高二数学不等式综合练习课

合集下载

高中数学选择性必修二 精讲精炼 拓展四 导与零点、不等式等综合运用(精练)(含答案)

高中数学选择性必修二 精讲精炼 拓展四 导与零点、不等式等综合运用(精练)(含答案)

拓展四 导数与零点、不等式等综合运用(精练)【题组一 零点问题】1.(2021·河北邢台·高二月考)已知函数()f x '满足()()()()43,00,11xxf x f x x f f e e -===+',则函数()()1F x f x =-的零点个数为( )A .0B .1C .2D .3【答案】B【解析】当0x ≠时,由()()43xxf x f x e x -=',可得()()3263xx f x x f x e x ='-,则()()3263x x f x x f x xe '-=,即()'3x f x x e ⎡⎤=⎢⎥⎣⎦,所以()3.x e f x C x =+因为()11f e =+,所以1=C ,故()()()310.xe f x x x =+≠因为()00f =,所以()()31xf x x e =+,则()()233.xe f x x x ⎡=+'⎤+⎣⎦设()()33x g x x e =++,则()()4x g x x e +'=, 所以()g x 在(),4-∞-上单调递减,在()4,-+∞上单调递增,所以()4min ()430e g x g -=-=-+>,所以()f x '0,则()f x 在(),-∞+∞上单调递增,()()1F x f x =-在(),-∞+∞上也单调递增,因为()()00110,F f =-=-<()()111110F f e e =-=+-=>, 所以(0)(1)0F F <,所以()F x 有且只有1个零点. 故选:B2.(2021·河南南阳·高二月考(理))已知函数2()(2)(2)f x x x a a =->,若函数()(()1)g x f f x =+恰有4个零点,则a 的取值范围是( ) A .(3,4) B .(3,)+∞ C .(2,3) D .(4,)+∞【答案】B【解析】因为2()(2)(2)f x x x a a =->的零点为0,2a,所以由()(()1)0g x f f x =+=,得()10f x +=或2a ,即()1f x =-或12a-.因为()2(3)(2)f x x x a a '=->,所以()f x 在(,0)-∞,,3a ⎛⎫+∞ ⎪⎝⎭上单调递增,在0,3a ⎛⎫⎪⎝⎭上单调递减,则()f x 的极大值为(0)0f =,极小值为3327a a f ⎛⎫=- ⎪⎝⎭.因为2a >,所以102a ->,所以结合()f x 的图象可得3127a-<-且102a ->,解得3a >.故选:B3.(2021·北京·首都师范大学附属中学高二期中)若函数()ln f x x ax =-有两个不同的零点,则实数a 的取值范围是( ) A .0,B .10,e ⎛⎫⎪⎝⎭C .()0,eD .1,e ⎛⎫-∞ ⎪⎝⎭【答案】B【解析】解:因为函数()ln f x x ax =-有两个不同的零点, 所以方程ln 0x ax -=有两个不相等的实数根, 所以ln xa x=有两个不相等的实数根, 令ln x y x=,21ln 'xy x -=,所以当()0,x e ∈时,'0y >,函数ln xy x=为增函数, 当(),x e ∈+∞时,'0y <,函数ln xy x=为减函数, 由于当ln ln 0,,,0x xx x x x→→-∞→+∞→, 故函数ln xy x=的图像如图,、所以ln x a x =有两个不相等的实数根等价于10,a e ⎛⎫∈ ⎪⎝⎭. 故选:B4.(2021·陕西省洛南中学高二月考(理))函数3()12f x x x m =-++有三个零点,则m 的取值范围为_______. 【答案】(16,16)-【解析】因为函数3()12f x x x m =-++, 所以2()3123(2)(2)f x x x x '=-+=-+-,令()022()02f x x f x x ''>⇒-<<<⇒<-;或2x >,所以函数()f x 在()2-∞-,和(2),+∞上为减函数,在(22)-,上为增函数, 所以当2x =-时,()f x 取得极小值,且(2)16f m -=-, 当2x =时,()f x 取得极大值,且(2)16f m =+,又函数有三个零点,所以160160m m -<⎧⎨+>⎩,解得1616m -<<.故答案为:(1616)-,5.(2021·河北邢台·高二月考)已知方程e 0x x m --=有且只有1个实数根,则m =__________. 【答案】1【解析】设()e x f x x =-,则()e 1.xf x ='-令()0f x '=,得0x =,则()f x 在(),0-∞上单调递减,在()0,∞+上单调递增,所以()f x 在0x =处取得最小值()0 1.f =故若方程e 0x x m --=有且只有1个实数根,则 1.m =故答案为:16.(2021·福建·福州三中高二期中)已知函数1()x f x xe +=,若关于x 方程2()2()20()f x tf x t R -+=∈有两个不同的零点,则实数t 的取值范围为_______________.【答案】32⎫⎪⎭【解析】令1()x g x xe +=,111()(1)x x x g x e xe x e +++'=+=+,所以在(1,)-+∞上,()0g x '>,()g x 单调递增, 在(,1)-∞-上,()0g x '<,()g x 单调递减, 所以11()(1)1min g x g e -+=-=-=-, 又(0)0g =,所以作出()g x 与()f x 的图像如下:()11f -=,令()(0)k f x k =>,则方程2()2()20()f x tf x t R -+=∈为2220()k tk t R -+=∈,则2222k t k k k+==+, 令()2g k k k=+,作出()g k 的图像:当02t <<0t <<2y t =与()2g k k k=+没有交点, 所以方程22t k k=+无根,则()(0)k f x k =>无解,不合题意.当2t =t =时,2y t =与()2g k k k=+有1个交点,所以方程22t k k=+有1个根为k =()(0)k f x k =>有1个解,不合题意.当2t >t >2y t =与()2g k k k=+有2个交点,所以方程22t k k=+有2个根为10k <2k >若11k =时,则1()(0)k f x k =>有2个解,2()(0)k f x k =>有1个解, 所以()k f x =有3个解,不合题意.若101k <<时,则1()(0)k f x k =>有3个解,2()(0)k f x k =>有1个解, 所以()k f x =有4个解,不合题意.11k >>时,则1()(0)k f x k =>有1个解,2()(0)k f x k =>有1个解, 所以()k f x =有2个解,合题意. 因为22t k k=+,所以23t <32t <,综上所述,t 的取值范围为3)2.故答案为:3)2.7.(2021·安徽·芜湖一中高二期中(理))已知函数2()2ln x f x e x t -=--有四个零点,则实数t 的取值范围为___________. 【答案】()0,2ln 21-【解析】函数2()2ln x f x e x t -=--的零点个数,也就是22ln x y e x -=-与y t =的交点个数,设()22ln x g x ex -=-,显然函数的定义域为()0,∞+,()22x g x e x -'=-, 记()22x h x ex -=-,则有()20h =,()2220x h x e x-'=+>, ()h x ∴在()0,∞+上单调递增,所以当()0,2x ∈时,()0h x <,即()0g x '<, 所以()g x 在()0,2上单调递减,当()2,x ∈+∞时,()0h x >,即()0g x '>, 所以()g x 在()2,+∞上单调递增, 所以()()min 212ln 20g x g ==-<,同一直角坐标系中画出函数22ln x y e x -=-与y t =的大致图象,如图:由图可知,函数22ln x y e x -=-与y t =有四个交点,可得02ln 21t <<-. 故答案为:()0,2ln 21-8.(2021·江苏·无锡市青山高级中学高二期中)已知函数f (x )=3223,015,1x x m x mx x ⎧++≤≤⎨+>⎩,若函数()f x 有两个不同的零点,则实数m 的取值范围为___. 【答案】()5,0-【解析】当01x ≤≤时,()3223f x x x m =++,则()2660f x x x '=+≥,故()f x 在[]0,1x ∈上是增函数.要使函数()f x 有两个不同的零点,则函数()f x 在[]0,1与(1,)+∞上各有1个零点,显然0m <.故()()0?1050f f m ⎧≤⎨+>⎩,解得:50m -<<,综上所述:实数m 的取值范围为()5,0-. 故答案为:()5,0-.9.(2021·河南·高二期中(理))已知函数()()3xx e x f a =-+.(1)当1a =时,求()f x 的最小值;(2)若()f x 有两个零点,求实数a 的取值范围. 【答案】(1)2-;(2)21,e ⎛⎫+∞ ⎪⎝⎭.【解析】(1)当1a =时,()3xf x e x =--,则()f x 的定义域为(),-∞+∞,且()1xf x e '=-,∴当(),0x ∈-∞时,()0f x '<;当()0,x ∈+∞时,()0f x '>;()f x ∴在(),0-∞上单调递减,在()0,∞+上单调递增, ()f x ∴的最小值为()02f =-.(2)由题意知:()f x 定义域为(),-∞+∞,()xf x e a '=-;①当0a ≤时,()0xf x e a '=->恒成立,()f x ∴在(),-∞+∞上单调递增,不符合题意;②当0a >时,令()0f x '=,解得:ln x a =,∴当(),ln x a ∈-∞时,()0f x '<,()f x 单调递减;当()ln ,x a ∈+∞时,()0f x '>,()f x 单调递增;即当0a >时,()f x 有极小值也是最小值为()()ln 2ln f a a a =-+. 又当x →-∞时,()f x →+∞;当x →+∞时,()f x →+∞;∴要使()f x 有两个零点,只需()ln 0f a <即可,则2ln 0a +>,解得:21a e >; 综上所述:若()f x 有两个零点,则a 的取值范围为21,e ⎛⎫+∞ ⎪⎝⎭.10.(2021·广东普宁·高二期中)设函数()cos x f x e x =,()'f x 为()f x 导函数. (1)求()f x 的单调区间;(2)令()()()2h x f x f x x π⎛⎫=+- ⎪⎝⎭',讨论当3,44x ππ⎡⎤∈⎢⎥⎣⎦时,函数()h x 的零点个数.【答案】(1)()f x 的单调递增区间为32,2()44k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z ,()f x 的单调递减区间为52,2()44k k k ππ⎡⎤π+π+∈⎢⎥⎣⎦Z ;(2)只有一个零点. 【解析】(1)由已知,有()(cos sin )x f x e x x '=-.当52,2()44x k k k ππππ⎛⎫∈++∈ ⎪⎝⎭Z 时,有sin cos x x >,得()0f x '<,则()f x 单调递减;当32,2()44x k k k ππππ⎛⎫∈-+∈ ⎪⎝⎭Z 时,有sin cos x x <,得()0f x '>,则()f x 单调递增. 所以()f x 的单调递增区间为32,2()44k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z ,()f x 的单调递减区间为52,2()44k k k ππ⎡⎤π+π+∈⎢⎥⎣⎦Z . (2)证明:由(1)有()e (cos sin )x f x x x '=-,令()()g x f x '=, 从而()2sin x g x e x '=-.当3,44x ππ⎛⎫∈ ⎪⎝⎭时,()0g x '<,故()()()()(1)()22h x f x g x x g x g x x ππ⎛⎫⎛⎫=+-+-=- ⎪ ⎪⎝⎭⎝'''⎭',因此,,42x ππ⎛⎫∈ ⎪⎝⎭时,()0h x '<,3,24x ππ⎛⎫∈ ⎪⎝⎭时,()0h x '>,()h x 在区间,42ππ⎛⎫ ⎪⎝⎭单调递减,在区间3,24ππ⎛⎫⎪⎝⎭单调递增.∴3,44x ππ⎛⎫∈ ⎪⎝⎭时,()02h x h π⎛⎫≥= ⎪⎝⎭.所以,当3,44x ππ⎛⎫∈ ⎪⎝⎭时,函数()h x 只有一个零点. 11.(2021·江苏启东·高二期中)已知函数23(n )l f x x x c x d =-++,3(2)2f '=. (1)求()f x 的单调区间;(2)若2>d ,求证:()f x 只有1个零点.【答案】(1)单调增区间是10,2⎛⎫ ⎪⎝⎭和(1,)+∞;单调减区间是1,12⎛⎫⎪⎝⎭;(2)证明见解析.【解析】(1)依题意,函数()f x 的定义域为(0,)+∞, 由23(n )l f x x x c x d =-++,得()23cf x x x'=-+, 又()322f '=,即322322c ⨯-+= 计算得 1c =, 所以2231(21)(1)()x x x x f x x x-+--'==. 令()0f x '>,得102x <<或1x >;令()0f x '<,得112x <<, 所以()f x 的单调增区间是10,2⎛⎫ ⎪⎝⎭和(1,)+∞;单调减区间是1,12⎛⎫⎪⎝⎭;(2)由(1)知,()f x 在12x =处取极大值,在1x =处取极小值,当2>d 时,()f x 的极小值(1)20f d =->,所以()f x 在区间1,2⎛⎫+∞ ⎪⎝⎭上无零点.由于1(1)02f f ⎛⎫>> ⎪⎝⎭,而()2e e 3e e d d d df ----=-<3e 2e 0d d ---=-<,所以()f x 在区间10,2⎛⎫⎪⎝⎭上有且只有1个零点.所以2>d 时,()f x 只有1个零点. 【题组二 不等式证明问题】1.(2021·新疆·乌市八中高二月考(文))已知函数()ln f x x a x =-. (1)讨论的单调性;(2)若()1f x ≥恒成立,求a 的取值范围;(3)在(2)的条件下,()f x m =有两个不同的根12,x x ,求证:121x x m +>+. 【答案】(1)答案见解析;(2){}1;(3)证明见解析.【解析】解:(1)()ln f x x a x =-,则()()10a x a f x x x x-'=-=>, 当0a ≤时,()0f x '>恒成立,所以()f x 在()0,∞+上单调递增,当0a >时,令()0f x '=,得x a =,所以x a >时,()0f x '>;0x a <<时,()0f x '<, 所以()f x 在()0,a 上单调递减,在(),a +∞上单调递增; 综上:当0a ≤时,()f x 在()0,∞+上单调递增,当0a >时,()f x 在()0,a 上单调递减,在(),a +∞上单调递增;(2)()f x 的定义域为(0,)+∞,且()1a x a f x x x'-=-=, 当0a =时,()f x x =,()f x 在()0,∞+上单调递增, 所以()1f x ≥不恒成立,不合题意;当0a <时,()0f x '>,()f x 在()0,∞+上单调递增, 且当0x →时,()f x →-∞,不合题意; 当0a >时,由()0f x '=得x a =,所以()f x 在()0,a 上单调递减,在(,)a +∞上单调递增, 所以()f x 在x a =处取到极小值,也是最小值()ln f a a a a =-, 由题意得()ln 1f a a a a =-≥恒成立, 令()ln g x x x x =-,()ln g x x '=-,()g x 在()0,1上单调递增,在(1,)+∞上单调递减,所以()()ln 11g x x x x g =-≤=,所以()ln 1f a a a a =-=,即1a =. (3)()ln f x x x =-,且()f x 在1x =处取到极小值1,又0x →时,()f x →+∞,x →+∞时,()f x →+∞,故1m 且1201x x <<<, 要证明:121x x m +>+,只需证明211x m x >+-,又2111x m x >+->, 故只需证明:()()211f x f m x >+-,即证:()11m f m x >+-, 即证:()111ln 1m m x m x >+--+-,即证:()111ln 1ln 0x x ---<,设()()()1ln 1ln 01h x x x x =---<<,则()()()11ln 11ln 1ln x x x h x x x x x -+'=-+=--,因为01x <<,所以()1ln 0x x ->,由(2)知ln 1≤-x x 恒成立, 所以11ln 1,ln 1x x x x x≤--≤-,即1ln 0x x x -+≥,所以()h x 在01x <<上为增函数,所以()()10h x h <=,即命题成立. 