Zero-field splitting of Kondo resonances in a carbon nanotube quantum dot

合集下载

柯西与常微分方程

柯西与常微分方程

• 证明思路 • 解的唯一性:假设有两个不同的最大解,那么由局部柯西-利普希茨
定理可以证明其重叠部分的值相同,将两者不同的部分分别延伸在重 叠部分上,则会得到一个更“大”的解(只需验证它满足微分方程), 矛盾。因此解唯一。
• 解的存在性:证明需要用到佐恩引理,构造所有解的并集。 • 扩展至高阶常微分方程 • 对于一元的高阶常微分方程
Φ(yn),使得 ,这样,如果这个序列有一个收敛点 y ,那么y为函数Φ的不动
点,这时就有 ,于是我们构造出了一个解y。为此,我们从常数函数开始。 令 这样构造出来的函数列 中的每个函数都满足初始条件。并且由于 f 在 U
中满足利普希茨条件,当区间足够小的时候,Φ成为一个收缩映射。根据完 备空间的不动点存在定理,存在关于Φ的稳定不动点,于是可知微分方程(1) 的解存在。
• 局部唯一性:在包含点t0的足够小的J区间上,微分方程(1)的解是唯一的
(或者说,方程所有的解在足够小的区间上都是重叠的)。
• 这个定理有点像物理学中的决定论思想:当我们知道了一个系统的特性(微
分方程)和在某一时刻系统的情况(x(t0) = x0)时,下一刻的情况是唯一确 定的。
• 局部定理的证明 • 一个简洁的证明思路为构造一个总是满足初始条件的函数递归序列yn + 1 =
• 柯西在常微分方程中的主要贡献在于深入
考察并证明了存在唯一性定理。其中主要定 理为“柯西-利普希茨定理 ”
此定理最早由柯西于1820年发表,但直到 1868年,才由鲁道夫·利普希茨给出确定的 形式。
下面,我们来介绍一下具体的证明过程:
• 局部定理 • 设 为一个完备的有限维赋范向量空间(即一个巴拿赫空间),f为一个取值在
–,
• 只需构造向量 和相应的映射 ,就可以使得(2)变为 。这时的初始

具有功能化栅电极和基电极的纳米柱场效应和结型晶体管[发明专利]

具有功能化栅电极和基电极的纳米柱场效应和结型晶体管[发明专利]

专利名称:具有功能化栅电极和基电极的纳米柱场效应和结型晶体管
专利类型:发明专利
发明人:阿迪蒂亚·拉贾戈帕,杰峰·常,奥利佛·普拉特布格,斯蒂芬·彼得里,阿克塞尔·谢勒,查尔斯·L·奇尔哈特
申请号:CN201380039616.3
申请日:20130712
公开号:CN105408740A
公开日:
20160316
专利内容由知识产权出版社提供
摘要:描述了用于分子感测的系统和方法。

