2013年高考数学试题精编:4.2两角和与差的三角函数

合集下载

2013年全国各省市高考真题——三角函数(带答案)

2013年全国各省市高考真题——三角函数(带答案)

2013年全国各省市文科数学—三角函数1、2013大纲文T2.已知a 是第二象限角,5sin ,cos 13a a ==则 (A )1213-(B )513- (C )513 (D )12132、2013大纲文T9.若函数()()sin 0=y x ωϕωω=+>的部分图像如图,则(A )5 (B )4 (C )3 (D )23、2013新课标文T9.函数()(1cos )sin f x x x =-在[,]ππ-的图像大致为( )4、2013新课标文T10.已知锐角ABC ∆的内角,,A B C 的对边分别为,,a b c ,223cos cos 20A A +=,7a =,6c =,则b =( )(A )10(B )9(C )8(D )55、2013新课标Ⅱ文T4.ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知2b =,6B π=,4C π=,则ABC ∆的面积为( )(A )2 (B 1 (C )2 (D 16、2013新课标Ⅱ文T6.已知2sin 23α=,则2cos ()4πα+=( ) (A )16 (B )13 (C )12 (D )237、2013辽宁文T6.在ABC ∆,内角,,A B C 所对的边长分别为,,.a b c1sin cos sin cos ,2a B C c B Ab +=,a b B >∠=且则A .6π B .3πC .23πD .56π8、2013山东文T7.ABC ∆的内角A B C 、、的对边分别是a b c 、、, 若2B A =,1a =,b =,则c =(A)(D)19、2013山东文T9.函数x x x y sin cos +=的图象大致为10、2013北京文T5.在ABC ∆中,3a =,5b =,1sin 3A =,则sin B =( ) A .15 B .59CD .111、2013四川文T6.函数()2sin()(0,)22f x x ππωϕωϕ=+>-<<的部分图象如图所示,则,ωϕ的值分别是( )(A )2,3π-(B )2,6π-(C )4,6π-(D )4,3π12、2013天津文T6. 函数()sin 24f x x π⎛⎫=- ⎪⎝⎭在区间0,2π⎡⎤⎢⎥⎣⎦上的最小值是(A) 1- (B) (D) 0 13、2013浙江文T6.函数f(x)=sin xcos x+32cos 2x 的最小正周期和振幅分别是 A 、π,1 B 、π,2 C 、2π,1 D 、2π,2 14、2013福建文T9.将函数)22)(2sin()(πθπθ<<-+=x x f 的图象向右平移)0(>ϕϕ个单位长度后得到函数)(x g 的图象,若)(),(x g x f 的图象都经过点)23,0(P ,则ϕ的值可以是( ) A .35π B .65π C .2π D .6π 15、2013广东文T4.已知51sin()25πα+=,那么cos α= A .25-B .15-C .15D .2516、2013安徽文T9. 设ABC ∆的内角,,A B C 所对边的长分别为,,a b c ,若2,3sin 5sin b c a A B +==,则角C =(A)3π (B) 23π (C) 34π (D) 56π 17、2013陕西文T9. 设△ABC 的内角A , B , C 所对的边分别为a , b , c , 若cos cos sin b C c B a A +=, 则△ABC 的形状为 (A) 直角三角形(B) 锐角三角形(C) 钝角三角形(D) 不确定18、2013湖南文T5.在锐角∆ABC 中,角A ,B 所对的边长分别为a ,b. 若2sinB=3b ,则角A 等于A.3π B.4π C.6πD.12π19、2013湖北文T6.将函数sin ()y x x x =+∈R 的图象向左平移(0)m m >个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是 A .π12 B .π6C .π3D .5π620、2013江西文T3. sincos 2αα==若 ( ) A. 23-B. 13-C. 13D.2321、2013新课标文T16.设当x θ=时,函数()sin 2cos f x x x =-取得最大值,则cos θ=______.22、2013新课标Ⅱ文T16.函数cos(2)()y x ϕπϕπ=+-≤≤的图象向右平移2π个单位后,与函数sin(2)3y x π=+的图象重合,则ϕ=_________。

2013届高考数学第一轮基础课后作业 两角和与差的三角函数

2013届高考数学第一轮基础课后作业 两角和与差的三角函数

2013届高考数学第一轮基础课后作业:两角和与差的三角函数1.(2011·东城区期末)在△ABC 中,C =120°,tan A +tan B =233,则tan A tan B 的值为( )A.14B.13C.12D.53 [答案] B[解析]∵C =120°,∴A +B =60°, ∴tan(A +B )=tan A +tan B1-tan A tan B=3,∵tan A +tan B =233,∴tan A tan B =13. 2.在△ABC 中,若cos A =45,cos B =513,则cos C 的值是( )A.1665 B.5665 C.1665或5665 D .-1665[答案] A[解析] 在△ABC 中,0<A <π,0<B <π,cos A =45,cos B =513,∴sin A =35,sin B =1213,所以cos C =cos[π-(A +B )]=-cos(A +B ) =sin A ·sin B -cos A ·cos B =35×1213-45×513=1665,故选A. 3.(2010·某某省质检)对于函数f (x )=sin x +cos x ,下列命题中正确的是( ) A .∀x ∈R ,f (x )<2B .∃x ∈R ,f (x )< 2 C .∀x ∈R ,f (x )>2D .∃x ∈R ,f (x )> 2 [答案] B[解析]∵f (x )=2sin ⎝⎛⎭⎪⎫x +π4≤2, ∴不存在x ∈R 使f (x )>2且存在x ∈R ,使f (x )=2,故A 、C 、D 均错.4.(文)(2010·东城区)在△ABC 中,如果sin A =3sin C ,B =30°,那么角A 等于( ) A .30° B.45° C.60° D.120° [答案] D[解析]∵△ABC 中,B =30°,∴C =150°-A , ∴sin A =3sin(150°-A )=32cos A +32sin A ,∴tan A =-3,∴A =120°. (理)已知sin α=55,sin(α-β)=-1010,α、β均为锐角,则β等于( ) A.5π12B.π3 C.π4D.π6[答案] C[解析]∵α、β均为锐角,∴-π2<α-β<π2, ∴cos(α-β)=1-sin2α-β=31010, ∴sin α=55,∴cos α=1-⎝⎛⎭⎪⎫552=255. ∴sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β)=22. ∵0<β<π2,∴β=π4,故选C.5.(文)(2010·某某某某一中)函数y =sin ⎝ ⎛⎭⎪⎫π3-2x +sin2x 的最小正周期是( ) A.π2B .π C.2π D.4π [答案] B [解析]y =32cos2x -12sin2x +sin2x =sin ⎝⎛⎭⎪⎫2x +π3, ∴周期T =π.(理)函数f (x )=(3sin x -4cos x )·cos x 的最大值为( ) A .5 B.92C.12D.52[答案] C[解析]f (x )=(3sin x -4cos x )cos x =3sin x cos x -4cos 2x =32sin2x -2cos2x -2=52sin(2x -θ)-2,其中tan θ=43, 所以f (x )的最大值是52-2=12.故选C.6.(文)(2010·某某中学)已知向量a =(sin75°,-cos75°),b =(-cos15°,sin15°),则|a -b |的值为( )A .0B .1 C.2D .2 [答案] D[解析]∵|a -b |2=(sin75°+co s15°)2+(-cos75°-sin15°)2=2+2sin75°cos15°+2cos75°sin15°=2+2sin90°=4,∴|a -b |=2.(理)(2010·某某一中)已知a =(sin α,1-4cos2α),b =(1,3sin α-2),α∈⎝⎛⎭⎪⎫0,π2,若a ∥b ,则tan ⎝⎛⎭⎪⎫α-π4=( )A.17B .-17 C.27D .-27 [答案] B[解析]∵a ∥b ,∴1-4cos2α=sin α(3sin α-2), ∴5sin 2α+2sin α-3=0,∴sin α=35或sin α=-1,∵α∈⎝ ⎛⎭⎪⎫0,π2,∴sin α=35,∴tan α=34,∴tan ⎝ ⎛⎭⎪⎫α-π4=tan α-11+tan α=-17.7.要使sin α-3cos α=4m -64-m有意义,则m 的取值X 围是________. [答案] [-1,73][解析]∵sin α-3cos α=2(sin αcos π3-sin π3cos α) =2sin(α-π3)∈[-2,2], ∴-2≤4m -64-m≤2. 由4m -64-m≥-2得,-1≤m <4; 由4m -64-m ≤2得,m ≤73或m >4,∴-1≤m ≤73. 8.(2010·某某奉贤区调研)已知α,β∈(0,π2),且tan α·tan β<1,比较α+β与π2的大小,用“<”连接起来为________. [答案]α+β<π2[解析]∵tan α·tan β<1,α,β∈⎝⎛⎭⎪⎫0,π2, ∴sin α·sin βcos α·cos β<1,∴sin α·sin β<cos α·cos β,∴cos(α+β)>0,∵α+β∈(0,π),∴α+β<π2.1.(2011·潍坊月考)若sin(π6-α)=13,则cos(2π3+2α)的值为( )A.13B .-13 C.79 D .-79 [答案] D [解析] cos(2π3+2α)=2cos 2(π3+α)-1 =2cos 2[π2-(π6-α)]-1 =2sin 2(π6-α)-1=2×(13)2-1=-79. 2.(文)(2010·某某某某调研)已知sin β=35(π2<β<π),且sin(α+β)=cos α,则tan(α+β)=( )A .1B .2C .-2 D.825[答案] C[解析]∵sin β=35,π2<β<π,∴cos β=-45,∴sin(α+β)=cos α=cos[(α+β)-β] =cos(α+β)cos β+sin(α+β)sin β =-45cos(α+β)+35sin(α+β),∴25sin(α+β)=-45cos(α+β),∴tan(α+β)=-2. (理)(2010·某某模拟)已知sin x -sin y =-23,cos x -cos y =23,且x ,y 为锐角,则tan(x-y )=( )A.2145B .-2145 C .±2145D .±51428[答案] B[解析] 两式平方相加得:cos(x -y )=59,∵x 、y 为锐角,sin x -sin y <0,∴x <y , ∴sin(x -y )=-1-cos 2x -y =-2149, ∴tan(x -y )=sin x -y cosx -y =-2145. 3.(2011·某某月考)已知向量a =(sin(α+π6),1),b =(4,4cos α-3),若a ⊥b ,则sin(α+4π3)等于( )A .-34B .-14 C.34 D.14[答案] B[解析]a ·b =4sin ⎝ ⎛⎭⎪⎫α+π6+4cos α- 3=23sin α+6cos α-3=43sin ⎝⎛⎭⎪⎫α+π3-3=0, ∴sin(α+π3)=14. ∴sin(α+4π3)=-sin ⎝⎛⎭⎪⎫α+π3=-14,故选B.4.已知tan α、tan β是关于x 的一元二次方程x 2-3x +2=0的两实根,则sin α+βcos α-β=________.[答案] 1[解析] 因为sin α+βcos α-β=sin αcos β+cos αsin βcos αcos β+sin αsin β=tan α+tan β1+tan αtan β;∵tan α,tan β为方程的两根,∴⎩⎪⎨⎪⎧tan α+tan β=3tan α·tan β=2,∴sinα+βcos α-β=31+2=1.5.(文)已知sin(2α-β)=35,sin β=-1213,且α∈(π2,π),β∈(-π2,0),则sin α=________.[答案]3130130[解析]∵π2<α<π,∴π<2α<2π.又-π2<β<0,∴0<-β<π2,π<2α-β<5π2,而sin(2α-β)=35>0,∴2π<2α-β<5π2,cos(2α-β)=45.又-π2<β<0且sin β=-1213,∴cos β=513,∴cos2α=cos[(2α-β)+β]=cos(2α-β)cos β-sin(2α-β)sin β =45×513-35×(-1213)=5665. 又cos2α=1-2sin 2α,∴sin 2α=9130. 又α∈(π2,π),∴sin α=3130130. (理)求值:2cos10°-sin20°cos20°=________.[答案] 3[解析] 原式=2cos30°-20°-sin20°cos20°=2cos30°cos20°+2sin30°sin20°-sin20°cos20°=3cos20°+sin20°-sin20°cos20°= 3.6.(文)(2011·某某模拟)已知A 、B 均为钝角且sin A =55,sin B =1010,求A +B 的值. [解析]∵A 、B 均为钝角且sin A =55,sin B =1010, ∴cos A =-1-sin 2A =-25=-255,cos B =-1-sin 2B =-310=-31010,∴cos(A +B )=cos A cos B -sin A sin B =-255×(-31010)-55×1010=22,又∵π2<A <π,π2<B <π,∴π<A +B <2π,∴A +B =7π4.(理)(2010·延庆县模考)已知函数f (x )=sin ⎝⎛⎭⎪⎫2x +π6+sin ⎝⎛⎭⎪⎫2x -π6-2cos 2x . (1)求函数f (x )的值域及最小正周期; (2)求函数y =f (x )的单调增区间. [解析] (1)f (x )=32sin2x +12cos2x +32sin2x -12cos2x -(cos2x +1) =2⎝⎛⎭⎪⎫32sin2x -12cos2x -1=2sin ⎝ ⎛⎭⎪⎫2x -π6-1. 由-1≤sin ⎝⎛⎭⎪⎫2x -π6≤1得, -3≤2sin ⎝⎛⎭⎪⎫2x -π6-1≤1. 可知函数f (x )的值域为[-3,1]. 且函数f (x )的最小正周期为π.(2)由2k π-π2≤2x -π6≤2k π+π2(k ∈Z)解得,k π-π6≤x ≤k π+π3(k ∈Z).所以y =f (x )的单调增区间为[k π-π6,k π+π3](k ∈Z). 7.(文)(2011·某某二诊)已知函数f (x )=2sin x cos(x +π6)-cos2x +m .(1)求函数f (x )的最小正周期;(2)当x ∈[-π4,π4]时,函数f (x )的最小值为-3,某某数m 的值.[解析] (1)∵f (x )=2sin x cos(x +π6)-cos2x +m=2sin x (32cos x -12sin x )-cos2x +m =3sin x cos x -sin 2x -cos2x +m =32sin2x -1-cos2x 2-cos2x +m =32sin2x -12cos2x -12+m =sin(2x -π6)-12+m . ∴f (x )的最小正周期T =2π2=π.(2)∵-π4≤x ≤π4,∴-π2≤2x ≤π2,∴-2π3≤2x -π6≤π3.∴-1≤sin(2x -π6)≤32. ∴f (x )的最小值为-1-12+m .由已知,有-1-12+m =-3.∴m =-32.(理)(2011·晋中一模)已知sin α+cos α=355,α∈(0,π4),sin(β-π4)=35,β∈(π4,π2). (1)求sin2α和tan2α的值; (2)求cos(α+2β)的值.[解析] (1)由题意得(sin α+cos α)2=95,即1+sin2α=95,∴sin2α=45.又2α∈(0,π2),∴cos2α=1-sin 22α=35,∴tan2α=sin2αcos2α=43.(2)∵β∈(π4,π2),β-π4∈(0,π4), ∴cos(β-π4)=45,于是sin2(β-π4)=2sin(β-π4)cos(β-π4)=2425. 又sin2(β-π4)=-cos2β,∴cos2β=-2425.又2β∈(π2,π),∴sin2β=725.又cos 2α=1+cos2α2=45,∴cos α=255,sin α=55(α∈(0,π4)).∴cos(α+2β)=cos αcos2β-sin αsin2β =255×(-2425)-55×725=-11525.1.已知α、β均为锐角,且tan β=cos α-sin αcos α+sin α,则tan(α+β)的值为( )A .-1B .1 C. 3 D .不存在 [答案] B [解析] tan β=cos α-sin αcos α+sin α=1-tan α1+tan α=tan ⎝ ⎛⎭⎪⎫π4-α,∵π4-α,β∈⎝ ⎛⎭⎪⎫-π2,π2且y =tan x 在⎝ ⎛⎭⎪⎫-π2,π2上是单调增函数, ∴β=π4-α,∴α+β=π4,∴tan(α+β)=tan π4=1. 2.(2011·某某五校联考)在△ABC 中,已知tan A +B2=sin C ,给出以下四个论断:①tan Atan B=1; ②1<sin A +sin B ≤2; ③sin 2A +cos 2B =1; ④cos 2A +cos 2B =sin 2C . 其中正确的是()A .①③B .②③C .①④D .②④ [答案]D[解析] 因为在三角形中A +B =π-C ,所以tanA +B2=tanπ-C 2=cot C2=cos C2sinC2,而sin C=2sin C 2cos C2,∵tanA +B2=sin C ,∴cosC2sinC 2=2sin C 2cos C 2.因为0<C <π,∴cos C 2≠0,sin C 2>0,故sin 2C 2=12,∴sin C 2=22,∴C =π2,A +B =π2,∴sin A +sin B =sin A +cos A =2sin ⎝⎛⎭⎪⎫A +π4∈(1,2],排除A 、C ; cos 2A +cos 2B =cos 2A +sin 2A =1=sin 2C ,故选D.3.(2010·哈三中)已知tan ⎝ ⎛⎭⎪⎫α+π6=12,tan ⎝ ⎛⎭⎪⎫β-7π6=13,则tan(α+β)=________. [答案]1[解析]tan(α+β)=tan(α+β-π) =tan[(α+π6)+(β-7π6)]=12+131-12×13=1.4.(2010·山师大附中模考)若tan(x +y )=35,tan(y -π3)=13,则tan(x +π3)的值是________.[答案]29[解析]tan(x +π3)=tan[(x +y )-(y -π3)] =tan x +y -tan y -π31+tanx +y ·tany -π3=35-131+35×13=29. 5.(2010·某某某某市)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且满足(2a -c )cos B =b cos C .(1)求角B 的大小;(2)若|BA →-BC →|=2,求△ABC 的面积的最大值. [解析] (1)在△ABC 中,∵(2a -c )cos B =b cos C ,根据正弦定理有(2sin A -sin C )cos B =sin B cos C ,∴2sin A cos B =sin(C +B ),即2sin A cos B =sin A .∵sin A >0,∴cos B =12, 又∵B ∈(0,π),∴B =π3. (2)∵|BA →-BC →|=2,∴|CA →|=2,即b =2.根据余弦定理b 2=a 2+c 2-2ac cos B ,有4=a 2+c 2-ac .∵a 2+c 2≥2ac (当且仅当a =c 时取“=”号),∴4=a 2+c 2-ac ≥2ac -ac =ac ,即ac ≤4,∴△ABC 的面积S =12ac sin B =34ac ≤3, 即当a =b =c =2时,△ABC 的面积的最大值为 3.6.(2010·某某某某)已知△ABC 中,|AC |=1,∠ABC =120°,∠BAC =θ,记f (θ)=AB →·BC →,(1)求f (θ)关于θ的表达式;(2)求f (θ)的值域.[解析] (1)由正弦定理有:|BC |sin θ=1sin120°=|AB |sin 60°-θ,∴|BC |=sin θsin120°,|AB |=sin 60°-θsin120°∴f (θ)=AB →·BC →=|AB →|·|BC →|cos(180°-∠ABC )=23sin θ·sin(60°-θ) =23(32cos θ-12sin θ)sin θ =13sin(2θ+π6)-16 (0<θ<π3) (2)∵0<θ<π3,∴π6<2θ+π6<5π6, ∴12<sin(2θ+π6)≤1, ∴0<f (θ)≤16,即f (θ)的值域为(0,16]. 7.(2010·某某黄冈)如图,平面四边形ABCD 中,AB =13,三角形ABC 的面积为S △ABC =25,cos ∠DAC =35,AB →·AC →=120.(1)求BC 的长;(2)cos ∠BAD 的值.[解析] (1)由S △ABC =25得,12|AC →||AB →|·sin∠CAB =25 由AC →·AB →=120得,|AC →|·|AB →|·cos∠CAB =120,以上两式相除得,tan ∠CAB =512,∴sin ∠CAB =513,cos ∠CAB =1213, ∴|AC →||AB →|=130,又∵|AB →|=13,∴|AC →|=10,在△ABC 中,由余弦定理得,|BC →|2=102+132-2×10×13×1213=29, ∴|BC →|=29,即BC =29(2)∵cos ∠DAC =35,∴sin ∠DAC =45, ∴cos ∠BAD =cos(∠BAC +∠CAD ) =cos ∠BAC ·cos∠CAD -sin ∠BAC sin ∠CAD=1213×35-513×45=1665. 8.(2010·某某某某一中)已知函数f (x )=sin x 2+2cos 2x 4. (1)求函数f (x )的最小正周期;(2)在△ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,若(2a -c )cos B =b cos C ,求f (A )的取值X 围.[解析] (1)f (x )=sin x 2+⎝ ⎛⎭⎪⎫2cos 2x 4-1+1 =sin x 2+cos x 2+1=2sin ⎝ ⎛⎭⎪⎫x 2+π4+1 ∴f (x )的最小正周期为T =4π.(2)由(2a -c )cos B =b cos C 得,(2sin A -sin C )cos B =sin B cos C ,∴2sin A cos B =sin(B +C )=sin A ,∵sin A ≠0,∴ocs B =12,∴B =π3,∴A +C =2π3, 又∵f (A )=2sin ⎝ ⎛⎭⎪⎫A 2+π4+1,∴0<A <2π3, ∴π4<A 2+π4<7π12, 又∵sin π4<sin 7π12,∴22<sin ⎝ ⎛⎭⎪⎫A 2+π4≤1, ∴2<f (A )≤2+1.。

