1)一、城市燃气输配燃气管网的水力计算概述城市燃气输配燃气管网的水力计算是指计算城市燃气管网中燃气流经管线时的燃气压力、流速等参数的过程。
燃气的输送过程中需要维持一定的压力和流量,以保证用户的正常用气需求。
城市燃气管网的水力计算是燃气输配领域的重要技术之一,对规划设计、施工和运营维护都有着重要意义。
在计算过程中,需要考虑多个因素和参数,如管道长度、管径、燃气密度和温度、燃气流量和压力等,综合分析并进行水力优化,才能保证燃气管网的稳定、高效运行。
二、城市燃气输配燃气管网的水力计算方法1.基本原理城市燃气管网的水力计算基于燃气流动的流体动力学基本原理,主要包括能量守恒方程、连续性方程和状态方程等。
其中,能量守恒方程主要用于计算管道中燃气压力的变化;连续性方程用于计算燃气的流量;状态方程用于计算燃气的密度和温度等参数。
2.计算方法城市燃气管网的水力计算可以采用多种方法和软件进行,如相似理论方法、管道特性法和CFD数值模拟等。
其中,相似理论方法和管道特性法是比较常用的计算方法。
相似理论方法是通过建立模型来模拟实际的管网系统,在实验条件下进行流场等参数的测量和分析,得出管网水力特性,以此来推导出实际管道的水力性能。
管道特性法是通过分析管道的特性方程和各个管道之间的相互关系,计算出燃气流经管道时的燃气流量、压力等参数。
3.优化方法城市燃气管网的水力计算还需要进行优化,以求得最优的燃气输送方案。
优化方法主要包括管道线路规划、管道直径选取、阀门设置等方面的优化。
在管道线路规划方面,需要考虑管道的布局和长度,以缩短输送距离和减少压力损失。
在管道直径选取方面,需要综合考虑输送流量、压力损失和管道的制造和安装成本等因素,以确定最适合的管径。
在阀门设置方面,需要根据不同用户的用气需求和管道的分布情况,合理设置阀门,调节管道压力和流量,在确保正常用气的前提下尽可能减小能耗和损失。
三、城市燃气输配燃气管网的水力计算应用城市燃气输配燃气管网的水力计算是燃气输配领域的关键技术之一,广泛应用于城市燃气管网的规划设计、施工和运营维护中。
城市燃气输配_燃气管网水力计算
(c)根据每个街区的燃气计算流量和燃气管道的长度,计
算管道单位长度向该街区供应的途泄流量。
q Q1 L
qA
L12
L23
QA L34 L45
L56
L61
qB
QB L12 L211
qC
L211
QC L23
L37
B C
A
F
D
E
(d)求管段的途泄流量
①管段的途泄流量等于单位长度途泄流量乘以该管段的长 度。 ②若管段是两个小区的公共管道,需同时向两侧供气时, 其途泄流量应为两侧的单位长度途泄流量之和乘以管长。
0.81
Q02 d5
0
T T0
Z Z0
L
若采用习惯的常用单位,并考虑城市燃气管道的压力一般在 4.0Mpa以下,故可以取Z=Z0=1,则高、中压及低压燃气 管道的计算公式,又可分别表示为:
高、中压燃气管道:
P12
P22 L
1.27 1010 Q02
d5
0
T T0
低压燃气管道:
P1
P2 L
3.计算步骤
对如图所示 的小区,计 算步骤如下 :
B C
A
F
D
E
管段途泄流量的计算过程
B C
A
(a)在供气范围内,按不同的居
F
D
E
民人口密度或道路和建筑物的布局划分街区A、B~F。
(b)分别计算各个街区居民用气量及小型公共建筑年用气 量、小时计算流量,并按照用气量的分布情况布置配气管 道1-2、2-3……
对于管段AB,途泄流量 为Q1,转输流量为Q2 管道起点A处,流量为 转输流量与途泄流量之 和; 管道终点B处,流量仅 为Q2。
城市燃气-燃气管网的水力计算高教知识
P2 — 燃气管道终点燃气的绝对压力,kPa L — 燃气管道的计算长度k,m
Q0 — 燃气管道的计算流量,Nm3/h D — 燃气管道的内径m,m
— 管道内表面的绝对粗糙度,mm
υ— 燃气运动粘度 全面,分m析2/s
8
四、燃气管道摩擦阻力损失计算图表
Q 0.55Q全1面分Q析 2
29
练习
1:x 0.5,n 20;ΔP Kq2l 推导 Q αQ1 Q2中α的值。
全面分析
30
四、节点流量
Q1
Q1 Q2
Q2
Q1 Q2
Q2
Q2 0.55Q1
Q2 0.55Q1
0.45Q1
0.55Q1
P P1 P2
K 0.45Q1 1.75 0 K 0.55Q1 Q2 1.75 L
假设在P1 P P2和0 x L范围内λ、T和Z为常数,
对上式积分 :
P12
P22
Q2
1
.
