高中数学常见最值问题及解题策略毕业论文
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录
1 引言 0
2 文献综述 (1)
2.1国内研究现状 (1)
2.2国内研究现状评价 (2)
2.3提出问题 (2)
3 高中数学常见最值问题及解题策略 (2)
3.1无理函数的最值问题 (2)
3.2三角函数的最值问题 (4)
3.3 数列的最值问题 (6)
3.4 平面向量的最值问题 (10)
3.5 圆锥曲线的最值问题 (11)
3.6具有几何意义的最值问题 (14)
3.7几个特殊类型函数的最值问题 (17)
3.8用特殊方法求一类函数的最值问题 (23)
4. 结论 (24)
4.1主要发现 (24)
4.2启示 (24)
4.3局限性 (24)
4.4努力的方向 (25)
参考文献 (25)
1 引言
最值问题是人们在生产和日常生活中最为普遍的一种数学问题,它的应用性和实用性非常广泛,无论是在生产实践中还是在科学研究领域我们都会遇到一些关于“最好”、“最省”、“最低”、“最优”、“最大”、“最小”等问题,这些问题一般都是转化为最值问题进行求解.此类问题的求解,不仅充分训练了学生把实际问题抽象成数学问题的思维方式,还培养了学生分析问题和解决问题的能力,同时也使学生逐步形成了应用数学的意识.在近几年的高考题中,最值问题是考试命题的一个重点,它占了高考分数的5%~23%.从题型上讲,主要以选择题、填空题和解答题三种形式出现.从难易程度上讲,主要有基础题、中档题和高档题三种题型.它在考查基础知识的同时,也逐步加强了对能力的考查,高考将注重检查学生对所学课程内容达到融会贯通的程度.因此,求解最值问题将会是高考的一个难点,学生不但要较好地掌握各个分支的知识,还要善于捕捉题目信息,有较强的思维能力,能够运用各种数学技能,灵活选择适当的解题方法,方能达到事半功倍之效.文章从高中数学试题中经常出现的无理函数、三角函数、数列、向量、圆锥曲线和解析式具有几何意义的最值问题以及三类特殊最值问题几个方面对高中数学最值问题进行相关探讨,给出求高考数学最值问题的解题策略,为学生的备考和教师的教学提供相应的指导.
2 文献综述
2.1国内研究现状
对于中学数学中最值问题的求解,国内已经有了一定的探讨,文[1]-[5]中总结归纳了最值问题的常用求解方法;文[6]通过举例讨论了一类无理函数最值的求解策略;文[7]讨论了如何巧求一类二元函数的最值;文献[8]针对解析式具有几何意义的函数的最值巧妙求法方法进行了归纳总结;文[9]给出了三类最小值问题的统一解法及一般结果;文[10]对一类函数最小值问题的处理方法进行了探讨;文[11]对一类函数最小值问题的处理方法进行了相关的补充;文[12]介绍了几种关于应用均值定理求最值的方法;文[13]给出了2005~2009年中最新五年高考真题及其详解;文[14]~[15]介绍了函数最值的
概念及其求解方法;文[16]给出了用松弛变量法巧妙地求解一类二元函数的最值问题的方法.
2.2国内研究现状评价
国内虽然对最值问题的求解方法已有了一定的研究,尤其是最值问题的常用求解方法归纳比较全面系统.但是在近几年的高考题中,主要考查学生学以致用的能力,只利用常用求解方法一般很难解决高考题中的最值问题.高考很多最值问题都是要综合应用相关知识的概念、性质、定理才可解决.现查阅到的参考文献中大多只讨论了最值问题的常用求解方法及归纳了几个特殊最值问题的统一解法,并没有具体探讨高考数学中基本最值问题的求解策略.
2.3提出问题
由于高考过程中,试题数量多、时间少、难度大,要在高考中获胜,必须要讲解题方法“精”、“巧”、“练”.而大多资料并没有从高考的角度研究高考数学中最值问题的求解,最值问题的求解方法还不够完善,高考中学生对最值问题的求解还存在一定的困难.因此,本文将通过查阅相关资料,站在高考的角度,对高中数学常见最值问题及解题策略进行总结、归纳、整理,进一步完善最值问题的求解策略,为学生的备考和教师的教学提供相应的指导.
3 高中数学常见最值问题及解题策略
最值问题是中学数学的一个重要内容,也是各种考试命题的一个热点.尤其在高考命题中,它是必不可缺少的热门考点,在近几年的高考试卷中,函数的最值问题占了相当大的比例.其主要以选择题、填空题和解答题的类型出现,其目的在于考查学生对基础知识的把握和灵活运用相关知识的能力.解决这类问题涉及的知识面较宽,要求学生不仅要能利用常用方法求解简单函数的最值问题,还要学生能根据知识的内在联系以及函数本身的特征适当选择最优解题方案,达到事半功倍之效.
3.1无理函数的最值问题 求形如22221121c x b x a c x b x a y ++±++=的最值
此类题型求解最值的方法很多,一般有平面几何法、分析法、解析几何法、复数法和求导法.但在求解过程中这些方法的使用非常灵活,存在一定难度,要求对常用最值
求解工具较为熟悉,能根据解析式的特征联系相关知识,恰当、准确地选用最优解题方案进行求解.而如何实现使用最优解题方案进行求解,关键是要认真捕捉题目信息,仔细观察解析式,从而根据知识的内在联系,利用转化思想便可解决问题.
例1 求()2f x =的最小值.
解 令y =显然]0,5[-∈x 有意义,有
222)725(x x x y -+-=)7)(25(272522x x x x --+-=,
则
0)7)(25(2,0722≥--≥-x x x x ,(当0=x 时等号成立)
当0=x 时
5min =y ,
所以
min ()7f x =.
评析 该题根据解析式的特征合理变形后,采用分析法.利用不等式的性质进行解答.本题主要考查学生的应变能力、分析能力和观察能力(各个时候取等号的条件的一致性,否则没有最值).
例2 求32610134)(22++-++-=x x x x x f )(R x ∈的最小值.
解 令22221)5(3)2(+-++-=x x y ,设,3)2(1i x z +-=i x z +-=)5(2,则
21z z y +=,且54321=+=+i z z ,
有
52121=+≥+z z z z . 当且仅当
345123=-=-x x 时函数取得最小值.当417=x 时5min =y , 所以
min ()8f x =.
评析 采用复数法,利用复数模的性质121212z z z z z z -≤+≤+,把代数式转化为复数模的关系进行求解.