高考数学总复习 第三章 第三节两角和与差及二倍角三角函数公式课时精练试题 文(含解析)

高考数学总复习 第三章 第三节两角和与差及二倍角三角函数公式课时精练试题 文(含解析)

第三节 两角和与差及二倍角三角函数公式题号 1 2 3 4 5 6 7答案1.计算1-2sin 222.5°的结果等于( ) A.12 B.22 C.33 D.32解析:原式=cos 45°=22.故选B.答案:B2.设tan(α+β)=25,tan ⎝ ⎛⎭⎪⎫β-π4=14,则tan ⎝⎛⎭⎪⎫α+π4的值是( ) A.318 B.322 C.1318 D .-1322解析:tan ⎝ ⎛⎭⎪⎫α+π4=tan ⎣⎢⎡⎦⎥⎤α+β-⎝⎛⎭⎪⎫β-π4=322. 答案:B3.求值:⎝ ⎛⎭⎪⎫cos π12-sin π12⎝ ⎛⎭⎪⎫cos π12+sin π12=( )A .-32 B .-12 C.12 D.32答案:D4.(2012·江西卷)若tan θ+1tan θ=4,则sin 2θ=( )A.15B.14C.13D.12解析:由tan θ+1tan θ=4得,sin θcos θ+cos θsin θ=sin 2θ+cos 2θsin θcos θ=4,即112sin 2θ=4,∴sin 2θ=12.故选D.答案:D5.(2012·重庆卷)sin 47°-sin 17°cos 30°cos 17°=( )A .-32B .-12 C.12 D.32解析:sin 47°-sin 17°cos 30°cos 17°=sin 17°+30°-sin 17°cos 30°cos 17°=sin 17°cos 30°+cos 17°sin 30°-sin 17°cos 30°cos 17°=sin 30°=12.故选C.答案:C6.若sin ⎝ ⎛⎭⎪⎫π6-α=13,则cos ⎝ ⎛⎭⎪⎫π3+α等于( ) A .-79 B .-13 C.13 D.79答案:C 7.(2012·山西省考前适应性训练)已知α,β都是锐角,cos 2α=-725,cos (α+β)=513,则sin β=( )A.1665B.1365C.5665D.3365解析:∵cos 2α=2cos 2α-1,cos 2α=-725,又α为锐角,∴cos α=35, sin α=45.∵cos (α+β)=513,∴(α+β)为锐角,sin (α+β)=1213.∴si n β=sin []α+β-α=sin (α+β)cos α-cos (α+β)sin α =1213×35-513×45=1665.故选A. 答案:A8.(2013·上海卷)若cos x cos y +sin x sin y =13,则cos(2x -2y )=________.解析: cos x cos y +sin x sin y =cos(x -y )=13,所以cos 2(x -y )=2cos 2(x -y )-1=-79.答案:-799.sin α=35,cos β=35,其中α,β∈⎝⎛⎭⎪⎫0,π2,则α+β=________________.解析:∵α,β∈⎝⎛⎭⎪⎫0,π2,sin α=35,cos β=35,∴cos α=45,sin β=45.∴cos(α+β)=cos αcos β-sin αsin β=0.∵α,β∈⎝⎛⎭⎪⎫0,π2,∴0<α+β<π,故α+β=π2.答案:π210.已知tan α=2,则2sin 2α+1sin 2α=________.解析:2sin 2α+1sin 2α=3sin 2α+cos 2α2sin αcos α=3tan 2α+12tan α=3×22+12×2=134.答案:13411.(2013·广州二模)已知α为锐角,且cos ⎝⎛⎭⎪⎫α+π4=35,则sin α=__________.解析:因为α为锐角,所以α+π4∈⎝ ⎛⎭⎪⎫π4,3π4,因为cos ⎝ ⎛⎭⎪⎫α+π4=35, 所以sin ⎝⎛⎭⎪⎫α+π4= 1-cos 2⎝⎛⎭⎪⎫α+π4=45,则sin α=sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α+π4-π4=sin ⎝ ⎛⎭⎪⎫α+π4cos π4-cos ⎝ ⎛⎭⎪⎫α+π4sin π4=45×22-35×22=210. 答案:21012.(2013·江门一模)已知函数f (x )=2sin x ·cos x +2cos 2x -1,x ∈R . (1)求f (x )的最大值;(2)若点P (-3,4)在角α的终边上,求f ⎝⎛⎭⎪⎫α+π8的值.解析:(1)f (x )=sin 2x +cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π4, 所以f (x )的最大值为 2.(2)由(1)得f ⎝ ⎛⎭⎪⎫α+π8=2sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫α+π8+π4=2sin ⎝ ⎛⎭⎪⎫2α+π2=2cos 2α, P (-3,4)在角α的终边上,cos α=-35.所以f ⎝⎛⎭⎪⎫α+π8=22cos 2α-2=-7225.13.(2013·梅州二模)已知函数f (x )=2cos 2x +23sin x cos x . (1)求函数f (x )的最小正周期;(2)在△ABC 中,若f (C )=2,2 sin B =cos(A -C )-cos(A +C ),求tan A 的值.解析:(1)函数f (x )=2cos 2+23sin x cos x =1+cos 2x +3sin 2x =2 sin ⎝ ⎛⎭⎪⎫2x +π6+1,∴函数的最小正周期为2π2=π.(2)∵f (C )=2,∴2 sin ⎝⎛⎭⎪⎫2 C +π6+1=2, ∴sin ⎝⎛⎭⎪⎫2 C +π6=12, ∵0<C <π,∴π6<2C +π6<2π+π6,∴2C +π6=5π6,C =π3;∵2 sin B =cos(A -C )-cos(A +C )=2 sin A sin C , ∴sin(A +C )=sin A sin C ,即:sin A cos C +cos A sin C =sin A sin C ,即:tan A =sin C sin C -cos C =sinπ3sin π3-cos π3=3232-12=3+32.。

2013高考数学真题—三角函数分类汇编(同名12528)

2013高考数学真题—三角函数分类汇编(同名12528)

2013高考数学真题—三角函数分类汇编(同名12528)D12.πA 6.πB 3.πCπ65.D14.(2013四川卷理5)函数()2sin(),(0,)22f x x ππωϕωϕ=+>-<<的部分图象如图所示,则,ωϕ的值分别是( )(A )2,3π- (B )2,6π- (C )4,6π- (D )4,3π15.(2013四川卷理13)设sin 2sin αα=-,(,)2παπ∈,则tan 2α的值是_________.16.(2013广东卷理16)已知函数()2),12f x x π=-x R∈(1)求()6f π-的值; (2)若33cos ,(,2)52πθθπ=∈,求(2)3f πθ+17.(2013安徽卷理16))已知函数)0)(4sin(cos 4)(>+⋅=ωπωωx x x f 的最小正周期为π.(1)求w 的值; (2)讨论)(x f 在区间]2,0[π上的单调性.18.(2013浙江卷理6)已知210cos 2sin ,=+∈αααR ,则=α2tan A.34 B. 43C.43- D.34-19.(2013江苏卷1)函数)42sin(3π+=x y 的最小正周期为 .20.(2013江苏卷15)已知)sin ,(cos )sin ,(cos ββαα=b a ,=,παβ<<<0.(1)若2||=-b a ,求证:b a ⊥; (2)设)1,0(=c ,若c b a =+,求βα,的值.21.(2013新课标1文9)函数x x x f sin )cos 1()(-=在],[ππ-的图像大致是ππO1y xππO1y xππO1y xππO1y xA B C D22.(2013湖南卷16)已知函数)3cos(cos )(π-⋅=x x x f (1)求)32(πf 的值;(2)求使41)(<x f 成立的x 的取值集合。

2013高中数学高考真题分类:考点16-两角和与差的正弦、余弦和正切公式、简单的三角恒等变换

2013高中数学高考真题分类:考点16-两角和与差的正弦、余弦和正切公式、简单的三角恒等变换

温馨提示:此题库为Word 版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,关闭Word 文档返回原板块。

考点16 两角和与差的正弦、余弦和正切公式、简单的三角恒等变换一、选择题1. (2013·新课标全国Ⅱ高考文科·T6)已知2sin 23α=,则2cos ()4πα+=( )A.16B.13C.12D.23【解题指南】利用“降幂公式”将2cos ()4πα+化简,建立与sin 2α的关系,可得结果.【解析】选A.因为21cos 2()1cos(2)1sin 242cos ()4222ππααπαα++++-+===,所以2211sin 213cos ()4226παα--+===,选A. 2.(2013·江西高考文科·T3)若sin 23α=,则cosa=( ) A.23- B.13- C. 13D. 23【解题指南】利用二倍角的余弦公式即可. 【解析】选C.2cos 12sin 2αα=-=213-=13.3(2013·大纲版全国卷高考理科·T12)已知函数()=cos sin 2,f x x x 下列结论中错误的是( ) A .()(),0y f x π=的图像关于中心对称B.()2y f x x π==的图像关于对称C.()f x D.()f x 既是奇函数,又是周期函数【解析】选C.x x x x x x x f 32sin 2sin 2sin cos 22sin cos )(-===,令x t sin =,11≤≤-t ,则322)(t t t g -=,262)(t t g -='.令062)(2=-='t t g ,解得33-=t 或33=t .比较两个极值点和两个端点0)1(=-g ,0)1(=g ,0)33(<-g ,934)33(=g ,)(x f 的最大值为934,故C 错误 4. (2013·重庆高考理科·T9)=- 40tan 50cos 4 ( )A.1 【解题指南】先切化弦,然后通分化简求解即可.【解析】选C.40cos 40sin 40cos 50cos 440cos 40sin 50cos 440tan 50cos 4-=-=-40cos )3010sin(10cos 240cos 40sin 80sin 240cos 40sin 40cos 40sin 4+-=-=-=40cos 10sin 2110cos 23340cos 10sin 2310cos 2340cos 10cos 2110sin 2310cos 2⎪⎪⎭⎫ ⎝⎛-=-=--= .340cos 40cos 3==5. (2013·辽宁高考文科·T6)与(2013·辽宁高考理科·T6)相同 在ABC ∆中,内角,,A B C 的对边分别为,,.a b c 若1sin cos sin cos ,2a B C c B Ab +=且,a b >则B ∠=( )25....6336A B C D ππππ 【解题指南】利用正弦定理,将边化为角,借助式子的特点,利用和角公式与相关的诱导公式解决问题 【解析】选A. 据正弦定理,设sin sin sin a b ck A B C===,则sin ,sin ,sin .a k Ab k Bc k C ===将它们代入1sin cos sin cos ,2a B C c B Ab +=整理得1sin cos cos sin ,2A C A C +=即1sin(),2A C +=又sin()sin()sin ,A C B B π+=-=所以1sin 2B =因为,a b >所以B ∠必为锐角,所以.6B π∠=二、填空题6.(2013·四川高考文科·T14)和(2013·四川高考理科·T13)相同 设sin 2sin αα=-,(,)2παπ∈,则tan 2α的值是____________。

2013年高考理科数学试题分类汇编:三角函数(附答案)

2013年高考理科数学试题分类汇编:三角函数(附答案)