6
2
λ D
0
5
ρ0
P0
T T0
Z Z0
L
P12
P22
Q2
1
.
6
2
λ D
0
5
ρ0 P0
L
对于低压燃气管道:
P12 P22 ( P1 P2 ) ( P1 P2 )ΔP • 2 Pm
参数 说明
算术 平均 值
2
6n
n 11 0.88x 0.11 (2n 1) x2
n
P
KQN 1.75 L
n1
1 1.75(i
1)
x
0.66(i
燃气输配-05第五章-燃气管网的水力计算
(a)只有转输流量的管段;(b)只有途泄流量的管段; (c)有途泄流量和转输流量的管段
二、变流量低压分配管段计算流量的 确定
1.途泄流量Q1的确定
2.变负荷管段的计算流量的确定
1.途泄流量Q1的确定 几点假设:
(1)途泄流量Q1沿管段均匀输出;
(2)途泄流量只包括大量的居民用户和 小型公共建筑用户。若该管段上连有负荷 较大的用户,应当作集中负荷进行计算;
故变流量分配管段计算流量的公式为:
Q=0.55Q1+Q2
§5-4 管网水力计算 环状管网与枝状管网的主要区别 环状管网水力计算的特点 环状管网水力计算步骤
举例
环状管网与枝状管网的主要区别
1.环状管网由一些管道封闭成环,可同时由 一条或几条管道给某管段输送燃气,而枝 状管段只能由一条管道供气。
2.燃气管道成环连接,是为了保证管网工作 的可靠性,转输流量的分配也必须考虑到 管网工作的最大可靠性。
2.各管段的计算流量
(1)在管网的计算简图上将各管段依次编号, 在距供气点(调压室)最远处,假定零点的位置 (1、3、7和9),同时决定气流的方向;
(2)计算各管段的途泄流量;
(3)计算各管段的转输流量,计算由零点开始 ,与气流相反方向推算到供气点。当集中负荷由 两侧管段供气时,转输流量以各分担一半左右为 宜。
9.将室内燃气管道的总压力降与允许的压力降进 行比较,如不合适,则可调整个别管段的管径。
§5-3 燃气分配管道计算流量
一、燃气分配管道的分类 二、变流量低压分配管段计算 流量的确定
一、燃气分配管道的分类
途泄流量Q1
由管段始端输入的流
量为QN;沿程输出的 流量
转输流量Q2
流经管段,由始端送 至末端,始终恒定不 变的流量
第六章 燃气管网的水力计算
算
把低压计算公式中的1.75改写 为2即可。
P Q nn Q ns P
Pi\ Q — 顺“+” 逆“-”
Q
29
第六章
4. 环网水力计算例题
【例题】 试计算图6-1中所示的低压管网,图上注有 环网各边长度(m)及环内建筑用地面积F(公顷)。 人口密度为每公顷600人,每人每小时的用气量为 0.06m3,有一个工厂集中用户,用气量为100m3/h。气 源是焦炉煤气,密度ρ=0.46kg/m3,动力粘度 ν=25×10-6m2/s。管网中的计算压力降取ΔP=400Pa。 解:(1)在平面图上编号、标注
第六章
B
C
A
F
E
D
18
(3)各小区管L1 2 3 4 5 6 1
QB L1 2 1 1
1
2
C
A
3
7
qB
5 6 F 10 9 E 8 4 D
(4)计算各管段的Q1
Q
1 2 1
图 5-10 各 管 段 途 泄 流 量 计 算 图 示
q B q A L1 2
管段摩擦(沿程)
阻力损失
Py
P1 2 P22 L L
P L l
10
Py
第六章
3. 局部阻力损失计算公式 (1)基本公式
Pj
w
2
2
适用:庭院管、室内管、厂区管
第六章
11
(2)当量长度法
局部阻力损失: P j
12
ldl