2.(2021·重庆十八中高二月考)已知函数()ln 11x aF x x x =--+. (1)设2a =,1x >,试比较()()()1h x x F x =-与0的大小; (2)若()0F x >恒成立,求实数a 的取值范围;(3)若a 使()F x 有两个不同的零点12 ,x x ,求证:21||a a x x e e --<-. 【答案】(1)()0h x >; (2)(,2]-∞; (3)证明见解析. 【解析】(1)当2a =时,()()ln (1)1()ln ,1111x a a x h x x x x x x x -=--=->-++, 可得()2222212(1)2(1)(1)4(1)(1)(1)(1)x x x x x h x x x x x x x x +-----'=-==+++,当1x >时,()0h x '>,所以()h x 在(1,)+∞上为单调递增函数, 因为(1)0h =,所以()(1)0h x h >=.(2)设函数()(1)ln 1a x f x x x -=-+,则()222(1)1ln (1)x a x f x x x x +-+'=-+,令()22(1)1g x x a x =+-+,当1a ≤时,当0x >时,()0g x >,当12a <≤时,2480a a ∆=-≤,可得()0g x ≥,所以当2a ≤时,()f x 在(0,)+∞上单调递增函数,且()10f =, 所以有()101f x x >-,可得()0F x >, 当2a >时,有2480a a ∆=->,此时()g x 有两个零点,设为12,t t ,且12t t <, 又因为122(1)0t t a +=->且121t t =,所以1201t t <<<, 在2(1,)t 上,()f x 为单调递减函数, 所以此时有()0f x <,即(1)ln 1a x x x -<+,可得ln 011x ax x -<-+,此时()0F x >不恒成立,综上可得2a ≤,即实数a 的取值范围是(,2]-∞. (3)若()F x 有两个不同的零点12,x x ,不妨设12x x <, 则12,x x 为()(1)ln 1a x f x x x -=-+的两个零点,且121,1x x ≠≠, 由(2)知此时2a >,并且()f x 在12(0,),(,)t t +∞为单调递增函数, 在12(,)t t 上为单调递减函数,且()10f =,所以12()0,()0f t f t ><,因为()()220,0,111aaa a a aa a f e f e e e e e --=-<=-><<++,且()f x 的图象连续不断, 所以1122(,),(,)a a x e t x t e -∈∈,所以2121a at t x x e e --<-<-,因为21t t -==综上可得:21||a a x x e e -<-<-.3.(2021·山东任城·高二期中)已知函数()ln ()R f x x a x a =-∈ (1)求()f x 的极值;(2)若()1f x ≥,求a 的值,并证明:()2.x f x x e >-【答案】(1)当0a ≤时,()f x 无极值;当0a >时,()f x 的极小值为()ln f a a a a =-,无极大值;(2)1,证明见解析.【解析】解:(1)()1(0)a x a f x x x x-∴=-=>' ①当0a ≤时,()0f x '>,()f x 在(0,)+∞上单调递增. ()f x ∴在()0,∞+上无极值.②当0a >时,令()0f x '>得x a >;令()0f x '<得0x a <<. ()f x ∴在(0,)a 上单调递减,在(,)a +∞上单调递增. ()f x ∴的极小值为()ln f a a a a =-,无极大值.综上,当0a ≤时,()f x 无极值;当0a >时,()f x 的极小值为()ln f a a a a =-,无极大值. (2)由(1)可知,①当0a ≤时,()f x 在(0,)+∞上单调递增,而(1)1f =,∴当(0,1)x ∈时,()1f x <,即()1f x ≥不恒成立.②当0a >时,()f x 在(0,)a 上单调递减,在(,)a +∞上单调递增.min ()()ln 1.f x f a a a a ∴==-≥令()ln (0)g a a a a a =->,则()1(ln 1)ln .g a a a '=-+=-当(0,1)∈a 时,()0g a '>,()g a 在(0,1)上单调递增; 当(1,)∈+∞a 时,()0g a '<,()g a 在(1,)+∞上单调递减.()(1) 1.g a g ∴≤=1.a ∴=设()()2ln (0)x x h x f x x e x x e x =-+=--+>,下面证明()0.h x > 当1a =时,()ln 1f x x x =-≥,即ln 1.x x ≤- ln 21,x x x ∴+≤-∴只要证21(*).x x e -<令()21,0x q x e x x =-+>,则'() 2.x q x e =-∴当(0,ln 2)x ∈时,'()0q x <,()q x 在(0,ln 2)上单调递减;当(ln 2,)x ∈+∞时,'()0q x >,()q x 在(ln 2,)+∞上单调递增. 3()(ln 2)3ln 4ln ln 40.q x q e ∴≥=-=-> (*)∴式成立,即()2x f x x e >-成立.4.(2021·河北邢台·高二月考)已知函数()21f x ax x=+. (1)当4a =-时,求()f x 的极值点.(2)当2a =时,若()()12f x f x =,且120x x <,证明21:3x x -.【答案】(1)极大值点为12-,无极小值点;(2)证明见解析.【解析】(1)当4a =-时,()214f x x x=-+,定义域为()(),00,-∞⋃+∞. 则()3221818.x f x x x x +=--=-'令()0f x '=,解得12x =-则函数()f x 在1,2⎛⎫-∞- ⎪⎝⎭上单调递增,在()1,0,02∞⎛⎫-+ ⎪⎝⎭上单调递减.所以12x =-为()f x 的极大值点,所以()f x 的极大值点为12-,无极小值点.(2)当2a =时,()212f x x x=+,定义域为()(),00,-∞⋃+∞, 则()()22112212112,2f x x f x x x x =+=+因为()()12f x f x =,所以2212121122x x x x +=+, 整理得()()121212122.x x x x x x x x -+-=因为120x x <,所以()121212x x x x +=, 所以()()22212112122121444x x x x x x x x x x -=+-=-.设1210t x x =<,则()()322212214148,422t x x g t t g t t t t t '+-==-=+=. 令()0g t '=,解得2t =-,则()2144g t t t=-在(),2-∞-上单调递减,在()2,0-上单调递增,所以()()23g t g -=,即2213x x -,故213x x -.5(2021·山西晋中·高二期末(文))已知()ln f x ax x =-,()a ∈R (1)讨论()f x 的单调性;(2)求证:当1a =时,()xe f x ex ≥.【答案】(1)答案见解析;(2)证明见解析. 【解析】(1)()11ax f x a x x-'=-=,()0,x ∈+∞ 当a ≤0时,()0f x '<,()f x 在()0,∞+上单调递减; a >0时,当10,x a ⎛⎫∈ ⎪⎝⎭时,()0f x '<,()f x 单调递减; 当1,x a ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>,()f x 单调递增.(2)证明:当a =1时,原不等式等价于()ln xe x x ex -≥欲证()ln xe x x ex -≥,只需证ln xex x x e -≥设()ln h x x x =-,()xexg x e =,()0x >()111x h x x x-'=-=,当()0,1x ∈ 时,()0h x '<,()h x 单调递减; 当()1,x ∈+∞时,()0h x '>,()h x 单调递增,∴()()min 11h x h ==()()1xe x g x e-'=,当()0,1x ∈)时,()0h x '>,()h x 单调递增; 当()1,x ∈+∞时,()0h x '<,()h x 单调递减,∴()()max 11g x g == 所以()()h x g x ≥,即原命题成立.6.(2021·河北·邯山区新思路学本文化辅导学校高二期中)已知函数()2ln xf x me x =-.(1)若1x =是()f x 的极值点,求m 的值,并判断()f x 的单调性. (2)当1m 时,证明:()2f x >. 【答案】(1)212m e=,()f x 在()0,1上单调递减,在()1,+∞上单调递增;(2)证明见解析. 【解析】(1)解:()212xf x me x'=-. 因为1x =是()f x 的极值点,所以()20121me f '=-=,得212m e =. 此时()221ln 2x e f x e x =-,()2211x e xf x e '=-. 令()()()2211,0,x e x e x m x f x =-∈'=+∞,则()222210x e m x e x=+'>', 所以()m x 在()0,∞+上单调递增,且()2211101e e m =-= 因此01x <<时,()0m x <;当1x >时()0m x >. 故当01x <<时()0f x '<;当1x >时()0f x '>.所以()f x 在()0,1上单调递减,在()1,+∞上单调递增.因此1x =是()f x 的极值点,故212m e =;()f x 在()0,1上单调递减,在()1,+∞上单调递增(2)证明:当1m 时,因为()222ln 2ln 2x xme x x e x f -=-->--,所以只需证2ln 20x e x -->即可.令()2ln 2x g e x x =--,则()()2211221xx g e xe x xx '=-=-. 令()()2210x h e x x x =->,则()22240x xh e x xe '=+>,因为12111042h e ⎛⎫=-< ⎪⎝⎭,1102h e ⎛⎫=-> ⎪⎝⎭,所以存在011,42x ⎛⎫∈ ⎪⎝⎭,使得()00h x =,即020210xx e -=,即02012x e x =,也可化为002ln 20x x +=,即00ln 2ln 2x x =--. 所以()g x 在()00,x 上单调递减,在()0,x +∞上单调递增,所以()()0022000min 01ln 22ln 222x x g x g x e x e x x ==--==++-. 因为()12ln 222n x x x =++-在11,42⎛⎫⎪⎝⎭上单调递增, 所以()11ln 2042n x n ⎛⎫>=+> ⎪⎝⎭,故()min 0g x >,即()2f x >. 【题组三 恒成立问题】1.(2021·重庆十八中高二月考)设函数()2ln f x a x bx =-.(1)若12b =,讨论函数()f x 的单调性; (2)当0b =时,若不等式()f x m x ≥+对所有的31,2a ⎡⎤∈⎢⎥⎣⎦,(21,x e ⎤∈⎦恒成立,求实数m 的取值范围. 【答案】(1)答案见解析;(2)(22e ⎤-∞-⎦,.【解析】解:(1)若12b =,()21ln 2f x a x x =-()>0x ,则2()a a x f x x x x-'=-=,当0a ≤时,()0f x '<,所以函数()f x 在()0+∞,上单调递减, 当>0a 时,令()0f x '=,得x =负值舍去),当0x <<()0f x '>,函数()f x在(0上单调递增,当x ()0f x '<,函数()f x在)+∞上单调递减;(2)当0b =时,()ln f x a x =.若不等式()f x m x ≥+对所有的(231,,1,2a x e ⎡⎤⎤∈∈⎦⎢⎥⎣⎦都成立,则ln a x m x ≥+对所有的(231,,1,2a x e ⎡⎤⎤∈∈⎦⎢⎥⎣⎦都成立,即ln m a x x ≤-,对所有的(231,,1,2a x e ⎡⎤⎤∈∈⎦⎢⎥⎣⎦都成立, 令()ln h a a x x =-,则()h a 为一次函数,min ()m h a ≤, (21,x e ⎤∈⎦,ln 0x ∴>,()h a ∴在3[1,]2a ∈上单调递增,min ()(1)ln h a h x x ∴==-,ln m x x ∴≤-对所有的(21,x e ⎤∈⎦都成立,令()ln g x x x =-,则()111x g x x x -'=-=,因为21x e <≤,所以()10xg x x-'=<,所以函数()ln g x x x =-在(21,e ⎤⎦单调递减,所以()()22222ln g x g e ee e -==-≥, 2min ()2m g x e ∴≤=-,所以实数m 的取值范围为(22e ⎤-∞-⎦,.2.(2021·江西省南昌县莲塘三中高二月考(理))已知函数32()f x ax bx cx d =+++为奇函数,且在1x =-处取得极大值2. (1)求()f x 的解析式;(2)若()()()221xf x m x x e ++≤-对于任意的[0,)x ∈+∞恒成立,求实数m 的取值范围.【答案】(1)()33f x x x =-;(2)1m .【解析】(1)由于()f x 为奇函数,所以0b d ==,()3f x ax cx =+,()'23f x ax c =+,所以()()1211303f a c a f a c c ⎧-=--==⎧⎪⇒⎨⎨-=+==-⎪⎩'⎩,所以()()()()3'23,33311f x x x f x x x x =-=-=+-,所以()f x 在区间()(),1,1,-∞-+∞上()()'0,f x f x >递增,在区间()1,1-上()()'0,f x f x <递减,在1x =-处取得极小值,符合题意.(2)依题意()()()221xf x m x x e ++≤-对于任意的[0,)x ∈+∞恒成立,即()()32321xx x m x x e -++≤-①.当0x =时,①恒成立.当0x >时,①可化为21x m xe x x ≤--+,构造函数()21x h x xe x x =--+,()01h =,()()()''121,00x h x x e x h =+--=,()()()()''''2221,00x x x h x x e xe e h =+-=+-=,当0x >时,()''0h x >,()'h x 递增,所以在区间()0,∞+上,()'0h x >,所以在区间()0,∞+上,()1h x >. 所以1m .。

