数学专业英语 第2章课后答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.1
2.比:ratio 比例:proportion 利率:interest rate 速率:speed 除:divide 除法:division 商:quotient 同类量:like quantity 项:term 线段:line segment 角:angle 长度:length 宽:width
高度:height 维数:dimension 单位:unit 分数:fraction 百分数:percentage
3.(1)一条线段和一个角的比没有意义,他们不是相同类型的量.
(2)比较式通过说明一个量是另一个量的多少倍做出的,并且这两个量必须依据相同的单位.
(5)为了解一个方程,我们必须移项,直到未知项独自处在方程的一边,这样就可以使它等于另一边的某量.
4.(1)Measuring the length of a desk, is actually comparing the length of the desk to that of a ruler.
(3)Ratio is different from the measurement, it has no units. The ratio of the length and the width of the same book does not vary when the measurement unit changes.
(5)60 percent of students in a school are female students, which mean that 60 students out of every 100 students are female students.
2.2
2.初等几何:elementary geometry 三角学:trigonometry 余弦定理:Law of cosines 勾股定理/毕达哥拉斯定理:Gou-Gu theorem/Pythagoras theorem 角:angle 锐角:acute angle 直角:right angle 同终边的角:conterminal angles 仰角:angle of elevation 俯角:angle of depression 全
等:congruence 夹角:included angle 三角形:triangle 三角函
数:trigonometric function
直角边:leg 斜边:hypotenuse 对边:opposite side 临边:adjacent side 始边:initial side 解三角形:solve a triangle 互相依赖:mutually dependent 表示成:be denoted as 定义为:be defined as
3.(1)Trigonometric function of the acute angle shows the mutually dependent relations between each sides and acute angle of the right triangle.
(3)If two sides and the included angle of an oblique triangle are
known, then the unknown sides and angles can be found by using the law of cosines.
(5)Knowing the length of two sides and the measure of the included angle can determine the shape and size of the triangle. In other words, the two triangles made by these data are congruent.
4.(1)如果一个角的顶点在一个笛卡尔坐标系的原点并且它的始边沿着x轴正方向,这个角被称为处于标准位置.
(3)仰角和俯角是以一条以水平线为参考位置来测量的,如果正被观测的物体在观测者的上方,那么由水平线和视线所形成的角叫做仰角.如果正被观测的物体在观测者的下方,那么由水平线和视线所形成的的角叫做俯角.
(5)如果我们知道一个三角形的两条边的长度和对着其中一条边的角度,我们如何解这个三角形呢?这个问题有一点困难来回答,因为所给的信息可能确定两个三角形,一个三角形或者一个也确定不了.
2.3
2.素数:prime 合数:composite 质因数:prime factor/prime divisor 公倍数:common multiple 正素因子: positive prime divisor 除法算式:division equation 最大公因数:greatest common divisor(G.C.D) 最小公倍数: lowest common multiple(L.C.M) 整除:divide by 整除性:divisibility 过
程:process 证明:proof 分类:classification 剩余:remainder辗转相除
法:Euclidean algorithm 有限集:finite set 无限的:infinitely 可数的countable 终止:terminate 与矛盾:contrary to
3.(1)We need to study by which integers an integer is divisible, that is , what factor it has. Specially, it is sometime required that an integer is expressed as the product of its prime factors.
(3)The number 1 is neither a prime nor a composite number;A composite number in addition to being divisible by 1 and itself, can also be divisible by some prime number.
(5)The number of the primes bounded above by any given finite integer N can be found by using the method of the sieve Eratosthenes.
4.(1)数论中一个重要的问题是哥德巴赫猜想,它是关于偶数作为两个奇素数和的表示.
(3)一个数,形如2p-1的素数被称为梅森素数.求出5个这样的数.
(5)任意给定的整数m和素数p,p的仅有的正因子是p和1,因此仅有的可能
的p和m的正公因子是p和1.因此,我们有结论:如果p是一个素数,m是任意整数,那么p整除m,要么(p,m)=1.
2.4
2.集:set 子集:subset 真子集:proper subset 全集:universe 补
集:complement 抽象集:abstract set 并集:union 交集:intersection 元
素:element/member 组成:comprise/constitute
包含:contain 术语:terminology 概念:concept 上有界:bounded above 上界:upper bound 最小的上界:least upper bound 完备性公理:completeness axiom
3.(1)Set theory has become one of the common theoretical foundation and the important tools in many branches of mathematics.
(3)Set S itself is the improper subset of S; if set T is a subset of S but not S, then T is called a proper subset of S.
(5)The subset T of set S can often be denoted by {x}, that is, T consists of those elements x for which P(x) holds.
(7)This example makes the following question become clear, that is, why may two straight lines in the space neither intersect nor parallel.
4.(1)设N是所有自然数的集合,如果S是所有偶数的集合,那么它在N中的补集是所有奇数的集合.
(3)一个非空集合S称为由上界的,如果存在一个数c具有属性:x<=c对于所
有S中的x.这样一个数字c被称为S的上界.
(5)从任意两个对象x和y,我们可以形成序列(x,y),它被称为一个有序对,除非x=y,否则它当然不同于(y,x).如果S和T是任意集合,我们用
S*T表示所有有序对(x,y),其中x术语S,y属于T.在R.笛卡尔展示了如何通过实轴和它自己的笛卡尔积来描述平面的点之后,集合S*T被称为S和T的笛卡尔积.
2.5
2.竖直线:vertical line 水平线:horizontal line 数对:pairs of numbers 有序对:ordered pairs 纵坐标:ordinate 横坐标:abscissas 一一对应:one-
to-one 对应点:corresponding points
圆锥曲线:conic sections 非空图形:non vacuous graph 直立圆锥:right circular cone 定值角:constant angle 母线:generating line 双曲
线:hyperbola 抛物线:parabola 椭圆:ellipse
退化的:degenerate 非退化的:nondegenerate任意的:arbitrarily 相容
的:consistent 在几何上:geometrically 二次方程:quadratic equation 判别式:discriminant 行列式:determinant
3.(1)In the planar rectangular coordinate system, one can set up a
one-to-one correspondence between points and ordered pairs of numbers and also a one-to-one correspondence between conic sections and quadratic equation.
(3)The symbol can be used to denote the set of ordered pairs(x,y)such that the ordinate is equal to the cube of the abscissa.
(5)According to the values of the discriminate,the non-degenerate graph of Equation (iii) maybe known to be a parabola, a hyperbola
or an ellipse.
4.(1)在例1,我们既用了图形,也用了代数的代入法解一个方程组(其中一
个方程式二次的,另一个是线性的)。

