平面向量多选题(讲义及答案)及解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面向量多选题(讲义及答案)及解析
一、平面向量多选题
1.下列条件中,使点P 与A ,B ,C 三点一定共面的是( ) A .1233
PC PA PB =
+ B .111
333
OP OA OB OC =
++ C .QP QA QB OC =++ D .0OP OA OB OC +++=
【答案】AB 【分析】
根据四点共面的充要条件,若A ,B ,C ,P 四点共面
(1)PC xPA yPB x y ⇔=++=()1OP xOA yOB zOC x y z ⇔=++++=,对选项
逐一分析,即可得到答案. 【详解】 对于A ,由1233
PC PA PB =+,12
133+=,所以点P 与A ,B ,C 三点共面.
对于B ,由111
333
OP OA OB OC =
++,1111333++=,所以点P 与A ,B ,C 三点共面.
对于C ,由OP OA OB OC =++,11131++=≠,所以点P 与A ,B ,C 三点不共面. 对于D ,由0OP OA OB OC +++=,得OP OA OB OC =---,而11131---=-≠,所以点P 与A ,B ,C 三点不共面. 故选:AB 【点睛】
关键点睛:本题主要考查四点共面的条件,解题的关键是熟悉四点A ,B ,C ,P 共面的充要条件(1)
PC xPA yPB x y ⇔=++=()1OP xOA yOB zOC x y z ⇔=++++=,
考查学生的推理能力与转化思想,属于基础题.
2.如图所示,设Ox ,Oy 是平面内相交成2πθθ⎛⎫
≠
⎪⎝
⎭
角的两条数轴,1e ,2e 分别是与x ,y 轴正方向同向的单位向量,则称平面坐标系xOy 为θ反射坐标系中,若
12OM xe ye =+,则把有序数对(),x y 叫做向量OM 的反射坐标,记为(),OM x y =.在
23
π
θ=
的反射坐标系中,()1,2a =,()2,1b =-.则下列结论中,正确的是( )
A .()1,3a b -=-
B .5a =
C .a b ⊥
D .a 在b 上的投影为37
【答案】AD 【分析】
123a b e e -=-+,则()1,3a b -=-,故A 正确;3a =,故B 错误;3
2
a b ⋅=-,故C 错误;由于a 在b 上的投影为3
3727a b b
-
⋅==,故D 正确.
【详解】
()(
)
121212223a b e e e e e e -=+--=-+,则()1,3a b -=-,故A 正确;
()
2
12
2254cos
33
a e e π
=
+=+=B 错误;(
)()
2
2
121211223
222322
a b e e e e e e e e ⋅=+⋅-=+⋅-=-
,故C 错误; 由于()
2
2
2
27b e e =-=a 在b 上的投影为3
372147a b b
-
⋅==-
,故D 正确。
故选:AD 【点睛】
本题主要考查新定义,考查向量的坐标运算和模的计算,考查向量的投影的计算,考查向量的数量积的计算,意在考查学生对这些知识的理解掌握水平.
3.
已知M 为ABC 的重心,D 为BC 的中点,则下列等式成立的是( ) A .11
22
AD AB AC =
+ B .0MA MB MC ++=
C .2133
BM BA BD =+ D .12
33
CM CA CD =
+ 【答案】ABD 【分析】
根据向量的加减法运算法则依次讨论即可的答案. 【详解】
解:如图,根据题意得M 为AD 三等分点靠近D 点的点. 对于A 选项,根据向量加法的平行四边形法则易得11
22
AD AB AC =
+,故A 正确; 对于B 选项,2MB MC MD +=,由于M 为AD 三等分点靠近D 点的点,
2MA MD =-,所以0MA MB MC ++=,故正确;
对于C 选项,()
2212
=3333
BM BA AD BA BD BA BA BD =+=+-+,故C 错误; 对于D 选项,()
2212
3333
CM CA AD CA CD CA CA CD =+=+-=+,故D 正确. 故选:ABD
【点睛】
本题考查向量加法与减法的运算法则,是基础题.