d
l2
城市燃气输配燃气管网水力计算-V1
城市燃气输配燃气管网水力计算-V1城市燃气输配燃气管网水力计算是燃气工程设计过程中必不可少的一环。
它是通过对管网进行水力计算,确定管道的压力、流量等参数,为城市燃气供应提供技术支持,保证燃气的正常运行。
下面将从以下几个方面重新整理城市燃气输配燃气管网水力计算有关的知识点。
一、燃气管道水力计算的基本原理燃气管道水力计算的基本原理是根据能量守恒定律,利用流体力学原理,通过进行管道两端的能量综合计算来求得流量和压力等参数。
其中包括燃气管道发生的各种压力损失以及其他影响燃气流动的因素,例如管道长度、直径、弯头、支管、过渡段等。
通过将这些因素综合计算,可以准确地得出燃气管道的运行参数。
二、燃气管道水力计算的步骤燃气管道水力计算一般分为如下三个步骤:1. 燃气管道网络建模:通过对燃气管道网络进行细致、准确的测量,将其绘制成二维或三维的管道网络图。
2. 计算管道参数:通过利用流量公式、雷诺方程、柯西方程、能量方程等相关公式,计算出燃气管道中的各项参数,包括流量、管道内径、燃气速度、压力损失和压力等。
3. 优化管道设计:根据不同的需求,最终确定燃气管道的直径、长度、过渡段长度、弯头数量和位置等参数,保证燃气管道的正常运行和经济性。
三、燃气管道水力计算中的注意事项在进行燃气管道水力计算时需要注意以下几点:1. 计算前要进行充分的资料搜集和地质勘测,对管道周边的环境进行全面考虑,尤其是在斜坡地形、复杂交叉、城市市区等情况下。
2. 对于有多段管道组成的管线网络,要进行分段计算,逐步求解出整个管道系统的参数,避免全面计算会带来的困难。
3. 选择合适的计算模型和数值方法,保证模型的准确性和计算精度。
四、结论燃气管道水力计算是确保城市燃气运行安全的必要条件,采取合适的计算方法,建立完善的管道网络模型,严格控制各项参数,最终实现燃气管道的正常运行,为广大城市居民提供高品质、高效率的燃气服务。
城镇燃气管网水力计算
第二节 燃气管道计算压力降及其分配
பைடு நூலகம்
一、低压管网计算压力降的确定
用气概况
供配气量
2. 增大燃具的压力波动范围,可增大管网的计算压力降。
5 5
第二节 燃气管道计算压力降及其分配
二、高压、次高压、中压管网计算压力降的确定
高压、次高压管网:
始端压力:取决于上游管道的供气压力; 末端压力:取决于下游调压站的用最气低概进况口压力与安全附加值之供和配。气量
计算 公式
一、低压燃气管道摩阻损失:4-1
二、高压、次高压和中压燃气管道摩阻损失: 4-7、4-8
三、燃气管道水力计算图表:查表求压降
四、燃气管道的局部阻力:4-16
第二节 燃气管道计算压力降及其分配
燃气管道计算压力降 ❖ 在单位时间最大用气量发生时管网始、末两端的压力降。 管网始端压力:即设计压力,用气应概在况所需压力级制的供压配力气范量 围内 经技术、经济分析比较后确定 管网末端压力:取决于调压器最低进口压力或用户所需压力。
中压管网:
始端压力:取决于上游管道供气压力或上游管道调压站出口压力; 末端压力:取决于由中-低压调压站最低进口压力或用户中压燃烧器 所需压力确定。
6 6
7
城镇燃气管网水力计算
1 燃气管道使用水力计算公式
CONTENTS
2 燃气管道计算压力降及其分配
课前思考与问答
1. 燃气管径如何确定? 2. 燃气为有压输送,输送过程中是否有压降,压降发生在 哪些地方? 3. 各级管道(高、次高、中、低压管道)始端压力、末端 压力如何确定?