高二数学不等式综合练习课

高二数学不等式综合练习课

dafabet888casino中文 wwHale Waihona Puke
[单选]为防止隧道衬砌施工中裂缝的产生,衬砌厚度应根据()确定。A.衬砌混凝土的强度要求B.衬砌混凝土的坍落度要求C.围岩类别、形状、结构D.超挖和欠挖情况 [单选,A2型题,A1/A2型题]孤独症康复中的结构化教育,错误的是()A.课程可在有关机构开展,也可在家庭中开展B.根据患儿能力和行为特点设计个体化的内容C.目的是增进患儿对环境、对教育和训练内容的理解和服从D.主要针对的是患儿在语言、交流及感知觉运动等方面存在的缺陷,有针对 [多选]关于仲裁调解,下列表述正确的是:()A.仲裁调解达成协议的,仲裁庭应当根据协议制作调解书或者根据协议结果制作裁决书B.对于事实清楚的案件,仲裁庭可依职权进行调解C.仲裁调解达成协议的,经当事人、仲裁员在协议上签字后即发生效力D.仲裁庭在作出裁决前可先行调解 [单选]识别项目的关键特征是:()A.一次性B.唯一性C.整体性D.目标明确性 [问答题]在野外怎样避震? [单选,A1型题]实施监测的方法包括()A.记录与报告B.审计C.现场考察D.定量与定性调查E.以上均正确 [名词解释]计权隔声量 [单选]CA安全认证中心可以()。A.用于在电子商务交易中实现身份认证B.完成数据加密,保护内部关键信息C.支持在线销售和在线谈判,认证用户的订单D.提供用户接入线路,保证线路的安全性 [单选]下列关于飞机过载和速压的说法,正确的是()。A.速压反应了飞机总体受载的严重程度B.过载反应了飞机总体受载的严重程度C.过载反应了飞机表面所承受的局部气动载荷的严重程度D.飞机在飞行中不能超过最大使用过载,但允许超过最大允许速压 [单选,A2型题,A1/A2型题]以下疾病的胸片显示肺血减少的是()A.二尖瓣关闭不全B.主动脉瓣关闭不全C.二尖瓣狭窄D.肺动脉瓣狭窄E.主动脉瓣狭窄 [单选,A1型题]下列各项中,与休克定义不相符的是()。A.多种强烈的致病因素作用于机体引起的急性循环功能衰竭B.以生命器官缺血缺氧为主要特征C.以导致微循环灌注不足和细胞功能代谢障碍为主要表现D.非进行性发展E.组织氧及营养物质利用障碍 [名词解释]联机分析处理 [单选]甲烷化炉入口二氧化碳含量设计值是()PPM。A.1800B.1500C.800D.400 [单选,A型题]肾结石与胆囊结石的X线区别点,以下哪项正确()A.泌尿道结石大多数为透X线或阴性结石B.典型肾结石为分层状C.静脉肾盂造影诊断无明显鉴别价值,因为两者位置相似D.输尿管结石为长圆形,其长轴和输尿管长轴有成角E.腹部侧位上肾结石靠后和脊柱重叠 [单选,A2型题,A1/A2型题]红细胞镰变形试验可用于诊断下列哪种疾病()A.HbCB.HbEC.HbHD.HbSE.HbBarts [多选]铝土矿的类型有()。A、三水铝石型B、一水软铝石型C、一水硬铝石型D、混合型 [单选]关于细菌性肝脓肿的处理错误的是()A.非手术治疗适用于多发性肝小脓肿B.大剂量、联合应用抗生素C.经皮肝穿刺脓肿置管引流术适用于多发性肝小脓肿D.全身营养支持治疗E.经皮肝穿刺脓肿置管引流术适合于已液化的单个较大脓肿 [单选]按照信息的生产方式分类,下列哪项不属于其内容()。A、自然信息B、固定信息C、人工信息D、综合信息 [填空题]动物的雌、雄个体所产生的雌、雄生殖细胞分别称作()和()。精子入卵、与卵细胞融合且互相同化的过程称作()。 [填空题]车票票面特殊票种除外主要应当载明:();座别、卧别;径路;票价;车次;乘车日期;()。 [单选]农村土地的发包方不包括()。A.依法管理、使用土地的集体经济组织B.村民委员会C.村民小组D.村干部 [单选,A2型题,A1/A2型题]对周围性面瘫临床表现的描述,不正确的是()。A.病侧面部表情运动丧失,额纹消失B.不能皱眉与闭目C.鼻唇沟变浅,口角下垂向患侧歪斜D.鼓腮漏气,发爆破音困难E.进食可有口角漏液现象 [单选]关于保单现金价值理解正确的是()A.现金价值是风险保费B.现金价值是储蓄保费C.现金价值就是投标人所缴的保费D.一般第三年退保现金价值是所缴保险费的一半左右 [填空题]合适的入浮煤浆浓度取决于()和(),尤其是()。 [单选]男性患者,52岁,一个月前出现左肩外侧活动时疼痛,半个月来疼痛逐渐加重,范围扩大,放射至上臂外侧,肩关节不能外展及前屈,后伸。体查发现三角肌轻度萎缩,肩部有明显的压痛点,肩关节活动明显受限。最可能的诊断是()A.胸廓上口综合征B.肩周炎C.颈肌筋膜炎D.神经根型颈 [单选]F—脱氧葡萄糖(FDG)脑断层显像是采用()A.脏器功能测定仪B.&gamma;照相机C.正电子照相机D.SPECTE.PET [单选]关于传染病的实验室一般检查,不正确的是()A.革兰阳性菌感染常常白细胞显著增高B.病毒感染时白细胞为正常,但肾病综合征出血热除外C.蠕虫感染时常常嗜酸性粒细胞明显增多D.粪便中查到虫卵肯定是寄生虫病E.一般生化检查是病毒性肝炎的必查项目 [单选]开车前不需要对()进行确认。A、装置的吹扫、气密、水联运等试验B、机、电、仪等完好备用C、交接班本和原始记录D、以上答案都不对 [配伍题,B型题]发生在肾任何部位的圆形、壁光滑、内为液性暗区与后壁回声增强()</br>肾窦内见大小不等互相连通的液暗区()A.肾孤立性囊肿B.多囊肾C.肾积水D.肾肿瘤坏死液化E.肾乳头状囊腺瘤 [单选]糖尿病酮症酸中毒的主要治疗是()A.纠正酸中毒,补充体液和电解质B.中枢兴奋剂,纠正酸中毒C.纠正酸中毒,应用胰岛素D.补充体液和电解质,应用胰岛素E.应用中枢兴奋剂及胰岛素 [单选]5.8%(质量分数)的NaCl溶液产生的渗透压接近于()的渗透压。A.5.8%蔗糖溶液B.5.8%葡萄糖溶液C.2.0mol&#8729;dm-3蔗糖溶液D.1.0mol&#8729;dm-3葡萄糖溶液 [单选,A1型题]膀胱造瘘拔管时间为2周以上,其目的是为了防止()A.膀胱出血B.外源性感染C.尿性腹膜炎D.伤口不愈合E.病人活动不便 [单选]数字微波通信中,微波信道机一般在()上对数字信号进行调制.A.射频B.中频C.基带 [单选,A2型题,A1/A2型题]临床生物化学又称()A.生物化学B.临床生物学C.临床化学D.生物学E.化学生物学 [单选]肾上腺皮质腺瘤的定位诊断首选()A.肾上腺B超B.肾上腺CTC.蝶鞍部CTD.肾上腺放射性核素显影E.肾血管造影 [单选]对个人购买自用普通住房发放的按揭贷款最长不得超过()年。A.30B.35C.40D.45 [多选]对于露点温度如下说法正确的是:().A、温度升高,露点温度也升高B、相对湿度达到100%时的温度是露点温度C、露点温度下降,绝对湿度下降D、露点温度下降,绝对湿度升高 [填空题]已知电容式差压变送器负载电阻RL=650Ω,则电源供电电压应满足()。 [多选]燃气调压站(室)通常由()等组成。A.储气罐B.测量仪表C.过滤器D.调压器 [单选,A2型题,A1/A2型题]破伤风患者采用人工冬眠,主要目的是()A.控制炎症扩散B.防止合并症发生C.便于护理D.降低体温E.减少抽搐

高二不等式练习题及答案

高二不等式练习题及答案

高二不等式练习题及答案一、简答题(每题5分,共30分)1. 什么是一次不等式?答:一次不等式是一个只含有一个未知数的不等式,可以表示成形如ax + b > 0、ax + b ≥ 0、ax + b < 0或ax + b ≤ 0的形式,其中a和b是已知实数,x是未知数。

2. 什么是不等式的解集?答:不等式的解集是使得不等式成立的实数的集合。

对于一次不等式,解集通常表示为一个区间,例如(x₁, x₂)、[x₁, x₂)、(x₁, x₂]或[x₁, x₂]。

3. 不等式-2x + 3 < 7 的解集是什么?答:将不等式-2x + 3 < 7 转化为x的形式:-2x + 3 < 7-2x < 7 - 3-2x < 4x > 4/-2x > -2因此,不等式-2x + 3 < 7 的解集为(-2, +∞)。

4. 解不等式2x - 5 ≤ 3 的解集,并把解集表示在数轴上。

答:将不等式2x - 5 ≤ 3 转化为x的形式:2x - 5 ≤ 32x ≤ 3 + 52x ≤ 8x ≤ 8/2x ≤ 4因此,不等式2x - 5 ≤ 3 的解集为(-∞, 4]。

数轴上表示为:0 1 2 3 4 5 6 7|----|----|----|----|----|----|----|x ≤ 45. 解二次不等式x^2 - 4x > -3 的解集,并把解集表示在数轴上。

答:将不等式x^2 - 4x > -3转化为标准形式,即移项:x^2 - 4x + 3 > 0然后,可以将该二次不等式转化为(x - a)(x - b) > 0的形式:(x - 1)(x - 3) > 0要使不等式成立,要么两个因式都大于0,要么两个因式都小于0。

因此,我们可以得到两个解集:(1, 3)和(-∞, 1) ∪ (3, +∞)。

数轴上表示为:0 1 2 3 4 5 6 7| |----|----| |----|----| |(-∞, 1) (1, 3) (3, +∞)6. 如何解多个不等式的组合?答:当多个不等式条件同时存在时,可以通过求它们的交集或并集来求解。

高二数学不等式综合练习课

高二数学不等式综合练习课
188博金宝苹果手机怎么下载
[单选]Cotard综合征常见于()。A.精神分裂症B.老年性痴呆C.老年抑郁症D.顶叶病变E.麻痹性痴呆 [名词解释]药效学研究 [单选]关于腕关节的描述中正确的是()A.近侧关节面由桡、尺骨构成B.可做屈、伸、收、展及环转运动C.囊内有关节盘,位于桡骨下端的下面D.远侧关节面由大多角骨、小多角骨、头状骨及钩骨的近侧面构成E.远侧关节面由舟骨、月骨、三角骨及豌豆骨的近侧面构成 [单选,A4型题,A3/A4型题]女,49岁,上腹胀满5年,2个月来食欲不振,全身无力,体检无明显异常发现,X线钡餐未见异常。胃镜活检:炎性细胞浸润及肠上皮化生,未见腺体萎缩。应诊断为()A.胃粘膜脱垂B.早期胃癌C.慢性萎缩性胃炎D.慢性浅表性胃炎E.胃神经症 [单选]变更控制过程中,对于需求变更的确立,监理人员必须遵守的规则是()。①每一个项目变更必须用变更申请单提出,它包括对需要批准的变更的描述以及该项变更在计划、流程、预算、进度或可交付的成果上可能引起的变更②在准备审批变更申请单前,监理工程师必须与总监理工程师商 [单选]根据《信托公司集合资金信托计划管理办法》规定,委托人可以是投资一个信托计划的最低金额不少于()人民币的自然人、法人或者依法成立的其他组织。A.50万元B.100万元C.200万元D.300万元 [单选]“我会尊重患者告诉我的一切秘密,即使患者已经死去”。此话出自()。A.东京宣言B.夏威夷宣言C.日内瓦宣言D.赫尔辛基宣言E.希波克拉底誓言 [填空题]触电时人体会受到某种程度的伤害,按其形式可分为()和()两种。 [单选]何谓"六气"()A.风、湿B.寒、火C.暑D.燥E.以上都是 [填空题]下列符号的中文名称分别是:PRPP();IMP();XMP(); [填空题]抗震设计时高层建筑按其()可分为甲类建筑、乙类建筑、丙类建筑等三类。 [单