4.ABC 是边长为2的等边三角形,已知向量a 、b 满足AB a =、AC a b =+,则下列结论正确的是( ) A .2b = B .a b ⊥
C .2a b ⋅=
D .(2)a b BC +⊥
【答案】AD 【分析】
本题首先可以根据向量的减法得出BC b =,然后根据ABC 是边长为2的等边三角形得出A 正确以及B 错误,再然后根据向量a 、b 之间的夹角为120计算出2a b ⋅=-,C 错误,最后通过计算得出(2)0a b BC +⋅=,D 正确. 【详解】
因为AB a =,AC a b =+,所以BC AC AB a b a b =-=+-=, 因为ABC 是边长为2的等边三角形,所以2b BC ==,A 正确, 因为AB a =,BC b =,
所以向量a 、b 之间的夹角为120,B 错误, 所以1cos1202222a b a b ⎛⎫
⋅=⋅⋅=⨯⨯-
=- ⎪⎝⎭
,C 错误, 因为()2
2(2)(2)22220a b BC a b b a b b +⋅=+⋅=⋅+=⨯-+=, 所以(2)a b BC +⊥,D 正确, 故选:AD. 【点睛】
本题考查向量的减法运算以及向量的数量积,若向量a 、b 之间的夹角为θ,则
cos a b a b θ⋅=⋅⋅,若0a b ⋅=,则a b ⊥,考查推理能力与计算能力,是中档题.
5.若平面向量,,a b c 两两夹角相等,,a b 为单位向量,2c =,则a b c ++=( ) A .1 B .2
C .3
D .4
【答案】AD 【分析】
由平面向量,,a b c 两两夹角相等可知,夹角为0︒或120︒.分两种情况对三个向量的和的模长进行讨论,算出结果. 【详解】
平面向量,,a b c 两两夹角相等,
∴两两向量所成的角是0︒或120︒.
当夹角为0︒时,
,,a b c 同向共线,
则4a b c ++=; 当夹角为120︒时,
,a b 为单位向量,
1a b ∴+= ,且a b +与c 反向共线,
又
2c =,
1a b c ∴++=.
故选:AD. 【点睛】
本题考查了平面向量共线的性质,平面向量的模的求法,考查了分类讨论的思想,属于中档题.
6.已知,a b 是单位向量,且(1,1)a b +=-,则( ) A .||2a b += B .a 与b 垂直
C .a 与a b -的夹角为4
π D .||1a b -=
【答案】BC 【分析】
(1,1)a b +=-两边平方求出||2a b +=;利用单位向量模长为1,求出0a b ⋅=;
||a b -平方可求模长;用向量夹角的余弦值公式可求a 与a b -的夹角.
【详解】
由(1,1)a b +=-两边平方,得2222||21(12|)|a b a b ++⋅=+-=, 则||2a b +=
,所以A 选项错误;
因为,a b 是单位向量,所以1122a b ++⋅=,得0a b ⋅=,所以B 选项正确; 则222||22a b a b a b -=+-⋅=,所以||2a b -=
,所以D 选项错误;
2()cos ,
2||||1a a b a a b a a b ⋅-〈-〉====-⨯, 所以,a 与a b -的夹角为4
π
.所以C 选项正确; 故选:BC. 【点睛】
本题考查平面向量数量积的应用. 求向量模的常用方法:
(1)若向量a 是以坐标形式出现的,求向量a 的模可直接利用公式2+a x y =
(2)若向量a b , 是以非坐标形式出现的,求向量a 的模可应用公式22
•a a a a ==或
222
2
||)2?(a b a b a
a b b ==+,先求向量模的平方,再通过向量数量积的运算求
解.
判断两向量垂直:根据数量积的坐标运算公式,计算出这两个向量的数量积为0即可.
解两个非零向量之间的夹角:根据公式•a b
cos a b ==求解出这两个
向量夹角的余弦值.
7.已知平行四边形的三个顶点的坐标分别是(3,7),(4,6),(1,2)A B C -.则第四个顶点的坐标为( ) A .(0,1)- B .(6,15)
C .(2,3)-
D .(2,3)
【答案】ABC 【分析】
设平行四边形的四个顶点分别是(3,7),(4,6),(1,2),(,)A B C D x y -,分类讨论D 点在平行四边形的位置有:AD BC =,AD CB =,AB CD =,将向量用坐标表示,即可求解. 【详解】
第四个顶点为(,)D x y ,
当AD BC =时,(3,7)(3,8)x y --=--,
解得0,1x y ==-,此时第四个顶点的坐标为(0,1)-; 当AD CB =时,(3,7)(3,8)x y --=,
解得6,15x y ==,此时第四个顶点的坐标为(6,15); 当AB CD =时,(1,1)(1,2)x y -=-+,
解得2,3x y ==-,此时第四个项点的坐标为(2,3)-. ∴第四个顶点的坐标为(0,1)-或(6,15)或(2,3)-. 故选:ABC . 【点睛】
本题考查利用向量关系求平行四边形顶点坐标,考查分类讨论思想,属于中档题.
