第十章 无穷级数 习题详细解答
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解 若级数分别为
∑u
n =1 ∞
∞
n
= 1 − 1 + 1 − " + (−1) n −1 + " ;
∑v
n =1 ∞
n
= −1 + 1 − 1 + " + (−1) n + " ;
∞ ∞
则级数
∞
∑ (u n + vn ) 显 然 收 敛 ; 但 是 如 果 另 外 有 级 数 ∑ wn = ∑ u n , 则 级 数
(3) (5) ∑ ( n + 2 − 2 n + 1 + n ) ;
n =1 ∞
(6)
1 1 1 1 + + 3 + 4 +"; 3 3 3 3
(7) ( − ) + (
1 1 1 1 1 1 − 2 ) + "" + ( n − n ) + " ; 2 3 2 3 2 3 2 1 3 5 7 2n − 1 +"; (8) + + + + " + 3 5 7 9 2n + 1
敛,由比较判别法,故级数
(sin 2n) 2 也收敛. ∑ 6n n =1
∞
(5)当 a > 1 时, u n =
∞ ∞ 1 1 1 1 ,而 收敛,故 收敛 < ∑ ∑ n n n n a 1+ a n =1 a n =1 1 + a
当 0 ≤ a ≤ 1 时, lim u n = lim
n→∞ ∞
(4)因为 S n = sin (5)因为
n + 2 − 2 n +1 +
n =( n+2−
n + 1) − ( n + 1 −
n)
S n = [( 3 − 2 ) − ( 2 − 1) + ( 4 − 3 ) − ( 3 − 2 ) + ( 5 − 4 ) − ( 4 − 3 ) + "
+ ( n + 2 − n + 1) − ( n + 1 − n )] = ( n + 2 − n + 1) − ( 2 − 1) =
(3) 因为
1 1 1 , = − n(n + 1) n n + 1
Sn =
1 1 1 1 + + +"+ 1⋅ 2 2 ⋅ 3 3 ⋅ 4 n(n + 1)
1 1 1 1 1 1 = (1 − ) + ( − ) + " ( − ) = 1− 2 2 3 n n +1 n +1
当 n → ∞ 时, S n → 1 ,故级数收敛.
当 n → ∞ 时, S n →
∞
1 ,故该级数收敛,且 3
∑ (3n − 2) ⋅ (3n + 1) = 3 .
n =1
1
1
5.若级数
∑u
n =1
∞
n
与
∑v
n =1
∞
n
都发散时,级数
∑ (u
n =1
∞
n
± vn ) 的收敛性如何?若其中一个
收敛,一个发散,那么,级数
∑ (u
n =1
∞
n
± vn ) 收敛性又如何?
n =1 n =1 n =1
∑ (u
n =1
n
+ wn ) 显然发散。
类似地,可以得到其它情况的答案。
习题 10.2 1. 用比较判别法或其极限形式判定下列各级数的敛散性: (1)
1 1 1 1 + + +" + "" ; 2⋅5 3⋅6 4⋅7 (n + 1) ⋅ (n + 4)
1 1 1 + + + "; 3 5 7
( x > 0 ).
(4)
解(1)因为
1 1 1 1 1 1 1 = , = , = " ,因此一般项 u n = 2 1⋅ 2 4 2 ⋅ 2 6 3 ⋅ 2 2n
1 a0 a a1 = = , 1 ⋅ 5 (2 ⋅ 1 − 1) ⋅ (2 ⋅ 1 + 3) 3 ⋅ 7 (2 ⋅ 2 − 1) ⋅ (2 ⋅ 2 + 3)
2π 3π nπ π + sin + sin + " + sin 6 6 6 6 1 π π π π π 2π 3π nπ + " + 2 sin sin ) = (2 sin sin + 2 sin sin + 2 sin sin π 12 6 12 6 12 6 12 6 2 sin 12 1 π 3π 3π 5π 2n − 1 2n + 1 π − cos π)] = [(cos − cos ) + (cos − cos ) + " + (cos π 12 12 12 12 12 12 2 sin 12 1 π (2n + 1)π [cos − cos ] = π 12 12 2 sin 12 2n + 1 π 不存在,所以 lim S n 不存在,因而级数发散. 由于 lim cos n→∞ n→∞ 12
2. 用比值判别法判别下列级数的敛散性: (1) 1 +
4 5 n+2 + 3 +"+ n +"; 2 3 3 3
(2) 3 +
+ "; nn 1 1 1 (3) sin + 2 ⋅ sin + 3 ⋅ sin 3 + " + n sin n + " ; 2 2 2 2 2 22 33 1
π π π π + sin + sin + " + sin n + " . 2 4 8 2 1 n2 (n + 1)(n + 4) 解(1)由于 lim = lim 2 =1 n→∞ n → ∞ n + 5n + 4 1 n2
而级数
∑n
n =1
∞
1
2
收敛,由比较判别法的极限形式,故原级数收敛.