2013年高考理科数学试题分类汇编:三角函数(附答案)一、选择题 1 .(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))已知210cos 2sin ,=+∈αααR ,则=α2tan A.34 B. 43 C.43- D.34- 2 .(2013年高考陕西卷(理))设△ABC 的内角A , B , C 所对的边分别为a , b , c , 若cos cos sin b C c B a A +=, 则△ABC 的形状为(A) 锐角三角形 (B) 直角三角形 (C) 钝角三角形 (D) 不确定 3 .(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))在△ABC 中, ,3,4AB BC ABC π∠===则sin BAC ∠ =4 .(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))将函数sin(2)y x ϕ=+的图象沿x 轴向左平移8π个单位后,得到一个偶函数的图象,则ϕ的一个可能取值为(A) 34π (B) 4π (C)0 (D) 4π-5 .(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))在ABC ∆,内角,,A B C 所对的边长分别为,,.a b c 1sin cos sin cos ,2a B C c B Ab +=且a b >,则B ∠=A.6πB.3πC.23πD.56π 6 .(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知函数()=cos sin 2f x x x ,下列结论中错误的是(A)()y f x =的图像关于(),0π中心对称 (B)()y f x =的图像关于直线2x π=对称(C)()f x()f x 既奇函数,又是周期函数 7 .(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))函数cos sin y x x x =+的图象大致为8 .(2013年高考四川卷(理))函数()2sin(),(0,)22f x x ππωϕωϕ=+>-<<的部分图象如图所示,则,ωϕ的值分别是( )(A)2,3π-(B)2,6π-(C)4,6π-(D)4,3π9 .(2013年上海市春季高考数学试卷(含答案))既是偶函数又在区间(0 )π,上单调递减的函数是( )(A)sin y x = (B)cos y x = (C)sin 2y x = (D)cos 2y x =10.(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))004cos50tan 40-= ( )D.1- 11.(2013年高考湖南卷(理))在锐角中ABC ∆,角,A B 所对的边长分别为,a b .若2sin ,a B A =则角等于A.12πB.6πC.4πD.3π12.(2013年高考湖北卷(理))将函数()sin y x x x R =+∈的图像向左平移()0m m >个长度单位后,所得到的图像关于y 轴对称,则m 的最小值是( )A.12πB.6π C. 3π D. 56π二、填空题1.(2013年普通高等学校招生统一考试浙江数学(理)试题)ABC ∆中,090=∠C ,M 是BC 的中点,若31sin =∠BAM ,则=∠BAC sin ________.2.(2013年高考新课标1(理))设当x θ=时,函数()sin 2cos f x x x =-取得最大值,则cos θ=______3.(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))如图ABC ∆中,已知点D 在BC 边上,AD ⊥AC,sin 3BAC AB AD ∠===则BD 的长为_______________4.(2013年上海市春季高考数学试卷(含答案))函数2sin y x =的最小正周期是_____________5.(2013年高考四川卷(理))设sin 2sin αα=-,(,)2παπ∈,则tan 2α的值是_________.6.(2013年高考上海卷(理))若12cos cos sin sin ,sin 2sin 223x y x y x y +=+=,则sin()________x y +=7.(2013年高考上海卷(理))已知△ABC 的内角A 、B 、C 所对应边分别为a 、b 、c,若22232330a ab b c ++-=,则角C 的大小是_______________(结果用反三角函数值表示)8.(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知α是第三象限角,1sin 3a =-,则cot a =____________.9.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))函数)42sin(3π+=x y 的最小正周期为___________.10.(2013年上海市春季高考数学试卷(含答案))在ABC ∆中,角 A B C 、、所对边长分别为 a b c 、、,若5 8 60a b B === ,,,则b=_______11.(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))设ABC ∆的内角,,A B C 所对边的长分别为,,a b c .若2b c a +=,则3sin 5sin ,A B =则角C =_____. 12.(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))设θ为第二象限角,若1tan()42πθ+=,则sin cos θθ+=________.13.(2013年高考江西卷(理))函数2sin 2y x x =+的最小正周期为T 为_________. 14.(2013年上海市春季高考数学试卷(含答案))函数4sin 3cos y x x =+的最大值是_______________ 三、解答题1.(2013年高考北京卷(理))在△ABC 中,a =3,b ,∠B =2∠A . (I)求cos A 的值; (II)求c 的值.2.(2013年高考陕西卷(理))已知向量1(cos ,),,cos 2),2x x x x =-=∈a b R , 设函数()·f x =a b .(Ⅰ) 求f (x)的最小正周期.(Ⅱ) 求f (x) 在0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.3.(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))在ABC 中,内角,,A B C 的对边分别是,,a b c ,且222a b c ++=.(1)求C ; (2)设()()2cos cos cos cos cos A B A B ααα++==求tan α的值.4.(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))已知函数2()26sin cos 2cos 41,f x x x x x x π⎛⎫=++- ⎪+⎝⎭∈R .(Ⅰ) 求f (x )的最小正周期; (Ⅱ) 求f (x )在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.5.(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))设向量)(),sin ,cos ,sinx ,0,.2a x x b x x π⎡⎤==∈⎢⎥⎣⎦(I)若.a b x =求的值; (II)设函数()(),.f x a b f x =求的最大值6.(2013年高考上海卷(理))(6分+8分)已知函数()2sin()f x x ω=,其中常数0ω>; (1)若()y f x =在2[,]43ππ-上单调递增,求ω的取值范围;(2)令2ω=,将函数()y f x =的图像向左平移6π个单位,再向上平移1个单位,得到函数()y g x =的图像,区间[,]a b (,a b R ∈且a b <)满足:()y g x =在[,]a b 上至少含有30个零点,在所有满足上述条件的[,]a b 中,求b a -的最小值.7.(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))设ABC ∆的内角,,A B C 的对边分别为,,a b c ,()()a b c a b c ac ++-+=. (I)求B(II)若sin sin A C =,求C . 8.(2013年高考四川卷(理))在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且232cos cos sin()sin cos()25A B B A B B A C ---++=-. (Ⅰ)求cos A 的值;(Ⅱ)若a =5b =,求向量BA 在BC方向上的投影. 9.(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))设△ABC 的内角,,A B C 所对的边分别为,,a b c ,且6a c +=,2b =,7cos 9B =. (Ⅰ)求,a c 的值; (Ⅱ)求sin()A B -的值.10.(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))已知函数()4cos sin (0)4f x x x πϖϖϖ⎛⎫=⋅+> ⎪⎝⎭的最小正周期为π.(Ⅰ)求ϖ的值; (Ⅱ)讨论()f x 在区间[]0,2上的单调性.11.(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))已知函数()sin()(0,0)f x x ωϕωϕπ=+><<的周期为π,图像的一个对称中心为(,0)4π,将函数()f x 图像上的所有点的横坐标伸长为原来的2倍(纵坐标不变),在将所得图像向右平移2π个单位长度后得到函数()g x 的图像. (1)求函数()f x 与()g x 的解析式; (2)是否存在0(,)64x ππ∈,使得0000(),(),()()f x g x f x g x 按照某种顺序成等差数列?若存在,请确定0x 的个数;若不存在,说明理由.(3)求实数a 与正整数n ,使得()()()F x f x ag x =+在(0,)n π内恰有2013个零点. 12.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))本小题满分14分.已知(cos ,sin )(cos ,sin )a b ααββ==,,παβ<<<0.(1)若||a b -= ,求证:a b ⊥ ;(2)设(0,1)c =,若a b c += ,求βα,的值.13.(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))已知函数()12f x x π⎛⎫=- ⎪⎝⎭,x ∈R .(Ⅰ) 求6f π⎛⎫- ⎪⎝⎭的值; (Ⅱ) 若3cos 5θ=,3,22πθπ⎛⎫∈ ⎪⎝⎭,求23f πθ⎛⎫+ ⎪⎝⎭.14.(2013年高考湖南卷(理))已知函数2()sin()cos().()2sin 632xf x x xg x ππ=-+-=. (I)若α是第一象限角,且()f α=.求()g α的值; (II)求使()()f x g x ≥成立的x 的取值集合.15.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))本小题满分16分.如图,游客从某旅游景区的景点A 处下山至C 处有两种路径.一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C .现有甲.乙两位游客从A 处下山,甲沿AC 匀速步行,速度为min /50m .在甲出发min 2后,乙从A 乘缆车到B ,在B 处停留min 1后,再从匀速步行到C .假设缆车匀速直线运动的速度为min /130m ,山路AC 长为m 1260,经测量,1312cos =A ,53cos =C . (1)求索道AB 的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?16.(2013年高考湖北卷(理))在ABC ∆中,角A ,B ,C 对应的边分别是a ,b ,c .已知()cos23cos 1A B C -+=.(I)求角A 的大小;(II)若ABC ∆的面积S =,5b =,求sin sin B C 的值.17.(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))△ABC 在内角,,A B C 的对边分别为,,a b c ,已知cos sin a b C c B =+. (Ⅰ)求B ;CBA(Ⅱ)若2b =,求△ABC 面积的最大值.18.(2013年高考新课标1(理))如图,在△ABC中,∠ABC=90°,AB= 3 ,BC=1,P 为△ABC内一点,∠BPC=90°(1) 若PB=12,求PA;(2)若∠APB=150°,求tan∠PBA19.(2013年上海市春季高考数学试卷(含答案))本题共有2个小题,第一小题满分4分,第二小题满分9分.在平面直角坐标系xOy 中,点A 在y 轴正半轴上,点n P 在x 轴上,其横坐标为n x ,且{}n x 是首项为1、公比为2的等比数列,记1n n n P AP θ+∠=,n N *∈. (1)若31arctan3θ=,求点A 的坐标; (2)若点A的坐标为(0,求n θ的最大值及相应n 的值.. 20.(2013年高考江西卷(理))在△ABC 中,角A,B,C 所对的边分别为a,b,c,已知cosC+(conA-sinA)cosB=0.(1) 求角B 的大小;若a+c=1,求b 的取值范围一、选择题13. C 2.B 3.C 4.B 5.A 6. C 7.D 8. A 9.B 10.C 11.D 12. B 二、填空题4.2π 6.2sin()3x y +=. 7.1arccos 3C π=-8.π 10.7 11.π3212. 13.π 14.5 三、解答题1【答案】解:(I)因为a =3,b =2,∠B =2∠A . 所以在△ABC 中,由正弦定理得3sin A =所以2sin cos sin A A A =.故cos A =.(II)由(I)知cos A =,所以sin A ==.又因为∠B=2∠A,所以21cos 2cos 13B A =-=.所以sin B ==.在△ABC 中,sin sin()sin cos cos sin C A B A B A B =+=+=所以sin 5sin a Cc A==.14. 【答案】解:(Ⅰ) ()·f x =a b =)62sin(2cos 212sin 232cos 21sin 3cos π-=-=-⋅x x x x x x . 最小正周期ππ==22T . 所以),62sin()(π-=x x f 最小正周期为π.(Ⅱ)上的图像知,在,由标准函数时,当]65,6-[sin ]65,6-[)62(]2,0[ππππππx y x x =∈-∈.]1,21[)]2(),6-([)62sin()(-=∈-=πππf f x x f .所以,f (x) 在0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值分别为21,1-.15.【答案】由题意得16. 【答案】17. 【答案】18.【答案】(1)因为0ω>,根据题意有34202432ππωωππω⎧-≥-⎪⎪⇒<≤⎨⎪≤⎪⎩ (2) ()2sin(2)f x x =,()2sin(2())12sin(2)163g x x x ππ=++=++1()0sin(2)323g x x x k πππ=⇒+=-⇒=-或7,12x k k Z ππ=-∈,即()g x 的零点相离间隔依次为3π和23π,故若()y g x =在[,]a b 上至少含有30个零点,则b a -的最小值为2431415333πππ⨯+⨯=.7.【答案】8.【答案】解:()I 由()()232cos cos sin sin cos 25A B B A B B A C ---++=-,得 ()()3cos 1cos sin sin cos 5A B B A B B B -+---=-⎡⎤⎣⎦, 即()()3cos cos sin sin 5A B B A B B ---=-,则()3cos 5A B B -+=-,即3cos 5A =-()II 由3cos ,05A A π=-<<,得4sin 5A =,由正弦定理,有sin sin a bA B=,所以,sin sin b A B a ==. 由题知a b >,则A B >,故4B π=.根据余弦定理,有(22235255c c ⎛⎫=+-⨯⨯- ⎪⎝⎭,解得1c =或7c =-(舍去).故向量BA 在BC方向上的投影为cos BA B =9.【答案】解:(Ⅰ)由余弦定理2222cos b a c ac B =+-,得()222(1cos )b a c ac B =+-+, 又6a c +=,2b =,7cos 9B =,所以9ac =,解得3a =,3c =.(Ⅱ)在△ABC 中,sin B ==,由正弦定理得 sin sin a B A b ==因为a c =,所以A 为锐角,所以1cos 3A ==因此 sin()sin cos cos sin A B A B A B -=-=10.【答案】解:(Ⅰ2)42sin(2)12cos 2(sin 2)cos (sin cos 22++=++=+⇒πωωωωωωx x x x x x122=⇒=⇒ωπωπ.所以1,2)42sin(2)(=++=ωπx x f (Ⅱ) ;解得,令时,当8242]4,4[)42(]2,0[ππππππππ==++∈+∈x x x x 所以.]28[]8,0[)(上单调递减,上单调递增;在在πππx f y =11.【答案】解:(Ⅰ)由函数()sin()f x x ωϕ=+的周期为π,0ω>,得2ω= 又曲线()y f x =的一个对称中心为(,0)4π,(0,)ϕπ∈故()sin(2)044f ππϕ=⨯+=,得2πϕ=,所以()cos 2f x x =将函数()f x 图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)后可得cos y x =的图象,再将cos y x =的图象向右平移2π个单位长度后得到函数()sin g x x =(Ⅱ)当(,)64x ππ∈时,1sin 2x <<,10cos 22x << 所以sin cos 2sin cos 2x x x x >>问题转化为方程2cos 2sin sin cos 2x x x x =+在(,)64ππ内是否有解设()sin sin cos 22cos 2G x x x x x =+-,(,)64x ππ∈ 则()cos cos cos 22sin 2(2sin )G x x x x x x '=++- 因为(,)64x ππ∈,所以()0G x '>,()G x 在(,)64ππ内单调递增又1()064G π=-<,()04G π=> 且函数()G x 的图象连续不断,故可知函数()G x 在(,)64ππ内存在唯一零点0x ,即存在唯一的0(,)64x ππ∈满足题意 (Ⅲ)依题意,()sin cos 2F x a x x =+,令()sin cos 20F x a x x =+=当sin 0x =,即()x k k Z π=∈时,cos 21x =,从而()x k k Z π=∈不是方程()0F x =的解,所以方程()0F x =等价于关于x 的方程cos 2sin xa x=-,()x k k Z π≠∈ 现研究(0,)(,2)x πππ∈U 时方程解的情况 令cos 2()sin xh x x=-,(0,)(,2)x πππ∈U 则问题转化为研究直线y a =与曲线()y h x =在(0,)(,2)x πππ∈U 的交点情况22cos (2sin 1)()sin x x h x x +'=,令()0h x '=,得2x π=或32x π= 当x 变化时,()h x 和()h x '变化情况如下表当0x >且x 趋近于0时,()h x 趋向于-∞ 当x π<且x 趋近于π时,()h x 趋向于-∞ 当x π>且x 趋近于π时,()h x 趋向于+∞ 当2x π<且x 趋近于2π时,()h x 趋向于+∞故当1a >时,直线y a =与曲线()y h x =在(0,)π内有无交点,在(,2)ππ内有2个交点; 当1a <-时,直线y a =与曲线()y h x =在(0,)π内有2个交点,在(,2)ππ内无交点; 当11a -<<时,直线y a =与曲线()y h x =在(0,)π内有2个交点,在(,2)ππ内有2个交点由函数()h x 的周期性,可知当1a ≠±时,直线y a =与曲线()y h x =在(0,)n π内总有偶数个交点,从而不存在正整数n ,使得直线y a =与曲线()y h x =在(0,)n π内恰有2013个交点;当1a =±时,直线y a =与曲线()y h x =在(0,)(,2)πππU 内有3个交点,由周期性,20133671=⨯,所以67121342n =⨯=综上,当1a =±,1342n =时,函数()()()F x f x ag x =+在(0,)n π内恰有2013个零点 12.【答案】解:(1)∵2||=-b a ∴2||2=-b a 即()22222=+-=-b b a a b a ,又∵1sin cos ||2222=+==ααa a ,1sin cos ||2222=+==ββb b ∴222=-b a ∴0=b a ∴b ⊥a(2)∵)1,0()sin sin ,cos (cos b a =++=+βαβα ∴⎩⎨⎧=+=+1sin sin 0cos cos βαβα即⎩⎨⎧-=-=βαβαsin 1sin cos cos 两边分别平方再相加得:βsin 221-= ∴21sin =β ∴21sin =α ∵παβ<<<0 ∴πβπα61,65==13.【答案】(Ⅰ)1661244f πππππ⎛⎫⎛⎫⎛⎫-=--=-== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(Ⅱ) 222cos 2sin 233124f ππππθθθθθ⎛⎫⎛⎫⎛⎫+=+-=+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 因为3cos 5θ=,3,22πθπ⎛⎫∈ ⎪⎝⎭,所以4sin 5θ=-, 所以24sin 22sin cos 25θθθ==-,227cos 2cos sin 25θθθ=-=- 所以23f πθ⎛⎫+ ⎪⎝⎭cos 2sin 2θθ=-72417252525⎛⎫=---=⎪⎝⎭. 14【答案】解: (I)533sin 3)(sin 3sin 23cos 21cos 21sin 23)(==⇒=++-=ααf x x x x x x f . 51cos 12sin 2)(,54cos )2,0(,53sin 2=-===⇒∈=⇒ααααπααg 且(II)21)6sin(cos 21sin 23cos 1sin 3)()(≥+=+⇒-≥⇒≥πx x x x x x g x f Z k k k x k k x ∈+∈⇒++∈+⇒],322,2[]652,62[6ππππππππ15.【答案】解:(1)∵1312cos =A ,53cos =C ∴),(、20π∈C A ∴135sin =A ,54sin =C ∴[]6563sin cos cos sin sin sin sin =+=+=+-=C A C A C A C A B )()(π 根据sinB sinC AC AB =得m C ACAB 1040sin sinB==(2)设乙出发t分钟后,甲.乙距离为d,则1312)50100(1302)50100()130(222⨯+⨯⨯-++=t t t t d ∴)507037(20022+-=t t d∵13010400≤≤t 即80≤≤t ∴3735=t 时,即乙出发3735分钟后,乙在缆车上与甲的距离最短.(3)由正弦定理sinBsinA ACBC =得50013565631260sin sinB ===A AC BC (m) 乙从B 出发时,甲已经走了50(2+8+1)=550(m),还需走710 m 才能到达C 设乙的步行速度为V min /m ,则350710500≤-v ∴3507105003≤-≤-v ∴14625431250≤≤v ∴为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在⎥⎦⎤⎢⎣⎡14625,431250范围内 法二:解:(1)如图作BD ⊥CA 于点D ,设BD =20k ,则DC =25k ,AD =48k , AB =52k ,由AC =63k =1260m, 知:AB =52k =1040m.(2)设乙出发x 分钟后到达点M , 此时甲到达N 点,如图所示. 则:AM =130x ,AN =50(x +2),由余弦定理得:MN 2=AM 2+AN 2-2 AM ·AN cos A =7400 x 2-14000 x +10000, 其中0≤x ≤8,当x =3537 (min)时,MN 最小,此时乙在缆车上与甲的距离最短.(3)由(1)知:BC =500m,甲到C 用时:126050 =1265(min).若甲等乙3分钟,则乙到C 用时:1265 +3=1415 (min),在BC 上用时:865 (min) .此时乙的速度最小,且为:500÷865 =125043m/min.若乙等甲3分钟,则乙到C 用时:1265 -3=1115 (min),在BC 上用时:565 (min) .此时乙的速度最大,且为:500÷565 =62514 m/min.故乙步行的速度应控制在[125043 ,62514]范围内.16.【答案】解:(I)由已知条件得:cos23cos 1A A +=22cos 3cos 20A A ∴+-=,解得1cos 2A =,角60A =︒(II)1sin 2S bc A ==4c ⇒=,由余弦定理得:221a =,()222228sin a R A == 25sin sin 47bc B C R ∴== 17.【答案】CBADMN18【答案】(Ⅰ)由已知得,∠PBC=o60,∴∠PBA=30o,在△PBA 中,由余弦定理得2PA=o 1132cos3042+-=74; (Ⅱ)设∠PBA=α,由已知得,PB=sin α,在△PBA 中,由正弦定理得o sin sin(30)αα=-,化简得4sin αα=, ∴tan αtan PBA ∠. 19【答案】[解](1)设(0 )A t ,,根据题意,12n n x -=.由31arctan3θ=,知31tan 3θ=, 而3443343223443()4tan tan()321x x t x x t t t OAP OAP x x t x x t t tθ--=∠-∠===+⋅++⋅, 所以241323t t =+,解得4t =或8t =.故点A 的坐标为(0 4),或(0 8),.(2)由题意,点n P 的坐标为1(2 0)n -,,tan n OAP ∠=11tan tan()n n n n n OAP OAP θ-+=∠-∠===.+≥,所以tan n θ≤=,=,即4n =时等号成立. 易知0 tan 2n y x πθ<<=,在(0 )2π,上为增函数, 因此,当4n =时,n θ最大,其最大值为. 20.【答案】解:(1)由已知得cos()cos cos cos 0A B A B A B -++=即有sin sin cos 0A B A B =因为sin 0A ≠,所以sin 0B B =,又cos 0B ≠,所以tan B = 又0B π<<,所以3B π=.(2)由余弦定理,有2222cos b a c ac B =+-.因为11,cos 2a c B +==,有22113()24b a =-+. 又01a <<,于是有2114b ≤<,即有112b ≤<.。