一个方程组的图像给了我们关于解的信息。

而代数解给了我们关于图像的信息。

一个方程组的代数和它的解析几何之间的
相互作用引人注目并且有用。

(3)考虑一个非退化的以Q为圆心的实圆,设P不等于Q是在经过Q且垂直于原所在平面的任意的一个实值定点。

在连接P和圆上的点得到直线簇的点的轨
迹称为正圆锥。

2.6
2.向量:vector 单位向量:unit vector 法向量:normal vector 位置向量:position vector 基点:base point 向量的尖端:tip of a vector 向量的分量:component of a vector 点乘:dot product参数方程:parametric equation 位移:displacement 在集合上:geometrical 平行线:parallel lines 平行于:parallel to 平行四边形:parallelogram 不平行的:nonparallel 垂直的:perpendicular指向:point 点:point 加:add 乘以:multiply by
3.(1)In space any two parallel vectors are collinear; two vectors can determine a plane if and only if they are nonparallel.
(3)The product aA of a real number a and a vector A is still a
vector which has length |a||A| and the same direction as A if a is a positive number and the opposite direction if a is a negative number.
(5)By giving a point on a line and a nonzero vector parallel to the line, the parametric equation of the line can be obtained. A line can be expressed as a system of equations consisting of the equations for two plane.
4.(1)众所周知,笛卡尔用一个数对来定位平面上的一个点,用一个数的三元数组来定位空间的一个点。