描述的分子传感器基于场效应晶体管或双极结型晶体管。

这些晶体管具有带有与基电极或栅电极接触的功能化层的纳米柱。

该功能化层能够结合分子,这会在传感器中引发电信号。

申请人:加州理工学院,赛诺菲美国服务公司
地址:美国加利福尼亚州
国籍:US
代理机构:北京安信方达知识产权代理有限公司
更多信息请下载全文后查看。

folland第二章题目

folland第二章题目

folland第二章题目
Folland的数学分析教材第二章的题目主要涉及到度量空间和拓扑空间的基本概念和性质。

在这一章中,主要讨论了度量空间中距离的性质、开集、闭集、邻域、极限点、稠密集、完备度量空间等概念。

同时还涉及到拓扑空间的定义、开集、闭集、邻域、连通性、紧致性等内容。

具体题目可能包括:
1. 证明度量空间中的开球是开集。

2. 证明度量空间中的闭球是闭集。

3. 证明度量空间中的极限点的性质。

4. 证明完备度量空间中的柯西序列收敛。

5. 证明拓扑空间中开集的交、并仍然是开集。

6. 证明拓扑空间中闭集的有限交、任意并仍然是闭集。

7. 证明拓扑空间中紧致集的闭子集仍然是紧致的。

以上是一些可能出现在Folland数学分析教材第二章的题目,涉及到度量空间和拓扑空间的基本概念和性质。

希望这些回答能够帮助到你。

近藤效应

近藤效应

Tunable Kondo effect in a single donor atomnsbergen 1,G.C.Tettamanzi 1,J.Verduijn 1,N.Collaert 2,S.Biesemans 2,M.Blaauboer 1,and S.Rogge 11Kavli Institute of Nanoscience,Delft University of Technology,Lorentzweg 1,2628CJ Delft,The Netherlands and2InterUniversity Microelectronics Center (IMEC),Kapeldreef 75,3001Leuven,Belgium(Dated:September 30,2009)The Kondo effect has been observed in a single gate-tunable atom.The measurement device consists of a single As dopant incorporated in a Silicon nanostructure.The atomic orbitals of the dopant are tunable by the gate electric field.When they are tuned such that the ground state of the atomic system becomes a (nearly)degenerate superposition of two of the Silicon valleys,an exotic and hitherto unobserved valley Kondo effect appears.Together with the “regular”spin Kondo,the tunable valley Kondo effect allows for reversible electrical control over the symmetry of the Kondo ground state from an SU(2)-to an SU(4)-configuration.The addition of magnetic impurities to a metal leads to an anomalous increase of their resistance at low tem-perature.Although discovered in the 1930’s,it took until the 1960’s before this observation was satisfactorily ex-plained in the context of exchange interaction between the localized spin of the magnetic impurity and the de-localized conduction electrons in the metal [1].This so-called Kondo effect is now one of the most widely stud-ied phenomena in condensed-matter physics [2]and plays a mayor role in the field of nanotechnology.Kondo ef-fects on single atoms have first been observed by STM-spectroscopy and were later discovered in a variety of mesoscopic devices ranging from quantum dots and car-bon nanotubes to single molecules [3].Kondo effects,however,do not only arise from local-ized spins:in principle,the role of the electron spin can be replaced by another degree of freedom,for example or-bital momentum [4].The simultaneous presence of both a spin-and an orbital degeneracy gives rise to an exotic SU(4)-Kondo effect,where ”SU(4)”refers to the sym-metry of the corresponding Kondo ground state [5,6].SU(4)Kondo effects have received quite a lot of theoret-ical attention [6,7],but so far little experimental work exists [8].The atomic orbitals of a gated donor in Si consist of linear combinations of the sixfold degenerate valleys of the Si conduction band.The orbital-(or more specifi-cally valley)-degeneracy of the atomic ground state is tunable by the gate electric field.The valley splitting ranges from ∼1meV at high fields (where the electron is pulled towards the gate interface)to being equal to the donors valley-orbit splitting (∼10-20meV)at low fields [9,10].This tunability essentially originates from a gate-induced quantum confinement transition [10],namely from Coulombic confinement at the donor site to 2D-confinement at the gate interface.In this article we study Kondo effects on a novel exper-imental system,a single donor atom in a Silicon nano-MOSFET.The charge state of this single dopant can be tuned by the gate electrode such that a single electron (spin)is localized on the pared to quantum dots (or artificial atoms)in Silicon [11,12,13],gated dopants have a large charging energy compared to the level spac-ing due to their typically much smaller size.As a result,the orbital degree of freedom of the atom starts to play an important role in the Kondo interaction.As we will argue in this article,at high gate field,where a (near)de-generacy is created,the valley index forms a good quan-tum number and Valley Kondo [14]effects,which have not been observed before,appear.Moreover,the Valley Kondo resonance in a gated donor can be switched on and offby the gate electrode,which provides for an electri-cally controllable quantum phase transition [15]between the regular SU(2)spin-and the SU(4)-Kondo ground states.In our experiment we use wrap-around gate (FinFET)devices,see Fig.1(a),with a single Arsenic donor in the channel dominating the sub-threshold transport charac-teristics [16].Several recent experiments have shown that the fingerprint of a single dopant can be identified in low-temperature transport through small CMOS devices [16,17,18].We perform transport spectroscopy (at 4K)on a large ensemble of FinFET devices and select the few that show this fingerprint,which essentially consists of a pair of characteristic transport resonances associ-ated with the one-electron (D 0)-and two-electron (D −)-charge states of the single donor [16].From previous research we know that the valley splitting in our Fin-FET devices is typically on the order of a few meV’s.In this Report,we present several such devices that are in addition characterized by strong tunnel coupling to the source/drain contacts which allows for sufficient ex-change processes between the metallic contacts and the atom to observe Kondo effects.Fig.1b shows a zero bias differential conductance (dI SD /dV SD )trace at 4.2K as a function of gate volt-age (V G )of one of the strongly coupled FinFETs (J17).At the V G such that a donor level in the barrier is aligned with the Fermi energy in the source-drain con-tacts (E F ),electrons can tunnel via the level from source to drain (and vice versa)and we observe an increase in the dI SD /dV SD .The conductance peaks indicated bya r X i v :0909.5602v 1 [c o n d -m a t .m e s -h a l l ] 30 S e p 2009FIG.1:Coulomb blocked transport through a single donor in FinFET devices(a)Colored Scanning Electron Micrograph of a typical FinFET device.(b)Differential conductance (dI SD/dV SD)versus gate voltage at V SD=0.(D0)and(D−) indicate respectively the transport resonances of the one-and two-electron state of a single As donor located in the Fin-FET channel.Inset:Band diagram of the FinFET along the x-axis,with the(D0)charge state on resonance.(c)and(d) Colormap of the differential conductance(dI SD/dV SD)as a function of V SD and V G of samples J17and H64.The red dots indicate the(D0)resonances and data were taken at1.6 K.All the features inside the Coulomb diamonds are due to second-order chargefluctuations(see text).