高二数学必修人教B第三章同步检测均值不等式

高二数学必修人教B第三章同步检测均值不等式

3.2 第3课时 均值不等式习题课基础巩固一、选择题1.若x >0,y >0,且x +y ≤4,则下列不等式中恒成立的是( ) A.1x +y ≤14 B.1x +1y ≥1 C.xy ≥2 D.1xy ≥1[答案] B[解析] 取x =1,y =2满足x +y ≤4排除A 、C 、D 选B. 具体比较如下:∵0<x +y ≤4∴1x +y ≥14故A 不对;∵4≥x +y ≥2xy ,∴xy ≤2,∴C 不对;又0<xy ≤4,∴1xy ≥14∴D 不对;1x +1y=x +y xy ≥2xy xy =2xy ,∵1xy ≥12,∴1x +1y ≥1.2.设函数f (x )=2x +1x -1(x <0),则f (x )( ) A .有最大值 B .有最小值 C .是增函数 D .是减函数[答案] A[解析] 令2x =1x ,由x <0得x =-22,∴在x =-22两侧,函数f (x )的单调性不同,排除C 、D.f (x )=2x +1x -1=-⎝ ⎛⎭⎪⎫-2x -1x -1≤-2(-2x )·⎝ ⎛⎭⎪⎫-1x -1=-22-1, 等号在x =-22时成立,排除B. 3.设实数a ,b ,x ,y 满足a 2+b 2=1,x 2+y 2=3,则ax +by 的最大值是( )A .2 B. 3 C. 5 D.1210 [答案] B[解析] 令a =cos α,b =sin α α∈[0,2π), x =3cos β,y =3sin β,β∈[0,2π). ∴ax +by =3cos αcos β+3sin αsin β =3cos(α-β)≤ 3. ∴ax +by 的最大值为 3.4.已知x ≥52,则f (x )=x 2-4x +52x -4有( )A .最大值54B .最小值54C .最大值1D .最小值1 [答案] D[解析] f (x )=(x -2)2+12(x -2)=x -22+12(x -2),∵x ≥52,∴x -2≥12,f (x )≥2x -22·12(x -2)=1. 当且仅当x =3时等号成立.5.设M =(1a -1)(1b -1)(1c -1),且a +b +c =1(其中a ,b ,c ∈R+),则M 的取值范围是( ) A .[0,18)B .[18,1)C .[1,8)D .[8,+∞)[答案] D[解析] ∵a +b +c =1,∴M =(a +b +c a -1)(a +b +c b -1)(a +b +cc -1), =(b a +c a )(a b +c b )(a c +b c )≥2bc a 2·2ac b 2·2ab c 2=8. ∴M ∈[8,+∞).6.若x 、y 是正数,则(x +12y )2+(y +12x )2取得最小值是( )A .3 B.72 C .4 D.92[答案] C[解析] (x +12y )2+(y +12x )2=x 2+x y +14y 2+y 2+y x +14x2=x 2+14x 2+y 2+14y2+y x +x y .∵x 2+14x2≥214=1, y 2+14y 2≥214=1, y x +xy ≥2,当且仅当⎩⎪⎨⎪⎧x 2=14x2y 2=14y 2y x =x y时成立,即x =y =22时,(x +12y )2+(y +12x )2取得最小值为4.二、填空题7.(2010·山东文)已知x ,y ∈R +,且满足x 3+y 4=1,则xy 的最大值为________.[答案] 3[解析] ∵x >0,y >0且1=x 3+y4≥2xy 12, ∴xy ≤3,当且仅当x 3=y4,即x =32,y =2时取等号.8.已知a 、b 为实常数,函数y =(x -a )2+(x -b )2的最小值为__________[答案] 12(a -b )2[解析] 从函数解析式的特点看,本题可化为关于x 的二次函数,再通过配方求其最小值(留给读者完成).但若注意到(x -a )+(b -x )为定值,则用变形不等式a 2+b 22≥(a +b 2)2更简捷.∴y =(x -a )2+(x -b )2≥2[(x -a )+(b -x )2]2=(a -b )22.当且仅当x -a =b -x ,即x =a +b2时,上式等号成立.∴当x =a +b 2,y min =(a -b )22.三、解答题9.已知a >0,b >0,c >0,d >0,求证:ad +bc bd +bc +adac ≥4. [解析] ad +bc bd +bc +ad ac =a b +c d +b a +dc=(a b +b a )+(c d +dc )≥2+2=4(当且仅当a =b 且c =d 时,取“=”).10.已知正常数a 、b 和正实数x 、y ,满足a +b =10,a x +by =1,x +y 的最小值为18,求a ,b 的值.[解析] x +y =(x +y )·1=(x +y )·(a x +by ) =a +b +ay x +bxy ≥a +b +2ab =(a +b )2等号在ay x =bx y 即y x =ba 时成立∴x +y 的最小值为(a +b )2=18 又a +b =10,∴ab =16.∴a ,b 是方程x 2-10x +16=0的两根 ∴a =2,b =8或a =8,b =2.能力提升一、选择题1.已知x >0,y >0,x ,a ,b ,y 成等差数列x ,c ,d ,y 成等比数列,则(a +b )2cd 的最小的值是( )A .0B .1C .2D .4[答案] D [解析]由题意,得⎩⎨⎧a +b =x +ycd =xy,∴(a +b )2cd =(x +y )2xy =x 2+y 2+2xy xy =x 2+y 2xy +2, ∵x >0,y >0,∴x 2+y 2xy +2≥2+2=4(当且仅当x =y 时,取“=”号). 2.已知不等式(x +y )(1x +ay )≥9对任意正实数x 、y 恒成立,则正实数a 的最小值为( )A .2B .4C .6D .8[答案] B [解析]∵x 、y 、a ∈R +,∴(x +y )(1x +a y )=1+ax y +yx +a ≥1+2a+a =(1+a )2,即9≤(1+a )2,∴a ≥4,故选B.二、填空题3.2008年的四川大地震震惊了整个世界,四面八方都来支援.从某地出发的一批救灾物资随17列火车以v 千米/小时速度匀速直达400千米以外的灾区,为了安全起见,两辆火车的间距不得小于(v 20)2千米,问这批物资全部运送到灾区最少需__________小时.[答案] 8[解析] 物资全部运到灾区需t =400+16×(v 20)2v=400v +16v 400≥8,当且仅当400v =16v 400,即v =100时,等号成立,∴t min =8.故这批物资全部运送到灾区最少需要8小时.4.(2010·浙江文)若正实数x ,y 满足2x +y +6=xy ,则xy 的最小值是________.[答案] 18[解析] ∵x >0,y >0, ∴2x +y ≥22xy ,∴2x +y +6=xy ≥22xy +6,∴(xy )2-22xy -6≥0, 解得xy ≥32,即xy ≥18. 三、解答题5.已知函数f (x )=lg x (x ∈R +),若x 1、x 2∈R +,判断12[f (x 1)+f (x 2)]与f (x 1+x 22)的大小并加以证明.[解析] 12[f (x 1)+f (x 2)]≤f (x 1+x 22)∵f (x 1)+f (x 2)=lg x 1+lg x 2=lg(x 1·x 2), f (x 1+x 22)=lg x 1+x 22,而x 1、x 2∈R +,x1x 2≤(x 1+x 22)2, 而f (x )=lg x 在区间(0,+∞)上为增函数. ∴lg(x 1x 2)≤lg(x 1+x 22)2,∴12lg(x 1x 2)≤lg x 1+x 22.即12(lg x 1+lg x 2)≤lg x 1+x 22. 因此,12[f (x 1)+f (x 2)]≤f (x 1+x 22).6.图画挂在墙上,它的下边缘在观察者的眼睛上方a 米处,而上边缘在b 米处,问观察者站在离墙多远的地方,才能使视角最大?(如下图)[解析] 要求何时θ达最大值,可先求何时tan θ达到最大值. 如图,tan α=a x ,tan β=bx .∴tan θ=tan(β-α)=tan β-tan α1+tan αtan β=b x -ax 1+ab x 2=b -ax +ab x, ∵x +ab x ≥2x ·ab x =2ab (x >0,a >0,b >0).∴tan θ≤b -a2ab, 当且仅当x =abx 即x =ab 时取“=”. 又∵x ∈(0,π2),y =tan x 是增函数,∴x =ab 时,θ有最大值.答:观察者站在离墙ab 米的地方时,θ有最大值。

2022年高中数学第三章不等式1不等关系与不等式第1课时练习含解析人教版必修

2022年高中数学第三章不等式1不等关系与不等式第1课时练习含解析人教版必修

第1课时一、选择题1.设M=x2,N=-x-1,则M与N的大小关系是( )A.M>N B.M=NC.M<N D.与x有关[答案] A[解析] M-N=x2+x+1=(x+)2+>0,∴M>N.2.(2013·辽宁鞍山市第一中学高二期中测试)若a<b<0,则下列不等式不能成立的是( )A.> B.2a>2bC.|a|>|b| D.()a>()b[答案] B[解析] ∵a<b,y=2x单调递增,∴2a<2b,故选B.3.已知a<0,-1<b<0,则下列各式正确的是( )A.a>ab>ab2 B.ab>a>ab2C.ab2>ab>a D.ab>ab2>a[答案] D[解析] ∵-1<b<0,∴1>b2>0>b>-1,即b<b2<1,两边同乘以a得,∴ab>ab2>a.故选D.4.如果a、b、c满足c<b<a,且ac<0,那么下列选项中不一定成立的是( )A.ab>ac B.bc>acC.cb2<ab2 D.ac(a-c)<0[答案] C[解析] ∵c<b<a,且ac<0,∴a>0,c<0.∴ab-ac=a(b-c)>0,bc-ac=(b-a)c>0,ac(a-c)<0,∴A、B、D均正确.∵b可能等于0,也可能不等于0.∴cb2<ab2不一定成立.5.设a=lge,b=(lge)2,c=lg,则( )A.a>b>c B.a>c>bC.c>a>b D.c>b>a[答案] B[解析] ∵0<lge<1,∴b=(lg e)2=a2<a,c=lg=lge=a<a.又∵b=(lge)2<lg·lge=lge=c,∴b<c<a.6.下列各式中,对任何实数x都成立的一个式子是( )A.lg(x2+1)≥lg2x B.x2+1>2xC.≤1 D.x+≥2[答案] C[解析] A中x>0;B中x=1时,x2+1=2x;C中任意x,x2+1≥1,故≤1;D中当x<0时,x+≤0.二、填空题7.若a>b,则a3与b3的大小关系是________.[答案] a3>b38.若x=(a+3)(a-5),y=(a+2)(a-4),则x与y的大小关系是________.[答案] x<y[解析] x-y=(a+3)(a-5)-(a+2)(a-4)=(a2-2a-15)-(a2-2a-8)=-7<0,∴x<y.三、解答题9.有粮食和石油两种物质,可用轮船与飞机两种方式运输,每天每艘轮船和每架飞机的运输效果如下表: 方式轮船运输量(t)飞机运输量(t)效果种类 粮食300150石油250100现在要在一天内运输2 000 t粮食和1 500 t石油.写出安排轮船艘数和飞机架数所满足的所有不等关系的不等式.[解析] 设需安排x艘轮船和y架飞机,则,∴.10.设a>0,b>0且a≠b,试比较a a b b与a b b a的大小.[解析] 根据同底数幂的运算法则.=a a-b·b b-a=()a-b,当a>b>0时,>1,a-b>0,则()a-b>1,于是a a b b>a b b a.当b>a>0时,0<<1,a-b<0,则()a-b>1,于是a a b b>a b b a.综上所述,对于不相等的正数a、b,都有a a b b>a b b a.一、选择题1.下列命题正确的是( )A.若ac>bc,则a>b B.若a2>b2,则a>bC.若>,则a<b D.若<,则a<b[答案] D[解析] 对于A,若c<0,其不成立;对于B,若a、b均小于0或a<0,其不成立;对于C,若a>0,b<0,其不成立;对于D,其中a≥0,b>0,平方后显然有a<b.2.(2014·四川理,4)若a>b>0,c<d<0,则一定有( )A.> B.<C.> D.<[答案] D[解析] 本题考查不等式的性质,-=,cd>0,而ad-bc的符号不能确定,所以选项A、B不一定成立.-=,dc>0,由不等式的性质可知ac<bd,所以选项D成立.本题也可以对实数a、b、c、d进行适当的赋值逐一排查.3.设a=sin15°+cos15°,b=sin16°+cos16°,则下列各式正确的是( )A.a<<b B.a<b<C.b<a< D.b<<a[答案] B[解析] a=sin15°+cos15°=sin60°,b=sin16°+cos16°=sin61°,∴a<b,排除C、D两项.又∵a≠b,∴>ab=sin60°×sin61°=sin61°>sin61°=b,故a<b<成立.4.已知-1<a<0,A=1+a2,B=1-a2,C=,比较A、B、C的大小结果为( ) A.A<B<C B.B<A<CC.A<C<B D.B<C<A[答案] B[解析] 不妨设a=-,则A=,B=,C=2,由此得B<A<C,排除A、C、D,选B.具体比较过程如下:由-1<a<0得1+a>0,A-B=(1+a2)-(1-a2)=2a2>0得A>B,C-A=-(1+a2)=-=->0,得C>A,∴B<A<C.二、填空题5.给出四个条件:①b>0>a,②0>a>b,③a>0>b,④a>b>0,能推得<成立的是________.[答案] ①、②、④[解析] <⇔<0,∴①、②、④能使它成立.6.a≠2、b≠-1、M=a2+b2、N=4a-2b-5,比较M与N大小的结果为________.[答案] M>N[解析] ∵a≠2,b≠-1,∴M-N=a2+b2-4a+2b+5=(a-2)2+(b+1)2>0,∴M>N.三、解答题7.某矿山车队有4辆载重为10 t的甲型卡车和7辆载重为6 t的乙型卡车,有9名驾驶员.此车队每天至少要运360 t矿石至冶炼厂.已知甲型卡车每辆每天可往返6次,乙型卡车每辆每天可往返8次,写出满足上述所有不等关系的不等式.[解析] 设每天派出甲型卡车x辆,乙型卡车y辆.根据题意,应有如下的不等关系:(1)甲型卡车和乙型卡车的总和不能超过驾驶员人数.(2)车队每天至少要运360 t矿石.(3)甲型车不能超过4辆,乙型车不能超过7辆.要同时满足上述三个不等关系,可以用下面的不等式组来表示:,即.8.已知a、b均为正实数,且2a+8b-ab=0,求a+b的最小值.[解析] ∵2a+8b-ab=0,∴+=1,又a>0,b>0,∴a+b=(a+b)(+)=10++≥10+2=18,当且仅当=,即a=2b时,等号成立.由,得.∴当a=12,b=6时,a+b取最小值18.。