当这个思想被推广为n元实数组u(a1,a2,……an),对于任何整数N>=1,这个n元数组称为一个n维点或者一个n维向量,各个数
a1,a2,……an称为这个向量的坐标或者分量。

(3)向量x1,x2,……xn称为线性相关的,如果存在不全为0的标量使得
a1x1+a2x2+……anxn=0.向量x1,x2……xn称为线性无关的,如果x1,
x2……xn不是线性相关的。

2.7
2.向量空间:vector space 行向量:row vector 列向量:column vector 线
性相关:linearly dependent 线性无关:linearly independent 线性组
合:linear combination 数量级:scalar
product 矩阵:matrix 方阵:square matrix 行列式:determinant 逆矩
阵:inverse matrix 单位矩阵:identity matrix 零矩阵:zero matrix 变
换:transformation 到上的:onto 同
构:isomorphism 同构的:isomorphic 应用微分方程:applied differential equations 数理经济:mathematical economics 量子力学:quantum mechanics 相容的:consistent 最终的:ultimately
3.(1)Linear combination, linear dependence and linear independence
are all important concepts of linear spaces.
(3)Not only matrix can be used to solve a system of linear equations, but also can be used to judge whether the system of equations have solutions and whether the solution is unique.
(5)This conclusion is contradictory to the hypothesis of the problem, so the proposition to be proved is true.
(7)let V be an n-dimensional vector space over the field F and W be an m-dimensional vector space over the field F. Let B and B' be
ordered bases for U and W respectively. Then any linear
transformation T from V into W is determined by the matrix of T relative to B and B'.
4.(1)如果V和W是在域F上的向量空间,任何V到W的到上的一一对应的线性
变化T称为一个V到W到上的同构。

如果存在一个V到W到上的同构,我们说
V同构于W。

(3)当p=1,一个p*q的矩阵只有一行,称为一个行向量。

当q=1时,该矩阵
只有一列,称为一个列向量。

当p和q都是1时,这种情况相当不值一提,这里不需要关注. 一个有p个元素的列向量我们成为一个p向量,所以一个p向量是一个p*1的矩阵。

(5)一个m*n的矩阵有m个行向量和n列向量。

设A是一个有实数元素的n阶方阵,那么A的n个行向量是线性无关的当且仅当行列式|A|不等于0.进一步,A的n个列向量是线性相关的当且仅当A的n个列向量是线性相关的。

33
2.8
函数关系:function relation 表格:table 反函数:inverse function 简单函数:simple function 特征函数:characteristic function 复合函数:composite function 映射:mapping 定义域:domain 值域:range 像:image 与……成正比:be directly proportional to 正变:direct variation 反变:inverse variation 性质:property 按推广的定义:in the extended sense 普遍化:generalize/universalize 并入:incorporate 无穷大:infinite 最大值:maximum 可测空间:measurable space
3.(1)Because the concept of function originated in physics, in the seventeenth century, people once believed that the function relation was nothing but a formula.
(3)If to each value of the variable x, the variable y has a
definite value corresponding,then the variable y is the function of variable x.
(5)If f is a mapping from a space X to another space Y and g is a mapping from the space Y to the another space Z, then we can define a composite mapping h=g.f, which is a mapping from X to Z.
4.(1)函数提供了一个研究一些变量的方法,所研究的变量随着其他的量变化,也就是说,当一个量的变化引起了另一个量相应的变化时。

(3)对一个函数f:D-R.我们定义f(D)={y in R|y=f(x) x属于D},并f(D)
是f的像。

我们说f:D-R达到一个最大值,如果使像f(D)有一个最大值,即
有一个点x0属于D使得f(x)<=f(x0).
(5)要画出一个新的函数y=f(x),即一个我们不熟悉的函数图象,我们可以
按以下方式使用一些作图建议。

