涿鹿县高级中学2018-2019学年高三上学期11月月考数学试卷含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
涿鹿县高级中学2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1. 已知直线l :2y kx =+过椭圆)0(122
22>>=+b a b y a x 的上顶点B 和左焦点F ,且被圆
224x y +=截得的弦长为L
,若5
L ≥e 的取值范围是( ) (A ) ⎥⎦
⎤
⎝⎛550, ( B )
0⎛
⎝⎦ (C ) ⎥⎦⎤
⎝⎛5530, (D ) ⎥⎦⎤
⎝
⎛5540, 2. 记,那么
A
B
C D
3. 执行右面的程序框图,如果输入的[1,1]t ∈-,则输出的S 属于( )
A.[0,2]e -
B. (,2]e -?
C.[0,5]
D.[3,5]e -
【命题意图】本题考查程序框图、分段函数等基础知识,意在考查运算能力和转化思想的运用.
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
4. 椭圆22
:143
x y C +=的左右顶点分别为12,A A ,点P 是C 上异于12,A A 的任意一点,且直线1PA 斜率的
取值范围是[]1,2,那么直线2PA 斜率的取值范围是( )
A .3
1,42⎡⎤--⎢⎥⎣
⎦ B .33,48
⎡⎤--⎢⎥⎣
⎦ C .1,12⎡⎤⎢⎥⎣⎦ D .3,14⎡⎤
⎢⎥⎣⎦
【命题意图】本题考查椭圆的标准方程和简单几何性质、直线的斜率等基础知识,意在考查函数与方程思想和基本运算能力.
5. 如图是某几何体的三视图,则该几何体任意两个顶点间的距离的最大值为( )
A .4
B .5
C .
D .
6. 边长为2的正方形ABCD 的定点都在同一球面上,球心到平面ABCD 的距离为1,则此球的表面积为( ) A .3π B .5π
C .12π
D .20π
7. 设抛物线C :y 2=2px (p >0)的焦点为F ,点M 在C 上,|MF|=5,若以MF 为直径的圆过点(0,2),则C 的方程为( )
A .y 2=4x 或y 2=8x
B .y 2=2x 或y 2=8x
C .y 2=4x 或y 2=16x
D .y 2=2x 或y 2=16x
8. 已知函数y=2sinx 的定义域为[a ,b],值域为[﹣2,1],则b ﹣a 的值不可能是( )
A .
B .π
C .2π
D .
9. 已知f (x )是定义在R 上周期为2的奇函数,当x ∈(0,1)时,f (x )=3x ﹣1,则f (log 35)=( )
A .
B .﹣
C .4
D .
10.已知复合命题p ∧(¬q )是真命题,则下列命题中也是真命题的是( ) A .(¬p )∨q B .p ∨q C .p ∧q D .(¬p )∧(¬q )
11.设x ,y ∈R ,且x+y=4,则5x +5y 的最小值是( )
A .9
B .25
C .162
D .50
12.数列1,3,6,10,…的一个通项公式是( ) A .21n a n n =-+ B .(1)2n n n a -=
C .(1)
2
n n n a += D .21n a n =+ 二、填空题
13.已知点P 是抛物线24y x =上的点,且P 到该抛物线焦点的距离为3,则P 到原点的距离为 . 14.空间四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点.
①若AC=BD ,则四边形EFGH 是 ;
②若AC ⊥BD ,则四边形EFGH 是 .
15.设i 是虚数单位,是复数z 的共轭复数,若复数z=3﹣i ,则z •= .
16.某种产品的加工需要 A ,B ,C ,D ,E 五道工艺,其中 A 必须在D 的前面完成(不一定相邻),其它工艺的顺序可以改变,但不能同时进行,为了节省加工时间,B 与C 必须相邻,那么完成加工该产品的不同工艺的排列顺序有 种.(用数字作答)
17.过抛物线y 2=4x 的焦点作一条直线交抛物线于A ,B 两点,若线段AB 的中点M 的横坐标为2,则|AB|等于 .
18.在等差数列{a n }中,a 1,a 2,a 4这三项构成等比数列,则公比q= .
三、解答题
19.(本题满分12分)在ABC ∆中,已知角,,A B C 所对的边分别是,,a b c ,边7
2
c =
,且
tan tan tan 3A B A B +=-ABC ∆的面积为ABC S ∆=
a b +的值.
20.已知p :﹣x 2+2x ﹣m <0对x ∈R 恒成立;q :x 2+mx+1=0有两个正根.若p ∧q 为假命题,p ∨q 为真命题,求m 的取值范围.
21.如图,在四棱锥O ﹣ABCD 中,底面ABCD 四边长为1的菱形,∠ABC=,
OA ⊥底面ABCD ,OA=2,M 为OA 的中点,N 为BC 的中点. (Ⅰ)证明:直线MN ∥平面OCD ; (Ⅱ)求异面直线AB 与MD 所成角的大小; (Ⅲ)求点B 到平面OCD 的距离.
22.数列{a n}满足a1=,a n∈(﹣,),且tana n+1•cosa n=1(n∈N*).
(Ⅰ)证明数列{tan2a n}是等差数列,并求数列{tan2a n}的前n项和;
(Ⅱ)求正整数m,使得11sina1•sina2•…•sina m=1.
23.设M是焦距为2的椭圆E:+=1(a>b>0)上一点,A、B是椭圆E的左、右顶点,直线
MA与MB的斜率分别为k1,k2,且k1k2=﹣.
(1)求椭圆E的方程;
(2)已知椭圆E:+=1(a>b>0)上点N(x0,y0)处切线方程为+=1,若P
是直线x=2上任意一点,从P向椭圆E作切线,切点分别为C、D,求证直线CD恒过定点,并求出该定点坐标.
24.本小题满分12分 设函数()ln x f x e a x =- Ⅰ讨论()f x 的导函数'()f x 零点个数; Ⅱ证明:当0a >时,()2ln f x a a a ≥-
涿鹿县高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题
13.
14.
菱形;
矩形.
15.10.
16.24
17.6.
18.2或1.
三、解答题
19.11 2.
20.21.22.23.24.。