高中数学 第三章 不等式章末复习课练习(含解析)新人教A版必修5-新人教A版高二必修5数学试题

高中数学 第三章 不等式章末复习课练习(含解析)新人教A版必修5-新人教A版高二必修5数学试题

第三章章末复习课[整合·网络构建][警示·易错提醒]1.不等式的基本性质不等式的性质是不等式这一章内容的理论基础,是不等式的证明和解不等式的主要依据.因此,要熟练掌握和运用不等式的八条性质.2.一元二次不等式的求解方法(1)图象法:由一元二次方程、一元二次不等式及二次函数的关系,共同确定出解集.(2)代数法:将所给不等式化为一般式后借助分解因式或配方求解.当m<n时,若(x-m)(x-n)>0,则可得x>n或x<m;若(x-m)(x-n)<0,则可得m <x<n.有口诀如下:大于取两边,小于取中间.3.二元一次不等式(组)表示的平面区域(1)二元一次不等式(组)的几何意义:二元一次不等式(组)表示的平面区域.(2)二元一次不等式表示的平面区域的判定:对于任意的二元一次不等式Ax+By+C>0(或<0),无论B 为正值还是负值,我们都可以把y 项的系数变形为正数,当B >0时,①Ax +By +C >0表示直线Ax +By +C =0上方的区域;②Ax +By +C <0表示直线Ax +By +C =0下方的区域.4.求目标函数最优解的两种方法(1)平移直线法.平移法是一种最基本的方法,其基本原理是两平行直线中的一条上任意一点到另一条直线的距离相等;(2)代入检验法.通过平移法可以发现,取得最优解对应的点往往是可行域的顶点,其实这具有必然性.于是在选择题中关于线性规划的最值问题,可采用求解方程组代入检验的方法求解.5.运用基本不等式求最值,把握三个条件(易错点) (1)“一正”——各项为正数;(2)“二定”——“和”或“积”为定值; (3)“三相等”——等号一定能取到.专题一 不等关系与不等式的基本性质1.同向不等式可以相加,异向不等式可以相减;但异向不等式不可以相加,同向不等式不可以相减.(1)若a >b ,c >d ,则a +c >b +d ; (2)若a >b ,c <d ,则a -c >b -a .2.左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘.(1)若a >b >0,c >d >0,则ac >bd ; (2)若a >b >0,0<c <d ,则a c >bd.3.左右同正不等式,两边可以同时乘方或开方:若a >b >0,则a n >b n或n a >nb . 4.若ab >0,a >b ,则1a <1b ;若ab <0,a >b ,则1a >1b.[例1] 已知a >0,b >0,且a ≠b ,比较a 2b +b 2a 与a +b 的大小.解:因为⎝ ⎛⎭⎪⎫a 2b +b 2a -(a +b )=a 2b -b +b 2a -a = a 2-b 2b +b 2-a 2a =(a 2-b 2)⎝ ⎛⎭⎪⎫1b -1a =(a 2-b 2)a -b ab =(a -b )2(a +b )ab,因为a >0,b >0,且a ≠b , 所以(a -b )2>0,a +b >0,ab >0,所以⎝ ⎛⎭⎪⎫a 2b +b 2a -(a +b )>0,即a 2b +b 2a >a +b .归纳升华不等式比较大小的常用方法(1)作差比较法:作差后通过分解因式、配方等手段判断差的符号得出结果. (2)作商比较法:常用于分数指数幂的代数式. (3)乘方转化的方法:常用于根式比较大小. (4)分子分母有理化. (5)利用中间量.[变式训练] (1)已知0<x <2,求函数y =x (8-3x )的最大值; (2)设函数f (x )=x +2x +1,x ∈[0,+∞),求函数f (x )的最小值. 解:(1)因为0<x <2,所以0<3x <6,8-3x >0, 所以y =x (8-3x )=13×3x ·(8-3x )≤13⎝ ⎛⎭⎪⎫3x +8-3x 22=163,当且仅当3x =8-3x ,即x =43时,取等号,所以当x =43时,y =x (8-3x )有最大值为163.(2)f (x )=x +2x +1=(x +1)+2x +1-1,因为x ∈[0,+∞),所以x +1>0,2x +1>0, 所以x +1+2x +1≥2 2. 当且仅当x +1=2x +1, 即x =2-1时,f (x )取最小值. 此时f (x )min =22-1.专题二 一元二次不等式的解法 一元二次不等式的求解流程如下: 一化——化二次项系数为正数.二判——判断对应方程的根. 三求——求对应方程的根. 四画——画出对应函数的图象. 五解集——根据图象写出不等式的解集. [例2] (1)解不等式:-1<x 2+2x -1≤2; (2)解不等式a (x -1)x -2>1(a ≠1).解:(1)原不等式等价于⎩⎪⎨⎪⎧x 2+2x -1>-1,x 2+2x -1≤2,即⎩⎪⎨⎪⎧x 2+2x >0, ①x 2+2x -3≤0. ② 由①得x (x +2)>0,所以x <-2或x >0; 由②得(x +3)(x -1)≤0, 所以-3≤x ≤1.将①②的解集在数轴上表示出来,如图所示.求其交集得原不等式的解集为{x |-3≤x <-2或0<x ≤1}.(2)原不等式可化为a (x -1)x -2-1>0,即(a -1)⎝⎛⎭⎪⎫x -a -2a -1(x -2)>0(*), ①当a >1时,(*)式即为⎝⎛⎭⎪⎫x -a -2a -1(x -2)>0,而a -2a -1-2=-a a -1<0,所以a -2a -1<2,此时x >2或x <a -2a -1. ②当a <1时,(*)式即为⎝⎛⎭⎪⎫x -a -2a -1(x -2)<0, 而2-a -2a -1=aa -1, 若0<a <1,则a -2a -1>2,此时2<x <a -2a -1; 若a =0,则(x -2)2<0,此时无解; 若a <0,则a -2a -1<2,此时a -2a -1<x <2. 综上所述,当a >1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <a -2a -1或x >2; 当0<a <1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪2<x <a -2a -1; 当a =0时,不等式的解集为∅; 当a <0时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪a -2a -1<x <2.归纳升华含参数的一元二次不等式的分类讨论(1)对二次项系数含有参数的一元二次不等式,要注意对二次项系数是否为零进行讨论,特别当二次项系数为零时需转化为一元一次不等式问题来求解.(2)对含参数的一元二次不等式,在其解的情况不明确的情况下,需要对其判别式分Δ>0,Δ=0,Δ<0三种情况并加以讨论.(3)若含参数的一元二次不等式可以转化成用其根x 1,x 2表示的形如a (x -x 1)(x -x 2)的形式时,往往需要对其根分x 1>x 2、x 1=x 2,x 1<x 2三种情况进行讨论,或用根与系数的关系帮助求解.[变式训练] 定义在(-1,1)上的奇函数f (x )在整个定义域上是减函数,且f (1-a )+f (1-a 2)<0,某某数a 的取值X 围.解:因为f (x )的定义域为(-1,1),所以⎩⎪⎨⎪⎧-1<1-a <1,-1<1-a 2<1, 所以⎩⎨⎧0<a <2,-2<a <2且a ≠0,所以0<a <2,①原不等式变形为f (1-a )<-f (1-a 2). 由于f (x )为奇函数,有-f (1-a 2)=f (a 2-1), 所以f (1-a )<f (a 2-1). 又f (x )在(-1,1)上是减函数, 所以1-a >a 2-1,解得-2<a <1.② 由①②可得0<a <1, 所以a 的取值X 围是(0,1). 专题三 简单的线性规划问题 线性规划问题在实际中的类型主要有:(1)给定一定数量的人力、物力资源,求如何运用这些资源,使完成任务量最大,收到的效益最高;(2)给定一项任务,问怎样统筹安排,使得完成这项任务耗费的人力、物力资源最少. [例3] 某厂用甲、乙两种原料生产A ,B 两种产品,制造1 t A ,1 t B 产品需要的各种原料数、可得到利润以及工厂现有各种原料数如下表:原料 每种产品所需原料/t现有原料数/tAB甲 2 1 14 乙 1 3 18 利润/(万元/t)53____(1)在现有原料条件下,生产A ,B 两种产品各多少时,才能使利润最大?(2)每吨B 产品的利润在什么X 围变化时,原最优解不变?当超出这个X 围时,最优解有何变化?解:(1)生产A ,B 两种产品分别为x t ,y t ,则利润z =5x +3y ,x ,y 满足⎩⎪⎨⎪⎧2x +y ≤14.x +3y ≤18,x ≥0,y ≥0,作出可行域如图所示:当直线5x +3y =z 过点B ⎝ ⎛⎭⎪⎫245,225时,z 取最大值3715,即生产A 产品 245 t ,B 产品 225t 时,可得最大利润.(2)设每吨B 产品利润为m 万元,则目标函数是z =5x +my ,直线斜率k =-5m,又k AB =-2,k CB =-13,要使最优解仍为B 点,则-2≤-5m ≤-13,解得52≤m ≤15.归纳升华解答线性规划应用题的步骤(1)列:设出未知数,列出约束条件,确定目标函数. (2)画:画出线性约束条件所表示的可行域.(3)移:在线性目标函数所表示的一组平行线中,利用平移的方法找出与可行域有公共点且纵截距最大或最小的直线.(4)求:通过解方程组求出最优解. (5)答:作出答案.[变式训练] 已知x >0,y >0,x +2y +2xy =8,则x +2y 的最小值是( ) A .3B .4C.92D.112解析:法一:依题意得,x +1>1,2y +1>1,易知(x +1)·(2y +1)=9,则(x +1)+(2y +1)≥2(x +1)(2y +1)=29=6,当且仅当x +1=2y +1=3,即x =2,y =1时,等号成立,因此有x +2y ≥4,所以x +2y 的最小值为4.法二:由题意得,x =8-2y 2y +1=-(2y +1)+92y +1=-1+92y +1, 所以x +2y =-1+92y +1+2y =-1+92y +1+2y +1-1,≥292y +1·(2y +1)-2=4,当且仅当2y +1=3,即y =1时,等号成立. 答案:B专题四 成立问题(恒成立、恰成立等)[例4] 已知函数f (x )=mx 2-mx -6+m ,若对于m ∈[1,3],f (x )<0恒成立,某某数x 的取值X 围.解:因为mx 2-mx -6+m <0, 所以m (x 2-x +1)-6<0, 对于m ∈[1,3],f (x )<0恒成立⇔⎩⎪⎨⎪⎧1×(x 2-x +1)-6<0,3×(x 2-x +1)-6<0, 即为⎩⎪⎨⎪⎧1-212<x <1+212,1-52<x <1+52,计算得出:1-52<x <1+52.所以实数x 的取值X 围:1-52<x <1+52.归纳升华不等式恒成立求参数X 围问题常见解法(1)变更主元法:根据实际情况的需要确定合适的主元,一般将知道取值X 围的变量看作主元. (2)分离参数法:若f (a )<g (x )恒成立,则f (a )<g (x )min ; 若f (a )>g (x )恒成立,则f (a )>g (x )max . (3)数形结合法:利用不等式与函数的关系将恒成立问题通过函数图象直观化.[变式训练] 已知函数y =2x 2-ax +10x 2+4x +6的最小值为1,某某数a 的取值集合.解:由y ≥1即2x 2-ax +10x 2+4x +6≥1⇒x 2-(a +4)x +4≥0恒成立,所以Δ=(a +4)2-16≤0,解得-8≤a ≤0(必要条件). 再由y =1有解,即2x 2-ax +10x 2+4x +6=1有解,即x 2-(a +4)x +4=0有解,所以Δ=(a +4)2-16≥0,解得a ≤-8或a ≥0. 综上即知a =-8或a =0时,y min =1, 故所某某数a 的取值集合是{-8,0}. 专题五 利用分类讨论思想解不等式 [例5] 解关于x 的不等式x -ax -a 2<0(a ∈R). 分析:首先将不等式转化为整式不等式(x -a )(x -a 2)<0,而方程(x -a )(x -a 2)=0的两根为x 1=a ,x 2=a 2,故应就两根a 和a 2的大小进行分类讨论.解:原不等式等价于(x -a )(x -a 2)<0.(1)若a =0,则a =a 2=0,不等式为x 2<0,解集为∅; (2)若a =1,则a 2=1,不等式为(x -1)2<0,解集为∅; (3)若0<a <1,则a 2<a ,故解集为{x |a 2<x <a }; (4)若a <0或a >1,则a 2>a ,故解集为{x |a <x <a 2}. 归纳升华分类讨论思想解含有字母的不等式时,往往要对其中所含的字母进行适当的分类讨论.分类讨论大致有以下三种:(1)对不等式作等价变换时,正确运用不等式的性质而引起的讨论. (2)对不等式(组)作等价变换时,由相应方程的根的大小比较而引起的讨论. (3)对不等式作等价变换时,由相应函数单调性的可能变化而引起的讨论.[变式训练] 已知奇函数f (x )在区间(-∞,+∞)上单调递减,α,β,γ∈R 且α+β>0,β+γ>0,γ+α>0.试判断f (α)+f (β)+f (γ)的值与0的关系.解:因为f(x)为R上的减函数,且α>-β,β>-γ,γ>-α,所以f(α)<(-β),f(β)<f(-γ),f(γ)<f(-α),又f(x)为奇函数,所以f(-β)=-f(β),f(-α)=-f(α),f(-γ)=-f(γ),所以f(α)+f(β)+f(γ)<f(-β)+f(-γ)+f(-α)=-[f(β)+f(γ)+f(α)],所以f(α)+f(β)+f(γ)<0.。