高一数学两角和与差的三角函数试题答案及解析

高一数学两角和与差的三角函数试题答案及解析

高一数学两角和与差的三角函数试题答案及解析1.的值为_____.【答案】【解析】【考点】1.两角和的余弦公式;2.特殊角的三角函数值.2.计算 = .【答案】【解析】.【考点】两角差的正弦公式.3.;【答案】.【解析】把原式提取即,然后利用特殊角的三角函数值及两角和的正弦函数公式化简得原式.【考点】两角和与差的正弦函数.4.已知,,分别为三个内角,,的对边, =sin cos.(1)求;(2)若=,的面积为,求,.【答案】(1) ;(2)【解析】(1) 根据正弦定理可将变形为。

因为角三角形的内角,所以,可将上式变形为。

用化一公式即两角和差公式的逆用将上式左边化简可得,根据整体角的范围可得的值,即可得角的值。

(2)由三角形面积可得。

再结合余弦定理可得的值,解方程组可得的值。

解 (1)由=sin cos及正弦定理得sin sin+cos sin-sin=0,由sin≠0,所以sin(+)=,又0<<π,+故=.(2)△ABC的面积=sin=,故=4.由余弦定理知2=2+2-2cos,得代入=,=4解得,故【考点】1正弦定理;2三角形面积公式;3余弦定理。

5.设的值等于____________.【答案】【解析】由题可知.【考点】两角差的正切公式.6.已知,为第三象限角.(1)求的值;(2)求的值.【答案】(1),; (2),.【解析】(1)由同角间的基本关系式与的范围可得;(2)由两角和的正弦和倍角的正切公式展开可得.试题解析:解:(1),为第三象限角,; 3分; 6分由(1)得, 9分. 12分【考点】同角间的基本关系,两角和的正弦,倍角公式的正切公式.7.在中,内角A,B,C所对的边分别为a,b,c,且.(1)求A;(2)设,为的面积,求+的最大值,并指出此时B的值.【答案】(1)(2)当时,+取得最大值3.【解析】(1)由结合条件,易求得可求出A的值;(2)由,由正弦定理,得出代入+化简可知时取得最大值3.试题解析:(1)由余弦定理,得,又∵,∴A=. (5分)(2)由(1)得,又由正弦定理及,得,∴+=,∴当时,+取得最大值3. (13分)【考点】主要考查正弦定理,余弦定理,两角和的余弦公式.8.已知向量,,且(1)求及(2)若-的最小值是,求的值。

高考数学考点专题:三角函数与解三角形:两角和与差的三角函数公式

高考数学考点专题:三角函数与解三角形:两角和与差的三角函数公式

两角和与差的三角函数公式【考点梳理】1.两角和与差的正弦、余弦和正切公式 sin(α±β)=sin αcos β±cos αsin β; cos(α∓β)=cos_αcos__β±sin_αsin__β; tan(α±β)=tan α±tan β1∓tan αtan β.2.二倍角的正弦、余弦、正切公式 sin 2α=2sin_αcos__α.cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α. tan 2α=2tan α1-tan 2α.3.有关公式的逆用、变形(1)tan α±tan β=tan(α±β)(1∓tan αtan β). (2)cos 2α=1+cos 2α2,sin 2α=1-cos 2α2. (3)1+sin 2α=(sin α+cos α)2, 1-sin 2α=(sin α-cos α)2, sin α±cos α=2sin ⎝ ⎛⎭⎪⎫α±π4. 4.函数f (α)=a sin α+b cos α(a ,b 为常数),可以化为f (α)=a 2+b 2sin(α+φ)⎝ ⎛⎭⎪⎫其中tan φ=b a 或f (α)=a 2+b 2·cos(α-φ)⎝ ⎛⎭⎪⎫其中tan φ=a b . 【教材改编】1.(必修4 P 127练习T 2改编)已知cos α=-35,α是第三象限角,则cos ⎝ ⎛⎭⎪⎫π4+α为( )A.210 B .-210 C.7210D .-7210[答案] A[解析] ∵cos α=-35,α是第三象限的角, ∴sin α=-1-cos 2α=-1-⎝ ⎛⎭⎪⎫-352=-45, ∴cos ⎝ ⎛⎭⎪⎫π4+α=cos π4cos α-sin π4sin α=22·⎝ ⎛⎭⎪⎫-35-22·⎝ ⎛⎭⎪⎫-45=210. 2.(必修4 P 130例4(2)改编)化简cos 18°cos 42°-cos 72°·sin 42°的值为( ) A. 32B. 12 C .-12 D .-32[答案] B[解析] 法一:原式=cos 18°cos 42°-sin 18°sin 42° =cos(18°+42°)=cos 60°=12.法二:原式=sin 72°cos 42°-cos 72°sin 42° =sin(72°-42°)=sin 30°=12.3.(必修4 P 135练习T 5(2)改编)已知sin(α-k π)=35(k ∈Z ),则cos 2α的值为( ) A.725 B .-725 C.1625 D .-1625 [答案] A[解析] 由sin(α-k π)=35(k ∈Z )得sin α=±35.∴cos 2α=1-2sin 2α=1-2×⎝ ⎛⎭⎪⎫±352=1-1825=725.故选A. 4.(必修4 P 69A 组T 8(3)改编)已知tan α=3,则(sin α-cos α)2等于( ) A.35 B.25 C.75 D.85 [答案] B[解析] ∵tan α=3,∴(sin α-cos α)2=1-2sin αcos α=1-2sin α cos αsin2α+cos2α=1-2tan αtan2α+1=1-610=25.5.(必修4 P146A组T8(3)改编)化简sin 3αsin α-2cos 2α等于()A.sin αB.cos αC.1 D.0 [答案] C[解析] sin 3αsin α-2cos 2α=sin 2αcos α+cos 2αsin αsin α-2cos 2α=2cos2α+cos 2α-2cos 2α=2cos2α-(2cos2α-1)=1.6.(必修4 P143A组T2(2)改编)已知sin(α+β)=12,sin(α-β)=13,若tan α=m tan β,则m的值为()A.3 B.4C.5 D.6[答案] C[解析] 由sin(α+β)=12,sin(α-β)=13,∴sin αcos β=512,cos αsin β=112,∴tan α=5tan β,∴m=5,故选C.7.(必修4 P137A组T5改编)已知sin(30°+α)=35,60°<α<150°,则cos(2α+150°)=________.[答案]24 25[解析] 设30°+α=t,∴90°<t<180°,∵sin t =35,∴cos t =-45,∴cos(2α+150°)=cos[2(t -30°)+150°] =cos(2t +90°)=-sin 2t =-2sin t cos t =2425.8.(必修4 P 138A 组T 19(4)改编)11-tan 15°-11+tan 15°=________.[答案] 33[解析] 原式=2tan 15°(1-tan 15°)(1+tan 15°)=2tan 15°1-tan 215°=tan 30°=33.9.(必修4 P 137A 组T 10改编)tan α,tan β是方程6x 2-5x +1=0的两个实数根.α,β均为锐角,则α+β=________.[答案] π4[解析] 由题意知tan α+tan β=56,tan αtan β=16, ∴tan(α+β )=tan α+tan β1-tan αtan β=561-16=1. ∵α,β∈⎝ ⎛⎭⎪⎫0,π2.∴α+β∈(0,π),∴α+β=π4.10.(必修4 P 125-126内文改编)用向量法证明cos(α-β)=cos αcos β+sin αsin β. [解析] 证明:如图,在平面直角坐标系xOy 内作单位圆O ,以Ox 为始边作角α,β,它们的终边与单位圆O 的交点分别为A ,B .则OA→=(cos α,sin α),OB →=(cos β,sin β).由向量数量积的坐标表示,有 OA →·OB →=(cos α,sin α)·(cos β,sin β) =cos αcos β+sin αsin β.设OA→与OB →的夹角为θ,则 OA →·OB →=|OA →|·|OB →|cos θ=cos θ =cos αcos β+sin αsin β.另一方面,由图(1)可知,α=2k π+β+θ;由图(2)可知,α=2k π+β-θ.于是α-β=2k π±θ,k ∈Z .所以cos(α-β)=cos θ.则cos(α-β)=cos αcos β+sin αsin β.。

2013年高考数学总复习 4-4 两角和与差的三角函数课件 新人教B版

2013年高考数学总复习 4-4 两角和与差的三角函数课件 新人教B版
1 [例 3] 若 a=tan20° ,b=tan60° ,c=tan100° ,则 ab 1 1 + + =( bc ca A.-1 ) B.1 C.- 3 D. 3
分析:观察角之间的关系有 100° +20° =2×60° ,待 1 1 1 a+b+c 求式变形 + + = ,因此只要利用和角公式 ab bc ac abc 探求 abc 与 a+b+c 之间的关系即可.
误区警示 1.本节公式较多,要把握好公式的结构特征,熟悉 公式的来龙去脉,这样才能准确地应用公式.特别是公 式中的“+”,“-”号要熟记,二倍角的余弦也是易 记混的地方,还要注意公式的逆用、变形运用. 2.三角变换常见的有变角、变名、变幂、变结构(如 和积互变)等.应特别注意变换的等价性,解题过程中要 善于观察差异,寻找联系,实现转化.
点评:高考命题时,常在客观题中考查对三角函数 基本公式的掌握情况,只要记准公式直接套用就能解决, 都是易题.
π (2011· 广州六校联考 )已知 f(x)= cos( - x)+ 3 2 π sin( +x)(x∈R),则函数 f(x)的最大值为( 2 A.2 3 C. 3 B.2 D.1 )
[例 1] 计算(tan10° 3)· - sin40° .
sin10° - 3cos10° 解析:原式= sin40° · cos10°
2sin10° cos60° -cos10° sin60° sin40° = cos10° -2sin50° sin40° -2sin40° cos40° = = cos10° cos10° -sin80° = =-1. cos10°
3.在三角函数的求值、求角问题中,常常要先讨论 (估计)角的取值范围, 依据此范围来求角的值或讨论函数 的符号.解三角函数求值(角)题,千万不要不假思索,盲 目就下结论.

2013年数学全国Ⅱ卷(文、理)三角函数试题浅析

2013年数学全国Ⅱ卷(文、理)三角函数试题浅析
单位后 , 与函数 y = s i n ( 2 x + — 的图像重合 , 则‘ p = 一?
⑤解 三角形 问题是三角 函数 问题 的姊妹题 , 在 高考 中与三角 函数具有 同等重要 的位置 , 近几年新课标 高考对 解三角形 的考 查, 以正弦定理 、 余弦定理的综合运用 为主 。在解题时 , 要分析清 楚题 目条件 , 利用正弦定理 、 余弦定理转化为 三角形 中各边之间
国 Ⅱ卷 ( 文、 理) 中有 关三 角函数 的5 道试题 , 3 道 文科试题 涉及 三角变换 、 图像平移及解三 角形三 个方 面; 两道理科试题只 涉及三 角变 换及解三 角形两个方面 , 最后综合分析 了2 0 1 3 年新课标全 国Ⅱ卷( 文、 理) 试题特 点 , 并谈 了个人 一点粗 浅的见识。
①( 文4 ) △A B C 的内角A , B , C 对边分别为a , b , e , b = 2 , B = 詈, C =
署, 则AA B C 的面积为多少?
②( 文6 ) 已知 s i n a 2 = 0 = C O S 2 ( O  ̄ + = ?
③( 文1 6 ) 函 数y = c o s ( 2 x + ‘ p ) ( 一 盯≤ ‘ P ≤盯 ) 的 图像向 右平移 } 个
( I ) 求 B; ( I I ) 若b = 2 , 求 AA B C 面积 的最大值.
2 试 题 解 析
思维 的地方有 : 第一 , 化边为角 的转化思想 ( 正弦定理 ) ; 第二, 角
A正 弦转 化为角 B + C正弦 的转化思想 ; 第三 , 运用 基本 不等式放
① 这道解三角形 的考题 , 以小题形式 出现 , 属容易题 。解三 角 形问题主要指求三 角形 中的一些基本量 , 即求三角形 的三边 、 三角 、 面积等 , 它 的实质是将几何问题转化 为代数 问题 , 解题关键 是 正确 分析边角关系 , 依 据题设条件合理地设计解题 程序 。本题

