(完整版)相似三角形专题复习教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
龙文教育学科老师个性化教案教师学生姓名梁瀚文上课日期
学科数学年级九年级教材版本
类型知识讲解□:考题讲解□:本人课时统计第()课时共()课时
学案主题相似三角形
课时数量
(全程或具体时间)
第()课时授课时段
教学目标
教学内容相似三角形专题复习
个性化学习问题解决查漏补缺,巩固提升
教学重
点、难点
用相似三角形的判定与性质解决简单的几何问题和实际问题。
考点分析
理解相似三角形的概念,总结相似三角形的对应角相等、对应边成比例等性质,掌握它们的基本运用。
教学过程
学生活动教师活动知识要点
1.相似三角形的定义:对应角相等,对应边的比相等的两个三角形。
对应边的比叫做相似
比。
三条平行线截两条直线所得的对应线段的比相等。
2.相似三角形的判定:①平行法②三组对应边的比相等(类似于三角形全等判定“SSS”)
③两组对应边的比相等,且夹角相等(类似于三角形全等判定“SAS”)④两角对应相等(AA)
直角三角形中斜边、直角边对应比相等(类似于直角三角形全等判定“HL”)。
相似三角形的基本图形:
判断三角形相似,若已知一角对应相等,可先考虑另一角对应相等,注意公共角或对顶
角或同角(等角)的余角(或补角)相等,若找不到第二对角相等,就考虑夹这个角的
两对应边的比相等;若无法得到角相等,就考虑三组对应边的比相等。
3.相似三角形的性质:①对应角相等②对应边的比相等③对应的高、中线、角平分线、周长之比等于相似比④对应的面积之比等于相似比的平方。
4.相似三角形的应用:求物体的长或宽或高;求有关面积等。
(三)考点精讲 考点一:平行线分线段成比例 例1、(2011广东肇庆)如图,已知直线a ∥b ∥c ,直线m 、n 与a 、
b 、
c 分别交于点A 、C 、E 、B 、D 、F ,AC = 4,CE = 6,BD = 3,则BF =( )
A . 7
B . 7.5
C . 8
D . 8.5
例2(2012•福州) 如图,已知△ABC ,AB=AC=1,∠A=36°,∠ABC 的平分线BD 交AC 于点D ,则AD 的长是 ,cosA 的值是 .(结果保留根号)
练习:
1.(2011湖南怀化,6,3)如图所示:△ABC 中,DE ∥BC ,AD =5,BD =10,AE =3,
则CE 的值为( ) A .9 B .6 C .3 D .4
E
C
D
B A
2.(2011山东泰安,15 ,3分)如图,点F 是□ABCD 的边CD 上一点,直线BF 交AD 的延长线于点E ,则下列结论错误..的是( ) A .ED DF EA AB = B . DE EF BC FB = C .BC BF DE BE = D . BF BC
BE AE
=
a b c A B C D E
F m n
3.(2012•孝感)如图,在△ABC 中,AB=AC ,∠A=36°,BD 平分∠ABC 交AC 于点D ,若AC=2,则AD 的长是( ) A .
512- B .51
2
+ C .51- D .51+
考点二:相似三角形的判定 例3、(2011湖北荆州)如图,P 为线段AB 上一点,AD 与BC 交于E ,∠CPD =∠A =∠B ,BC 交PD 于F ,AD 交PC 于G ,则
图中相似三角形有( )
A .1对
B .2对
C .3对
D .4对 例4、(2010江苏泰州)一个铝质三角形框架三条边长分别为24cm 、30cm 、36cm ,要做一
个与它相似的铝质三角形框架,现有长为27cm 、45cm 的两根铝材,要求以其中的一根为一边,从另一根上截下两段(允许有余料)作为另外两边.截法有( ) A.0种 B. 1种 C. 2种 D. 3种
例5(2012•徐州)如图,在正方形ABCD 中,E 是CD 的中点,点F 在BC 上,且FC= 1
4
BC .图中相似三角形共有( ) A .1对 B .2对
C .3对
D .4对
例6(2012•资阳)(1)如图(1),正方形AEGH 的顶点E 、H 在正方形ABCD 的边上,直接写出HD :GC :EB 的结果(不必写计算过程);
(2)将图(1)中的正方形AEGH 绕点A 旋转一定角度,如图(2),求HD :GC :EB ; (3)把图(2)中的正方形都换成矩形,如图(3),且已知DA :AB=HA :AE=m :n ,此时HD :GC :EB 的值与(2)小题的结果相比有变化吗?如果有变化,直接写出变化后的结果(不必写计算过程).