第一节 燃气管道实用水力计算公式
低压燃气管道水力计算公式
燃气管道输送水力计算适用公式燃气的管道输配起点压力为 10KPa 按《城镇燃气设计规范》,应纳入中压 燃气管道的范围。
但本设计认为,虽然成套设备的输出压力为 10KPa 出站后,压力即降至 10K Pa 以下。
整个管网系统都在10K Pa 以下的压力状态下工作,因此,在混空轻 烃管道燃气输配过程的水力计算,应采取低压水力计算公式为宜。
二、低压燃气管道水力计算公式:入=64/R e R e = dv/ 丫△ P/L = 1.13 X 1010 (Q 0/d 4) YP 0 ( T/T Q )管内燃气流动的平均速度( m/s )(摘自姜正侯教授主编的《燃气工程技术手册》一一同济大学出版社P551)1、 层流状态R e W 21002、 临界状态 R e = 2100~3500 入=0.03 +( R — 2100) / (65 R e — 1X 105)△ P/L = 1.88 X 106 [1+( 11.8 Q 0— 7X 104d Y)/ (23.0Q 0— 1X 105d 丫)]3、 25(Q/d )p0( T/T 0)紊流状态R e > 35001 )钢管 入=0.11[(△ /d )0.25+( 68/ R e )]0.25△ P/L = 6.89 X 106 [(△ /d ) 0.252 5+192.26(dY / Q 0)]0.25(Q 02/d 5) P 0(T/T 0)+ 4960( dY / Q 0)]0.2840.2842 )铸铁管 入=0.102 (1/d )△ P/L = 6.39 X 106 (1/d )+ 4960 (dy / Q Q 门 0.284 (Q7d 5)p Q (T/T Q )注:△ 管道计算长度( m )Q0――燃气流量(Nm/h )――管道内径(mmP 0――燃气密度(kg/Nm )丫 一一0C 和101.325kPa 时的燃气运动粘度(nVs ) P ――燃气管道的沿程压力降(Pa )L入一一燃气管道的摩阻系数 △――管壁内表面的绝对当量粗糙度(mm R e雷诺数燃气绝对温度( K )0——273K1993 版二、燃气的输配工况条件起点压力lOKPa 最大流速10m/s燃气密度 1.658kg/Nm3(20E 和浓度20%寸)纯轻烃燃气运动粘度 1.92 X 10-6m/s (OE和101.325kPa 时)燃气运动粘度11.1 X 10-6m/s(0E和101.325kPa 时)三、钢管阻力降的计算与查表结果管道通径①mm20253040506080100125150200250300400500600800 1000注:1、层流状态Pa/m4.7295.5034.9083.1572.2721.7570.9830.6300.3990.2830.1560.0980.0690.0410.0230.0170.0120.006查表压降Pa/m13.33625.52945.00441.94734.24337.89723.68617.29113.45311.6068.3375.8744.7373.600临界状态Pa/m20.42245.41574.14772.77373.60474.04255.34744.33235.43429.48922.08817.68014.73411.0538.8457.3705.5284.418紊流状态Pa/m139.077105.29083.82958.50844.27435.25724.61018.612设计流速m/s10101010101010101010101010最大流量Nnm/h3.398.8317.836.263.610218128344263611301766254345227065101741808728260 *因计算数据与实际数据误差过大,已无计算、列表的必要。
燃气管网的水力计算
第四章 燃气管网的水力计算燃气管网水力计算的任务是根据燃气的计算流量和允许的压力降来确定管径;在有些情况下,已知管径和压力降,求管道的通过能力。
总之,通过水力计算,来确定管道的投资和金属耗量,及保证管网工作的可靠性。
第一节 水力计算的基本公式一、摩擦阻力 1.基本公式在通常情况下的一小段时间内,燃气管道中的燃气流动可视为稳定流。