高三数学两角和与差的三角函数试题答案及解析

高三数学两角和与差的三角函数试题答案及解析

高三数学两角和与差的三角函数试题答案及解析1.已知,,则()A.B.C.D.【答案】B【解析】∵,,,∴,∴,∴.【考点】平方关系、商数关系、两角差的正切.2. [2014·太原模拟]已知锐角α,β满足sinα=,cosβ=,则α+β等于() A.B.或C.D.2kπ+(k∈Z)【答案】C【解析】由sinα=,cosβ=且α,β为锐角,可知cosα=,sinβ=,故cos(α+β)=cosαcosβ-sinαsinβ=×-×=,又0<α+β<π,故α+β=.3.设,且.则的值为.【答案】【解析】由题意,又,∴且,由于,且,∴,∴,∴.【考点】三角函数的恒等变形与求值.4.函数y=sin(+x)cos(-x)的最大值为()A.B.C.D.【答案】B【解析】∵sin(+x)cos(-x)=cosx(cos cosx+sin sinx)=cos2x+sinxcosx=(1+cos2x)+sin2x=+cos2x+sin2x=+(cos2x+sin2x)=+sin(2x+)∴函数y=sin(+x)cos(-x)的最大值为5.已知,,且,则=.【答案】【解析】∵,∴,∴,,∴====.【考点】两角和与差的余弦.6.【答案】【解析】,.【考点】两角和与差的正切公式.7.已知,,则的值为.【答案】【解析】因为,所以.【考点】两角和与差正切8.计算:=________.【答案】2-【解析】sin7°=sin(15°-8°)=sin15°cos8°-cos15°sin8°,cos7°=cos(15°-8°)=cos15°cos8°+sin15°sin8°,∴原式=tan15°=tan(45°-30°)==2-9.已知α、β均为锐角,且tanβ=,则tan(α+β)=________.【答案】1【解析】∵tanβ=,∴tanβ==tan .又∵α、β均为锐角,∴β=-α,即α+β=,∴tan(α+β)=tan=1.10.设α∈,若tan=2cos 2α,则α=________.【答案】【解析】解析:∵tan=2cos 2α,∴=2(cos2α-sin2α),整理得=2(cos α+sin α)(cos α-sin α).因为α∈,所以sin α+cos α≠0.因此(cos α-sin α)2=,即sin 2α=.由α∈,得2α∈,所以2α=,即α=.11.若α,β∈,cos =,sin =-,则cos (α+β)=________.【答案】-【解析】∵α,β∈,∴-<α-<,-<-β<,由cos =和sin =-得α-=±,-β=-,当α-=-,-β=-时,α+β=0,与α,β∈矛盾;当α-=,-β=-时,α=β=,此时cos (α+β)=-.12.已知向量,,函数(Ⅰ)求的最大值;(Ⅱ)在中,设角,的对边分别为,若,且,求角的大小.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)由向量数量积的定义只需将其化为一个角的三角函数就能求出的最大值.(Ⅱ)由(Ⅰ)的结果和正弦定理:,又 ,所以,,由以上两式即可解出,.试题解析:(Ⅰ) 2分4分(注:也可以化为)所以的最大值为. 6分(注:没有化简或化简过程不全正确,但结论正确,给4分)(Ⅱ)因为,由(1)和正弦定理,得. 7分又,所以,即, 9分而是三角形的内角,所以,故,, 11分所以,,. 12分【考点】1.正弦定理;2、两角和与差的在角函数公式、倍角公式;3、三角函数的性质.13.已知向量,.(1)若,求的值;(2)若,,求的值.【答案】(1);(2).【解析】(1)由易得,代入式子中可约去为求出其值;(2)先求出,再对两边平方化简可得关于和的关系式,联立正弦余弦的平方关系解方程组可得和的值,代入的展开式,就可求出其值.试题解析:⑴由可知,,所以, 2分所以. 6分(2)由可得,,即,① 10分又,且②,由①②可解得,, 12分所以. 14分【考点】向量的数量积、模的计算,同角三角函数的关系、两角和与差的正弦.14.已知是方程的两根,则=_______.【答案】1【解析】本题考查两角和的正切公式,,而与可由韦达定理得.【考点】韦达定理与两角和的正切公式.15.已知a,b,c分别为ABC的三个内角A,B,C的对边,=(sinA,1),=(cosA,),且//.(I)求角A的大小;(II)若a=2,b=2,求ABC的面积.【答案】(I).(II)ABC的面积为或.【解析】(I)根据//,可得到注意到,得到.(II)首先由正弦定理可得:通过讨论,得到,从而或.根据,,分别计算进一步确定ABC的面积.试题解析:(I)因为//,所以因为,所以.(II)由正弦定理可得:因为,所以,或.当时,所以;当时,所以.故ABC的面积为或.【考点】平面向量的坐标运算,两角和差的三角函数,正弦定理的应用,三角形面积公式.16.已知圆O的半径为R(R为常数),它的内接三角形ABC满足成立,其中分别为的对边,求三角形ABC面积S的最大值.【答案】【解析】本题主要考查解三角形中的正弦定理余弦定理的应用以及运用倍角公式、两角和与差的正弦公式等三角公式进行三角变换的能力和利用三角形面积求最值,考查基本运算能力.先利用正弦定理将角换成边,再利用余弦定理求出,得到特殊角的值,利用三角形面积公式列出表达式,利用正弦定理将边换成角,将用表示,利用两角和与差的正弦公式、倍角公式化简表达式,求三角函数的最值.试题解析:由,由正弦定理得代入得,由余弦定理---6分所以=当且仅当时, 12分【考点】1.正弦定理;2.余弦定理;3.两角和与差的正弦公式;4.三角形面积公式;5.三角函数最值.17.函数的最小正周期为.【答案】【解析】由,得函数的最小正周期为.【考点】三角函数的周期.18.已知函数,将函数的图象向左平移个单位后得到函数的图象,且,则( )A.B.C.D.【答案】D【解析】∵,∴,∵,∴ (),即 (),∵,∴.【考点】1.倍角公式;2.两角和与差的余弦公式;3.三角方程的解法.19.设是锐角三角形,分别是内角所对边长,并且.(1)求角的值;(2)若,求(其中).【答案】(1) ;(2) .【解析】(1) 利用两角和与差的正弦公式展开化简得,又为锐角,所以;(2)由可得,即,然后利用余弦定理得的另一个关系,从而解出.试题解析:(1)因为,所以,又为锐角,所以.(2)由可得①由(1)知,所以②由余弦定理知,将及①代入,得③③+②×2,得,所以因此,是一元二次方程的两个根.解此方程并由知.【考点】两角和与差的正弦定理、平面向量的数量积、余弦定理.20.已知,且,,则______.【答案】【解析】由,,得,所以,又由,知.【考点】同角三角函数的关系、两角和与差的三角函数.21.设的内角的对边分别为,且,则 ,的面积 .【答案】;.【解析】为的内角,且,,由正弦定理得,,.【考点】两角和的三角函数、正弦定理、三角形的面积22.在中,分别是角的对边,,,且(1)求角的大小;(2)设,且的最小正周期为,求在上的最大值和最小值,及相应的的值。

_专题15三角函数解答题2013-2022十年全国高考数学真题分类汇编(全国通用版)(解析版)

_专题15三角函数解答题2013-2022十年全国高考数学真题分类汇编(全国通用版)(解析版)
即 ,可得 .
由于 ,所以 ,故

【题目栏目】三角函数\正弦定理和余弦定理\正、余弦定理的综合应用
【题目来源】2019年高考数学课标全国Ⅰ卷理科·第17题
11.(2018年高考数学课标卷Ⅰ(理)·第17题)(12分)在平面四边形 中, , , , .
(1)求 ;(2)若 ,求 .
【答案】解析:(1)在 中,由正弦定理得 .
16.(2015高考数学新课标2理科·第17题)(本题满分12分) 中, 是 上的点, 平分 , 面积是 面积的2倍.
(Ⅰ)求 ;
(Ⅱ)若 , ,求 和 的长.
【答案】
解析:(Ⅰ) , ,因为 , ,所以 .由正弦定理可得 .
(Ⅱ)因为 ,所以 .在 和 中,由余弦定理得
, .
.由(Ⅰ)知 ,所以 .
故 .
(2)由题设及(1)得 ,即 .
所以 ,故 .
由题设得 ,即 .
由余弦定理得 ,即 ,得 .
故 的周长为 .
【考点】三角函数及其变换.
【点评】在处理解三角形问题时,要注意抓住题目所给的条件,当题设中给定三角形的面积,可以使用面积公式建立等式,再将所有边的关系转化为角的关系,有时需将角的关系转化为边的关系;解三角形问题常见的一种考题是“已知一条边的长度和它所对的角,求面积或周长的取值范围”或者“已知一条边的长度和它所对的角,再有另外一个条件,求面积或周长的值”,这类问题通法思路是:全部转化为角的关系,建立函数关系式,如 ,从而求出范围,或利用余弦定理以及基本不等式求范围;求具体的值直接利用余弦定理和给定条件即可.
【题目栏目】三角函数\正弦定ห้องสมุดไป่ตู้和余弦定理\正、余弦定理的综合应用
【题目来源】2021年新高考全国Ⅱ卷·第18题

高三数学两角和与差的三角函数试题

高三数学两角和与差的三角函数试题

高三数学两角和与差的三角函数试题1.已知0<α<π,sin 2α=sin α,则tan=________.【答案】-2-【解析】由sin 2α=sinα,可得2sin αcos α=sin α,又0<α<π,所以cos α=.故sin α=,tan α=.所以tan===-2-.2. sin2012°=()A.sin32°B.﹣sin32°C.sin58°D.﹣sin58°【答案】B【解析】sin2012°=sin(5×360°+212°)=sin212°=sin(180°+32°)=﹣sin32°.故选B3.设函数满足.(1)求的单调递减区间;(2)设锐角的内角所对的边分别为,且,求的取值范围.【答案】(1) ;(2)【解析】(1)由函数,运用二倍角公式的逆运算,即可将化成一个角的和差的正余弦形式.再结合基本函数的单调性,通过解不等式即可得到的单调递减区间.(2)因为,结合余弦定理化简后再根据正弦定理,即可得到角B的值,又由(1)所得的函数关系,即可求出角A的范围.试题解析:(1)由得:,∴∴由得:,∴的单调递减区间为:(2)∵,由余弦定理得:,即,由正弦定理得:,,,∴∵△锐角三角形,∴,∴的取值范围为.【考点】1.三角函数的二倍角公式.2.三角函数的化一公式.3.运用正弦定理、余弦定理解三角形.4.三角不等式的解法.4.求sin210°+cos240°+sin10°cos40°的值.【答案】【解析】(解法1)因为40°=30°+10°,于是原式=sin210°+cos2(30°+10°)+sin10°cos(30°+10°)=sin210°++sin10°·(cos10°-sin10°)=(sin210°+cos210°)=.(解法2)设x=sin210°+cos240°+sin10°cos40°,y=cos210°+sin240°+cos10°sin40°.则x+y=1+1+sin10°cos40°+cos10°sin40°=2+sin50°=2+cos40°,x-y=cos80°-cos20°-=-sin50°-=-cos40°-.因此2x=,故x=5.设α、β∈(0,π),且sin(α+β)=,tan=,则cosβ=________.【答案】【解析】∵tan=,∴tanα==,而α∈(0,π),∴α∈.由tanα==及sin2α+cos2α=1得sinα=,cosα=;又sin(α+β)=<,∴α+β∈(,π),cos(α+β)=-.∴cosβ=cos[(α+β)-α]=cos(α+β)cosα+sin(α+β)sinα=-6.已知α、β均为锐角,且tanβ=,则tan(α+β)=________.【答案】1【解析】∵tanβ=,∴tanβ==tan .又∵α、β均为锐角,∴β=-α,即α+β=,∴tan(α+β)=tan=1.7.已知向量,, .(1)求的最小正周期;(2)若A为等腰三角形ABC的一个底角,求的取值范围.【答案】(1) ;(2).【解析】(1)求出=利用两角和与差的正余弦函数公式化简得==∴最小正周期T=;(2)利用A为等腰三角形ABC的一个底角,求出A的范围为,所以,进而,再求出,即可得.试题解析:(1)= 2分===== 5分∴最小正周期T= 6分(2)∵A为等腰三角形ABC的一个底角,∴∴,∴, 8分∴,即. 12分【考点】1.两角和与差的正余弦函数;2.平面向量数量积的运算;3.解三角形..8.已知向量,向量,函数.(1)求的最小正周期;(2)已知分别为内角的对边,为锐角,,且恰是在上的最大值,求和的值.【答案】(1);(2),.【解析】本题是对平面向量和三角函数的综合考查,考查向量的数量积、三角函数中的倍角公式、两角和与差的正弦公式、余弦定理、周期、最值等基础知识,考查运算能力、分析问题解决问题的能力.第一问,先利用向量的数量积的运算公式,将向量的坐标代入,得到的解析式,再利用倍角公式、两角差的正弦公式化简表达式,最后利用周期公式计算即可;第二问,先数形结合求函数的最大值,得到角,再利用余弦定理得到边.试题解析:(1),,……6分(2)由(1)知:,时,当时取得最大值,此时.由得由余弦定理,得∴,即则 12分【考点】1.向量的数量积;2.倍角公式;3.两角差的正弦公式;4.三角函数的周期、最值;5.余弦定理.9.已知a,b,c分别是的三个内角A,B,C的对边,(1)求A的大小;(2)当时,求的取值范围.【答案】(1);(2).【解析】本题主要考查解三角形中正弦定理的应用,以及利用两角和与差的正弦公式、倍角公式等公式进行三角变换,考查基本运算能力,考查分析问题解决问题的能力.第一问,先利用正弦定理将边换成角,去分母,再利用两角和的正弦公式化简,得到,再在中,考虑角的范围求角;第二问,利用正弦定理将边用角来表示,利用降幂公式化简,再将用角表示,用两角差的正弦公式化简,最后化简成,利用角的取值范围求函数的值域.试题解析:(I)△ABC中,∵,由正弦定理,得:,即,故,…(4分)∴(2)由正弦定理得∴,∴∵∴∴∴.【考点】1.正弦定理;2.两角和与差的正弦公式;3.倍角公式;4.三角函数的值域.10.若且则的可能取值是()A. B C. D.【答案】A【解析】由得,由得:,故,故,故选A.【考点】1.两角和的正切公式;2.基本不等式;3.正切函数的单调性11.在△ABC中,角A,B,C的对边分别为a,b,c,.(1)求角C的大小;(2)若△ABC的外接圆直径为1,求的取值范围.【答案】(1);(2);【解析】(1)中有正切和正弦、余弦,这样的问题一般是“切化弦”,统一为同名三角函数后再利用三角函数的相关公式进行变形解答;(2)利用正弦定理,可化为角的三角函数,再利用,可消去一元,问题于是就转化为三角函数的值域问题.试题解析:(1)因为,即,所以,即,得. 4分所以,或(不成立).即, 得. 7分(2)由,设,.因, 8分故=. 12分,故. 15分【考点】两角和与差的三角函数、正弦定理.12.若是锐角,且,则的值是.【答案】【解析】根据题意,由于是锐角,且,故可知,那么利用=,故答案为【考点】两角和差的公式点评:主要是考查了差角的三角函数公式的运用,属于基础题。