练习: 1.(2011江苏无锡,7,3分)如图,四边形ABCD 的对角线AC 、BD 相交于O ,且将这个四边形分成①、②、③、④四个三角形.若OA ∶OC = OB ∶OD ,则下列结论中一定正确的是 ( ) A .①和②相似 B .①和③相似
G
E
A
D
B C
P F
C .①和④相似
D .②和④相似
2.(2011新疆乌鲁木齐,10,4分)如图,等边三角形ABC 的边长为3,点P 为BC 边上
一点,且1BP =,点D 为AC 边上一点若60APD ∠=︒,则CD 的长为 A .
12
B .
23
C .
34
D .1
3. (2012•攀枝花)如图,△ABC ≌△ADE 且∠ABC=∠ADE ,∠ACB=∠AED ,BC 、DE 交于点O .则下列四个结论中,①∠1=∠2;②BC=DE ;③△ABD ∽△ACE ;④A 、O 、C 、E 四点在同一个圆上,一定成立的有( ) A .1个 B .2个 C .3个 D .4个
4. (2012•义乌市)在锐角△ABC 中,AB=4,BC=5,∠ACB=45°,将△ABC 绕点B 按逆时针方向旋转,得到△A 1BC 1.
(1)如图1,当点C 1在线段CA 的延长线上时,求∠CC 1A 1的度数;
(2)如图2,连接AA 1,CC 1.若△ABA 1的面积为4,求△CBC 1的面积;
(3)如图3,点E 为线段AB 中点,点P 是线段AC 上的动点,在△ABC 绕点B 按逆时针方向旋转过程中,点P 的对应点是点P 1,求线段EP 1长度的最大值与最小值.
A B C
D
O
① ②③
④(第7题)
考点三:相似三角形的性质 例7、(2010山东烟台)如图,△ABC 中,点D 在线段BC 上,
且△ABC ∽△DBA ,则下列结论一定正确的是( ) A .AB 2=BC ·BD B .AB 2=AC ·BD C .AB ·AD =BD ·BC D .AB ·AD =AD ·CD 例8、(2011浙江嘉兴)如图,边长为4的等边△ABC 中,DE 为中位线,则四边形BCED 的面积为( ) (A )32 (B )33
(C )34
(D )36
例9(2012•重庆)已知△ABC ∽△DEF ,△ABC 的周长为3,△DEF 的周长为1,则ABC 与△DEF 的面积之比为 .
练习
1.(2011青海西宁,10,3分)如图6,在等边△ABC 中,D 为BC 边上一点,E 为AC 边
上一点,且∠ADB +∠EDC =120°,BD =3,CE =2,则△ABC 的边长为 A .9 B .12 C .16 D .18
2.(2011四川雅安,9,3分)如图,D 、E 、F 分别为△ABC 三边的中点,则下列说法中不正确的为( )
A .△ADE ∽△ABC
B .AF
C ABF S S △△= C .ABC ADE S S △△4
1
=
D .DF=EF A
B
C
D
E G F
O
A
B
D
C
(例5) A B C D
E
3.(2011四川内江,加试2,6分)如图,在△ABC 中,点D 、E 分别是边AB 、AC 的中点,DF 过EC 的中点G 并与BC 的延长线交于点F ,BE 与DF 交于点O .若△ADE 的面积为S ,则四边形BOGC 的面积= . 4.(2011辽宁丹东,16,3分)已知:如图,DE 是△ABC 的中位线,点P 是DE 的中点,
CP 的延长线交AB 于点Q ,那么:DPQ ABC S S ∆∆=______________.
Q P
E
C
D
B
A
考点四 位似
例10(2012•玉林)如图,正方形ABCD 的两边BC ,AB 分别在平面直角坐标系的x 轴、y 轴的正半轴上,正方形A′B′C′D′与正方形ABCD 是以AC 的中点O′为中心的位似图形,已知AC=32,若点A′的坐标为(1,2),则正方形A′B′C′D′与正方形ABCD 的相似比是( ) A .