高中数学 第一讲 不等式和绝对值不等式综合检测 新人教A版选修4-5-新人教A版高二选修4-5数学试

高中数学 第一讲 不等式和绝对值不等式综合检测 新人教A版选修4-5-新人教A版高二选修4-5数学试

第一讲 不等式和绝对值不等式讲末综合检测(时间:120分钟,满分:150分)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知a >b ,c >d ,则下列命题中正确的是( )A .a -c >b -dB .a d >b cC .ac >bdD .c -b >d -a 解析:选D.因为a >b ,c >d ,所以a +c >b +d ,所以c -b >d -a .2.不等式|x |>2x -1的解集为( ) A .{x |x >2或x <-1} B .{x |-1<x <2}C .{x |x <1或x >2}D .{x |1<x <2} 解析:选C.|x |>2x -1⇒⎩⎪⎨⎪⎧x >2x -1,x ≥0或⎩⎪⎨⎪⎧x <21-x ,x <0,解得x <1或x >2. 3.不等式1<|x +1|<3的解集为( )A .(0,2)B .(-2,0)∪(2,4)C .(-4,0)D .(-4,-2)∪(0,2)解析:选D.1<|x +1|<3⇔-3<x +1<-1或1<x +1<3⇔-4<x <-2或0<x <2.4.在下列函数中,最小值是2的是( )A .y =x 5+5x(x ∈R 且x ≠0) B .y =lg x +1lg x(1<x <10) C .y =3x +3-x(x ∈R )D .y =sin x +1sin x ⎝ ⎛⎭⎪⎫0<x <π2 解析:选C.A 中,当x <0时,y <0;B 中,因为1<x <10,所以y >2;故A ,B 中最小值都不是2.D 中,0<sin x <1,所以sin x +1sin x >2.无最小值.只有C 正确. 5.若1a <1b<0,则下列结论不正确的是( )A .a 2<b 2B .ab <b 2C .b a +a b>2 D .|a |-|b |=|a -b | 解析:选D.法一(特殊值法):令a =-1,b =-2,代入A ,B ,C ,D ,知D 不正确.法二:由1a <1b<0,得b <a <0,所以b 2>ab ,ab >a 2,故A ,B 正确. 又由b a >1,a b >0,且b a ≠a b ,即b a +a b>2正确.从而A ,B ,C 均正确,对于D ,由b <a <0⇔|a |<|b |.即|a |-|b |<0,而|a -b |≥0,故D 错. 6.已知不等式|2x -t |+t -1<0的解集为⎝ ⎛⎭⎪⎫-12,12,则t = ( ) A .0B .-1C .-2D .-3解析:选A.因为|2x -t |+t -1<0,即|2x -t |<1-t ,所以t -1<2x -t <1-t ,所以2t -1<2x <1,所以t -12<x <12,依题意t -12=-12,所以t =0. 7.若正数x ,y 满足x 2+3xy -1=0,则x +y 的最小值是( )A .23B .223C .33D .233 解析:选B.因为正数x ,y 满足x 2+3xy -1=0,所以3xy =1-x 2,则y =1-x 23x , 所以x +y =x +1-x 23x =13x +2x 3≥213x ·2x 3=223.当且仅当13x =2x 3,即x =22时取等号.故x +y 的最小值是223. 8.关于x 的不等式|x +log a x |<|x |+|log a x |(a >1)的解集是( )A .(0,a )B .(0,1)C .(-∞,a )D .(1,+∞)解析:选B.由|a +b |<|a |+|b |的条件是ab <0,可知|x +log a x |<|x |+|log a x |成立的条件是x >0,且log a x <0.又a >1,所以0<x <1,所以该不等式的解集为{x |0<x <1}.9.若不等式|x -1|+|x -5|+|x +3|>m 对任意实数x 恒成立,则m 的取值X 围是( )A .m ≤8B .m <8C .m ≤4D .m <4解析:选B.f (x )=|x -1|+|x -5|+|x +3|的几何意义是数轴上的点到1,5,-3的距离之和,其最小值为8,所以m <8.10.不等式|sin x +tan x |<a 的解集为N ;不等式|sin x |+|tan x |<a 的解集为M ,则解集M 与N 的关系是( )A .N ⊆MB .M ⊆NC .M =ND .M N解析:选B.|sin x +tan x |≤|sin x |+|tan x |,则M ⊆N (当a ≤0时,M =N =∅). 11.设0<x <1,a ,b 都为大于零的常数,若a 2x +b 21-x≥m 恒成立,则m 的最大值是( ) A .(a -b )2 B .(a +b )2C .a 2b 2D .a 2 解析:选B.由a 2x +b 21-x =⎝ ⎛⎭⎪⎫a 2x +b 21-x [x +(1-x )] =a 2+b 2+a 2(1-x )x +b 2x 1-x ≥a 2+b 2+2ab =(a +b )2, 当且仅当a 2(1-x )x =b 2x 1-x时等号成立, 所以m ≤(a +b )2,m 的最大值为(a +b )2.12.已知P (a ,b )为圆x 2+y 2=4上任意一点,则1a 2+4b2最小时,a 2的值为( ) A .45B .2C .43D .3 解析:选C.因为P (a ,b )为圆x 2+y 2=4上任意一点,所以a 2+b 2=4.设a =2cos θ,b =2sin θ,则1a 2+4b 2=14cos 2θ+44sin 2θ=sin 2θ+cos 2θ4cos 2θ+4(sin 2θ+cos 2θ)4sin 2θ=14⎝ ⎛⎭⎪⎫tan 2θ+1+4+4tan 2θ≥14⎝ ⎛⎭⎪⎫2tan 2θ·4tan 2θ+5=94,当且仅当tan 2θ=2时取等号,此时a 2=4cos 2θ=4cos 2θsin 2θ+cos 2θ=4tan 2θ+1=43.故选C. 二、填空题:本题共4小题,每小题5分.13.不等式|x +1||x +2|≥1的解集为________. 解析:因为|x +1||x +2|≥1,所以|x +1|≥|x +2|,x ≠-2, 所以x 2+2x +1≥x 2+4x +4,所以2x +3≤0,所以x ≤-32且x ≠-2. 答案:{x |x ≤-32且x ≠-2} 14.定义运算x ⊗y =⎩⎪⎨⎪⎧x ,x ≤y ,y ,x >y ,若|m -1|⊗m =|m -1|,则m 的取值X 围是________. 解析:依题意,有|m -1|≤m ,所以-m ≤m -1≤m ,所以m ≥12. 答案:⎣⎢⎡⎭⎪⎫12,+∞ 15.若正数a ,b 满足a 2b =12,则a +b 的最小值是________. 解析:因为a >0,b >0,a 2b =12,所以a +b =12a +12a +b ≥3312a ·12a ·b =3318=32, 当且仅当12a =12a =b ,即a =1,b =12时,等号成立. 故a +b 的最小值是32. 答案:3216.已知函数f (x )=|x -2|,g (x )=-|x +3|+m .若函数f (x )的图象恒在函数g (x )图象的上方,则m 的取值X 围是________.解析:函数f (x )的图象恒在函数g (x )图象的上方,即为|x -2|>-|x +3|+m 对任意实数x 恒成立,即|x -2|+|x +3|>m 恒成立.又对任意实数x 恒有|x -2|+|x +3|≥|(x -2)-(x +3)|=5,于是得m <5,即m 的取值X 围是(-∞,5).答案:(-∞,5)三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)设a ,b ,c ∈R ,且ab +bc +ac =4,求证:1a +1b +1c ≥332. 证明:由1a +1b +1c =ab +bc +ac abc=4abc . 又因为ab +bc +ac =4≥33a 2b 2c 2,得 abc ≤833(当且仅当a =b =c 时等号成立). 所以1a +1b +1c =4abc ≥332. 18.(本小题满分12分)已知|2x -3|≤1的解集为[m ,n ].(1)求m +n 的值;(2)若|x -a |<m ,求证:|x |<|a |+1.解:(1)由不等式|2x -3|≤1可化为-1≤2x -3≤1,得1≤x ≤2,所以m =1,n =2,m +n =3.(2)证明:若|x -a |<1,则|x |=|x -a +a |≤|x -a |+|a |<|a |+1.19.(本小题满分12分)已知函数f (x )=m -|x -3|,不等式f (x )>2的解集为(2,4).(1)某某数m 的值;(2)若关于x 的不等式|x -a |≥f (x )恒成立,某某数a 的取值X 围.解:(1)因为f (x )=m -|x -3|,所以不等式f (x )>2,即m -|x -3|>2.所以5-m <x <m +1.而不等式f (x )>2的解集为(2,4),所以5-m =2且m +1=4,解得m =3.(2)关于x 的不等式|x -a |≥f (x )恒成立⇔关于x 的不等式|x -a |≥3-|x -3|恒成立⇔|x -a |+|x -3|≥3恒成立⇔|a -3|≥3恒成立.由a -3≥3或a -3≤-3,解得a ≥6或a ≤0.20.(本小题满分12分)已知函数f (x )=|x -1|+|2x +2|.(1)解不等式f (x )>5.(2)若不等式f (x )<a (a ∈R )的解集为空集,求a 的取值X 围.解:(1)根据条件f (x )=⎩⎪⎨⎪⎧3x +1,x >1,x +3,-1≤x ≤1,-3x -1,x <-1.当x >1时,f (x )>5⇔3x +1>5⇔x >43, 又x >1,所以x >43; 当-1≤x ≤1时,f (x )>5⇔x +3>5⇔x >2,又-1≤x ≤1,此时无解;当x <-1时,f (x )>5⇔-3x -1>5⇔x <-2,又x <-1,所以x <-2.综上,f (x )>5的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x >43或x <-2. (2)由于f (x )=⎩⎪⎨⎪⎧3x +1,x >1,x +3,-1≤x ≤1,-3x -1,x <-1,可得f (x )的值域为[2,+∞).又不等式f (x )<a (a ∈R )的解集为空集,所以a 的取值X 围是(-∞,2].21.(本小题满分12分)设函数f (x )=|x +1|-|x -2|.(1)求不等式f (x )≥2的解集;(2)若不等式f (x )≤|a -2|的解集为R ,某某数a 的取值X 围.解:(1)f (x )=⎩⎪⎨⎪⎧-3,x ≤-1,2x -1,-1<x <2,3,x ≥2,当x ≤-1时,f (x )≥2不成立;当-1<x <2时,由f (x )≥2,得2x -1≥2,所以32≤x <2. 当x ≥2时,f (x )≥2恒成立.所以不等式f (x )≥2的解集为⎣⎢⎡⎭⎪⎫32,+∞. (2)因为f (x )=|x +1|-|x -2|≤|(x +1)-(x -2)|=3,所以|a -2|≥3.所以a ≥5或a ≤-1.所以a 的取值X 围是(-∞,-1]∪[5,+∞).22.(本小题满分12分)某小区要建一座八边形的休闲小区,如图所示,它的主体造型的平面图是由两个相同的矩形ABCD 和EFGH 构成的面积为200 m 2的十字形地域.计划在正方形MNPQ 上建一座花坛,造价为每平方米4 200元,并在四周的四个相同的矩形上(图中阴影部分)铺花岗岩地坪,造价为每平方米210元,再在四个空角上铺草坪,造价为每平方米80元.(1)设总造价为S 元,AD 长为x m ,试求S 关于x 的函数关系式;(2)当x 为何值时,S 取得最小值?并求出这个最小值.解:(1)设DQ =y m ,又AD =x m ,故x 2+4xy =200,即y =200-x 24x . 依题意,得S =4 200x 2+210×4xy +80×2y 2=4 200x 2+210(200-x 2)+160⎝ ⎛⎭⎪⎫200-x 24x 2=38 000+4 000x 2+400 000x2. 依题意x >0,且y =200-x 24x>0, 所以0<x <10 2.故所求函数为S =38 000+4 000x 2+400 000x2,x ∈(0,102). (2)因为x >0,所以S ≥38 000+2 4 000x 2·400 000x 2=118 000, 当且仅当4 000x 2=400 000x2, 即x =10时取等号.所以当x =10∈(0,102)时,S min =118 000元.故AD =10m 时,S 有最小值118 000元.。

人教版高中数学 教案+学案综合汇编 第3章:不等式 课时12

人教版高中数学 教案+学案综合汇编 第3章:不等式  课时12

人教版高中数学 教案+学案 综合汇编第三章 不等式 第十二教时教材:不等式证明综合练习目的:系统小结不等式证明的几种常用方法,渗透“化归”“类比”“换元”等数学思想。

过程:一、简述不等式证明的几种常用方法比较、综合、分析、换元、反证、放缩、构造二、例一、已知0 < x < 1, 0 < a < 1,试比较|)1(log | |)1(log |x x a a +-和的大小。

解一:[][])1(l o)1(lo )1(lo)1(lo g |)1(lo g | |)1(lo g |22x x x x x x a aaaaa+---+-=+-- xxx aa +--=11l o g )1(l o g 2∵0 < 1 - x 2 < 1, 1110<+-<x x ∴011log )1(log 2>+--xxx a a ∴|)1(log | |)1(log |x x a a +>- 解二:2111111l o11l o )1(lo )1(l o g )1(lo g)1(l og x x x x x x x x xx x aa-+=-=--=-=+-++++ )1(l o g 121x x--=+ ∵0 < 1 - x 2 < 1, 1 + x > 1, ∴0)1(log 21>--+x x ∴1)1(log 121>--+x x ∴|)1(log | |)1(log |x x a a +>- 解三:∵0 < x < 1, ∴0 < 1 - x < 1, 1 < 1 + x < 2, ∴0)1(log ,0)1(log <+>-x x a a∴左 - 右 = )1(log )1(log )1(log 2x x x a a a -=++- ∵0 < 1 - x 2 < 1, 且0 < a < 1 ∴0)1(log 2>-x a∴|)1(log | |)1(log |x x a a +>-变题:若将a 的取值范围改为a > 0且a ≠ 1,其余条件不变。

