北师大版七年级下册数学第一次月考测试题 (4)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年深圳市七年级(下)
第一次月考数学试卷
一.选择题(共12小题)
1.下列计算正确的是()
A.b3•b3=2b3B.(a+b)2=a2+b2C.(a5)2=a10D.a﹣(b+c)=a﹣b+c 2.计算a•5ab=()
A.5ab B.6a2b C.5a2b D.10ab300
3.计算()﹣1所得结果是()
A.﹣2 B.C.D.2
4.已知x2+mx+25是完全平方式,则m的值为()
A.10 B.±10 C.20 D.±20
5.如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()
A.﹣3 B.3 C.0 D.1
6.若(a m b n)3=a9b15,则m、n的值分别为()
A.9;5 B.3;5 C.5;3 D.6;12
7.计算(a﹣b)(a+b)(a2+b2)(a4﹣b4)的结果是()
A.a8+2a4b4+b8B.a8﹣2a4b4+b8C.a8+b8D.a8﹣b8
8.如果一个正整数可以表示为两个连续奇数的平方差,那么称该正整数为“和谐数”如(8=32﹣12,16=52﹣32,即8,16均为“和谐数”),在不超过2017的正整数中,所有的“和谐数”之和为()
A.255054 B.255064 C.250554 D.255024
9.已知25x=2000,80y=2000,则等于()
A.2 B.1 C.D.
10.已知,则x的值为()
A.±1 B.﹣1和2 C.1和2 D.0和﹣1
11.若a=(﹣)﹣2,b=(﹣1)﹣1,c=(﹣)0,则a,b,c的大小关系是()A.a>b>c B.a>c>b C.c>a>b D.c>b>a
12.当时,多项式(4x3﹣1997x﹣1994)2001的值为()
A.1 B.﹣1 C.22001 D.﹣22001
二.填空题(共4小题)
13.计算:(﹣mn3)2=.
14.计算:(﹣ab)2÷a2b=.
15.若a m=3,a n=4,则a m+n=.
16.已知,那么=.
三.解答题(共7小题)
17.计算:
(1)(15x2y﹣10xy2)÷5xy;
(2)(x+2y﹣3)(x﹣2y+3).
18.先化简,再求值:(x+3y)2﹣(x+3y)(x﹣3y),其中x=3,y=﹣2.19.已知5m=2,5n=4,求52m﹣n和25m+n的值.
20.如图所示,图甲由长方形①,长方形②组成,图甲通过移动长方形②得到图乙.
S乙=(用含a、b的代数式分别表示);
(1)S
甲=,
(2)利用(1)的结果,说明a2、b2、(a+b)(a﹣b)的等量关系;
(3)现有一块如图丙尺寸的长方形纸片,请通过对它分割,再对分割的各部分移动,组成新的图形,画出图形,利用图形说明(a+b)2、(a﹣b)2、ab三者的
等量关系.
21.如图,大小两个正方形边长分别为a、b.
(1)用含a、b的代数式阴影部分的面积S;
(2)如果a+b=9,ab=6,求阴影部分的面积.
22.已知:如图,∠1=∠2,∠3=∠4,∠5=∠6.求证:ED∥FB.
23.长江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况.如图,灯A射线自AM顺时针旋转至AN便立即回转,灯B射线自BP顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是a°/秒,灯B转动的速度是b°/秒,且a、b满足|a﹣3b|+(a+b ﹣4)2=0.假定这一带长江两岸河堤是平行的,即PQ∥MN,且∠BAN=45°(1)求a、b的值;
(2)若灯B射线先转动20秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?
(3)如图,两灯同时转动,在灯A射线到达AN之前.若射出的光束交于点C,过C作CD⊥AC交PQ于点D,则在转动过程中,∠BAC与∠BCD的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请求出其取值范围.