【走向高考】(2013春季发行)高三数学第一轮总复习 4-4两角和与差的三角函数 新人教A版

【走向高考】(2013春季发行)高三数学第一轮总复习 4-4两角和与差的三角函数 新人教A版

4-4两角和与差的三角函数基础巩固强化1.(2011²银川三模)已知sin θ=45,且sin θ-cos θ>1,则sin2θ=( )A .- 2425B .-1225C .-45D.2425[答案] A[解析] 由题意可知cos θ=-35,所以sin2θ=2sin θcos θ=-2425,故选择A.2.(文)(2011²北京东城区期末)在△ABC 中,C =120°,tan A +tan B =233,则tan A tan B的值为( )A.14B.13C.12D.53 [答案] B[解析] ∵C =120°,∴A +B =60°, ∴tan(A +B )=tan A +tan B 1-tan A tan B =3,∵tan A +tan B =233,∴tan A tan B =13.(理)已知sin α=35,α为第二象限角,且tan(α+β)=1,则tan β的值是( )A .-7B .7C .-34D.34 [答案] B[解析] 由sin α=35,α为第二象限角,得cos α=-45,则tan α=-34.∴tan β=tan[(α+β)-α]=tan α+β-tan α1+tan α+βtan α=1+341+⎝ ⎛⎭⎪⎫-34=7.3.(文)已知0<α<π2<β<π,cos α=35,sin(α+β)=-35,则cos β的值为( )A .-1B .-1或-725C .-2425D .±2425[答案] C[解析] ∵0<α<π2,π2<β<π,∴π2<α+β<3π2,∴sin α=45,cos(α+β)=-45,∴cos β=cos[(α+β)-α]=cos(α+β)cos α+sin(α+β)sin α=⎝ ⎛⎭⎪⎫-45²35+⎝ ⎛⎭⎪⎫-35²45=-2425,故选C. (理)已知sin β=35(π2<β<π),且sin(α+β)=cos α,则tan(α+β)=( )A .1B .2C .-2 D.825[答案] C[解析] ∵sin β=35,π2<β<π,∴cos β=-45,∴sin(α+β)=cos α=cos[(α+β)-β] =cos(α+β)cos β+sin(α+β)sin β =-45cos(α+β)+35sin(α+β),∴25sin(α+β)=-45cos(α+β),∴tan(α+β)=-2. 4.已知实数a ,b 均不为零,a sin2+b cos2a cos2-b sin2=tan β,且β-2=π6,则ba=( )A. 3B.33 C .- 3 D .-33[答案] B[解析] tan β=tan(2+π6)=tan2+331-33tan2=a sin2+b cos2a cos2-b sin2=a tan2+b a -b tan2,所以a =1,b =33,故b a =33. 5.函数f (x )=(3sin x -4cos x )²cos x 的最大值为( ) A .5 B.92 C.12 D.52[答案] C[解析] f (x )=(3sin x -4cos x )cos x =3sin x cos x -4cos 2x =32sin2x -2cos2x -2=52sin(2x -θ)-2,其中tan θ=43, 所以f (x )的最大值是52-2=12.故选C.6.(文)(2011²合肥质检)将函数y =sin(2x +π3)的图象上各点向右平移π6个单位,再把每一点的横坐标缩短到原来的一半,纵坐标保持不变,所得函数图象的一条对称轴是( )A .x =π8B .x =π6C .x =π3D .x =π2[答案] A[解析] y =sin(2x +π3) y =sin2xy =sin4x ,其对称轴方程为4x =k π+π2,k∈Z ,∴x =k π4+π8,令k =0得x =π8. (理)(2013²陕西师大附中上学期一模)函数f (x )=A sin(ωx +φ)(其中A >0,|φ|<π2)的图象如图所示,为了得到函数g (x )=sin2x 的图象,则只需将f (x )的图象( )A .向右平移π6个长度单位B .向右平移π12个长度单位C .向左平移π6个长度单位D .向左平移π12个长度单位[答案] A[解析] 由图可知A =1,T 4=7π12-π3=π4,∴T =π,∴2πω=π,∴ω=2, ∴f (x )=sin(2x +φ),将(7π12,-1)代入得sin(7π6+φ)=-1,∴7π6+φ=3π2+2k π,k ∈Z ,∴φ=2k π+π3,k ∈Z . ∵|φ|<π2,∴φ=π3,∴f (x )=sin(2x +π3),将f (x )的图象向右平移π6个单位可得,sin[2(x -π6)+π3]=sin2x ,故选A.7.函数f (x )=a sin x -b cos x 的图象的一条对称轴是直线x =π4,则直线ax -by +c =0的倾斜角的大小为________.[答案]3π4(或135°) [解析] f (x )的图象的对称轴过其最高点或最低点,∴f (π4)=±a 2+b 2,∴a -b 2=±a 2+b 2,解得a +b =0.∴直线ax -by +c =0的斜率k =ab=-1, ∴直线ax -by +c =0的倾斜角为135°(或3π4).8.下列命题:①存在α、β∈R ,使tan(α+β)=tan α+tan β;②存在φ∈R ,使f (x )=cos(3x +φ)为奇函数;③对任意α,β∈(0,π2),若tan α²tan β<1,则α+β<π2;④△ABC 中,sin A >sin B 的充要条件是A >B .其中真命题的序号是________.[答案] ①②③④[解析] ①α=0,β=π3时,原式成立;②φ=π2时,f (x )为奇函数;③∵tan α²tan β<1,α,β∈⎝⎛⎭⎪⎫0,π2,∴sin α²sin βcos α²cos β<1,∴sin α²sin β<cos α²cos β,∴cos(α+β)>0,∵α+β∈(0,π),∴α+β<π2;④在△ABC 中,A >B ⇔a >b ⇔2R sin A >2R sin B ⇔sin A >sin B (其中R 为△ABC 外接圆的半径). 9.(文)函数y =cos(π3-2x )+sin(π2-2x )的最小正周期为________.[答案] π[解析] y =cos π3cos2x +sin π3sin2x +cos2x=32cos2x +32sin2x =3(32cos2x +12sin2x ) =3sin(2x +π3),∴T =π.(理)函数y =cos(x +20°)+sin(x -10°)的最大值为________. [答案] 1[解析] y =cos x cos20°-sin x sin20°+sin x cos10°-cos x sin10° =(cos10°-sin20°)²sin x +(cos20°-sin10°)cos x=a 2+b 2sin(x +φ).这里a =cos10°-sin20°,b =cos20°-sin10°, tan φ=co s20°-sin10°cos10°-sin20°∵a 2+b 2=(cos10°-sin20°)2+(cos20°-sin10°)2=2-2sin20°cos10°-2cos20°sin10°=2-2sin30°=1. ∴最大值为a 2+b 2=1.10.(文)设函数f (x )=3cos 2ωx +sin ωx cos ωx +a (其中ω>0,a ∈R ),且f (x )的最小正周期是2π.(1)求ω的值;(2)如果f (x )在区间[-π3,5π6]上的最小值为3,求a 的值.[解析] (1)f (x )=32cos2ωx +12sin2ωx +32+a =sin ⎝ ⎛⎭⎪⎫2ωx +π3+32+a , 依题意得2π2ω=2π⇒ω=12.(2)由(1)知,f (x )=sin ⎝⎛⎭⎪⎫x +π3+32+a .又当x ∈[-π3,5π6]时,x +π3∈[0,7π6],故-12≤sin ⎝ ⎛⎭⎪⎫x +π3≤1,从而f (x )在区间[-π3,5π6]上的最小值为-12+32+a =3,故a =3+12.(理)(2011²日照模拟)设函数f (x )=cos(πx 4-π3)-cos πx 4.(1)求f (x )的最小正周期;(2)设g (x )=f (-2-x );当x ∈[0,2]时,求函数y =g (x )的最大值. [解析] (1)f (x )=cos π4x cos π3+sin π4x sin π3-cos πx 4=32sin π4x -12cos π4x =sin(π4x -π6).故f (x )的最小正周期为T =2ππ4=8. (2)由题设条件得g (x )=f (-2-x )=sin[π4(-2-x )-π6]=sin[-π2-π4x -π6]=-cos(π4x +π6).当0≤x ≤2时,π6≤π4x +π6≤2π3,设t =π4x +π6,则y =-cos t ,在[π6,2π3]上是增函数,因此y =g (x )在区间[0,2]上的最大值为g (x )max =-cos 2π3=12.能力拓展提升11.(文)(2012²河南六市联考)已知函数y =f (x )=3sin(π6+x )+cos(π6+x ),则函数f (x )应满足( )A .函数y =f (x )在[-5π6,π6]上递增,且有一个对称中心(π6,0)B .函数y =f (x )在[-3π4,π6]上递增,且有一个对称中心(-π3,0)C .函数y =f (x )在[-5π6,π6]上递减,且有一个对称中心(-π3,0)D .函数y =f (x )在[-3π4,π6]上递减,且有一个对称中心(π6,0)[答案] B[解析] f (x )=3sin(π6+x )+cos(π6+x )=2sin(π6+x +π6)=2sin(x +π3),故选B.(理)已知a =(sin α,1-4cos2α),b =(1,3sin α-2),α∈⎝⎛⎭⎪⎫0,π2,若a ∥b ,则tan ⎝⎛⎭⎪⎫α-π4=( ) A.17 B .-17 C.27 D .-27 [答案] B[解析] ∵a ∥b ,∴1-4cos2α=sin α(3sin α-2), ∴5sin 2α+2sin α-3=0,∴sin α=35或sin α=-1,∵α∈⎝ ⎛⎭⎪⎫0,π2,∴sin α=35,∴tan α=34,∴tan ⎝⎛⎭⎪⎫α-π4=tan α-11+tan α=-17.12.(文)设动直线x =a 与函数f (x )=2sin 2(π4+x )和g (x )=3cos2x 的图象分别交于M ,N 两点,则|MN |的最大值为( )A. 2B. 3 C .2 D .3 [答案] D[解析] 易知|MN |=|f (a )-g (a )|=|2sin 2(π4+a )-3cos2a |=|1-cos(π2+2a )-3cos2a |=|1+2sin(2a -π3)|≤3,即最大值是3.(理)(2012²东北三校联考)设α、β都是锐角,且cos α=55,sin(α+β)=35,则cos β=( )A.2525B.255 C.2525或255D.55或525[答案] A[解析] 依题意得sin α=1-cos 2α=255,cos(α+β)=±1-sin 2α+β=±45.又α、β均为锐角,因此0<α<α+β<π,cos α>cos(α+β),因为45>55>-45,所以cos(α+β)=-45.cos β=cos[(α+β)-α]=cos(α+β)cos α+sin(α+β)²sin α=-45³55+35³255=2525,选A.13.已知sin(2α-β)=35,sin β=-1213,且α∈(π2,π),β∈(-π2,0),则sin α=________.[答案]3130130[解析] ∵π2<α<π,∴π<2α<2π.又-π2<β<0,∴0<-β<π2,π<2α-β<5π2,而sin(2α-β)=35>0,∴2π<2α-β<5π2,cos(2α-β)=45.又-π2<β<0且sin β=-1213,∴cos β=513,∴cos2α=cos[(2α-β)+β]=cos(2α-β)cos β-sin(2α-β)sin β =45³513-35³(-1213)=5665. 又cos2α=1-2sin 2α,∴sin 2α=9130.又α∈(π2,π),∴sin α=3130130.14.求值:2cos10°-sin20°cos20°=________.[答案]3[解析] 原式=2cos 30°-20°-sin20°cos20°=2cos30°cos20°+2sin30°sin20°-sin20°cos20°=3cos20°+sin20°-sin20°cos20°= 3.15.(文)(2011²珠海模拟)已知A 、B 均为钝角且sin A =55,sin B =1010,求A +B 的值.[解析] ∵A 、B 均为钝角且sin A =55,sin B =1010, ∴cos A =-1-sin 2A =-25=-255,cos B =-1-sin 2B =-310=-31010,∴cos(A +B )=cos A cos B -sin A sin B =-255³(-31010)-55³1010=22,又∵π2<A <π,π2<B <π,∴π<A +B <2π,∴A +B =7π4.(理)(2011²成都二诊)已知函数f (x )=2sin x cos(x +π6)-cos2x +m . (1)求函数f (x )的最小正周期;(2)当x ∈[-π4,π4]时,函数f (x )的最小值为-3,求实数m 的值.[解析] (1)∵f (x )=2sin x cos(x +π6)-cos2x +m=2sin x (32cos x -12sin x )-cos2x +m =3sin x cos x -sin 2x -cos2x +m =32sin2x -1-cos2x 2-cos2x +m =32sin2x -12cos2x -12+m =sin(2x -π6)-12+m .∴f (x )的最小正周期T =2π2=π.(2)∵-π4≤x ≤π4,∴-π2≤2x ≤π2,∴-2π3≤2x -π6≤π3,∴-1≤sin(2x -π6)≤32,∴ f (x )的最小值为-1-12+m .由已知,有-1-12+m =-3.∴m =-32.16.(文)(2011²晋中一模)已知sin α+cos α=355,α∈(0,π4),sin(β-π4)=35,β∈(π4,π2).(1)求sin2α和tan2α的值; (2)求cos(α+2β)的值.[解析] (1)由题意得(sin α+cos α)2=95,即1+sin2α=95,∴sin2α=45.又2α∈(0,π2),∴cos2α=1-sin 22α=35,∴tan2α=sin2αcos2α=43.(2)∵β∈(π4,π2),β-π4∈(0,π4),∴cos(β-π4)=45,于是sin2(β-π4)=2sin(β-π4)cos(β-π4)=2425.又sin2(β-π4)=-cos2β,∴cos2β=-2425.又2β∈(π2,π),∴sin2β=725.又cos 2α=1+cos2α2=45,∴cos α=255,sin α=55(α∈(0,π4)).∴cos(α+2β)=cos αcos2β-sin αsin2β =255³(-2425)-55³725=-11525. (理)已知0<α<π2,π2<β<π,且tan α2=12,sin(α+β)=513.(1)求cos α和cos β的值; (2)求tan α-β2的值.[解析] (1)∵tan α2=12,∴tan α=2tanα21-tan2α2=43,∴sin α=43cos α,代入sin 2α+cos 2α=1中消去sin α得,cos 2α=925,∵0<α<π2,∴cos α=35,∴sin α=45,∵π2<α+β<3π2,sin(α+β)=513>0,∴π2<α+β<π,∴cos(α+β)=-1-sin 2α+β=-1213,∴cos β=cos[(α+β)-α]=cos(α+β)cos α+sin(α+β)sin α=-1213³35+513³45=-1665.∴cos α和cos β的值依次为35和-1665.(2)由(1)知cos β=-1665,又已知π2<β<π,∴sin β=6365,∴tan β=-6316.∴2tanβ21-tan2β2=-6316,∵π2<β<π,∴tan β2>0,∴tan β2=97, ∴tan α-β2=tan α2-tan β21+tan α2²tan β2=12-971+12³97=-1123.1.方程x 2cos2012°-y 2sin2012°=1所表示的曲线为( )A .焦点在x 轴上的椭圆B .焦点在y 轴上的椭圆C .焦点在x 轴上的双曲线D .焦点在y 轴上的双曲线 [答案] D[解析] cos2012°=cos(5³360°+212°)=cos212°=-cos32°=-sin58°<0,而sin2012°=sin(5³360°+212°)=sin212°=-sin32°<0,所以该曲线为焦点在y 轴上的双曲线.2.已知α、β均为锐角,且tan β=cos α-sin αcos α+sin α,则tan(α+β)的值为( )A .-1B .1 C. 3 D .不存在 [答案] B[解析] tan β=cos α-sin αcos α+sin α=1-tan α1+tan α=tan ⎝ ⎛⎭⎪⎫π4-α, ∵π4-α,β∈⎝ ⎛⎭⎪⎫-π2,π2且y =tan x 在⎝ ⎛⎭⎪⎫-π2,π2上是单调增函数,∴β=π4-α,∴α+β=π4,∴tan(α+β)=tan π4=1.3.已知sin α=55,sin(α-β)=-1010,α、β均为锐角,则β等于( )A.5π12 B.π3 C.π4 D.π6[答案] C[解析] ∵α、β均为锐角,∴-π2<α-β<π2,∴cos(α-β)=1-sin 2α-β=31010, ∴sin α=55,∴cos α=1-⎝⎛⎭⎪⎫552=255. ∴sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β)=22. ∵0<β<π2,∴β=π4,故选C.4.(2012²重庆文)设函数f (x )=A sin(ωx +φ)(其中A >0,ω>0,-π<φ≤π)在x =π6处取得最大值2,其图象与x 轴的相邻两个交点的距离为π2.(1)求f (x )的解析式;(2)求函数g (x )=6cos 4x -sin 2x -1f x +π6的值域.[分析] (1)由周期为π求出ω,代入点(π6,2),由φ范围求出φ,A .(2)分子化同名,即sin 2x 用1-cos 2x 代换,分母用诱导公式和二倍角公式. [解析] (1)由题设条件知f (x )的周期T =π, 即2πω=π,解得ω=2, 因为f (x )在x =π6处取得最大值2,所以A =2,从而sin(2³π6+φ)=1,所以2³π6+φ=π2+2k π,k ∈Z ,又由-π<φ≤π,得φ=π6, 故f (x )的解析式为f (x )=2sin(2x +π6).(2)g (x )=6cos 4x -sin 2x -12sin 2x +π2=6cos 4x +cos 2x -22cos2x=2cos 2x -13cos 2x +222cos 2x -1=32cos 2x +1(cos 2x ≠12). 因cos 2x ∈[0,1],且cos 2≠12.故g (x )的值域为[1,74)∪(74,52].[点评] 本题考查了三角函数的周期、最值、同角基本关系式、二倍角公式等.在解三角恒等变换(化简)题时的方法有:异名化同名,异角化同角,降幂化同次等.。