高二数学不等式练习题

高二数学不等式练习题

高二数学不等式练习题高二数学不等式练习题数学是一门需要不断练习的学科,而高二的数学学习中,不等式是一个重要的内容。

掌握不等式的解题方法和技巧,对于提高数学水平和应对高考是至关重要的。

在这篇文章中,我们将通过一些典型的不等式练习题,来深入探讨不等式的解题思路和方法。

1. 难度适中的一元一次不等式考虑以下一元一次不等式:2x + 3 > 7。

要解这个不等式,我们可以先将其转化为等价的形式,即2x + 3 - 7 > 0,得到2x - 4 > 0。

接下来,我们可以通过绘制数轴或者使用符号法来解这个不等式。

将2x - 4 = 0作为临界点,我们可以将数轴分成三个区间:(-∞,2),(2,+∞)和{2}。

然后,我们可以选择一个测试点来判断每个区间的符号,例如选择x = 0。

代入原不等式得到2(0) - 4 = -4,小于0。

因此,我们可以得出结论:当x < 2时,2x - 4 < 0;当x > 2时,2x - 4 > 0。

2. 复杂一点的一元一次不等式考虑以下一元一次不等式:3(x - 2) + 2(x + 1) > 5x - 1。

首先,我们可以将不等式进行展开和整理,得到3x - 6 + 2x + 2 > 5x - 1,即5x - 4 > 5x - 1。

然而,这个不等式看起来有点奇怪,因为5x项在两边都有,所以我们需要重新审视这个不等式。

通过移项,我们可以得到-4 > -1,这是一个恒成立的条件。

因此,原不等式对于任意的x都成立,即解集为全体实数。

3. 高次不等式的解题方法考虑以下高次不等式:x^2 - 4x + 3 > 0。

我们可以将其转化为等价的形式,即(x - 1)(x - 3) > 0。

通过解这个不等式,我们可以得到两个关键点:x = 1和x = 3。

然后,我们可以将数轴分成三个区间:(-∞,1),(1,3)和(3,+∞)。

2022年高中数学第三章不等式1不等关系与不等式练习含解析新人教A版必修

2022年高中数学第三章不等式1不等关系与不等式练习含解析新人教A版必修

课时训练15 不等关系与不等式一、不等式性质的直接应用与判断1.若1a <1b<0,则下列结论不正确的是( )A.a2<b2B.ab<b2C.b a +ab>2 D.ba<1答案:D解析:由1a <1b<0可知,b<a<0,所以ba<1不成立,故选D.2.(2015山东威海高二期中,1)已知a>b,则下列不等式中成立的是( )A.a2>b2B.1a <1bC.1a-b>1aD.a3>b3答案:D解析:A.虽然-1>-2,但(-1)2>(-2)2不成立;B.虽然3>-2,但是13<1-2不成立;C.虽然2>-3,但是12-(-3)>12不成立;D.∵a>b,∴a3-b3=(a-b)(a2+ab+b2)>0. (∵a2+ab+b2=(a+12b)2+34b2>0)成立.综上可知,只有D正确.故选D.3.已知下列说法:①若a<b<0,则a2>ab;②若a≥b,ac≥bc,则c≥0;③若a>b>0,c<0,则ca >cb;④若0<a<1,则log a(1+a)>log a(1+1a)其中正确的有 .答案:①③④解析:对于①,由a<b,a<0,可得a2>ab,故①正确;对于②,当a=b时,c可以为负数,故②错误;对于③,当a>b>0时,得0<1a < 1 b,又c<0,∴ca >cb,故③正确;对于④,当0<a<1时,1a >1,则1+a<1+1a,∴log a(1+a)>log a(1+1a),故④正确.二、利用不等式的性质比大小4.(2015山东威海高二期中,2)不等式:①a2+2>2a;②a2+b2≥2(a-b-1);③a2+b2≥ab恒成立的个数是( )A.0B.1C.2D.3答案:D解析:①a2+2-2a=(a-1)2+1≥1,∴a2+2>2a,正确;②∵a2+b2-2(a-b-1)=(a-1)2+(b+1)2≥0,∴a2+b2≥2(a-b-1),正确;③a2+b2-ab=(a-12b)2+34b2≥0,当且仅当a=b=0时取等号,正确.综上可得:①②③都恒成立.故选D.5.若A=a2+3ab,B=4ab-b2,则A,B的大小关系是( )A.A≤BB.A≥BC.A<B 或A>BD.A>B答案:B 解析:∵A-B=a 2+3ab-4ab+b 2=a 2-ab+b 2=(a -b 2)2+34b 2≥0,∴A ≥B.6.(2015河南郑州高二期末,16)现有甲、乙两人相约爬山,若甲上山的速度为v 1,下山的速度为v 2(v 1≠v 2),乙上山和下山的速度都是v 1+v 22(甲、乙两人中途不停歇且下山时按原路返回),则甲、乙两人上下山所用的时间t 1,t 2的大小关系为 .答案:t 1>t 2解析:由题意知,甲用的时间t 1=S v 1+S v 2=S ·v 1+v 2v 1v 2,乙用的时间t 2=2×S v 1+v 22=4S v 1+v 2.∵t 1-t 2=S ·v 1+v 2v 1v 2−4S v 1+v 2=S (v 1+v 2v 1v 2-4v 1+v 2)=S (v 1-v 2)2v 1v 2(v 1+v 2)>0.∴t 1>t 2.7.已知a ,b ,x ,y 均为正实数,且1a >1b ,x>y ,试判断x x +a 与y y +b的大小关系.解:因为x x +a −y y +b =bx -ay (x +a )(y +b ),又1a >1b且a>0,b>0,所以b>a>0.又x>y>0,所以bx>ay ,即bx-ay>0.又x+a>0,y+b>0,所以bx -ay (x +a )(y +b )>0,即x x +a >y y +b.三、利用不等式的性质求代数式范围8.设x ,y 为实数,满足3≤xy 2≤8,4≤x 2y ≤9,则x 3y 4的最大值是 .答案:27解析:∵4≤x 2y ≤9,∴16≤x 4y 2≤81.①∵3≤xy 2≤8,∴18≤1x y 2≤13.②由①②可得2≤x 4y 2·1x y 2≤27,即2≤x 3y 4≤27.∴x 3y 4的最大值为27.9.已知1<a<2,3<b<4,求下列各式的取值范围:(1)2a+b ;(2)a-b ;(3)ab .解:(1)因为1<a<2,所以2<2a<4.又3<b<4,所以5<2a+b<8.(2)因为3<b<4,所以-4<-b<-3.又1<a<2,所以-3<a-b<-1.(3)因为3<b<4,所以14<1b <13.又1<a<2,所以14<ab <23.四、利用不等式的性质证明10.已知a>b>0,c<d<0.求证:3√ad <3√bc .思路分析:解答本题可先比较a d 与b c 的大小,进而判断3√a d <3√bc .证明:∵c<d<0,∴-c>-d>0.∴0<-1c <-1d .又a>b>0,∴-ad >-bc>0.∴3√-a d>3√-b c,即-3√a d>-3√b c.两边同乘以-1,得3√a d<3√b c.(建议用时:30分钟) 1.若a,b∈R,且a>b,则( )A.a2>b2B.ba<1C.lg(a-b)>0D.(12)a<(12)b答案:D解析:∵a>b,无法保证a2>b2,ba<1和lg(a-b)>0,∴排除A与B,C,故选D.2.如果a<b<0,那么下列不等式成立的是( )A.1 a <1bB.ab<b2C.-ab<-a2D.-1a <-1b答案:D解析:当a=-2,b=-1时,检验得A,B,C错误,故D正确.3.若a>b>c,则下列不等式成立的是( )A.1 a-c >1b-cB.1a-c<1b-cC.ac>bcD.ac<bc 答案:B解析:∵a>b>c,∴a-c>b-c>0.∴1 a-c <1 b-c.故选B.4.下列结论正确的是( )A.若a>b>0,a>c,则a2>bcB.若a>b>c,则ac > b cC.若a>b,n∈N*,则a n>b nD.a>b>0,则ln a<ln b答案:A解析:对于B,当c<0时,不成立,对于C,当a=1,b=-2,n=2时,a n>b n不成立.对于D,由对数函数性质得不正确,故选A.5.若α,β满足-π2<α<β<π2,则2α-β的取值范围是( )A.-π<2α-β<0B.-π<2α-β<πC.-3π2<2α-β<π2D.0<2α-β<π答案:C解析:∵-π2<α<π2,∴-π<2α<π.又-π2<β<π2,∴-π2<-β<π2.∴-3π2<2α-β<3π2.又α-β<0,α<π2,∴2α-β<π2.故-3π2<2α-β<π2.6.若实数a≠b,则a2-ab ba-b2(填不等号).答案:>解析:(a2-ab)-(ba-b2)=a2-ab-ba+b2=(a-b)2,∵a≠b,∴(a-b)2>0.∴a2-ab>ba-b2.7.已知2b<a<-b,则ab的取值范围为 .答案:-1<ab<2解析:∵2b<a<-b,∴2b<-b.∴b<0.∴-b b <ab<2bb,即-1<ab<2.8.若m<n,p<q且(p-m)(p-n)<0,(q-m)(q-n)<0,则m,n,p,q从小到大顺序是 . 答案:m<p<q<n解析:∵(p-m)(p-n)<0,∴{p-m>0,p-n<0或{p-m<0,p-n>0.又m<n,∴m<p<n.同理m<q<n,又p<q,∴m<p<q<n.9.甲、乙两位采购员同去一家粮食销售公司买了两次粮食(同一品种),两次粮食的价格不同,两位采购员的购粮方式也不同.其中,甲每次购买1 000 kg,乙每次购粮用去1 000元钱,谁的购粮方式更合算?解:设两次价格分别为a元、b元,则甲的平均价格为m=a+b2元,乙的平均价格为n=20001000a+1000b=2aba+b,∴m-n=a +b 2−2ab a +b =(a -b )22(a +b )>0.∴乙更合算.10.已知函数f (x )=ax 2-c ,-4≤f (1)≤-1,-1≤f (2)≤5,求f (3)的取值范围.解:因为f (x )=ax 2-c ,所以{f (1)=a -c ,f (2)=4a -c .即{a -c =f (1),4a -c =f (2),解得{a =13[f (2)-f (1)],c =13f (2)-43f (1),所以f (3)=9a-c=83f (2)-53f (1).又因为-4≤f (1)≤-1,-1≤f (2)≤5,所以53≤-53f (1)≤203,-83≤83f (2)≤403,所以-1≤83f (2)-53f (1)≤20,即-1≤f (3)≤20.。

高二数学不等式综合练习课

高二数学不等式综合练习课

练习:已知a > b > 0,求
a2
16 b(a
b)
的最小值.(教材P31第3题)
作业 1.《数学之友》T6.16.
2. 阅读教材P26—29《小结与复习》完成 P30—31《复习参考题六》(书上).
思考题: (1996年全国高考题) 已知a、b、c是实数,函数f(x) = ax2 + bx
+ c,g(x)ቤተ መጻሕፍቲ ባይዱ= ax + b,当 1 x 1时,| f(x)| 1. (1) 证明:| c | 1;
例1 解关于x的不等式 ax2 (a + 1)x + 1 < 0,其中a > 0.
当0 < a < 1时原不等式的解集为(1, ); 当a > 1时,原不等式解集为( ,1); 当a = 1时,原不等式解集为.
例2 已知关于x的不等式ax2 + bx + c < 0
的解集是{x| 的不等式ax2
x
<bx13+,c >或0x的>解12集}..求关于x
{x| < x < }
例3 对一切实数x,若| x 3| + | x + 2| > a 恒成立,求a的取值范围.
( ,5)
例4
已知a,b,x,y
R+,且
a x
b y
1

求x + y的最小值.
例5 已知x1,x2均为正数,求证:
1 x12 1 x22 1 ( x1 x2 )2 .
优游 优游
例5 已知x1,x2均为正数,求证:
1 x12 1 x22 1 ( x1 x2 )2 .

高二数学不等式综合练习课.docx

高二数学不等式综合练习课.docx

电动托盘搬运车:/[单选]脊髓灰质炎糖丸疫苗的正确服用方法为()A.热开水送服B.凉开水送服C.牛奶服用D.母乳送服E.冷饮送服[单选,A2型题,A1/A2型题]人体的基本组织不包括()A.上皮组织B.结缔组织C.肌组织D.神经组织E.脂肪组织[单选]重要设备、材料等货物的采购,单项合同估算价在()万元人民币以上的工程项目必须进行招标。

A.50B.100C.150D.200[单选,A1型题]药物依赖是指个体对药物产生()。

A.精神依赖B.躯体依赖C.耐受性增加D.精神和躯体依赖E.耐受性降低[单选]绿点速度是:()A、光洁形态下的单发操作速度。

B、指示对应于最佳升阻比的速度。

C、飞机只有在光洁形态下飞行时才会出现D、以上所有[单选,B1型题]持续存在的局限性干啰音的疾病是()A.支气管内膜结核B.心源性哮喘C.支气管肺炎D.慢性支气管炎E.支气管哮喘[单选,A1型题]下列不应选用青霉素G的情况是()。

A.梅毒B.伤寒C.鼠咬热D.气性坏疽E.钩端螺旋体病[单选]支配口腔颌面部运动的主要脑神经是()A.舌神经B.舌咽神经C.面神经D.三叉神经E.迷走神经[单选]利用航线前方导标方位导航,如实测方位大于导航方位,表明船舶()偏离计划航线,应()调整航向。

A.向左;向左B.向左;向右C.向右;向右D.向右;向左[单选]中华大蟾蜍属于()科。

A.盘舌蜡科B.锄足蟾科C.蟾蜍科D.蛙科[问答题,计算题]已知某飞机执行航班任务,起飞机场标高为860m,当日机场场压为718.8mmhg,查气压表知道,机场标高为900m时,标准场压为682.50mmhg;机场标高为990m时,标准场压为675.13mmhg,该飞机机型规定,当场压标准场压10mmhg时,飞机的最大起飞重量可以增加(或减少)100kg,该飞机最大起飞重量为13578kg,请对该飞机规定的最大起飞重量进行修正。

[名词解释]生物进化[填空题]肋板、肋骨、横梁、平面横舱壁等以靠近()一边为理论线。

高二数学:解二次不等式(教案+练习)

高二数学:解二次不等式(教案+练习)