(D0)and(D−)are the transport resonances via the one-electron and two-electron charge states respectively.At high gate voltages(V G>450mV),the conduction band in the channel is pushed below E F and the FET channel starts to open.The D−resonance has a peculiar double peak shape which we attribute to capacitive coupling of the D−state to surrounding As atoms[19].The current between the D0and the D−charge state is suppressed by Coulomb blockade.The dI SD/dV SD around the(D0)and(D−)resonances of sample J17and sample H64are depicted in Fig.1c and Fig.1d respectively.The red dots indicate the po-sitions of the(D0)resonance and the solid black lines crossing the red dots mark the outline of its conducting region.Sample J17shows afirst excited state at inside the conducting region(+/-2mV),indicated by a solid black line,associated with the valley splitting(∆=2 mV)of the ground state[10].The black dashed lines indicate V SD=0.Inside the Coulomb diamond there is one electron localized on the single As donor and all the observable transport in this regionfinds its origin in second-order exchange processes,i.e.transport via a vir-tual state of the As atom.Sample J17exhibits three clear resonances(indicated by the dashed and dashed-dotted black lines)starting from the(D0)conducting region and running through the Coulomb diamond at-2,0and2mV. The-2mV and2mV resonances are due to a second or-der transition where an electron from the source enters one valley state,an the donor-bound electron leaves from another valley state(see Fig.2(b)).The zero bias reso-nance,however,is typically associated with spin Kondo effects,which happen within the same valley state.In sample H64,the pattern of the resonances looks much more complicated.We observe a resonance around0mV and(interrupted)resonances that shift in V SD as a func-tion of V G,indicating a gradual change of the internal level spectrum as a function of V G.We see a large in-crease in conductance where one of the resonances crosses V SD=0(at V G∼445mV,indicated by the red dashed elipsoid).Here the ground state has a full valley degen-eracy,as we will show in thefinal paragraph.There is a similar feature in sample J17at V G∼414mV in Fig.1c (see also the red cross in Fig.1b),although that is prob-ably related to a nearby defect.Because of the relative simplicity of its differential conductance pattern,we will mainly use data obtained from sample J17.In order to investigate the behavior at the degeneracy point of two valley states we use sample H64.In the following paragraphs we investigate the second-order transport in more detail,in particular its temper-ature dependence,fine-structure,magneticfield depen-dence and dependence on∆.We start by analyzing the temperature(T)dependence of sample J17.Fig.2a shows dI SD/dV SD as a function of V SD inside the Coulomb diamond(at V G=395mV) for a range of temperatures.As can be readily observed from Fig.2a,both the zero bias resonance and the two resonances at V SD=+/-∆mV are suppressed with increasing T.The inset of Fig.2a shows the maxima (dI/dV)MAX of the-2mV and0mV resonances as a function of T.We observe a logarithmic dependence on T(a hallmark sign of Kondo correlations)at both resonances,as indicated by the red line.To investigate this point further we analyze another sample(H67)which has sharper resonances and of which more temperature-dependent data were obtained,see Fig.2c.This sample also exhibits the three resonances,now at∼-1,0and +1mV,and the same strong suppression by tempera-ture.A linear background was removed for clarity.We extracted the(dI/dV)MAX of all three resonances forFIG.2:Electrical transport through a single donor atom in the Coulomb blocked region(a)Differential conductance of sample J17as a function of V SD in the Kondo regime(at V G=395mV).For clarity,the temperature traces have been offset by50nS with respect to each other.Both the resonances with-and without valley-stateflip scale similarly with increasing temperature. Inset:Conductance maxima of the resonances at V SD=-2mV and0mV as a function of temperature.(b)Schematic depiction of three(out of several)second-order processes underlying the zero bias and±∆resonances.(c)Differential conductance of sample H67as a function of V SD in the Kondo regime between0.3K and6K.A linear(and temperature independent) background on the order of1µS was removed and the traces have been offset by90nS with respect to each other for clarity.(d)The conductance maxima of the three resonances of(c)normalized to their0.3K value.The red line is afit of the data by Eq.1.all temperatures and normalized them to their respective(dI/dV)MAX at300mK.The result is plotted in Fig.2d.We again observe that all three peaks have the same(log-arithmic)dependence on temperature.This dependenceis described well by the following phenomenological rela-tionship[20](dI SD/dV SD)max (T)=(dI SD/dV SD)T 2KT2+TKs+g0(1)where TK =T K/√21/s−1,(dI SD/dV SD)is the zero-temperature conductance,s is a constant equal to0.22 [21]and g0is a constant.Here T K is the Kondo tem-perature.The red curve in Fig.2d is afit of Eq.(1)to the data.We readily observe that the datafit well and extract a T K of2.7K.The temperature scaling demon-strates that both the no valley-stateflip resonance at zero bias voltage and the valley-stateflip-resonance atfinite bias are due to Kondo-type processes.Although a few examples offinite-bias Kondo have been reported[15,22,23],the corresponding resonances (such as our±∆resonances)are typically associated with in-elastic cotunneling.Afinite bias between the leads breaks the coherence due to dissipative transitions in which electrons are transmitted from the high-potential-lead to the low-potential lead[24].These dissipative4transitions limit the lifetime of the Kondo-type processes and,if strong enough,would only allow for in-elastic events.In the supporting online text we estimate the Kondo lifetime in our system and show it is large enough to sustain thefinite-bias Kondo effects.The Kondo nature of the+/-∆mV resonances points strongly towards a Valley Kondo effect[14],where co-herent(second-order)exchange between the delocalized electrons in the contacts and the localized electron on the dopant forms a many-body singlet state that screens the valley index.Together with the more familiar spin Kondo effect,where a many-body state screens the spin index, this leads to an SU(4)-Kondo effect,where the spin and charge degree of freedom are fully entangled[8].The ob-served scaling of the+/-∆-and zero bias-resonances in our samples by a single T K is an indication that such a fourfold degenerate SU(4)-Kondo ground state has been formed.To investigate the Kondo nature of the transport fur-ther,we analyze the substructure of the resonances of sample J17,see Fig.2a.The central resonance and the V SD=-2mV each consist of three separate peaks.A sim-ilar substructure can be observed in sample H67,albeit less clear(see Fig.2c).The substructure can be explained in the context of SU(4)-Kondo in combination with a small difference between the coupling of the ground state (ΓGS)-and thefirst excited state(ΓE1)-to the leads.It has been theoretically predicted that even a small asym-metry(ϕ≡ΓE1/ΓGS∼=1)splits the Valley Kondo den-sity of states into an SU(2)-and an SU(4)-part[25].Thiswill cause both the valley-stateflip-and the no valley-stateflip resonances to split in three,where the middle peak is the SU(2)-part and the side-peaks are the SU(4)-parts.A more detailed description of the substructure can be found in the supporting online text.The split-ting between middle and side-peaks should be roughly on the order of T K[25].The measured splitting between the SU(2)-and SU(4)-parts equals about0.5meV for sample J17and0.25meV for sample H67,which thus corresponds to T K∼=6K and T K∼=3K respectively,for the latter in line with the Kondo temperature obtained from the temperature dependence.We further note that dI SD/dV SD is smaller than what we would expect for the Kondo conductance at T<T K.However,the only other study