2013届高考数学总复习教学案:两角和与差的正弦、余弦和正切公式

2013届高考数学总复习教学案:两角和与差的正弦、余弦和正切公式

第五节两角和与差的正弦、余弦和正切公式[知识能否忆起]1.两角和与差的正弦、余弦、正切公式 (1)C (α-β):cos(α-β)=cos_αcos_β+sin_αsin_β; (2)C (α+β):cos(α+β)=cos_αcos_β-sin_αsin_β; (3)S (α+β):sin(α+β)=sin_αcos_β+cos_αsin_β; (4)S (α-β):sin(α-β)=sin_αcos_β-cos_αsin_β; (5)T (α+β):tan(α+β)=tan α+tan β1-tan αtan β;(6)T (α-β):tan(α-β)=tan α-tan β1+tan αtan β.2.二倍角的正弦、余弦、正切公式 (1)S 2α:sin 2α=2sin_αcos_α;(2)C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; (3)T 2α:tan 2α=2tan α1-tan 2α.3.常用的公式变形(1)tan α±tan β=tan(α±β)(1∓tan αtan β); (2)cos 2α=1+cos 2α2,sin 2α=1-cos 2α2;(3)1+sin 2α=(sin α+cos α)2, 1-sin 2α=(sin α-cos α)2, sin α±cos α=2sin ⎝⎛⎭⎫α±π4. [小题能否全取]1.(2011·福建高考)若tan α=3,则sin 2αcos 2α的值等于( )A .2B .3C .4D .6解析:选Dsin 2αcos 2α=2sin αcos αcos 2α=2tan α=2×3=6.2.sin 68°sin 67°-sin 23°cos 68°的值为( ) A .-22B.22C.32D .1解析:选B 原式=sin 68°cos 23°-cos 68°sin 23°=sin(68°-23°)=sin 45°=22. 3.已知sin α=23,则cos(π-2α)等于( )A .-53 B .-19C.19D.53解析:选B cos(π-2α)=-cos 2α=-(1-2sin 2α)=2sin 2α-1=2×49-1=-19.4.(教材习题改编)若cos α=-45,α是第三象限角,则sin ⎝⎛⎭⎫α+π4=________ 解析:由已知条件sin α=-1-cos 2α=-35,sin ⎝⎛⎭⎫α+π4=22sin α+22cos α=-7210. 答案:-72105.若tan ⎝⎛⎭⎫α+π4=25,则tan α=________. 解析:tan ⎝⎛⎭⎫α+π4=tan α+11-tan α=25,即5tan α+5=2-2tan α. 则7tan α=-3,故tan α=-37.答案:-371.两角和与差的三角函数公式的理解:(1)正弦公式概括为“正余,余正符号同”.“符号同”指的是前面是两角和,则后面中间为“+”号;前面是两角差,则后面中间为“-”号.(2)余弦公式概括为“余余,正正符号异”.(3)二倍角公式实际就是由两角和公式中令β=α所得.特别地,对于余弦:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α,这三个公式各有用处,同等重要,特别是逆用即为“降幂公式”,在考题中常有体现.2.重视三角函数的“三变”:“三变”是指“变角、变名、变式”;变角为:对角的分拆要尽可能化成已知角、同角、特殊角;变名:尽可能减少函数名称;变式:对式子变形一般要尽可能有理化、整式化、降低次数等.在解决求值、化简、证明问题时,一般是观察角度、函数名、所求(或所证明)问题的整体形式中的差异,再选择适当的三角公式恒等变形.三角函数公式的应用典题导入[例1] (2011·广东高考)已知函数f (x )=2sin ⎝⎛⎭⎫13x -π6,x ∈R . (1)求f ⎝⎛⎭⎫5π4的值;(2)设α,β∈⎣⎡⎦⎤0,π2,f ⎝⎛⎭⎫3α+π2=1013,f (3β+2π)=65,求cos(α+β)的值. [自主解答] (1)∵f (x )=2sin ⎝⎛⎭⎫13x -π6, ∴f ⎝⎛⎭⎫5π4=2sin ⎝⎛⎭⎫5π12-π6=2sin π4= 2. (2)∵α,β∈⎣⎡⎦⎤0,π2,f ⎝⎛⎭⎫3α+π2=1013,f (3β+2π)=65, ∴2sin α=1013,2sin ⎝⎛⎭⎫β+π2=65. 即sin α=513,cos β=35.∴cos α=1213,sin β=45.∴cos(α+β)=cos αcos β-sin αsin β =1213×35-513×45=1665. 由题悟法两角和与差的三角函数公式可看作是诱导公式的推广,可用α、β的三角函数表示α±β的三角函数,在使用两角和与差的三角函数公式时,特别要注意角与角之间的关系,完成统一角和角与角转换的目的.以题试法1.(1)已知sin α=35,α∈⎝⎛⎭⎫π2,π,则cos 2α2sin ⎝⎛⎭⎫α+π4=________.(2)(2012·济南模拟)已知α为锐角,cos α=55,则tan ⎝⎛⎭⎫π4+2α=( ) A .-3 B .-17C .-43D .-7 解析:(1)cos 2α2sin ⎝⎛⎭⎫α+π4=cos 2α-sin 2α2⎝⎛⎭⎫22sin α+22cos α=cos α-sin α,∵sin α=35,α∈⎝⎛⎭⎫π2,π,∴cos α=-45. ∴原式=-75.(2)依题意得,sin α=255,故tan α=2,tan 2α=2×21-4=-43,所以tan ⎝⎛⎭⎫π4+2α=1-431+43=-17. 答案:(1)-75 (2)B三角函数公式的逆用与变形应用典题导入[例2] (2013·德州一模)已知函数f (x )=2cos 2x2-3sin x .(1)求函数f (x )的最小正周期和值域;(2)若α为第二象限角,且f ⎝⎛⎭⎫α-π3=13,求cos 2α1+cos 2α-sin 2α的值. [自主解答] (1)∵f (x )=2cos 2x2-3sin x =1+cos x -3sin x =1+2cos ⎝⎛⎭⎫x +π3, ∴周期T =2π,f (x )的值域为[-1,3].(2)∵f ⎝⎛⎭⎫α-π3=13,∴1+2cos α=13,即cos α=-13. ∵α为第二象限角,∴sin α=223. ∴cos 2α1+cos 2α-sin 2α=cos 2α-sin 2α2cos 2α-2sin αcos α =cos α+sin α2cos α=-13+223-23=1-222.由题悟法运用两角和与差的三角函数公式时,不但要熟练、准确,而且要熟悉公式的逆用及变形,如tan α+tan β=tan(α+β)·(1-tan αtan β)和二倍角的余弦公式的多种变形等.以题试法2.(1)(2012·赣州模拟)已知sin ⎝⎛⎭⎫α+π6+cos α=435,则sin ⎝⎛⎭⎫α+π3的值为( ) A.45 B.35 C.32D.35(2)若α+β=3π4,则(1-tan α)(1-tan β)的值是________.解析:(1)由条件得32sin α+32cos α=435, 即12sin α+32cos α=45. ∴sin ⎝⎛⎭⎫α+π3=45. (2)-1=tan 3π4=tan(α+β)=tan α+tan β1-tan αtan β,∴tan αtan β-1=tan α+tan β. ∴1-tan α-tan β+tan αtan β=2, 即(1-tan α)(1-tan β)=2. 答案:(1)A (2)2角 的 变 换[例3] (1)(2012·温州模拟)若sin α+cos αsin α-cos α=3,tan(α-β)=2,则tan(β-2α)=________.(2)(2012·江苏高考)设α为锐角,若cos ⎝⎛⎭⎫α+π6=45,则sin ⎝⎛⎭⎫2α+π12的值为________. [自主解答] (1)由条件知sin α+cos αsin α-cos α=tan α+1tan α-1=3,则tan α=2.故tan(β-2α)=tan [(β-α)-α] =tan (β-α)-tan α1+tan (β-α)tan α=-2-21+(-2)×2=43.(2)因为α为锐角,cos ⎝⎛⎭⎫α+π6=45, 所以sin ⎝⎛⎭⎫α+π6=35,sin 2⎝⎛⎭⎫α+π6=2425, cos 2⎝⎛⎭⎫α+π6=725, 所以sin ⎝⎛⎭⎫2α+π12=sin ⎣⎡⎦⎤2⎝⎛⎭⎫α+π6-π4 =2425×22-725×22=17250. [答案] (1)43 (2)17250由题悟法1.当“已知角”有两个时,一般把“所求角”表示为两个“已知角”的和或差的形式; 2.当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”.3.常见的配角技巧: α=2·α2;α=(α+β)-β;α=β-(β-α); α=12[(α+β)+(α-β)];β=12[(α+β)-(α-β)]; π4+α=π2-⎝⎛⎭⎫π4-α;α=π4-⎝⎛⎭⎫π4-α.3.设tan ()α+β=25,tan ⎝⎛⎭⎫β-π4=14,则tan ⎝⎛⎭⎫α+π4=( ) A.1318 B.1322 C.322D.16解析:选C tan ⎝⎛⎭⎫α+π4=tan ⎣⎡⎦⎤(α+β)-⎝⎛⎭⎫β-π4 =tan (α+β)-tan ⎝⎛⎭⎫β-π41+tan (α+β)tan ⎝⎛⎭⎫β-π4=322.1.(2012·重庆高考)设tan α,tan β是方程x 2-3x +2=0的两根,则tan (α+β)的值为( ) A .-3 B .-1 C .1D .3解析:选A 由题意可知tan α+tan β=3,tan α·tan β=2, tan(α+β)=tan α+tan β1-tan αtan β=-3. 2.(2012·南昌二模)已知cos ⎝⎛⎭⎫x -π6=-33,则cos x +cos ⎝⎛⎭⎫x -π3的值是( ) A .-233B .±233C .-1D .±1解析:选C cos x +cos ⎝⎛⎭⎫x -π3=cos x +12cos x +32sin x =32cos x +32sin x =3⎝⎛⎭⎫32cos x +12sin x =3cos ⎝⎛⎭⎫x -π6=-1. 3. (2012·乌鲁木齐诊断性测验)已知α满足sin α=12,那么sin ⎝⎛⎭⎫π4+αsin ⎝⎛⎭⎫π4-α的值为( )A.14 B .-14C.12D .-12解析:选A 依题意得,sin ⎝⎛⎭⎫π4+αsin ⎝⎛⎭⎫π4-α=sin ⎝⎛⎭⎫π4+α·cos ⎝⎛⎭⎫π4+α=12sin ⎝⎛⎭⎫π2+2α=12cos 2α=12(1-2sin 2α)=14.4.已知函数f (x )=x 3+bx 的图象在点A (1,f (1))处的切线的斜率为4,则函数g (x )=3sin 2x +b cos 2x 的最大值和最小正周期为( )A .1,πB .2,π C.2,2πD.3,2π解析:选B 由题意得f ′(x )=3x 2+b , f ′(1)=3+b =4,b =1. 所以g (x )=3sin 2x +b cos 2x =3sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π6, 故函数的最大值为2,最小正周期为π.5. (2012·东北三校联考)设α、β都是锐角,且cos α=55,sin ()α+β=35,则cos β=( ) A.2525B.255C.2525或255D.55或525 解析:选A 依题意得sin α=1-cos 2α=255, cos(α+β)=±1-sin 2(α+β)=±45.又α、β均为锐角,因此0<α<α+β<π, cos α>cos(α+β),注意到45>55>-45,所以cos(α+β)=-45.cos β=cos[(α+β)-α]=cos(α+β)cos α+sin(α+β)sin α=-45×55+35×255=2525.6.已知α为第二象限角,sin α+cos α=33,则cos 2α=( ) A .-53B .-59C.59D.53解析:选A 将sin α+cos α=33两边平方,可得1+sin 2α=13,sin 2α=-23,所以(-sin α+cos α)2=1-sin 2α=53.因为α是第二象限角,所以sin α>0,cos α<0,所以-sin α+cos α=-153,所以cos 2α=(-sin α+cos α)·(cos α+sin α)=-53. 7.(2012·苏锡常镇调研)满足sin π5sin x +cos 4π5cos x =12的锐角x =________.解析:由已知可得 cos 4π5cos x +sin 4π5sin x =12,即cos ⎝⎛⎭⎫4π5-x =12,又x 是锐角,所以4π5-x =π3,即x =7π15.答案:7π158.化简2tan (45°-α)1-tan 2(45°-α)·sin αcos αcos 2α-sin 2α=________. 解析:原式=tan(90°-2α)·12sin 2αcos 2α=sin (90°-2α)cos (90°-2α)·12sin 2αcos 2α =cos 2αsin 2α·12sin 2αcos 2α=12. 答案:129.(2013·烟台模拟)已知角α,β的顶点在坐标原点,始边与x 轴的正半轴重合,α,β∈(0,π),角β的终边与单位圆交点的横坐标是-13,角α+β的终边与单位圆交点的纵坐标是45,则cos α=________. 解析:依题设及三角函数的定义得: cos β=-13,sin(α+β)=45.又∵0<β<π,∴π2<β<π,π2<α+β<π,sin β=223,cos(α+β)=-35.∴cos α=cos[(α+β)-β] =cos(α+β)cos β+sin(α+β)sin β=-35×⎝⎛⎭⎫-13+45×223 =3+8215.答案:3+821510.已知α∈⎝⎛⎭⎫0,π2,tan α=12,求tan 2α和sin ⎝⎛⎭⎫2α+π3的值. 解:∵tan α=12,∴tan 2α=2tan α1-tan 2α=2×121-14=43, 且sin αcos α=12,即cos α=2sin α, 又sin 2α+cos 2α=1, ∴5sin 2α=1,而α∈⎝⎛⎭⎫0,π2, ∴sin α=55,cos α=255. ∴sin 2α=2sin αcos α=2×55×255=45, cos 2α=cos 2α-sin 2α=45-15=35,∴sin ⎝⎛⎭⎫2α+π3=sin 2αcos π3+cos 2αsin π3=45×12+35×32=4+3310.11.已知:0<α<π2<β<π,cos ⎝⎛⎭⎫β-π4=45. (1)求sin 2β的值; (2)求cos ⎝⎛⎭⎫α+π4的值. 解:(1)法一:∵cos ⎝⎛⎭⎫β-π4=cos π4cos β+sin β=22cos β+22sin β=13, ∴cos β+sin β=23,∴1+sin 2β=29,∴sin 2β=-79. 法二:sin 2β=cos ⎝⎛⎭⎫π2-2β=2cos 2⎝⎛⎭⎫β-π4-1=-79. (2)∵0<α<π2<β<π,∴π4<β<-π4<34π,π2<α+β<3π2,∴sin ⎝⎛⎭⎫β-π4>0,cos (α+β)<0. ∵cos ⎝⎛⎭⎫β-π4=13,sin (α+β)=45, ∴sin ⎝⎛⎭⎫β-π4=223,cos (α+β)=-35. ∴cos ⎝⎛⎭⎫α+π4=cos ⎣⎡⎦⎤(α+β)-⎝⎛⎭⎫β-π4 =cos (α+β)cos ⎝⎛⎭⎫β-π4 =-35×13+45×223=82-315. 12.(2012·衡阳模拟) 函数f(x)=cos ⎝⎛⎭⎫-x 2+sin ⎝⎛⎭⎫π-x 2,x ∈R . (1)求f (x )的最小正周期;(2)若f (α)=2105,α∈⎝⎛⎭⎫0,π2,求tan ⎝⎛⎭⎫α+π4的值. 解:(1)f (x )=cos ⎝⎛⎭⎫-x 2+sin ⎝⎛⎭⎫π-x 2=sin x 2+cos x 2=2sin ⎝⎛⎭⎫x 2+π4, 故f (x )的最小正周期T =2π12=4π. (2)由f (α)=2105,得sin α2+cos α2=2105, 则⎝⎛⎭⎫sin α2+cos α22=⎝⎛⎭⎫21052, 即1+sin α=85,解得sin α=35, 又α∈⎝⎛⎭⎫0,π2,则cos α=1-sin 2α= 1-925=45, 故tan α=sin αcos α=34, 所以tan ⎝⎛⎭⎫α+π4=tan α+tan π41-tan αtan π4=34+11-34=7.1.若tan α=lg(10a ),tan β=lg ⎝⎛⎭⎫1a ,且α+β=π4,则实数a 的值为( ) A .1B.110 C .1或110 D .1或10解析:选C tan(α+β)=1⇒tan α+tan β1-tan αtan β=lg (10a )+lg ⎝⎛⎭⎫1a 1-lg (10a )·lg ⎝⎛⎭⎫1a =1⇒lg 2a +lg a =0, 所以lg a =0或lg a =-1,即a =1或110. 2.化简sin 2⎝⎛⎭⎫α-π6+sin 2⎝⎛⎭⎫α+π6-sin 2α的结果是________. 解析:原式=1-cos ⎝⎛⎭⎫2α-π32+1-cos ⎝⎛⎭⎫2α+π32-sin 2α =1-12⎣⎡⎦⎤cos ⎝⎛⎭⎫2α-π3+cos ⎝⎛⎭⎫2α+π3-sin 2α =1-cos 2α·cos π3-sin 2α=1-cos 2α2-1-cos 2α2=12. 答案:123.已知sin α+cos α=355,α∈⎝⎛⎭⎫0,π4,sin ⎝⎛⎭⎫β-π4=35,β∈⎝⎛⎭⎫π4,π2. (1)求sin 2α和tan 2α的值;(2)求cos(α+2β)的值.解:(1)由题意得(sin α+cos α)2=95, 即1+sin 2α=95,∴sin 2α=45. 又2α∈⎝⎛⎭⎫0,π2,∴cos 2α=1-sin 22α=35, ∴tan 2α=sin 2αcos 2α=43. (2)∵β∈⎝⎛⎭⎫π4,π2,β-π4∈⎝⎛⎭⎫0,π4,sin ⎝⎛⎭⎫β-π4=35, ∴cos ⎝⎛⎭⎫β-π4=45, 于是sin 2⎝⎛⎭⎫β-π4=2sin ⎝⎛⎭⎫β-π4cos ⎝⎛⎭⎫β-π4=2425.又sin 2⎝⎛⎭⎫β-π4=-cos 2β, ∴cos 2β=-2425, 又∵2β∈⎝⎛⎭⎫π2,π,∴sin 2β=725, 又∵cos 2α=1+cos 2α2=45⎝⎛⎭⎫α∈⎝⎛⎭⎫0,π4, ∴cos α=255,sin α=55. ∴cos(α+2β)=cos αcos 2β-sin αsin 2β=255 ×⎝⎛⎭⎫-2425-55×725=-11525.1.(2012·北京西城区期末)已知函数f (x )=3sin 2x +sin x cos x ,x ∈⎣⎡⎦⎤π2,π.(1)求f (x )的零点;(2)求f (x )的最大值和最小值.解:(1)令f (x )=0,得sin x ·(3sin x +cos x )=0,所以sin x =0或tan x =-33. 由sin x =0,x ∈⎣⎡⎦⎤π2,π,得x =π;由tan x =-33,x ∈⎣⎡⎦⎤π2,π,得x =5π6. 综上,函数f (x )的零点为5π6,π. (2)f (x )=32(1-cos 2x )+12sin 2x =sin ⎝⎛⎭⎫2x -π3+32. 因为x ∈⎣⎡⎦⎤π2,π,所以2x -π3∈⎣⎡⎦⎤2π3,5π3. 所以当2x -π3=2π3,即x =π2时,f (x )的最大值为3; 当2x -π3=3π2,即x =11π12时,f (x )的最小值为-1+32. 2.已知0<β<π2<α<π,且cos ⎝⎛⎭⎫α-β2=-19,sin ⎝⎛⎭⎫α2-β=23,求cos(α+β)的值;解:∵0<β<π2<α<π, ∴-π4<α2-β<π2,π4<α-β2<π. ∴cos ⎝⎛⎭⎫α2-β=1-sin 2⎝⎛⎭⎫α2-β = 1-⎝⎛⎭⎫232=53,sin ⎝⎛⎭⎫α-β2= 1-cos 2⎝⎛⎭⎫α-β2 = 1-⎝⎛⎭⎫-192=459. ∴cos α+β2=cos ⎣⎡⎦⎤⎝⎛⎭⎫α-β2-⎝⎛⎭⎫α2-β =cos ⎝⎛⎭⎫α-β2cos ⎝⎛⎭⎫α2-β+sin ⎝⎛⎭⎫α-β2sin ⎝⎛⎭⎫α2-β =-19×53+459×23=7527. ∴cos(α+β)=2cos 2α+β2-1=2×49×5729-1=-239729.。