将摩擦阻力公式、连续性方程和气体状态方程组成方程组:⎪⎪⎪⎩⎪⎪⎪⎨⎧===-RTZ P const wA w d dx dP ρρρλ22(4-1) 为了对摩擦阻力公式进行积分,由连续性方程得:00Q wA ρρ=由气体状态方程得:000Z PT TZP =ρρ 代入摩擦阻力公式,在管径不变的管段中24d A π=,整理得:dx Z T TZP dQ PdP 000052028ρλπ=- (4-2)假设燃气在管道中是等温流动,则λ和T 均为常数,考虑管道压力变化不太大,Z 也可视为常数。
通过积分,得高、中压燃气管道的单位长度摩擦阻力损失为:0000520222162.1Z T TZP dQ L P P ρλ=- 4-3) 式中 P 1——燃气管道始端的绝对压力(Pa );P 2——燃气管道末端的绝对压力(Pa ); P 0——标准大气压,P 0=101325Pa ; λ——燃气管道的摩擦阻力系数;Q 0——燃气管道的计算流量(Nm 3/s ) d ——管道内径(m );ρ0——标准状态下的燃气密度(kg/Nm 3);T 0——标准状态下的绝对温度(273.15K ); T ——燃气的绝对温度(K );Z 0——标准状态下的气体压缩因子; Z ——气体压缩因子;L ——燃气管道的计算长度(m )对低压燃气管道,()()m P P P P P P P P 221212221⋅∆=+-=-式中 ()221P P P m +=为管道1、2断面压力的算术平均值,对低压管道,0P P m ≈,代入式(4-3),得低压燃气管道的单位长度摩擦阻力损失为:00052081.0Z T TZdQ L P ρλ=∆ (4-4) 若采用工程中常用单位,则高、中压燃气管道的单位长度摩擦阻力损失为:005201022211027.1T TZ dQ L P P ρλ⨯=- (4-5) 式中 Z ——气体压缩因子,当燃气压力小于1.2MPa (表压)时,Z 取1。
燃气管网水力计算
x
2
n
n
1 1.75(2
1)
x
0.66(2
1) 2
x
2
n
n
1 1.75(n
1
1)
x
0.66(n
1
1)2
x
2
n
n
(
n
1
)
1.75
x
(
1
2
n
)
0.66
x
2
(
12
22
n2
)
n
n
n( n 1 ) 2
1
1.75(1
1)
x
0.66(1
1) 2
x
2
n
n
1
1.75(2
1)
x
0.66(2
1) 2
x
2
n
n
1
1.75(n
1 1)
x
0.66(n
1 1)2
x
2
n
n
1 1.75(1
1)
x
0.66(1
1) 2
第六章 城市燃气管网的水力计算
燃气管网水力计算的任务: 1.根据燃气的计算流量和允许的压力损失计算管道
直径,以确定管道投资和金属消耗。 2.对已有管道进行流量和压力损失的验算,以充分
发挥管道的输气能力,或决定是否需要对原有管道进 行改造。
城市燃气输配课件:燃气管网水力工况分析
800 1200 600 1350
1000 1500 750 1650
2000 3000 1500 3150
允许总压降
750 900 1650
2800 4200 2100 4350 2250
(3)低压燃气管道允许总压力降的分配
允许总压力降在低压干管、庭院、室内管之间的分配,应根据 经济技术比较以及长期的运行经验确定。一般来讲,街区低压 干管的压力降取0.5Pn左右,庭院管道取0.15Pn左右,剩下的 就是室内管道的允许压力降。
Qm Q
K1 K max
1
(3) 根据各月的xm值计算压力降
Pp P(xm )1.75
(4) 确定各月调压器的出口压力(该月最大小时用气量时燃 具前的压力为额定压力)
P1 Pn Pp
例 题:
已知一年中各月的月不均匀系数,Pn=1000Pa
月份 K1
月份
K1
1 1.26
7
0.67
2 1.26
第七章 燃气管网的水力工况
第一节 燃气管网计算压力降确定
一、低压管网计算压力降的确定 二、高、中压管网计算压力降的确定 三、庭院管道计算压力降的确定
一、低压管网计算压力降的确定
几点说明: 用户处的压力指燃具前的压力,是指在工作状态下,燃气到 达燃具前所具有的剩余压力。