(a)确定函数的定义域。

(b)确定此方程拥有的任何类型的对称性。

如果f(x)=f(-x),那么函数表现出y 轴轴对称性。

如果f(-x)=-f(x),那么函数表现出原点对称性。

(c通过x=0处对f(x)取值求y截距,通过求x的值使f(x)=0求x截距。

(d)建立一个满足方程y=f(x)的有序对的表格。

(e)描画出于有序对有关的点,并用一条平滑的曲线连接它们,然后,如果合适,则根据图像所拥有的任何对称性反射出曲线的这一部分。

2.9
2.变量:variable 极限:limit 左极限:left limit 右极限:right limit
绝对值:absolute value 序列:sequence 柯西列:Cauchy sequence 级数:series递增的:increasing 递减的;decreasing 单调的:monotonic 有界的:bounded 无界的:unbounded 上界:upper bound 最小上界:least upper bound 最大下界:greatest lower bound 有限区间:finite interval 无穷区间:infinite interval 有界集:bounded set 实数系:real-number system 趋近:approach 收敛:converge 一致收敛:converge uniformly 判别法:criterion 等价:be equivalent to 逐次的:successive 与……矛盾:contradict
3.(1)A sequence is called monotonic if it is increasing or decreasing.
(3)If a sequence {an} converges, then for any positive number c, there exists a positive integer N such that |an|<c for all n>=N.
(5)Suppose the function f(x) is defined on the interval(a,infinite). If any c>0, there exists a positive integer K such that |f(x)-A|<c
for all x>=K(where A is a constant), then f(x) is said to converge to A as X-+infinite. If g(x)=-f(x)converges to A as x—infinite, then
f(x) is said to converge to A as x—infinite. If f(x) converges to A both as x-+infinite and as x—infinite, then f(x) is said to converge to A as x-infinite.
4.(1)一个序列{an}被称为有极限L如果对于任意的正整数c,存在另一个正整
数N(N可能与c有关),使得|an-L|<c对于所有的n>=N成立。

一个不收敛的
数列就被称为发散的。

(3)短语“收敛序列”只适用于极限是有限的序列。

一个序列具有无穷极限被称为发散的。

当然,发散序列并不具有无穷极限,例子由下面公式定义:………………
(5)引理假设序列{dn}收敛于数d ,并且dn>=0对于每一个自然数n成立,
那么我们有d>0。

上一个引理断言,一个非负数收敛序列也有一个非负的极限。

一个正数的收敛序列也有一个正的极限,这不总是真实的。

例如1/n是一个收
敛于0的正数列。

2.10
2.导数:derivation 微分:differential 切线:tangent line 即时速度:instantaneous velocity 差商:difference quotient 可视化的解释:visual interpretation 子区域:subdomain 逼近:approximation 原函数:
primitive function 反导数:antiderivative 不定积分:indefinite
integral 被积函数:integrand 任意常数:arbitrary constant 积分常数:integral constant 积分公式:integral formula 逆过程:reverse process 替换法积分:integration by substitution 分部积分:integration by
parts 连续函数:continuous function 可微函数:differentiable function
3.(1)People’s researches on the tangent line to a curve and instantaneous velocity of moving body leads to the generation of the concept of a derivative.
(3)The tangent problem provides a visual interpretation for the derivative, which leads people to define the derivative as the limit
of a difference quotient.
(5)If f(x) has a first derivative f’(x) in an interval, then, it can be used to define the differential of f(x).
4.(1)导数的例子
例1 一个常函数的导数设f是一个常值函数,比如说f(x)=c对于所有的x
成立,差商是……………由于对有所有h!=0。