参考答案与试题解析
一.选择题(共12小题)
1.下列计算正确的是()
A.b3•b3=2b3B.(a+b)2=a2+b2C.(a5)2=a10D.a﹣(b+c)=a﹣b+c 【解答】解:A、b3•b3=b6,错误;
B、(a+b)2=a2+2ab+b2,错误;
C、(a5)2=a10,正确;
D、a﹣(b+c)=a﹣b﹣c,错误;
故选C
2.计算a•5ab=()
A.5ab B.6a2b C.5a2b D.10ab300
【解答】解:a•5ab=5a1+1b=5a2b.
故选:C.
3.计算()﹣1所得结果是()
A.﹣2 B.C.D.2
【解答】解:()﹣1==2,
故选:D.
4.已知x2+mx+25是完全平方式,则m的值为()
A.10 B.±10 C.20 D.±20
【解答】解:∵x2+mx+25是完全平方式,
∴m=±10,
故选B.
5.如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()A.﹣3 B.3 C.0 D.1
【解答】解:∵(x+m)(x+3)=x2+3x+mx+3m=x2+(3+m)x+3m,
又∵乘积中不含x的一次项,
∴3+m=0,
解得m=﹣3.
故选:A.
6.若(a m b n)3=a9b15,则m、n的值分别为()
A.9;5 B.3;5 C.5;3 D.6;12
【解答】解:∵(a m b n)3=a9b15,
∴a3m b3n=a9b15,
∴3m=9,3n=15,
∴m=3,n=5,
故选B.
7.计算(a﹣b)(a+b)(a2+b2)(a4﹣b4)的结果是()
A.a8+2a4b4+b8B.a8﹣2a4b4+b8C.a8+b8D.a8﹣b8
【解答】解:(a﹣b)(a+b)(a2+b2)(a4﹣b4),
=(a2﹣b2)(a2+b2)(a4﹣b4),
=(a4﹣b4)2,
=a8﹣2a4b4+b8.
故选B.
8.如果一个正整数可以表示为两个连续奇数的平方差,那么称该正整数为“和谐数”如(8=32﹣12,16=52﹣32,即8,16均为“和谐数”),在不超过2017的正整数中,所有的“和谐数”之和为()
A.255054 B.255064 C.250554 D.255024
【解答】解:由(2n+1)2﹣(2n﹣1)2=8n≤2017,解得n≤252,
则在不超过2017的正整数中,所有的“和谐数”之和为32﹣12+52﹣32+ (5052)
5032=5052﹣12=255024.
故选:D.
9.已知25x=2000,80y=2000,则等于()
A.2 B.1 C.D.
【解答】解:∵25x=2000,80y=2000,
∴25x=25×80,80y=25×80,
∴25x﹣1=80,80y﹣1=25,
∴(80y﹣1)x﹣1=80,
∴(y﹣1)(x﹣1)=1,
∴xy﹣x﹣y+1=1,
∴xy=x+y,
∵xy≠0,
∴=1,
∴+=1.
故选B.
10.已知,则x的值为()
A.±1 B.﹣1和2 C.1和2 D.0和﹣1
【解答】解:由题意得,(1),解得x=﹣1;
(2)x﹣1=1,解得x=2;
(3),此方程组无解.
所以x=﹣1或2.
故选B.
11.若a=(﹣)﹣2,b=(﹣1)﹣1,c=(﹣)0,则a,b,c的大小关系是()A.a>b>c B.a>c>b C.c>a>b D.c>b>a
【解答】解:a=(﹣)﹣2==;
b=(﹣1)﹣1==﹣1;
c=(﹣)0=1;
∵1>>﹣1,
∴即c>a>b.
故选C.
12.当时,多项式(4x3﹣1997x﹣1994)2001的值为()
A.1 B.﹣1 C.22001 D.﹣22001
【解答】解:∵x=,可得(2x﹣1)2=1994,
原式可化为:[x(4x2﹣4x﹣1993)+(4x2﹣4x﹣1993)﹣1]2001,
代入4x2﹣4x﹣1993=0可得:原式=(﹣1)2001=﹣1.