8.对于菱形ABCD ,给出下列各式,其中结论正确的为( ) A .AB BC =
B .AB B
C =
C .AB C
D AD BC -=+ D .AD CD CD CB +=-
【答案】BCD 【分析】
由向量的加法减法法则及菱形的几何性质即可求解. 【详解】
菱形中向量AB 与BC 的方向是不同的,但它们的模是相等的, 所以B 结论正确,A 结论错误;
因为2AB CD AB DC AB -=+=,2AD BC BC +=,且AB BC =, 所以AB CD AD BC -=+,即C 结论正确;
因为AD CD BC CD BD +=+=,
||||CD CB CD BC BD -=+=,所以D 结论正确.
故选:BCD 【点睛】
本题主要考查了向量加法、减法的运算,菱形的性质,属于中档题.
二、立体几何多选题
9.已知图1中,A 、B 、C 、D 是正方形EFGH 各边的中点,分别沿着AB 、BC 、
CD 、DA 把ABF 、BCG 、CDH △、DAE △向上折起,使得每个三角形所在的平面都与平面ABCD 垂直,再顺次连接EFGH ,得到一个如图2所示的多面体,则( )
A .AEF 是正三角形
B .平面AEF ⊥平面CGH
C .直线CG 与平面AEF 2
D .当2AB =时,多面体ABCD EFGH -的体积为83
【答案】AC 【分析】
取CD 、AB 的中点O 、M ,连接OH 、OM ,证明出OH ⊥平面ABCD ,然后以点
O 为坐标原点,OM 、OC 、OH 所在直线分别为x 、y 、z 轴建立空间直角坐标系,求
出EF ,可判断A 选项的正误,利用空间向量法可判断BC 选项的正误,利用几何体的体积公式可判断D 选项的正误. 【详解】
取CD 、AB 的中点O 、M ,连接OH 、OM , 在图1中,
A 、
B 、
C 、
D 是正方形EFGH 各边的中点,则
11
22
CH GH EH DH ===,
O 为CD 的中点,OH CD ∴⊥,
平面CDH ⊥平面ABCD ,平面CDH 平面ABCD CD =,OH ⊂平面CDH ,
OH ∴⊥平面ABCD ,
在图1中,设正方形EFGH
的边长为()0a >,可得四边形ABCD 的边长为2a , 在图1中,ADE 和ABF 均为等腰直角三角形,可得45BAF DAE ∠=∠=, 90BAD ∴∠=,∴四边形ABCD 是边长为2a 的正方形,
O 、M 分别为CD 、AB 的中点,则//OC BM 且OC BM =,且90OCB ∠=,
所以,四边形OCBM 为矩形,所以,OM CD ⊥,
以点O 为坐标原点,OM 、OC 、OH 所在直线分别为x 、y 、z 轴建立空间直角坐标系,
则()2,,0A a a -、()2,,0B a a 、()0,,0C a 、()0,,0D a -、(),,E a a a -、()2,0,F a a 、
(),,G a a a 、()0,0,H a .