of the Kondo effect in Silicon where T K could be determined showed a similar magnitude of the Kondo signal[12].The presence of this substructure in both the valley-stateflip-,and the no valley-stateflip-Kondo resonance thus also points at a Valley Kondo effect.As a third step,we turn our attention to the magnetic field(B)dependence of the resonances.Fig.3shows a colormap plot of dI SD/dV SD for samples J17and H64 both as a function of V SD and B at300mK.The traces were again taken within the Coulomb diamond.Atfinite magneticfield,the central Kondo resonances of both de-vices split in two with a splitting of2.2-2.4mV at B=FIG.3:Colormap plot of the conductance as a function of V SD and B of sample J17at V G=395mV(a)and H64at V G=464mV(b).The central Kondo resonances split in two lines which are separated by2g∗µB B.The resonances with a valley-stateflip do not seem to split in magneticfield,a feature we associate with the different decay-time of parallel and anti-parallel spin-configurations of the doubly-occupied virtual state(see text).10T.From theoretical considerations we expect the cen-tral Valley Kondo resonance to split in two by∆B= 2g∗µB B if there is no mixing of valley index(this typical 2g∗µB B-splitting of the resonances is one of the hall-marks of the Kondo effect[24]),and to split in three (each separated by g∗µB B)if there is a certain degree of valley index mixing[14].Here,g∗is the g-factor(1.998 for As in Si)andµB is the Bohr magneton.In the case of full mixing of valley index,the valley Kondo effect is expected to vanish and only spin Kondo will remain [25].By comparing our measured magneticfield splitting (∆B)with2g∗µB B,wefind a g-factor between2.1and 2.4for all three devices.This is comparable to the result of Klein et al.who found a g-factor for electrons in SiGe quantum dots in the Kondo regime of around2.2-2.3[13]. The magneticfield dependence of the central resonance5indicates that there is no significant mixing of valley in-dex.This is an important observation as the occurrence of Valley Kondo in Si depends on the absence of mix-ing(and thus the valley index being a good quantum number in the process).The conservation of valley in-dex can be attributed to the symmetry of our system. The large2D-confinement provided by the electricfield gives strong reason to believe that the ground-andfirst excited-states,E GS and E1,consist of(linear combi-nations of)the k=(0,0,±kz)valleys(with z in the electricfield direction)[10,26].As momentum perpen-dicular to the tunneling direction(k x,see Fig.1)is con-served,also valley index is conserved in tunneling[27]. The k=(0,0,±k z)-nature of E GS and E1should be as-sociated with the absence of significant exchange interac-tion between the two states which puts them in the non-interacting limit,and thus not in the correlated Heitler-London limit where singlets and triplets are formed.We further observe that the Valley Kondo resonances with a valley-stateflip do not split in magneticfield,see Fig.3.This behavior is seen in both samples,as indicated by the black straight solid lines,and is most easily ob-served in sample J17.These valley-stateflip resonances are associated with different processes based on their evo-lution with magneticfield.The processes which involve both a valleyflip and a spinflip are expected to shift to energies±∆±g∗µB B,while those without a spin-flip stay at energies±∆[14,25].We only seem to observe the resonances at±∆,i.e.the valley-stateflip resonances without spinflip.In Ref[8],the processes with both an orbital and a spinflip also could not be observed.The authors attribute this to the broadening of the orbital-flip resonances.Here,we attribute the absence of the processes with spinflip to the difference in life-time be-tween the virtual valley state where two spins in seperate valleys are parallel(τ↑↑)and the virtual state where two spins in seperate valleys are anti-parallel(τ↑↓).In con-trast to the latter,in the parallel spin configuration the electron occupying the valley state with energy E1,can-not decay to the other valley state at E GS due to Pauli spin blockade.It wouldfirst needs toflip its spin[28].We have estimatedτ↑↑andτ↑↓in our system(see supporting online text)andfind thatτ↑↑>>h/k b T K>τ↑↓,where h/k b T K is the characteristic time-scale of the Kondo pro-cesses.Thus,the antiparallel spin configuration will have relaxed before it has a change to build up a Kondo res-onance.Based on these lifetimes,we do not expect to observe the Kondo resonances associated with both an valley-state-and a spin-flip.Finally,we investigate the degeneracy point of valley states in the Coulomb diamond of sample H64.This degeneracy point is indicated in Fig.1d by the red dashed ellipsoid.By means of the gate electrode,we can tune our system onto-or offthis degeneracy point.The gate-tunability in this sample is created by a reconfiguration of the level spectrum between the D0and D−-charge states,FIG.4:Colormap plot of I SD at V SD=0as a function of V G and B.For increasing B,a conductance peak develops around V G∼450mV at the valley degeneracy point(∆= 0),indicated by the dashed black line.Inset:Magneticfield dependence of the valley degeneracy point.The resonance is fixed at zero bias and its magnitude does not depend on the magneticfield.probably due to Coulomb interactions in the D−-states. Figure4shows a colormap plot of I SD at V SD=0as a function of V G and B(at0.3K).Note that we are thus looking at the current associated with the central Kondo resonance.At B=0,we observe an increasing I SD for higher V G as the atom’s D−-level is pushed toward E F. As B is increased,the central Kondo resonance splits and moves away from V SD=0,see Fig.3.This leads to a general decrease in I SD.However,at around V G= 450mV a peak in I SD develops,indicated by the dashed black line.The applied B-field splits offthe resonances with spin-flip,but it is the valley Kondo resonance here that stays at zero bias voltage giving rise to the local current peak.The inset of Fig.4shows the single Kondo resonance in dI SD/dV SD as a function of V SD and B.We observe that the magnitude of the resonance does not decrease significantly with magneticfield in contrast to the situation at∆=0(Fig.3b).This insensitivity of the Kondo effect to magneticfield which occurs only at∆= 0indicates the profound role of valley Kondo processes in our structure.It is noteworthy to mention that at this specific combination of V SD and V G the device can potentially work as a spin-filter[6].We acknowledge fruitful discussions with Yu.V. Nazarov,R.Joynt and S.Shiau.This project is sup-ported by the Dutch Foundation for Fundamental Re-search on Matter(FOM).6[1]Kondo,J.,Resistance Minimum in Dilute Magnetic Al-loys,Prog.Theor.Phys.3237-49(1964)[2]Hewson,A.C.,The Kondo Problem to Heavy Fermions(Cambridge Univ.Press,Cambridge,1993).[3]Wingreen N.S.,The Kondo effect in novel systems,Mat.Science Eng.B842225(2001)and references therein.