故选B.
二.填空题(共4小题)
13.计算:(﹣mn3)2=m2n6.
【解答】解:原式=m2n6
故答案为:m2n6
14.计算:(﹣ab)2÷a2b=b.
【解答】解:原式=a2b2÷a2b=b
故答案为:b
15.若a m=3,a n=4,则a m+n=12.
【解答】解:∵a m=3,a n=4,
∴a m+n=a m•a n=3×4=12.
故答案为:12.
16.已知,那么=34.
【解答】解:∵x+=6,
∴=x2+=(x+)2﹣2=36﹣2=34.
故答案为:34.
三.解答题(共7小题)
17.计算:
(1)(15x2y﹣10xy2)÷5xy;
(2)(x+2y﹣3)(x﹣2y+3).
【解答】解:(1)原式=3x﹣2y
(2)原式=[x+(2y﹣3)][x﹣(2y﹣3)]
=x2﹣(2y﹣3)2
=x2﹣(4y2﹣12y+9)
=x2﹣4y2+12y﹣9
18.先化简,再求值:(x+3y)2﹣(x+3y)(x﹣3y),其中x=3,y=﹣2.【解答】解:∵x=3,y=﹣2,
∴原式=x2+6xy+9y2﹣(x2﹣9y2)
=6xy+18y2
=6×3×(﹣2)+18×(﹣2)2
=﹣36+18×4
=36
19.已知5m=2,5n=4,求52m﹣n和25m+n的值.
【解答】解:∵5m=2,5n=4,
∴52m﹣n=(5m)2÷5n=22÷4=1;
25m+n=52(m+n)=(5m)2×(5n)2=22×42=64.
20.如图所示,图甲由长方形①,长方形②组成,图甲通过移动长方形②得到图乙.
a+b)(a﹣b),S乙=a2﹣b2(用含a、b的代数式分别表示);(1)S
甲=(
(2)利用(1)的结果,说明a2、b2、(a+b)(a﹣b)的等量关系;
(3)现有一块如图丙尺寸的长方形纸片,请通过对它分割,再对分割的各部分移动,组成新的图形,画出图形,利用图形说明(a+b)2、(a﹣b)2、ab三者的
等量关系.
a+b)(a﹣b);
【解答】解:(1)由题可得,S
甲=(
S乙=a2﹣b2;
故答案为:(a+b)(a﹣b);a2﹣b2;
(2)∵S
甲=S乙;
∴a2、b2、(a+b)(a﹣b)的等量关系为:(a+b)(a﹣b)=a2﹣b2;
(3)如图①所示,将图丙分成四个长为a,宽为b的小长方形,再拼成如图②所示的正方形.
根据图②可得:
S大正方形=(a+b)2,
S大正方形=(a﹣b)2+4a b,
∴(a+b)2=(a﹣b)2+4ab.
21.如图,大小两个正方形边长分别为a、b.
(1)用含a、b的代数式阴影部分的面积S;
(2)如果a+b=9,ab=6,求阴影部分的面积.
【解答】解:(1)∵大小两个正方形边长分别为a、b,
∴阴影部分的面积为:S=a2+b2﹣a2﹣(a+b)b=a2+b2﹣ab;(2)∵a+b=9,ab=6,
∴a2+b2﹣ab=(a+b)2﹣ab=×92﹣×6=.
22.已知:如图,∠1=∠2,∠3=∠4,∠5=∠6.求证:ED∥FB.
【解答】证明:∵∠3=∠4,
∴CF∥BD,
∴∠5=∠FAB.
∵∠5=∠6,
∴∠6=∠FAB,
∴AB∥CD,
∴∠2=∠EGA.
∵∠1=∠2,
∴∠1=∠EGA,
∴ED∥FB.