用户与管网的连接方式:
用户直接与低压管网相连;燃具前的工作压力随着管 网内压力、流量而波动;
1
K1 1.26
⑶各月最大小时流量时的实际压力降
Pp
x1.75 m
P
750x1m.75
月 份
K1
xm
x1.75 m
ΔPp
月 份
K1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P=P( x, )
= ( x, )
= ( x, )
解决问题的思路:
为了求得P、ρ及W必须借助于三个方程:
运动方程
连续性方程
状态方程
两点说明:
管道内燃气的流动为一维流动;
管道内燃气的流动为等温流动。
(一)、运动方程
物体动量的改变等于作用于该流体上所有力的冲量之和
dI N i d
燃气管道阻力损失计算图表
计算示例 附加压头 局部阻力
一、低压燃气管道水力计算公式
P
Q0 T 1.13 10 0 4 L d T0
10
层流区(Re<2100): 临界区(Re=2100~3500) 紊流区(Re>3500)
4 2 11 . 8 Q 7 10 d Q P T 0 0 1.88 106 1 23.0Q 1 105 d d 5 0 T L 0 0
2 L 3; Q 16 T Z d 管道内径, m ; ρ -----燃气的密度, kg/Nm 0 0 PdP 5 0 P0 dx 2 P 0 1 T Z 2 d 0 0 P 标准大气压,P =101325 Pa; T 燃气绝对温度,K; P2
0
1
T0燃气标准状态绝对温度,T0=273K;Z压缩系数,K; Z0标准状态下的压缩系数; L 管道长度,m;
i
I
Ni d
—微小体积燃气动量的向量 —作用力冲量的向量
1、动量的变化
动量随时间的变化:
指气体微元Fdx,由于在dτ时间内过程的不稳定所发生的改 变量,可表示为:
[( Fdx )W ] ( W ) d Fdxd
这一项表示dτ时间内过程的不稳定性造成的动量的改变量。
把各项带入动量方程,并消去Fdxdτ得运动方程:
2 x
P g sin 0 x 2d
2
(二)连续性方程
由质量守恒定律导出,即对于相同的燃气微小体积Fdx,
在dτ时间内通过断面x流入的质量与通过断面(x+dx)流
出的质量之差应该等于微元体质量的增量。
城市燃气管网的水力计算
管内燃气流动基本方程式
城市燃气管道水力计算公式和计算图表
燃气分配管道计算流量的确定
枝状管网的水力计算
环状管网的水力计算
室内燃气管道的水力计算
第一节 管内燃气流动基本方程式
பைடு நூலகம்不稳定流动方程式
稳定流动方程式
燃气管道的摩擦阻力系数
一、不稳定流动方程式
不稳定流动:运动参数均沿管长随时间变化,它们是 距离和时间的函数。
0.284
Q02 T 0 5 T0 d
三、燃气管道水力计算图表
压力不同、管材不同,水力计算公式也不同,所以也
就对应着不同的水力计算图表。另外,燃气种类不同
时,由于不同种类燃气的密度、粘度等有很大的不同
,所以计算图表也不同。 决定水力计算图表的因素主要有三个,不同的燃气种 类、管道的压力级别、不同的管道材质。三者的不同 组合得到不同的水力计算图表。
这是一组非线性的偏微分方程组,一般情况下
没有解析解。
但工程上常可忽略某些对计算结果影响不大的
项,并用线性化的方法简化后求得近似解。
(五)方程组的简化分析
主要对运动方程进行简化:
1、惯性项只有在燃气流量随时间的变化极为剧烈时才有意义
,故正常情况下可忽略;
2、对流项只有在燃气速度接近声速时才有影响,而通常燃气 管道中,气体的流速只有20~40m/s,可以忽略; 3、城市燃气管网中地势变化不太大时,低压管道的计算中可 以忽略重力项的影响;
三、燃气管道的摩擦阻力系数
简称摩阻系数
反映管内燃气流动摩擦阻力的一个无因次系数 其数值与燃气的流动状况、管道材质、管道的连接方 法及安装质量、燃气的性质等因素有关 是雷诺数和相对粗糙度的函数
紊流区包括水力光滑区、过渡区和阻力平方区。该区的流动 状态比较复杂,摩阻系数的计算公式很多,下面仅介绍城市 燃气设计规范推荐的适用于紊流三个区的综合公式。
Pm=(P1 +P2)/2≈P0; 所以低压管道的基本计算公式表达为下列形式 :