[4]Cox,D.L.,Zawadowski,A.,Exotic Kondo effects in met-als:magnetic ions in a crystalline electricfield and tun-neling centers,Adv.Phys.47,599-942(1998)[5]Inoshita,T.,Shimizu, A.,Kuramoto,Y.,Sakaki,H.,Correlated electron transport through a quantum dot: the multiple-level effect.Phys.Rev.B48,14725-14728 (1993)[6]Borda,L.Zar´a nd,G.,Hofstetter,W.,Halperin,B.I.andvon Delft,J.,SU(4)Fermi Liquid State and Spin Filter-ing in a Double Quantum Dot System,Phys.Rev.Lett.90,026602(2003)[7]Zar´a nd,G.,Orbitalfluctuations and strong correlationsin quantum dots,Philosophical Magazine,86,2043-2072 (2006)[8]Jarillo-Herrero,P.,Kong,J.,van der Zant H.S.J.,Dekker,C.,Kouwenhoven,L.P.,De Franceschi,S.,Or-bital Kondo effect in carbon nanotubes,Nature434,484 (2005)[9]Martins,A.S.,Capaz,R.B.and Koiller,B.,Electric-fieldcontrol and adiabatic evolution of shallow donor impuri-ties in silicon,Phys.Rev.B69,085320(2004)[10]Lansbergen,G.P.et al.,Gate induced quantum confine-ment transition of a single dopant atom in a Si FinFET, Nature Physics4,656(2008)[11]Rokhinson,L.P.,Guo,L.J.,Chou,S.Y.,Tsui, D.C.,Kondo-like zero-bias anomaly in electronic transport through an ultrasmall Si quantum dot,Phys.Rev.B60, R16319-R16321(1999)[12]Specht,M.,Sanquer,M.,Deleonibus,S.,Gullegan G.,Signature of Kondo effect in silicon quantum dots,Eur.Phys.J.B26,503-508(2002)[13]Klein,L.J.,Savage, D.E.,Eriksson,M.A.,Coulombblockade and Kondo effect in a few-electron silicon/silicon-germanium quantum dot,Appl.Phys.Lett.90,033103(2007)[14]Shiau,S.,Chutia,S.and Joynt,R.,Valley Kondo effectin silicon quantum dots,Phys.Rev.B75,195345(2007) [15]Roch,N.,Florens,S.,Bouchiat,V.,Wernsdirfer,W.,Balestro, F.,Quantum phase transistion in a single molecule quantum dot,Nature453,633(2008)[16]Sellier,H.et al.,Transport Spectroscopy of a SingleDopant in a Gated Silicon Nanowire,Phys.Rev.Lett.97,206805(2006)[17]Calvet,L.E.,Wheeler,R.G.and Reed,M.A.,Observa-tion of the Linear Stark Effect in a Single Acceptor in Si, Phys.Rev.Lett.98,096805(2007)[18]Hofheinz,M.et al.,Individual charge traps in siliconnanowires,Eur.Phys.J.B54,299307(2006)[19]Pierre,M.,Hofheinz,M.,Jehl,X.,Sanquer,M.,Molas,G.,Vinet,M.,Deleonibus S.,Offset charges acting as ex-cited states in quantum dots spectroscopy,Eur.Phys.J.B70,475-481(2009)[20]Goldhaber-Gordon,D.,Gres,J.,Kastner,M.A.,Shtrik-man,H.,Mahalu, D.,Meirav,U.,From the Kondo Regime to the Mixed-Valence Regime in a Single-Electron Transistor,Phys.Rev.Lett.81,5225(1998) [21]Although the value of s=0.22stems from SU(2)spinKondo processes,it is valid for SU(4)-Kondo systems as well[8,25].[22]Paaske,J.,Rosch,A.,W¨o lfle,P.,Mason,N.,Marcus,C.M.,Nyg˙ard,Non-equilibrium singlet-triplet Kondo ef-fect in carbon nanotubes,Nature Physics2,460(2006) [23]Osorio, E.A.et al.,Electronic Excitations of a SingleMolecule Contacted in a Three-Terminal Configuration, Nanoletters7,3336-3342(2007)[24]Meir,Y.,Wingreen,N.S.,Lee,P.A.,Low-TemperatureTransport Through a Quantum Dot:The Anderson Model Out of Equilibrium,Phys.Rev.Lett.70,2601 (1993)[25]Lim,J.S.,Choi,M-S,Choi,M.Y.,L´o pez,R.,Aguado,R.,Kondo effects in carbon nanotubes:From SU(4)to SU(2)symmetry,Phys.Rev.B74,205119(2006) [26]Hada,Y.,Eto,M.,Electronic states in silicon quan-tum dots:Multivalley artificial atoms,Phys.Rev.B68, 155322(2003)[27]Eto,M.,Hada,Y.,Kondo Effect in Silicon QuantumDots with Valley Degeneracy,AIP Conf.Proc.850,1382-1383(2006)[28]A comparable process in the direct transport throughSi/SiGe double dots(Lifetime Enhanced Transport)has been recently proposed[29].[29]Shaji,N.et.al.,Spin blockade and lifetime-enhancedtransport in a few-electron Si/SiGe double quantum dot, Nature Physics4,540(2008)7Supporting InformationFinFET DevicesThe FinFETs used in this study consist of a silicon nanowire connected to large contacts etched in a60nm layer of p-type Silicon On Insulator.The wire is covered with a nitrided oxide(1.4nm equivalent SiO2thickness) and a narrow poly-crystalline silicon wire is deposited perpendicularly on top to form a gate on three faces.Ion implantation over the entire surface forms n-type degen-erate source,drain,and gate electrodes while the channel protected by the gate remains p-type,see Fig.1a of the main article.The conventional operation of this n-p-n field effect transistor is to apply a positive gate voltage to create an inversion in the channel and allow a current toflow.Unintentionally,there are As donors present be-low the Si/SiO2interface that show up in the transport characteristics[1].Relation between∆and T KThe information obtained on T K in the main article allows us to investigate the relation between the splitting (∆)of the ground(E GS)-andfirst excited(E1)-state and T K.It is expected that T K decreases as∆increases, since a high∆freezes out valley-statefluctuations.The relationship between T K of an SU(4)system and∆was calculated by Eto[2]in a poor mans scaling approach ask B T K(∆) B K =k B T K(∆=0)ϕ(2)whereϕ=ΓE1/ΓGS,withΓE1andΓGS the lifetimes of E1and E GS respectively.Due to the small∆com-pared to the barrier height between the atom and the source/drain contact,we expectϕ∼1.Together with ∆=1meV and T K∼2.7K(for sample H67)and∆=2meV and T K∼6K(for sample J17),Eq.2yields k B T K(∆)/k B T K(∆=0)=0.4and k B T K(∆)/k B T K(∆= 0)=0.3respectively.We can thus conclude that the rela-tively high∆,which separates E GS and E1well in energy, will certainly quench valley-statefluctuations to a certain degree but is not expected to reduce T K to a level that Valley effects become obscured.Valley Kondo density of statesHere,we explain in some more detail the relation be-tween the density of states induced by the Kondo effects and the resulting current.The Kondo density of states (DOS)has three main peaks,see Fig.1a.A central peak at E F=0due to processes without valley-stateflip and two peaks at E F=±∆due to processes with valley-state flip,as explained in the main text.Even a small asym-metry(ϕclose to1)will split the Valley Kondo DOS into an SU(2)-and an SU(4)-part[3],indicated in Fig1b in black and red respectively.The SU(2)-part is positioned at E F=0or E F=±∆,while the SU(4)-part will be shifted to slightly higher positive energy(on the order of T K).A voltage bias applied between the source and FIG.1:(a)dI SD/dV SD as a function of V SD in the Kondo regime(at395mV G)of sample J17.The substructure in the Kondo resonances is the result of a small difference between ΓE1andΓGS.This splits the peaks into a(central)SU(2)-part (black arrows)and two SU(4)-peaks(red arrows).(b)Density of states in the channel as a result ofϕ(=ΓE1/ΓGS)<1and applied V SD.drain leads results in the Kondo peaks to split,leaving a copy of the original structure in the DOS now at the E F of each lead,which is schematically indicated in Fig.1b by a separate DOS associated with each contact.The current density depends directly on the density of states present within the bias window defined by source/drain (indicated by the gray area in Fig1b)[4].The splitting between SU(2)-and SU(4)-processes will thus lead to a three-peak structure as a function of V SD.Figure.1a has a few more noteworthy features.The zero-bias resonance is not positioned exactly at V SD=0, as can also be observed in the transport data(Fig1c of the main article)where it is a few hundredµeV above the Fermi energy near the D0charge state and a few hundredµeV below the Fermi energy near the D−charge state.This feature is also known to arise in the Kondo strong coupling limit[5,6].We further observe that the resonances at V SD=+/-2mV differ substantially in magnitude.This asymmetry between the two side-peaks can actually be expected from SU(4)Kondo sys-tems where∆is of the same order as(but of course al-ways smaller than)the energy spacing between E GS and。