23.长江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况.如图,灯A射线自AM顺时针旋转至AN便立即回转,灯B射线自BP顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是a°/秒,灯B转动的速度是b°/秒,且a、b满足|a﹣3b|+(a+b ﹣4)2=0.假定这一带长江两岸河堤是平行的,即PQ∥MN,且∠BAN=45°(1)求a、b的值;
(2)若灯B射线先转动20秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?
(3)如图,两灯同时转动,在灯A射线到达A N之前.若射出的光束交于点C,过C作CD⊥AC交PQ于点D,则在转动过程中,∠BAC与∠BCD的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请求出其取值范围.
【解答】解:(1)∵a、b满足|a﹣3b|+(a+b﹣4)2=0,
∴a﹣3b=0,且a+b﹣4=0,
∴a=3,b=1;
(2)设A灯转动t秒,两灯的光束互相平行,
①当0<t<60时,
3t=(20+t)×1,
解得t=10;
②当60<t<120时,
3t﹣3×60+(20+t)×1=180°,
解得t=85;
③当120<t <160时, 3t ﹣360=t +20, 解得t=190>160,(不合题意) 综上所述,当t=10秒或85秒时,两灯的光束互相平行; (3)设A 灯转动时间为t 秒, ∵∠CAN=180°﹣3t , ∴∠BAC=45°﹣(180°﹣3t )=3t ﹣135°, 又∵PQ ∥MN , ∴∠BCA=∠CBD +∠CAN=t +180°﹣3t=180°﹣2t , 而∠ACD=90°, ∴∠BCD=90°﹣∠BCA=90°﹣(180°﹣2t )=2t ﹣90°, ∴∠BAC :∠BCD=3:2, 即2∠BAC=3∠BCD . 北师大版九年级数学上册期中测试题 一、选择题(本大题共10小题,每小题3分,共30分) 1.随机掷两枚硬币,落地后全部正面朝上的概率是 A.1 B.12 C.13 D.14 2. 关于方程x 2-2=0的理解错误的是 A.这个方程是一元二次方程 B.方
C.这个方程可以化成一元二次方程的一般形式
D.这个方程可以用公式法求解
乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..
3.下列说法正确的个数是
①菱形的对角线相等 ②对角线互相垂直的四边形是菱形; ③有两个角是直角的四边形是矩形 ④正方形既是菱形又是矩形 ⑤矩形的对角线相等且互相垂直平分 A.1 B.2 C.3 D.4 4.方程x 2-3x+6=0的根的情况是 A.有两个不相等的实数根 B.有两个相等的实数根 C.无实数根 D.不能确定 5.如图显示了用计算机模拟随机投掷一枚图钉的某次试验的结果.下面有三个推断:①某次试验投掷次数是500,计算机记录“钉尖向上”的次数是308,则“钉尖向上”的频率是0.616;②随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟试验,则当投掷次数为1000时,“钉尖向上"”的频率一定是0.620.其中合理的是
乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..
A.①②
B.②③
C.①③
D.①②③ 6.将一张正方形纸片按如图所示步骤①②沿虚线对折两次,然后沿③中的虚线剪去一个角,展开铺平后的图形是 7.现有三张质地大小完全相同的卡片,上面分别标有数字-2,-1,1,把卡片背面朝上洗匀,从中任意抽取一张卡片,记下数字后放回,洗匀,再任意抽取一张卡片,则第一次抽取的卡片上的数字大于第二次抽取的卡片上的数字的概率是 A.23 B.12 C.13 D.49 8.如图,在菱形ABCD 中,AB =13,对角线AC =10,若过点A 作AE ⊥BC 垂足为E ,则AE 的长为 A.8 B.6013 C.12013 D.24013 9.如图,点O 是矩形ABCD 的对角线AC 的中点,OM ∥AB 交AD 于点M ,若OM =3,BC =10,则OB 的长为
乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..