对于A
选项,由空间中两点间的距离公式可得AE AF EF ===,
所以,AEF 是正三角形,A 选项正确;
对于B 选项,设平面AEF 的法向量为()111,,m x y z =,(),0,AE a a =-,
()0,,AF a a =,
由111100
m AE ax az m AF ay az ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,取11z =,则11x =,11y =-,则()1,1,1m =-, 设平面CGH 的法向量为()222,,n x y z =,(),0,CG a a =,()0,,CH a a =-, 由222200
n CG ax az n CH ay az ⎧⋅=+=⎪
⎨
⋅=-+=⎪⎩,取21z =-,可得21x =,21y =-,则()1,1,1n =--,
()2
2111110m n ⋅=+--⨯=≠,所以,平面AEF 与平面CGH 不垂直,B 选项错误;
对于C
选项,cos ,32CG m CG m a CG m
⋅
<>=
=
=
⋅, 设直线CG 与平面
AEF 所成角为θ,则sin θ=
,cos θ==
所以,sin tan cos θ
θθ
=
=C 选项正确; 对于D 选项,以ABCD 为底面,以OH 为高将几何体ABCD EFGH -补成长方体
1111ABCD A B C D -,则E 、F 、G 、H 分别为11A D 、11A B 、11B C 、11C D 的中点,
因为2AB =,即1a =,则1OH =,长方体1111ABCD A B C D -的体积为2214V =⨯=,
11211111
113326
A A EF A EF V S AA -=⋅=⨯⨯⨯=△,
因此,多面体ABCD EFGH -的体积为1110
44463
ABCD EFGH A A EF V V V --=-=-⨯=, D 选项错误. 故选:AC. 【点睛】
方法点睛:计算线面角,一般有如下几种方法:
(1)利用面面垂直的性质定理,得到线面垂直,进而确定线面角的垂足,明确斜线在平面内的射影,即可确定线面角;
(2)在构成线面角的直角三角形中,可利用等体积法求解垂线段的长度h ,从而不必作出线面角,则线面角θ满足sin h
l
θ=
(l 为斜线段长),进而可求得线面角; (3)建立空间直角坐标系,利用向量法求解,设a 为直线l 的方向向量,n 为平面的法向量,则线面角θ的正弦值为sin cos ,a n θ=<>.
10.如图所示,正方体ABCD A B C D ''''-的棱长为1,E ,F 分别是棱AA ',CC '的中点,过直线EF 的平面分别与棱BB ',DD '交于点M ,N ,以下四个命题中正确的是( )
A .0MN EF ⋅=
B .ME NE =
C .四边形MENF 的面积最小值与最大值之比为2:3
D .四棱锥A MENF -与多面体ABCD EMFN -体积之比为1:3 【答案】ABD 【分析】
证明EF ⊥平面BDD B '',进而得EF MN ⊥,即可得A 选项正确;证明四边形MENF 为菱形即可得B 选项正确;由菱形性质得四边形MENF 的面积1
2
S MN EF =⋅,再分别讨论MN 的最大值与最小值即可;根据割补法求解体积即可. 【详解】
对于A 选项,如图,连接BD ,B D '',MN .由题易得EF BD ⊥,EF
BB '⊥,
BD BB B '⋂=,
所以EF ⊥平面BDD B '',又MN ⊂平面BDD B '',所以EF MN ⊥,
因此0MN EF ⋅=,故A 正确.
对于B 选项,由正方体性质得:平面''//BCC B 平面''ADD A ,
平面''BCC B 平面EMFN MF =,平面''ADD A 平面EMFN EN =, 所以
//MF EN ,
同理得//ME NF ,又EF MN ⊥,所以四边形MENF 为菱形, 因此ME NE =,故B 正确.
对于C 选项,由B 易得四边形MENF 的面积1
2
S MN EF =
⋅, 所以当点M ,N 分别为BB ',DD '的中点时,四边形MENF 的面积S 最小, 此时2MN EF ==,即面积S 的最小值为1;
当点M ,N 分别与点B (或点B '),D (或D )重合时,四边形MENF 的面积S 最
大,
此时3MN =,即面积S 的最大值为6, 所以四边形MENF 的面积最小值与最大值之比为2:6,故C 不正确.
对于D 选项,四棱锥A MENF -的体积
1112123346
M AEF N AEF AEF V V V DB S --=+=⋅=⨯⨯=△; 因为E ,F 分别是AA ',CC '的中点,所以BM D N '=,DN B M '=,于是被截面MENF 平分的两个多面体是完全相同的,
则它们的体积也是相同的,因此多面体ABCD EMFN -的体积
21122
ABCD A B C D V V ''''-==正方体, 所以四棱锥A MENF -与多面体ABCD EMFN -体积之比为1:3,故D 正确. 故选:ABD .
【点睛】
本题考查立体几何与向量的综合、截面面积的最值、几何体的体积,考查空间思维能力与运算求解能力,是中档题.本题解题的关键在于证明四边形MENF 为菱形,利用割补法将四棱锥A MENF -的体积转化为三棱锥M AEF - 和N AEF -的体积之和,将多面体ABCD EMFN -的体积转化为正方体的体积的一半求解.。