泽尼克多项式 f

泽尼克多项式 f

泽尼克多项式 f泽尼克多项式(Zernike polynomials)是一类在极坐标系下定义的正交多项式。

它们由实数系数的公式表示,并可以用于描述光学系统中的相位畸变、图像分析以及图像重建等领域。

泽尼克多项式以荷兰数学家弗里茨·泽尼克(Frits Zernike)的名字命名。

泽尼克多项式最初是由泽尼克在1934年提出的。

他通过研究在光学器件中光波的传播过程,发现了一类特殊的正交函数,这些函数可以用于描述光波的复振幅分布。

泽尼克将这些函数命名为Zernike多项式,并发现它们具有很多重要的性质。

泽尼克多项式通常用Zernike多项式系数表示,其中第一项表示振幅,后续的项表示光波的相位畸变。

这些多项式是以正交归一形式存在的,并且在极坐标系下具有特殊的对称性质。

泽尼克多项式具有完备性,即可以通过它们的线性组合来逼近任意一个函数。

泽尼克多项式在光学系统中被广泛应用,特别是在光学相干断层扫描(OCT)和自适应光学(AO)中。

光学相干断层扫描是一种非侵入性的医学成像技术,它可以高分辨率地观察人体组织的内部结构。

自适应光学则用于校正光学系统中的相位畸变,以提高成像的质量。

除了在光学领域的应用,泽尼克多项式还被应用于图像分析和图像重建中。

通过计算一幅图像的泽尼克多项式系数,可以得到图像的形状和特征信息。

这些信息可以用于图像分类、目标识别和目标跟踪等任务。

此外,泽尼克多项式还可以用于图像的去模糊和重建,以提高图像的清晰度和质量。

总而言之,泽尼克多项式是一类在极坐标系下定义的正交多项式,具有许多重要的性质和应用。

它们在光学系统中被广泛应用,用于描述光波的相位畸变和复振幅分布。

同时,泽尼克多项式还在图像分析和图像重建中发挥着重要作用。

随着科学技术的不断发展,泽尼克多项式的应用将继续扩大,并在更多领域发挥其独特的作用。

能量有限实序列信号对称性度量

能量有限实序列信号对称性度量

能量有限实序列信号对称性度量
陈勇;袁晓;罗丽芬
【期刊名称】《四川大学学报(工程科学版)》
【年(卷),期】2008(040)003
【摘要】为了定量描述滤波器序列的对称程度,同时给滤波器序列提出新的数量特征.对能量有限的实离散时间信号--即实序列在空间域内进行了对称(反对称)性分析.首先提出序列信号一般意义下的对称(反对称)概念,然后由内积空间中的投影、正交分解理论以及内积量化两个信号线性相关程度的特性导出任意信号的对称分解及对称程度序列,对称程度序列定量刻画了信号随对称点的变化时对称特性的变化,在此基础上得出任意序列信号对称程度的定量指标--对称性指标.同时给出了序列信号的对称性定量分析技术.最后对经典和最小不对称Daubechies低通和高通滤波器系数序列的对称性分别进行了分析,得到了与直观相符的结果,所得到的对称性指标值正好定量地印证了Daubechies滤波器对称特征.
【总页数】7页(P161-167)
【作者】陈勇;袁晓;罗丽芬
【作者单位】重庆通信学院,基础部,重庆,400035;四川大学,电子信息学院,四川,成都,610064;重庆通信学院,训练部,重庆,400035
【正文语种】中文
【中图分类】TN911.6
【相关文献】
1.基于能量度量的星载AIS信号自适应码元同步抽取算法 [J], 朱守中;柳征;姜文利
2.一种M-FSK信号的能量度量Viterbi软译码算法性能分析 [J],
3.利用对称性加速实序列FFT的方法及其FPGA实现 [J], 邓宏贵;郭晟伟
4.中国实际GDP序列的非对称性度量和统计检验 [J], 刘金全
5.能量有限实信号对称性度量 [J], 陈勇;袁晓;何小海;罗丽芬
因版权原因,仅展示原文概要,查看原文内容请购买。