16 B .13 C .12 D . 2
3
考点四:相似三角形的应用 例6、(2010安徽芜湖)如图,光源P 在横杆AB 的正上方,AB 在灯光下的影子为
CD,AB ∥CD,AB=2m,CD=6m,点P 到CD 的距离是2.7m,则_______m .
例7、(2011青海)如图,△ABC 是一块锐角三角形的材料,边BC=120mm ,高AD=80mm ,要把它加工成正方形零件,使正方形的一边在BC 上,其余两个顶点分别在AB 、AC 上,这个正方形零件的边长是 mm .
练习:
1.(2011湖北黄石,13,3分)有甲乙两张纸条,甲纸条的宽是乙纸条宽的2倍,如图(4).
将这两张纸条交叉重叠地放在一起,重合部分为四边形ABCD,则AB与BC的数量关系为。
(五)真题演练
2、( 2011重庆江津)已知如图(1)、(2)中各有两个三角形,其边长和角的度数已在图上标
注,图(2)中AB、CD交于O点,对于各图中的两个的两个三角形而言,下列说法正确的是( )
A.都相似
B.都不相似
C.只有(1)相似
D.只有(2)相似
3、(2011黑龙江鸡西)如图,A、B、C、D是⊙O上的四个点,AB=AC,AD交BC于点
E,AE=3,ED=4,则AB的长为()
A .3
B .23 C.21 D .35
5、(2011山东滨州)如图,直线PM切⊙O于点M,直线PO交⊙O于A、B两点,弦AC∥PM,
连接OM、BC.
求证:(1)△ABC∽△POM; (2)2OA2=OP·BC.
【聚焦中考】
1.(2012•潍坊)已知矩形ABCD中,AB=1,在BC上取一点E,沿AE将△ABE向上折叠,使B点落在AD上的F点,若四边形EFDC与矩形ABCD相似,则AD=()
A.51
2
-
B.
51
2
+
C.3D.2
35°
75°
75°
70°
(1)
A
B
C
D
O
4 3
6
8
(2)
(第3题)
P
M
O
C
B A
(第5题)
2.(2012•东营)如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x 轴上,OC在y轴上,如果矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面
积等于矩形OABC面积的1
4
,那么点B′的坐标是()
A.(-2,3)B.(2,-3)C.(3,-2)或(-2,3)D.(-2,3)或(2,-3)
3. (2012•日照)在菱形ABCD中,E是BC边上的点,连接AE交BD于点F,若EC=2BE,
则BF
FD
的值是()
A.1
2
B.
1
3
C.
1
4
D.
1
5
4.(2012•德州)为了测量被池塘隔开的A,B两点之间的距离,根据实际情况,作出如图图形,其中AB⊥BE,EF⊥BE,AF交BE于D,C在BD上.有四位同学分别测量出以下四组数据:①BC,∠ACB;②CD,∠ACB,∠ADB;③EF,DE,BD;④DE,DC,BC.能根据所测数据,求出A,B间距离的有()
A.1组B.2组C.3组D.4组F
5.(2012•威海)如图,在平面直角坐标系中,△ABC的顶点坐标分别为(4,0),(8,2),(6,4).已知△A1B1C1的两个顶点的坐标为(1,3),(2,5),若△ABC与△A1B1C1位似,则△A1B1C1的第三个顶点的坐标为.
6.(2012•菏泽)如图,在边长为1的小正方形组成的网格中,△ABC和△DEF的顶点都
在格点上,P1,P2,P3,P4,P5是△DEF边上的5个格点,请按要求完成下列各题:
(1)试证明三角形△ABC为直角三角形;
(2)判断△ABC和△DEF是否相似,并说明理由;
(3)画一个三角形,使它的三个顶点为P1,P2,P3,P4,P5中的3个格点并且与△ABC
相似(要求:用尺规作图,保留痕迹,不写作法与证明).
课堂练习
课后作业
学生成长
记录本节课教学计划完成情况:照常完成□提前完成□延后完成□ ____________________________ 学生的接受程度: 5 4 3 2 1 ______________________________
学生的课堂表现:很积极□比较积极□一般积极□不积极□ ___________________________ 学生上次作业完成情况:优□良□中□差□存在问题 _____________________________
备
注
学生签名班主任审批教学主任审批
一对一课后作业:做题认真、细心,下次课要给老师检查哦!
学生姓名:家长签字:。