此商为0,它的极限f’(x)对
于每一个x也是0.换句话说,一个常数函数在各处有零导数。

例2 一个线性函数的导数设f是一个线性函数,比如说f(x)=mx+b对于所有的
实数x成立。

如果h!=0,我们有…………由于当h趋近于0时,差商不改变,我们得出结论f’(x)=m对于每一个x成立。

因此一个线性函数的导数是一个常函数。

(3)方向导数我们现在介绍一个偏导数的自然推广。

在定义……中,差商的分子用于涉及到f(x,y)在……和……两点的值。

当……趋近于0时,第一个点沿
着直线y=y0趋近于后面的点。

对于……一个点……沿直线x=x0趋近于……。

(5)相差一个常数的反导数如果F是连续函数f的反导数,那么任何其他的反导数一定有形式 G(x)=F(x)+C,这就说明同一个函数的两个反导数一个相差积
分常数值,此值可以为0.
2.11
2. 定积分:definite integral 不变性:invariance 可加性:additivity唯
一性:uniqueness 阶梯函数:step function 非负函数:nonnegative
function 放大:expansion 压缩:contraction 建立:establish 比较:comparison 成立:hold 严格不等式:strict inequality直立柱子:right cylindrical solid 子区间:subinterval 旋转体:solid of revolution 圆柱
形的:cylindrical 单调的:monotonic 可测的:measurable 可积的:integrable 全等的:congruent 截面的:cross-sectional 凸的:convex 有效的:valid
3.(1)The definite integral satisfies the linearity with respect to
the integrand,the additivity with respect to the interval of integration and invariance under translation.
(3)Step functions or other simple functions can be used to approximate integrand above and below to find the approximate value
of the integral of the function discussed.
(5)Let a function y=f(x) be nonnegative on the interval[a,b]. Then the solid obtained by revolving ordinate set of this function about the x-axis, is a solid of revolution, whose volume can be computed by the integral of the function ……over the interval[a,b].
4.(1)微积分学的基本定理详细阐述了两种核心运算之间的关系——微分和积分。

定理的第一部分,有时被称为微积分第一基本定理,表明一个不定积分可以由一个微分法反转而来,第一部分也很重要因为它保证了对于连续函数反导数的存在性.第二部分,有时被称为微积分第二基本定理,允许人们通过使用它的无穷多个反导数的任意一个来计算一个函数的定积分.订立的这一部分有着不可估量的实际应用,因为它显著的简化定积分的计算.
(3)推论基本定理经常被用于计算一个函数f的定积分,它的一个反导数F已知.详细的说,如果f是一个[a,b]上的实值连续函数,F是f在[a,b]上的一个反
导数,那么……。

推论假定整个区间上的连续性,这个定理在下面的定理中被稍微加强了。

2.12
2.点状收敛:converge pointwise 绝对收敛:converge absolutely 一致收敛的:uniformly convergent 一致收敛:converge uniformly WM判别法:weierstrass M-test 比较判别法: geometric series 幂级数:power series 收敛圆:circle of convergence 收敛半径:radius of convergence 上
界:upper bound 上有界:bounded above 最小上界:least upper bound 相邻项:consecutive terms 空集:empty set 在内部:interior to 控制:dominate 操作:manipulate
3.(1)A sequence of functions which converges uniformly on an open interval(a,b) must converge at every point in the interval, but a sequence of functions which converges pointwise on an inteval(a,b) may not converge uniformly on the interval.
(3)Any power series …… converge at least at the point z=0, if it converges in the entire complex plane, then its radius of convergence is positive infinite.
(5)The general term of a convergent series always approaches zero, from which follows a necessary condition for a series to converge.
But it is not sufficient because a series whose general term approaches zero may not converge.
4.(1)这个特殊幂级数在收敛圆的每个边界点处都发散,因为如果|z|=r,则通
项有绝对值n。

(3)一个级数……被称为绝对收敛的如果……收敛,如果……收敛而……发散,则它被称为条件收敛的。

(5)现在我们考虑各项在实直线或在复平面上具有共同定义域S的实值或复值函数的序列{fn},假定fn在S上一致收敛于一个函数f,如果一个fn在S上
的p点处连续,则极限函数f也在p上连续。