1 n 1 (2) 由于 lim 2n − 1 = lim = , n→∞ n →∞ 2n − 1 1 2 n
2. 写出下列级数的一般项: 1 1 1 + + + "; (1) 2 4 6 (2)
a a2 a3 1 + + + + "; 1 ⋅ 5 3 ⋅ 7 5 ⋅ 9 7 ⋅ 11 3 5 7 9 11 13 − + − "; (3) − + − + 1 4 9 16 25 36
x x x x x2 + + + +" 2 2⋅ 4 2⋅ 4⋅6 2⋅ 4⋅6⋅8
习题 10.1 1. 写出下列级数的前五项: (1)
∑ ( 2 + n)
n =1
∞
n
2
;
(2) ∑
1 ⋅ 3"" (2n − 1) ; n =1 2 ⋅ 4 "" ( 2n)
∞
∞ (−1) n −1 n! ; (4) ∑ . (3) ∑ n n =1 ( n + 1) n =1 10n 1 2 3 4 5 解 (1) 2 + 2 + 2 + 2 + 2 + " 3 4 5 6 7 1 1⋅ 3 1⋅ 3 ⋅ 5 1⋅ 3 ⋅ 5 ⋅ 7 1⋅ 3 ⋅ 5 ⋅ 7 ⋅ 9 (2) + + +" + + 2 2 ⋅ 4 2 ⋅ 4 ⋅ 6 2 ⋅ 4 ⋅ 6 ⋅ 8 2 ⋅ 4 ⋅ 6 ⋅ 8 ⋅ 10 1 1 1 1 1 (3) − + − + −" 10 20 30 40 50 1! 2! 3! 4! 5! (4) 1 + 2 + 3 + 4 + 5 + " . 2 3 4 5 6 ∞
(4)因为
x x x x x x x ", = = = , , 2 1⋅ 2 2 ⋅ 4 2 ⋅ 4 2 ⋅ 4 ⋅ 6 2 ⋅ 4 ⋅ 6
1 2
2 2
3 2
因此一般项 u n =
x x x = n = n . 2 ⋅ 4 ⋅ 6 "" (2n) 2 (1 ⋅ 2 ⋅ 3"" n) 2 n!
(2) ∑
收敛的必要条件可知,该级数发散. 4. 证明下列级数收敛,并求其和:
1 1 1 1 + + +"+ + ". 1 ⋅ 4 4 ⋅ 7 7 ⋅ 10 (3n − 2)(3n + 1)
证
Sn =
1 1 1 1 + + +"+ 1 ⋅ 4 4 ⋅ 7 7 ⋅10 (3n − 2) ⋅ (3n + 1) 1 1 1 1 1 1 1 1 = [(1 − ) + ( − ) + " + ( − )] = (1 − ) 3 3n + 1 3 4 4 7 3n − 2 3n + 1
当 n → ∞ 时, S n → ∞ ,故级数发散. (2)因为
1 1 1 1 = ( − ) (2n − 1)(2n + 1) 2 2n − 1 2n + 1 1 1 1 1 + + +"+ 1⋅ 3 3 ⋅ 5 5 ⋅ 7 (2n − 1)(2n + 1)
Sn =
1 1 1 1 1 1 = [(1 − ) + ( − ) + " ( − )] 2 3 3 5 2n − 1 2n + 1 1 1 = [1 − ], 2 2n + 1 1 当 n → ∞ 时, S n → ,故级数收敛. 2
当 n → ∞ 时, S n → 1 − (6) 该级数的一般项 u n = 可知,该级数发散.