2013年高考数学试题分类解析考点16 两角和与差的正弦、余弦和正切公式、简单的三角恒等变换

2013年高考数学试题分类解析考点16 两角和与差的正弦、余弦和正切公式、简单的三角恒等变换

温馨提示:此题库为Word 版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,关闭Word 文档返回原板块。

考点16 两角和与差的正弦、余弦和正切公式、简单的三角恒等变换一、选择题1. (2013·新课标全国Ⅱ高考文科·T6)已知2sin 23α=,则2co s ()4πα+=( )A.16 B.13 C.12 D.23【解题指南】利用“降幂公式”将2cos ()4πα+化简,建立与sin 2α的关系,可得结果.【解析】选A.因为21cos 2()1cos(2)1sin 242cos ()4222ππααπαα++++-+===, 所以2211sin 213cos ()4226παα--+===,选A. 2.(2013·江西高考文科·T3)若sin 2α=cosa=( ) A.23- B.13- C.13 D. 23【解题指南】利用二倍角的余弦公式即可. 【解析】选C.2cos 12sin 2αα=-=213-=13.3(2013·大纲版全国卷高考理科·T12)已知函数()=cos sin 2,f x x x 下列结论中错误的是( ) A .()(),0y f x π=的图像关于中心对称 B.()2y f x x π==的图像关于对称C.()2f x D.()f x 既是奇函数,又是周期函数【解析】选C.x x x x x x x f 32sin 2sin 2sin cos 22sin cos )(-===,令x t sin =,11≤≤-t ,则322)(t t t g -=,262)(t t g -='.令062)(2=-='t t g ,解得33-=t 或33=t .比较两个极值点和两个端点0)1(=-g ,0)1(=g ,0)33(<-g ,934)33(=g ,)(x f 的最大值为934,故C 错误4. (2013·重庆高考理科·T9)=- 40tan 50cos 4 ( ) A.B.C. 3D. 221【解题指南】先切化弦,然后通分化简求解即可.【解析】选C.40cos 40sin 40cos 50cos 440cos 40sin 50cos 440tan 50cos 4-=-=-40cos )3010sin(10cos 240cos 40sin 80sin 240cos 40sin 40cos 40sin 4+-=-=-=40cos 10sin 2110cos 23340cos 10sin 2310cos 2340cos 10cos 2110sin 2310cos 2⎪⎪⎭⎫ ⎝⎛-=-=--= .340cos 40cos 3==5. (2013·辽宁高考文科·T6)与(2013·辽宁高考理科·T6)相同 在ABC ∆中,内角,,A B C 的对边分别为,,.a b c 若1sin cos sin cos ,2a B C c B Ab +=且,a b >则B ∠=( )25....6336A B C D ππππ 【解题指南】利用正弦定理,将边化为角,借助式子的特点,利用和角公式与相关的诱导公式解决问题 【解析】选A. 据正弦定理,设sin sin sin a b ck A B C===,则sin ,sin ,sin .a k A b k B c k C ===将它们代入1sin cos sin cos ,2a B C c B Ab +=整理得1sin cos cos sin ,2A C A C +=即1sin(),2A C +=又sin()sin()sin ,A C B B π+=-=所以1sin 2B =因为,a b >所以B ∠必为锐角,所以.6B π∠=二、填空题6.(2013·四川高考文科·T14)和(2013·四川高考理科·T13)相同 设sin 2sin αα=-,(,)2παπ∈,则tan 2α的值是____________。

【三维设计】2013届高考数学 第三章第五节两角和与差的正弦

【三维设计】2013届高考数学 第三章第五节两角和与差的正弦

【三维设计】2013届高考数学第三章第五节两角和与差的正弦、余弦和正切公式课后练习一、选择题1.(2012·成都联考已知锐角α满足cos 2α=cos ,则sin 2α等于(A.B.-C. D.-解析:由cos 2α=cos得(cos α-sin α(cos α+sin α=(cos α+sin α由α为锐角知cos α+sin α≠0.∴cos α-sin α=,平方得1-sin 2α=.∴sin 2α=.答案:A2.(cos 15°-cos 75°(sin 75°+sin 15°=(A. B.C. D.1解析:原式=(cos 15°-sin 15°(cos 15°+sin 15°=cos215°-sin215°=cos 30°=.答案:C3.在△ABC中,若cos 2B+3cos(A+C+2=0,则sin B的值是(A. B.C. D.1解析:由cos 2B+3cos(A+C+2=0,得2cos2B-3cos B+1=0,所以cos B=或cos B=1(舍去.答案:C4.已知sin α=,sin(α-β=-,α、β均为锐角,则β等于(A. B.C. D.解析:∵α、β均为锐角,∴-<α-β<,∵cos(α-β==,sin α=,∴cos α==,∴sin β=sin [α-(α-β]=sin αcos(α-β-cos αsin(α-β=.∵0<β<,∴β=.答案:C5.已知f(α=,α∈,则f(α取得最大值时α的值是(A. B.C. D.π解析:f(α=====sin 2α,当2α=,即α=时,函数f(α取得最大值.答案:B二、填空题6.(2011·江苏高考已知tan =2,则的值为__________.解析:由tan ==2,得tan x=,tan 2x==,故=×=.答案:7.(2012·嘉兴模拟已知cos =,α∈,则cos α=________.解析:∵α∈,∴α+∈,∴sin =.故cos α=cos [-]=cos cos+sin sin=×+×=.答案:三、解答题8.已知α为锐角,且sin2α-sin αcos α-2cos2α=0.(1求tan α的值;(2求sin 的值.解:(1已知α为锐角,所以cos α≠0.又由sin2α-sin αcos α-2cos2α=0得tan2α-tan α-2=0,解得tan α=2,或tan α=-1.由α为锐角,得tan α=2.(2∵tan α=2,且α为锐角,∴cos α=,sin α=.故sin =sin α-cos α=-=.9.(2012·衡阳模拟函数f(x=cos +sin ,x∈R. (1求f(x的最小正周期;(2若f(α=,α∈,求tan 的值.解:(1f(x=cos +sin =sin+cos=sin∴f(x的最小正周期T==4π.(2由f(α=,得sin+cos=,∴1+sin α=.∴sin α=.又α∈.∴cos α===.∴tan α==.∴tan ===7.10.已知sin α+cos α=,α∈,sin =,β∈. (1求sin 2α和tan 2α的值;(2求cos(α+2β的值.解:(1由题意得(sin α+cos α2=,即1+sin 2α=,∴sin 2α=.又2α∈,∴cos 2α==,有的家长可能会认为这没什么,孩子大了就会了。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

.
24 【答案】 7 【命题意图】本小题主要考查三角函数值符号的判断、同角三角函数关系、

和角的正切公式,同时考查了基本运算能力及等价变换的解题技能. 【解析】因为 α 为第二象限的角,又
sin α =
3 4 sin α 3 =− cos α = − tan α = 5 , 所以 5, cos α 4,
1 + tan
α
1 1 2 (B) 2
(C) 2
(D) -2
【答案】A
sin α = −
解析:由已知得
3 3 α tan α = 5 ,所以 4 ,又 2 属于第二或第四象限,故由
tan α =
2 =−1 α α 2 1 − tan 2 tan = −3 1 − tan 2 解得: 2 2 ,从而 . 2
第四章 二
三角函数
两角和与差的三角函数
【考点阐述】 两角和与差的正弦、余弦、正切.二倍角的正弦、余弦、正切. 【考试要求】 (3)掌握两角和与两角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式. (4)能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明.II 【考题分类】 (一)选择题(共 6 题)
(三)解答题(共 4 题)
α1 + α 2 + α 3
3
1 2.
0< x<
1.(上海卷理 19 文 19)已知
π
2 ,化简:
x π lg(cos x ⋅ tan x + 1 − 2sin 2 ) + lg[ 2 cos( x − )] − lg(1 + sin 2 x) 2 4 .
2.(四川卷理 19 I 文 19I) ○ 1 证明两角和的余弦公式
tan(2α ) =

2 tan α 24 =− 2 1 − tan α 7 tan(π + 2a ) = − 4 3 ,则 tan a =
3. (全国Ⅱ卷理 13)已知 a 是第二象限的角,

1 【答案】 2 −
【命题意图】本试题主要考查三角函数的诱导公式、正切的二倍角公式和解方程,考查考生 的计算能力.
4 3 =−1 4 = sin 2α 4 π π 4 7 =− tan( + 2α ) = 1 − tan tan 2α 1 + tan 2α = 4 3 4 cos 2α 3 ,所以 . tan + tan 2α 1−
sin a = 3 5 ,则 tan 2α =
π
2. (全国Ⅰ卷文 14))已知 α 为第二象限的角,
2 tan
α
α
1 + tan
α
sin α = −
另解:由已知得
3 5 ,所以
1 + tan
+ sin ) 2 2 = 2 = 2 2 = 2 2 = 1 + sin α = − 1 α α α α α α cos α 2 1 − tan sin cos − sin cos 2 − sin 2 2 1+ 2 2 2 2 2 α cos 2 cos cos (cos
tan(π + 2a ) = −
【解析】由
4 4 2 tan α 4 =− tan 2a = − tan 2a = 2 3 得 3 ,又 1 − tan α 3 ,解得
1 1 tan α = − 或 tan α = 2 tan α = − 2 2. ,又 a 是第二象限的角,所以
4.(重庆卷文 15)如 题(15)图,图中的实线是由三段圆弧连接而成 的一条 封闭曲线 C ,各段弧所在的圆经过同一点 P (点 P 不在 C 上) 且半径相等. 设第 i 段弧所对的圆心角为
围相同,可知答案选 B,本题主要考察了必要条件、充分条件与充要条件的意义,以及转化 思想和处理不等关系的能力,属中档题 (二)填空题(共 4 题)
1. ( 全 国 Ⅰ 卷 理 14 ) 已 知
α 为第 三 象限 的 角,
cos 2α = −
3 5 , 则
tan( + 2α ) = 4

π
.
1 【答案】 7 【命题意图】本小题主要考查三角函数值符号的判断、同角三角函数关系、和
角的正切公式,同时考查了基本运算能力及等价变换的解题技能. 【 解 析 】 因 为 α 为 第 三 象 限 的 角 , 所 以 2α ∈ (2(2k + 1)π , π + 2(2k + 1)π )( k ∈ Z ) , 又
cos 2α = −
3 π 4 2α ∈ ( + 2(2k + 1)π , π + 2(2k + 1)π )( k ∈ Z ) sin 2α = 2 5 <0, 所以 5, ,于是有
o o 1.(福建卷理 1) 计算sin43 cos13 -sin13 cos 43 的值等于(
o
o

1 A. 2
【答案】A
3 B. 3
2 C. 2
D.
3 2
sin (43o -13o )= sin 30o =
【解析】原式=
1 2 ,故选 A。
【命题意图】 本题考查三角函数中两角差的正弦公式以及特殊角的三角函数, 考查基础知识, 属保分题。 2.(福建卷文 2)计算 1 − 2 sin 22.5 的结果等于(
α i (i = 1, 2,3) , 则
cos
α1
3
cos
α 2 α3
3
− sin
α1
3
sin
α 2 + α3
3
=
____________ .
1 【答案】 2 cos
【解析】
α1
3
cos
α 2 + α3
3
− sin
α1
3
sin
α 2 + α3
3
=−
= cos
α1 + α 2 + α 3
3
α + α 2 + α 3 = 2π ,所以 cos 又 1

1 9
0<x<
6. (浙江卷理 4 文 6)设 (A)充分而不必要条件 (C)充分必要条件
π
2 ,则“ x sin 2 x<1 ”是“ x sin x<1 ”的
(B)必要而不充分条件 (D)既不充分也不必要条件
π 解析:因为 0<x< 2 ,所以 sinx<1,故 xsin2x<xsinx,结合 xsin2x 与 xsinx 的取值范
α
1+
sin
α α
2
α
+ sin
α
α
α
4 π sin(a + ) 4 = 4. (全国Ⅰ新卷文 10)若 sin a = - 5 ,a 是第一象限的角,则 7 2 (A)- 10
【答案】A
7 2 (B) 10
(C)
2 10
2 (D) 10
sin α = −
解析:由已知得
3 5 ,所以
π π π 3 2 4 2 7 2 − × =− sin(α + ) = sin α cos + cos α sin = − × 4 4 4 5 2 5 2 10 。
sin(
4.(上海春卷 19)已知 tan α = a , ( a > 1) ,求
π π
4 2
+θ) −θ)
⋅ tan 2θ
的值。
sin(
sin α =
5. (全国Ⅱ卷文 3)已知
2 3 ,则 cos(π − 2α ) = 1 (C) 9 5 (D) 3

(A)
5 3
1 (B) 9

【解析】B:本题考查了二倍角公式及诱导公式,∵ sina=2/3,
cos(π − 2α ) = − cos 2α = −(1 − 2sin 2 α ) = −
o
)
1 A. 2
【答案】B
2 B. 2
3 C. 3
3 D. 2
cos 45o =
【解析】原式=
2 2 ,故选 B.
【命题意图】本题三角变换中的二倍角公式,考查特殊角的三角函数值.
2 = 4 α 1 − tan cos α = − 2 5 , α 是第三象限的角,则 3. (全国Ⅰ新卷理 9)若

(A)
Cα + β : cos( α + β ) = cos α cos β − sin α sin β

○ 2由
Cα + β
推导两角和的正弦公式
Sα + β : sin( α + β ) = sin α cos β + cos α sin β
.
4 3 1 π cos α = − , α ∈ (π , π ), tan β = − , β ∈ ( , π ), 5 2 3 2 , 求 cos(α + β ) 3. (四川卷文 19 II) 已知
相关文档
最新文档