第 18 讲 一元二次不等式的解法用十字相乘法解下面方程:(1)x 2+5x+6=0;① (2)y 2-7y+12=0;② (3)5x 2-8x-13=0;③ (4)4x 2+15x+9=0;④例一:01282<+-x x (答案:⑤)例二: 094122<--x x (答案:⑥)例三: 232x x -+>;(答案:)(1)x x 442-≤-(答案:)(2)4x -x 2+12≥0;(答案:⑦)(3) #02322>--x x (答案:⑧) (4) 2x -x 2-3< 0(答案:)答案:(1)-2,-3 (2)3,4 (3)1,513 (4)43,3-- (5) 62<<x (6) 23≠x (7) 62≤≤-x (8) 221>-<x x 或课堂检测 听课及知识掌握情况反馈_________________________________________________________.测试题(累计不超过20分钟)_______道;成绩_______.教学需要:加快□;保持□;放慢□;增加内容□课后巩固 作业_____题; 巩固复习____________________ ; 预习布置_____________________.签字 教学组长签字: 学习管理师:老师 课后 赏识评价 老师最欣赏的地方:老师想知道的事情: 老师的建议:解一元二次不等式(运算练习)第一组:用十字相乘法解下面方程:(1)a 2+11a+28=0;⑨ (2)x 2-16x+28=0,⑩ (3)4n 2+4n-15=0;11 (4)6a 2+a-35=0;12解下面二次不等式:23520x x +-> (答案:13) x 2-x +1>0(答案:14)41x 2>-x (答案:15) 260x x --> (答案:16 )第二组:(5) x 2 - 7x + 6 =0;17 (6)12x 2-13x+3=0;18 (5) x 2 + 5x - 6=0;19 (6)7x 2-19x-6=0;20x 2+x <-1(答案:21) 2654x x +< (答案:22)0122≥+-x x (答案:23) 2x 2+x -3<0; (答案:24)答案:(9) 7,4-- (10) 2,14 (11)25,23- (12) 25,37- (13) 312>-<x x 或 (14) R (15) 无解 (16) 32>-<x x 或 (17) 1,6 (18)43,31 (19) 6,1- (20) 72,3- (21) 无解 (22) 2134<<-x (23) R (24) 123<<-x解一元二次不等式(运算练习)第三组:用十字相乘法解下面方程:(1)a 2+4a-21=0;25 (2)m 2+4m-12=0;26 (3)20-9y-20y 2=0;27 (4)3a 2-7a-6=0;28x x -<62; (答案:29) 12≥x ; (答案:30)0122≤+-x x (答案:31) 2230x x -+->(答案:32)第四组:(1)p 2-8p+7=0;33 (2)b 2+11b+28=0;34 (3)15x 2+x-2=0;35 (4)6y 2+19y+10=0;3615442>-x x ; (答案:37) 2620x x --+≤ (答案:38)24410x x -+>(答案:39) x 2-x +1>31x (x -1)(答案:40)答案: (25)7,3- (26) 6,2- (27)45,54- (28) 32,3- (29)23<<-x (30)11≥-≤x x 或(31) 1=x (32) 无解 (33)1,7 (34)7,4-- (35)52,31- (36)25,32-- (37)2523>-<x x 或 (38) 2123>-<x x 或 (39) 21≠x (40) R① 答案:-2,-3② 3,4③ 1,513④ 43,3--⑤ 62<<x⑥ 23≠x⑦ 62≤≤-x⑧ 221>-<x x 或⑨ 7,4--⑩ 2,1411 25,23-12 25,37-13 312>-<x x 或14 R15 无解16 32>-<x x 或17 1,618 43,3119 6,1-20 72,3-21 无解22 2134<<-x23 R24 123<<-x25 7,3-26 6,2-27 45,54-28 32,3-29 23<<-x30 11≥-≤x x 或31 1=x32 无解33 1,734 7,4--35 52,31-36 25,32--37 2523>-<x x 或 38 2123>-<x x 或 39 21≠x40 R。

高二数学教案 平均值不等式习题课

高二数学教案 平均值不等式习题课

第1页 共1页 平均数定理的运用习题课
课 型 新授
教学目标 1、能熟练运用重要不等式解决问题。

2、通过变形,掌握特殊问题求最值的一般方法。

3、能运用公式解决简单的实际问题。

教学重点 利用基本不等式(平均数定理)求最值。

教学难点 有关代数式的变形,平均数定理求最值的条件。

教学过程
一、 复习导入1、 基本不等式
2、最值定理 两个正数 积为定值,和有最小值;和为定值,积有最大值
二、典型例题
例1、1) 已知x ≠0,当x 取什么值时,x 2+ 281x
的值最小,最小值是多少? 2)已知x>1,求y=x+1
1-x 的最小值 3)已知x ∈R ,求y= 12
22++x x 的最小值
4)已知x>1,求y=x+x 1+1
162+x x 的最小值 例2、1)已知0<x<1,函数y=x (3-3x )当x 为多少时y 取得最大值,最大值为多少?
2)求y=x 21x -的最大值
教学过程 教学内容 备课札记
例3、要建一个底面积为12m2,深为3m 的长方体无盖水池,如果底面造价每平方米600元,侧面造价每平方米400元,问怎样设计使总造价最低,最低总造价是多少元?练习、一段长为Lm 的篱笆围成一个一边靠墙的矩形菜园,问这个矩形的长和宽各为多少时,菜园的面积最大,最大面积是多少?
例4、已知:a 2+b 2+c 2=1,x 2+y 2+z 2=1 求证:ax+by+cz ≤1
三、课下作业。

一元二次不等式及其解法(练)高二数学同步精品课堂(提升版)

一元二次不等式及其解法(练)高二数学同步精品课堂(提升版)

一、选择题1.不等式错误!<0的解集为( )A.(-1,0)∪(0,+∞)B.(-∞。

-1)∪(0,1)C.(-1,0) D.(-∞,-1)【答案】B【解析】因为错误!<0,所以x+1<0,即x<-1。

2.设m+n>0,则关于x的不等式(m-x)(n+x)>0的解是( )A.x<-n或x>m B.-n<x<mC.x<-m或x>n D.-m<x<n【答案】B【解析】方程(m-x)(n+x)=0的两根为m,-n,因为m+n>0,所以m>-n,结合函数y=(m-x)(n+x的图象,得原不等式的解是-n<x<m,故选B。

3.已知不等式ax2-bx-1≥0的解集是错误!则不等式x2-bx-a<0的解集是()A.(2,3)B.(-∞,2)∪(3,+∞)C。

错误! D.错误!∪错误!【答案】A4.二次函数f (x )的图象如图所示,则f (x -1)>0的解集为( )A .(-2,1)B .(0,3)C .(1,2]D .(-∞,0)∪(3,+∞)【答案】B【解析】由题图,知f (x )>0的解集为(-1,2).把f (x )的图象向右平移1个单位长度即得f (x -1)的图象,所以f (x -1)>0解集为(0,3).二、填空题5.不等式x 2+mx +m2>0恒成立的条件是________. 【答案】0<m <2【解析】由Δ=m 2-4·错误!<0,解得:0<m <2.6.已知函数f (x )=-x 2+2x +b 2-b +1(b ∈R ),若当x ∈[-1,1]时,f (x )>0恒成立,则b 的取值范围是__________.三、解答题7.设函数f(x)=mx2-mx-1。

(1)若对于一切实数x,f(x)<0恒成立,求m的取值范围;(2)若对于x∈[1,3],f(x)<-m+5恒成立,求m的取值范围。

解析:(1)要使mx2-mx-1〈0恒成立,若m=0,显然-1〈0;若m≠0,则错误!⇒-4〈m<0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C.枯舌D.肿胀舌E.胖嫩舌 日本血吸虫的感染方式是A.喝生水B.接触疫水经皮肤感染C.生食或半生食水生植物D.生食或半生食溪蟹、蜊蛄E.生食或半生食淡水鱼、虾 土壤剖面 C125M×3-2RH离心式压缩机排气压力、温度 疟原虫在人体红细胞内进行的生殖是A.裂体增殖及配子生殖的开始B.二分裂繁殖C.孢子生殖D.配子生殖E.以上都是 隐睾下降固定术,一般应在几岁以内手术()A.2岁以内B.5岁以内C.7岁以内D.9岁以内E.12岁以内都可以 商业银行开展需要批准的个人理财业务需要相关从业人员具备的资格不包括。A.掌握所推介产品的特征B.具备相应的学历水平和工作经验C.具备相关监管部门要求的行业资格D.具备国家理财规划师资格 元元房地产公司将“元元假日”高档住宅小区的施工发包给大地建筑公司,大地建筑公司经元元公司同意将该项目的土石方工程分包给新兴建筑公司。在施工过程中,新兴公司不服从大地公司的安全生产管理,结果导致土方坍塌,造成严重的安全生产事故,关于该事故的责任承担,下列说法正确 急性前列腺炎患者直肠指诊的特点是A.前列腺增大,无压痛B.前列腺增大,压痛明显C.前列腺质地变硬D.前列腺表面扪及结节E.前列腺按摩后尿道可见血性液体 电化学探头法测定水中溶解氧时,所用的电极分两种类型,它们分别是和 引起慢性肾功能不全的最常见的继发性肾脏疾病是A.乙肝相关性肾炎B.淀粉样变肾病C.糖尿病肾病D.良性肾小动脉硬化E.系统性红斑狼疮 男患、74岁,以"工作中突然出现左肢无力,伴头痛半小时"为主诉来诊,既往有高血压史。查体:神清、语利,左侧面、舌核上瘫,左侧肢体偏瘫,左侧Babinski(+),颈强直(-)、双侧Kernig征(-)。为帮助诊断,首选的辅助检查是A.脑电图B.脑血管造影C.头颅CTD.脑脊液E.脑超声波 根据感染发生的部位,脐炎属于A.身体多个部位感染B.神经系统感染C.其他类感染D.运动系统感染E.皮肤和软组织感染 关于美曲膦酯(敌百虫)中毒患者的急救措施不妥的是A.对受污染的皮肤和头发用大量清水擦洗B.口服中毒者用清水反复洗胃C.喷洒农药时中毒患者应马上脱去污染衣物D.眼部污染者用2%碳酸氢钠连续冲洗E.早期足量反复给予阿托品解毒 细水雾灭火系统的缺点是作为灭火剂的水质要求绝对稳定(即纯净水),给细水雾灭火系统大范围的推广带来一定难度.A.正确B.错误 卧床患者头发纠结成团可选用A.30%乙醇B.40%乙醇C.50%乙醇D.75%乙醇E.95%乙醇 对违犯党纪的党员进行纪律处分,必须坚持的基本原则有A、纪律面前人人平等的原则B、严肃慎重和区别对待的原则C、从严处理的原则D、实事求是的原则 头颅加速性损伤引起的颅内血肿通常位于A.着力点部位或受伤同侧B.着力点对侧C.着力点部位和受伤对侧D.额叶或颞叶E.颅内任何部位 五行学说认为病情较重的色脉关系是A.色与脉的五行属性相符B.色与脉的五行属性相生C.客色胜主色D.色与脉的五行属性相克E.以上都不是 下列哪项不是HIV主要传播途径A.异性不洁性行为B.同性性行为C.共餐共宿D.静脉内吸毒E.母婴传播 下列那些是理筋手法的功效A.整复错位B.活血散瘀C.松解粘连D.祛风散寒E.解除痉挛 以下哪项最不符合成釉细胞瘤的X线特征()A.多房且分房大小相差悬殊B.骨质膨胀,以向颊舌侧为甚C.肿瘤可含牙或不含牙,邻牙可被肿瘤推压而移位D.肿瘤内可见钙化影E.牙根可被侵蚀呈锯齿状或截断状 预激综合征的病因一般不包括A.二尖瓣脱垂B.三尖瓣下移畸形C.心肌病D.心肌梗死E.可无器质性心脏病 治疗滋生湿虫型阴道炎,应首选的方剂是。A.知柏地黄汤B.五味消毒饮C.完带汤D.止带方E.萆薢渗湿汤 通常人们将社会分为和陌生的社会,我们的生活地是前者,我们在旅游过程中所感知的社会则是后者。 有关肢端肥大症的描述,下列哪项不正确()A.既有生长激素分泌增加,又可有促性腺激素、促甲状腺激素、促肾上腺皮质激素分泌不足B.可伴有催乳素分泌增加C.葡萄糖负荷后可呈糖耐量减低或糖尿病曲线D.常见的原因是垂体瘤,且多数系微腺瘤,用药物治疗效果好E.可有1,25(OH)D3水平 概述内墙镶贴面铺贴砖时的操作步骤。 根据《企业国有资产法》的规定,企业改制的情形不包括()A、国有独资企业改为国有独资公司B、国有独资公司改为国有独资企业C、国有独资公司改为国有资本控股公司D、国有资本控股公司改为非国有资本控股公司 血液最为重要的缓冲系统是A.CO2B.PaCO2C.HCO-3D.HCO-3/H2CO3E.H2CO3 寄生虫感染患者血清中增高的主要为A.IgMB.IgGC.分泌型IgAD.IgEE.M蛋白 测流河段应选择在顺直、稳定,水流集中,无分流、岔流、斜流、回流及死水等现象的河段。顺直河段长度应大于洪水时主河槽宽度的3倍,宜避开有汇入或及等大水体产生变动回水的影响。 催化剂塌方 因长期大量使用抗生素引起的腹泻或鹅口疮多属于A.内源性感染B.医源性感染C.交叉感染D.外源性感染E.隐性感染 简述良好的家庭教育的基本条件。 自由组合定律 不是代码功能的是还包括特定含义A、标识的唯一性B、分类C、扩展性D、排序 早期缺铁性贫血形态学改变为A.小细胞低色素性贫血B.小细胞正色素性贫血C.正细胞正色素性贫血D.大细胞性贫血E.以上都不是 下列解决睡眠中特殊问题的护理措施,错误的是()A.对失眠者可适当用点安眠药B.对睡眠过多者睡前大量进食C.对遗尿者晚间限制饮水,睡前督促其排尿D.对睡眠型呼吸暂停者指导采取正确睡眠姿势E.对发作性睡眠者采用药物治疗并指导其自我防护 下列哪种病原体不会通过输血传染。A.梅毒螺旋体B.戊型肝炎病毒C.人类微小病毒B19D.疟原虫E.西尼罗病毒 固定资产系统的特点之一是采用按项计提折旧以提高折旧计算的准确性。()A.正确B.错误
相关文档
最新文档