A.5
B.4
C.342
D.34 10.如图,已知正方形ABCD 的边长为12,BE =EC ,将正方形的边CD 沿DE 折叠到DF ,延长EF 交AB 于G ,连接DG ,现在有如下4个结论:①△ADG ≌△FDG:②GB =2AG:③3∠GDE =45°④S △BEF =725,在以上4个结论中,正确的有 A.1个 B.2个 C.3个 D.4个 二、填空题(本题共6小题,每小题4分,共24分) 11.将分别标有“柠”“檬”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球不放回,再随机摸出球,两次摸出的球上的汉字能组成“柠幪”的概率是________. 12.如图,菱形ABCD 中,∠ABC =2∠A ,若对角线BD =3,
乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..
则菱形ABCD的周长为________.
13.桌上放有完全相同的三张卡片,卡片上分别标有数字2,1,4,随机摸出一张卡片(不放回),其数字记为P,再随机摸出一张卡片,其数字记为q,则关于的方程x2+px+q=0有实数根的概率是________.
14.某种油菜籽在相同条件下的发芽试验结果如下:
由此可以估计油菜籽发芽的概率约为________.(精确到0.1)
15.一个两位数,十位数字比个位数字大3,而这两个数字之积等于这个两位数的27,若设个位数字为x ,则列出的方程为________. 16.如图,已知正方形ABCD 的边长为4,点E ,F 分別在AD ,DC 上,AE =DF =1,BE 与AF 相交于点G ,点为BF 的中点,连接GH ,则GH 的长为________. 三、解答题(本题共7小题,共66分) 17.(8分)解方程: (1)2x 2-4x+1=0 (2)(x+8)(x+1)=-12 18.(8分)甲乙两人在玩转盘游戏时,把转盘A 、B 分别分成4等份、3等份,并在每一份内标上数字,如图所示.游戏规定:转动两个转盘停止后,指针必须指到某数字,否则重转 (1)请用画树状图法或列表法列出所有可能的结果;
乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..
(2)若指针所指的两个数字都是方程x2-5x+6=0的解,则甲获胜 若指针所指的两个数字都不是方程x2-5x+6=0的解,则乙获 胜.问他们两人谁获胜的概率大?请分析说明 19.(10分)某商场销售一批名牌衬衫,平均每天可销售20件,每件盈利40元,为了扩大销售量,增加盈利,尽量减少库存,商场决定采取适当的降价措施,经调查发现,如果每件村衫每降价1元,商场平均每天可多售出2件. (1)若商场平均每天要盈利1200元,且让顺客尽可能多得实惠,则每件衬衫应降价多少元? (2)商场平均每天可能盈利1700元吗?请说明理由. 20.(10分)如图,矩形ABCD 中AB =3,BC =2,过对角线BD 的中点O 的直线分別交AB 、CD 边于点E 、F.
乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..
(1)求证:四边形BEDF 是平行四边形; (2)当四边形BEDF 是菱形时,求EF 的长. 21.(10分)如图,若要建一个长方形鸡场,鸡场的一边靠墙,另三边用竹篱笆園成,篱笆总长33米,墙对面有一个2米宽的门,国成长方形的鸡场除门之外四周不能有空隙.求: (1)若墙长为18米,要围成鸡场的面积为150平方米,则鸡场的长和宽各为多少米? (2)能围成面积为200平方米的鸡场吗? 22.(10分)某茶叶专卖店经销一种日照绿茶,每千克成本80元,据销售人员调查发现,每月的销售量(千克)与销售单价x(元/千克)之间存在如图所示的变化规律. (1)求每月销售量y 与销售单价x 之间的函数关系式; (2)若某月该茶叶专卖店销售这种绿茶获得利润1350元,
乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..
试求该月茶叶的销售单价x. 23.(10分)如图①,将一张矩形纸片ABCD 沿着对角线BD 向上折叠,顶点C 落到点E 处,BE 交AD 于点F. (1)求证:△BDF 是等腰三角形; (2)如图②,过点D 作DG ∥BE ,交BC 于点G ,连接FC 交BD 于点O ①判断四边形BFDC 的形状,并说明理由; ②若AB =6,AD =8,求FG 的长. 乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..。