1 − ( 2 − 1) n + 2 + n +1
2 ,故级数收敛.
1
n
3
=3
−
1 n
→ 1 ≠ 0 (n → ∞) , 故由级数收敛的必要条件
(7) ( − ) + (
∞
1 3
1 2
∞ ∞ 1 1 1 1 1 1 1 1 ) ( ) ( ) − + − + " + − = − ∑ ∑ 2 2 3 3 n n n n 3 2 3 2 3 2 n =1 3 n =1 2
(2) 因为
a2 a2 a n −1 " 因此一般项 u n = = 5 ⋅ 9 (2 ⋅ 3 − 1) ⋅ (2 ⋅ 3 + 3) (2n − 1)(2n + 3)
(3) 因为
3 (2 ⋅ 1 + 1) 5 7 2 ( 2 ⋅ 2 + 1) 3 ( 2 ⋅ 3 + 1) = (−1)1 , = (−1) , − = (−1) " 2 1 1⋅1 4 9 2 32 n ( 2n + 1) 因此一般项 u n = (−1) n2 −
1 ⎧ 1 ⎪ , a =1 = ⎨2 n →∞ 1 + a n ⎪ ⎩1, 0 ≤ a < 1
lim u n ≠ 0 ,故 ∑
n→∞
1 发散. n n =1 1 + a
π π sin n n 2 = lim 2 ⋅π = π, (6)由于 lim n→∞ n →∞ π 1 2n 2n sin
而
∞ π 1 收敛,故 sin n 也收敛. ∑ ∑ n 2 n =1 2 n =1 ∞
而级数
∑ n 发散,由比较判别法的极限形式,故原级数发散.
n =1
∞
1
1 n 2 1 (2n − 1) 2 ) = = lim ( (3)由于 lim n→∞ n →∞ 2n − 1 1 4 2 n
而级数
∑n
n =1
∞
1
2
收敛,由比较判别法的极限形式,故原级数收敛.
(4 ) u n =
∞ (sin 2n) 2 1 1 1 ≤ ,而 为公比 q = < 1 的等比级数,该级数收 ∑ n n n 6 6 6 n =1 6
∞ 1 1 1 该级数为公比 q = < 1 的等比级数,该级数收敛,而 ∑ n 该级数为公比 ∑ n 3 n =1 3 n =1 2 ∞ ∞ 1 1 1 < 1 的等比级数,该级数也收敛,故 ∑ n − ∑ n 也为收敛级数. 2 n =1 3 n =1 2
q=
(8) 该级数的一般项 u n =
2n − 1 2 = 1− → 1 ≠ 0 (n → ∞) , 故由级数收敛的 2n + 1 2n + 1
(2)1+
(3) +
1 1
1 1 1 + 2 +"+ + "; 2 3 5 (2n − 1) 2
2
(sin 2) 2 (sin 4) 2 (sin 2n) (4) + +"+ + "; 2 6 6 6n
(5)
1 1 1 + + " + +" 1+ a 1+ a2 1+ an
( a > 0 ).
(6) sin
(9) ∑ ( 2 n +1 a − 2 n −1 a ) ( a > 0 );
n =1 ∞
1 1 解(1)因为 1+
(10)
1
+
1 1 1 + +"+ + ". 1 2 1 3 1 n (1 + ) (1 + ) (1 + ) 2 3 n
S n = ( 2 − 1) + ( 3 − 2 ) + ( 4 − 3 ) + " + ( n + 1 − n ) = n + 1 − 1
n 2
n 2
n 2
3. 判定下列级数的敛散性: (1) ∑ ( n + 1 − n ) ;
n =1 ∞
1 ; ( 2 n − 1 )( 2n + 1) n =1
∞
1 1 1 + +"+ +"; 1⋅ 2 2 ⋅ 3 n(n + 1) π nπ 2π (4) sin + sin + " + sin +"; 6 6 6
2 n +1
必要条件可知,该级数发散. (9) 因为 S n = (3 a − a ) + (5 a − 3 a ) + " + ( 2 n +1 a − 2 n −1 a ) = 当 n → ∞ 时, S n → 1 − a ,故该级数收敛. (10) 该级数的一般项 u n =
a −a