Q02 T Z P1 P2 0.81 5 0 L d T0 Z0
若采用习惯的常用单位,并考虑城市燃气管道的压力一般在
4.0Mpa以下,故可以取Z=Z0=1,则高、中压及低压燃气管道
的计算公式,又可分别表示为:
二、高中压燃气管道水力计算公 式
钢管、塑料管:
P P d 6 1.4 10 192.2 L Q0 d
2 1 2 2
0.25
Q02 T 0 5 T0 d
铸铁管:
P P d 6 1 1.3 10 5158 L Q0 d
2 1 2 2
dPfd 0 4dx
dPf
W
d 2
2
dx
dT 0d dx dPf F
W
d 2
2
dx
d
4
2
摩擦力的冲量为:
W2
d 2
Fdxd
作用于燃气微元上的总冲量:
P Fdxd g sin Fdxd x 2 W Fdxd d 2
管道中燃气微元在运动过程中的受力包括:
压力
重力
摩擦力
压力的冲量
沿气流方向作用于x断面上的压力为P F
在断面(x+dx)上,压力的方向与运动方向相反, 大小为:
P dx F P x
压力作用在燃气微元Fdx上的冲量为
P P PF P x dx F d x Fdxd
0.284
管道内表面当量绝对粗糙度,对于钢管取 0.2mm ,塑料管 取0.01mm;
ν—0摄氏度、1.01325×105Pa时的燃气运动粘度,m2/s。
第二节 城市燃气管道水力计算公式和计算图表
低压燃气管道阻力损失计算公式 高中压燃气管道阻力损失计算公式
气体状态方程
对于高压燃气应考虑其压缩性
P ZRT
(四) 方程组
2 P 2 g sin 0 x x 2d
0 x
P ZRT
该方程组可用来求得燃气管道中任一截面x和
任一时间的气流参数压力、密度和流速。
稳定流动燃气管道的水力公式 :
2 Q T Z 2 2 0 P 0 P0 L 1 P 2 1.62 5 T0 Z 0 d
假设条件:稳定流;等温过程; 适用于高压与低压燃气管道基本公式 。
对于低压燃气管道,可以做进一步的简化:
2 2 P P 1 2 P 1 P 2 P 1 P 2 2P m P 1 P 2
燃气不稳定流动的原因:
气源工作的不稳定 压气设备工作的不稳定
燃气用户用气量随时间变化的不稳定
决定燃气流动状态的参数:
压力P 密度ρ 流速 温度 四者是随时间τ、离起点的距离x而变的函数
在多数情况下,管道内燃气的流动可认为是等温的, 其温度等于埋管周围土壤的温度。因此,决定燃气 流动状态的参数为:
P g sin 0 x x 2d
2 2
P 2 0 x 2d
0 x
P ZRT
二、稳定流动方程式
规范规定,城市燃气管道的压力不超过40公斤,设计燃气管道 时燃气流动的不稳定性可不予考虑,当作稳定流动来处理。
1、动量的变化
动量随位臵的变化:
2 ( W ) 2 2 W Fd Fdxd W Fd x 2 ( W ) Fdxd x
由于流体的流动和位移,因断面上参数值的变化而 引起的动量的改变量。
总的动量改变量
燃气微元Fdx的总的动量改变量为动量随时间的
改变量与动量随位臵的改变量的和。
dτ时间内质量增量:
Fdx d Fdxd
dτ时间内通过断面x流入的质量
WFd
dτ时间内从断面(x+dx)上流出的质量
( WF ) WF dx d x
连续性方程:
0 x
(三 )
( W ) ( W ) Fdxd Fdxd x
2
惯性项,反映了流动的不稳定 性,具有定点的动量变化的特 征。 对流项,反映因位臵变化 而引起参数变化所造成的 动量的改变量。为了使气 流加速而消耗的功。
2、燃气微元的受力分析
燃气微元动量的改变量是由于受力的影响,分析
燃气微元的受力对于建立运动方程十分重要
W
0 Q0
2 Q 2 0 0 0 W F 2
0 P0TZ PT0 Z 0
dP W dx d 2
2
2 16 Q0 T Z PdP 5 0 P0 dx 2 T0 Z 0 2 d
P1、P2-管道始末端的燃气绝对压力,Pa; Q0燃气管道计算流量,Nm3/s;
钢管、塑料管: 铸铁管:
P d 6.89 106 192 . 2 d L Q0
P d 6 1 6.39 10 5158 d L Q0
0.25
Q02 T 0 T0 d5