2.13
2.方程:equation 齐次方程:homogeneous equation 齐次的:homogeneous
非齐次的:non-homogeneous 存在性:existence 唯一性:uniqueness 唯一的:
unique 惟一地:uniquely 微分方程的阶:order of a differential
equation 初始条件:initial condition 通解:general solution 特解:particular solution 补解:complementary solution 产生:yield 变化:range 输入:input 输出:output 先验的:a priori
3.(1)The order of a differential equation is defined as the order of the highest derivative that appears in the equation.
(3)The study of existence and uniqueness of solutions of
differential equation is very important because the practical problems require that we answer under what conditions a differential equation in question has solutions and has a unique solution.
(5)The general solution of a nonhomogeneous equation is of the following form ……,where yc(x)is the general solution of the corresponding homogeneous equation and yp(x) is a particular
solution of the nonhomogeneous equation.
4.(1)一般的二阶微分方程是具有形式F(x,y,y',y")=0的一个方程,与这种方程相联系的理论相当复杂,因此我们以把我们的注意力限制在那些可以就y"接触
的方程开始,即可以写成形如y"=f(x,y,y')的方程.
(3)如果函数p和q在开区间(a,b)上连续,那么存在微分方程……在区间a<x<b
上的一个基础解组,集{y1,y2}是该方程的一个基础解组,当且仅当y1和y2
都是该方程的解,且该方程的每一个解都可以表示成y1和y2的一个线性组合。

(5)很多研究已被致力于常微分方程的求解方法,在方程为线性的情形,它可以通过解析方法求解,不幸地是,大多数有趣的微分方程是非线性的,除了少数例外情况以外,它们不能被精确求解,其近似解可以通过计算机逼近求得.
2.14
随机变量:random variable 密度函数:density function 方差:variance
偏差:deviation 标准差:standard deviation 带权平均:weighted average 平方根:square root 均方根 root mean square 正态分布:normal distribution 斯蒂尔切丝积分:Stieltjes integral 大数定律:law of
large numbers 质点:mass point 质心:center of mass 二阶矩:second moment惯性矩:moment of inertia 旋转半径:radius of gyration 散步:spread 使散开:disperse 离散的:discrete 连续的:continuous 理论上:theoretically
3.(1)概率的一种字典定义为:一个事件可能发生的程度,通过喜好的情形与
可能出现的情形的总数之比来衡量。

(3)为了推广这种想法,以至于它可以被应用于任何数据集,这些数据集由对许多个体中一个变量取值的标本组成,下面的统计记号法被发现是很有用的。

(5)在很多概率论的应用中,感兴趣的变量是其他随机变量的和,例如,在一种赌博中在若干局之后的获利结果是每次比赛获利的和。

4.(1)The mathematical expectation E(X) and the variance Var(X) are both theoretically computable values associated with the random variable X.
(3)For each random variable, a standardized random variable, whose expectation is 0 and variance is 1, can be defined
(5)Laplace was the first mathematician to realize that many sequences of random variables satisfy the central limit theorem, although a few other mathematicians had known earlier that some
special sequences of random variables have this property.
2.16
2.概率论:probability theory 组合分析:combinatorial analysis 组合学:combinatorics 纯数学:pure mathematics 数值分析:numerical analysis
连续数学:continuous mathematics 离散数学:discrete mathematics 有限集:finite set 二项式系数:binomial coefficient 枚举:enumeration 不
同的元素:distinct elements 逼近:approximation 符号运作:symbolize manipulation 线性插值:linear interpolation 无限精度:infinite precision 直接方法:direct method 算法:algorithm 二分法:bisection method 收敛判别法convergence test 牛顿法:New’s method 拉格朗日插值
多项式:Lagrange interpolation polynomial 高斯消元法:Gaussian elimination 欧拉方法:Euler’s method 雅克比迭代:Jacobi iteration 离散化:discretization连续体:continuum
3.(5)Numerical analysis uses numericalapproximation to study algorithms for the problems of continuous mathematics.
(6)Although they can compute the solutions to some problems in a finite number of steps by using the Gaussian elimination, people can only use finite precision and the results obtained are simply approximations of the true solutions.
4.(5)数值分析延续了数学实用计算的悠久传统,就像根2的巴比伦近似值,现
在数值分析不寻求精确解,因为实际中精确解经常不可能得到,取而代之,数
值分析大部分内容关注在保持合理的误差限的同时获得近似解。

(6)现代计算机出现之前,数值方法经常依赖于在大的印刷表格中的手工差值,自20世纪中期以来,取而代之的是计算机来计算所要求的函数,尽管如此,差值算法仍被用作解微分方程的软件的一部分。

相关文档
最新文档