一类自入射代数的极小投射分解研究的开题报告

一类自入射代数的极小投射分解研究的开题报告

一类自入射代数的极小投射分解研究的开题报告
题目:一类自入射代数的极小投射分解研究
引子:
在代数学中,投射表示一种模的性质,即每个模都可以看成另一个模的直和或直和的子模。

作为代数学中的一个基础概念,投射模有着广泛的应用,并通常以极小投射分解来研究。

在代数学中,自入射代数是指存在一个自同构使得自身成为一个投射模的代数。

自入射代数是代数学中的一个重要对象,因为它们具有许多美好的性质,例如每个自入射代数都是直和和它的双重线性对偶的,以及它们具有良好的表示论等。

研究极小投射分解和自入射代数的关系,是代数学的一个重要研究方向。

在本次研究中,我们将探讨一类自入射代数的极小投射分解。

研究内容:
本次研究的主要内容如下:
1. 定义和性质
对于一类自入射代数,我们将给出其定义和基本性质,以及它们与极小投射分解的关系。

2. 极小投射分解的存在性和唯一性
本次研究中,我们将探讨该类代数的极小投射分解的存在性和唯一性,并给出相应的证明。

3. 其他应用
除了探讨极小投射分解和自入射代数的关系外,我们还将探讨该类代数在其他数学领域中的应用。

研究方法:
本次研究将采用代数学中的经典方法,如矩阵理论、同调代数等。

同时,我们还将采用一些新的方法,如图论和拓扑学中的技术等。

研究结果:
通过本次研究,我们将得到一类自入射代数的极小投射分解的存在
性和唯一性,以及该类代数在其他数学领域中的应用。

结论:
本次研究将为极小投射分解和自入射代数的研究提供一定的参考和
理论支持,也将为数学领域中其他相关问题的研究提供新的方向和思路。

利用帧内编码选择的视频编码[发明专利]

利用帧内编码选择的视频编码[发明专利]

专利名称:利用帧内编码选择的视频编码
专利类型:发明专利
发明人:朱利安·哈达德,多米尼克·托罗,菲利普·吉约泰尔申请号:CN200780040296.8
申请日:20071026
公开号:CN101529916A
公开日:
20090909
专利内容由知识产权出版社提供
摘要:提供了一种方法,其特征在于,为了确定(1、3、4)由图像块构成的宏块的编码模式,所述方法根据以下步骤执行宏块的帧内定向预测编码模式的预选择(2),步骤如下:计算(2)预测方向上的块的行为梯度,预选择(2)方向与最小值行为或行为梯度相对应的块的帧内定向编码模式。

申请人:汤姆森许可贸易公司
地址:法国布洛涅-比郎库尔
国籍:FR
代理机构:中科专利商标代理有限责任公司
代理人:戎志敏
更多信息请下载全文后查看。

小波分析发展简史

小波分析发展简史
时移参数旳离散化:取决于尺度参数 b = k×a0j , j, k Z
尺度和时移参数旳离散化:
离散化后旳小波变换:
小波函数:
j,k
(t)
a
j 0
,ka0j
(t)
|
a0
|-j/2
(a -0jt
-
k)
变换系数:C j,k
(W
f
)(a
j 0
,
ka
j 0
)
f (t), j,k (t)
怎样选择小波函数才干够重构信号:
O f M log2 M , Ow M
小波基表达发生旳时间和频率
傅里叶变换 (Fourier)基
小波基
时间采样基
“时频局域性” 图解:Fourier变换旳基(上)小波变换基(中) 和时间采样基(下)旳比较
信号旳时频分析:
信号时频分析旳主要性:
时间和频率是描述信号旳两个最主要旳物理量。 信号旳时域和频域之间具有紧密旳联络。
时间连续,控制窗口大小旳参数和时移参数离散旳 小波变换。
离散小波变换
时间、控制窗口大小旳参数和时移参数都离散旳小 波变换。
连续小波变换:
连续小波变换旳定义:
假设信号 f(t) L2(R),则它旳连续小波变换定义为:
(W f )(a, b) | a |-1 2
归一化因子
f (t)( t - b ) d t
语音辨认中旳镜向滤波,子带编码,图象处理中旳金 字塔法等几种不有关旳领域。
1988年 Mallat 提出旳多辨别度分析理论, 统一了几种不有关旳领域:涉及语音辨认中 旳镜向滤波,图象处理中旳金字塔措施,地 震分析中短时波形处理等。
当在某一种辨别度检测不到旳现象,在另一 种辨别度却很轻易观察处理。例如:

广义切比雪夫滤波器有限传输零点提取和交叉耦合结构分析

广义切比雪夫滤波器有限传输零点提取和交叉耦合结构分析

广义切比雪夫滤波器有限传输零点提取和交叉耦合结构分析1. 引言- 介绍滤波器的基本概念和分类- 简述广义切比雪夫滤波器的提出背景和研究现状- 阐明本文的研究目的和意义2. 广义切比雪夫滤波器有限传输零点提取- 解释广义切比雪夫滤波器的原理和设计方法- 分析有限传输零点(FIR)的定义和性质- 探讨在滤波器设计中如何提取有限传输零点以实现广义切比雪夫滤波器3. 广义切比雪夫滤波器交叉耦合结构- 介绍交叉耦合结构的基本概念和设计- 分析交叉耦合结构的优点和适用条件- 探讨在广义切比雪夫滤波器中如何应用交叉耦合结构4. 数值实验与应用- 设计一组广义切比雪夫滤波器,包括传统结构和交叉耦合结构,比较它们的性能差异- 分析不同参数对于滤波器性能的影响,如通带波纹、阻带衰减等- 应用所设计的广义切比雪夫滤波器在信号处理中,分析其应用效果和实际应用场景5. 结论与展望- 总结广义切比雪夫滤波器有限传输零点提取和交叉耦合结构的研究成果- 点明本文的不足和研究方向- 展望广义切比雪夫滤波器的未来发展,如其在数字信号处理、通信技术等领域的应用前景在现代科技的快速发展中,滤波器作为一种重要的信号处理工具,被广泛应用于通信、图像识别、音频处理等领域。

根据滤波器的不同特征和结构,可以分为时域滤波器和频域滤波器、线性滤波器和非线性滤波器、有限脉冲响应滤波器和无限脉冲响应滤波器等不同类型。

本文将聚焦于一种广义切比雪夫滤波器,并通过有限传输零点提取和交叉耦合结构分析,探讨其性能和应用。

广义切比雪夫滤波器作为一种特定传输函数的滤波器,具有在通带波纹控制和阻带衰减方面较其他类型滤波器更好的特性。

其研究历史可以追溯到1930年代,随着数字信号处理技术的发展和需求的提升,广义切比雪夫滤波器的设计和优化也处于不断进步中。

有限传输零点(FIR)是一种能够消除滤波器带限特性所产生的无限脉冲响应、实现精确控制传输函数的滤波器结构。

在广义切比雪夫滤波器的设计和制造过程中,有限传输零点提取是一个关键步骤。

维诺算法与comsol

维诺算法与comsol

维诺算法与comsol维诺算法(Von Neumann algorithm)是一种用于求解偏微分方程的数值方法,它是由美籍匈牙利数学家约翰·冯·诺伊曼(John von Neumann)于20世纪40年代提出的。

相比于传统的有限差分方法,维诺算法在一些情况下能够提供更精确的数值解。

维诺算法的核心思想是将要求解的偏微分方程离散化为一个线性系统,然后通过迭代的方式逼近这个线性系统的解。

维诺算法的基本步骤如下:1.将求解区域离散化为一个网格,每个网格节点上的解称为网格点值。

2.根据偏微分方程的形式,将其离散化为一个线性系统,其中线性系统的未知数为网格点值。

3.根据离散化后的线性系统,构造迭代格式,即迭代过程中计算网格点值的方式。

4.通过迭代计算,逐渐逼近线性系统的解,直到满足一定的误差限度或达到预设的迭代次数。

5.得到近似解后,根据需要对解进行后处理,例如计算导数、积分等。

在维诺算法中,迭代格式的选择很关键,常用的有雅可比迭代、高斯-赛德尔迭代等。

这些迭代格式根据具体的偏微分方程形式和边界条件来选择,可以通过一些数学理论保证迭代的收敛性。

与维诺算法相比,COMSOL Multiphysics是一种商业化的多物理场仿真软件,可以用于模拟和求解各种工程和科学领域的物理问题。

COMSOL Multiphysics采用有限元方法(Finite Element Method,FEM)求解偏微分方程,相比维诺算法,它具有以下优势:1. COMSOL Multiphysics提供了广泛的预定义物理模型和方程,可以方便地对复杂的多物理过程进行模拟和求解。

2. COMSOL Multiphysics具有图形界面,用户可以直观地构建几何模型、定义边界条件,并进行后处理和可视化分析。

3. COMSOL Multiphysics采用自适应网格技术,能够根据求解的需要自动调整网格,提高求解精度。

4. COMSOL Multiphysics还提供了丰富的后处理功能,例如二维和三维可视化、数据提取、曲线拟合等,方便用户对仿真结果进行分析和评估。

一种改进的SVD滤波器

一种改进的SVD滤波器

一种改进的SVD滤波器
陆文凯;牟永光
【期刊名称】《石油地球物理勘探》
【年(卷),期】1996(031)005
【摘要】在处理地震资料时,用常规的SVD滤波器不能有效地提高非水平同相轴的信噪比,为此,本文利用量化后的地震图象的二级灰度统计特征,由共生矩阵得到的能量,差异值和一致性特征获取特处理区域中同相轴的几个主要走向,据此自动调整SVD滤波器的输入矩阵,并利用这些特征与奇异值的分布曲线对待处理区域进行分类,决定SVD滤波器选用奇异值的个数,从而改进了SVD滤波器的性能,经对合成地震记录与实际地震资料处理,效果明显
【总页数】6页(P736-741)
【作者】陆文凯;牟永光
【作者单位】北京石油大学;北京石油大学
【正文语种】中文
【中图分类】P631.43
【相关文献】
1.使用Savitzky-Golay滤波器改进的位场ISVD算法 [J], 景小阳;裴婧;许航;解文博
2.一种改进的HOSVD降噪的信道预测算法 [J], 孙德春; 李玉
3.一种基于SVD的改进LTS气动数据异常检测方法 [J], 杨海强;黄俊;黎茂锋;刘志勤
4.一种改进的RK-SVD随机噪声去噪方法 [J], 马中华;程慧勇;戚裕峰
5.一种改进EMD-SVD算法的暂态电能质量扰动信号消噪研究 [J], 布左拉·达吾提;帕孜来·马合木提;董永昌;葛震君
因版权原因,仅展示原文概要,查看原文内容请购买。

c-r方程 柯西黎曼

c-r方程 柯西黎曼

在数学分析中,柯西-黎曼方程是复变函数可微性与解析性的必要条件。

它由法国数学家奥古斯丁-路易·柯西和德国数学家伯恩哈德·黎曼独立提出。

柯西-黎曼方程的形式如下:
设f(z)是定义在复数域C上的复变函数,如果在点z0的邻域内存在一个复数w0使得
那么称f(z)在点z0可微,w0称为f(z)在点z0处的导数。

如果f(z)在C的某个开集U内可微,那么称f(z)在U内解析。

柯西-黎曼方程是复变函数解析性的必要条件,但不是充分条件。

也就是说,如果一个复变函数在某一点可微,那么它在这一点解析;但如果一个复变函数在某一点解析,它不一定在这一点可微。

柯西-黎曼方程在复分析中有着广泛的应用。

例如,它可以用来证明高斯积分定理和柯西积分定理,以及研究复变函数的性质。

柯西-黎曼方程是复分析的基础之一,也是数学中一个重要的方程。

下面是柯西-黎曼方程的一些应用:
1. 证明高斯积分定理。

高斯积分定理是指,如果f(z)是定义在复数域C上的连续函数,那么沿圆周C的
积分等于在C内部区域D上的二重积分。

柯西-黎曼方程可以用来证明高斯积分定理。

2. 证明柯西积分定理。

柯西积分定理是指,如果f(z)是定义在复数域C上的连续函数,那么沿圆周C的
积分等于0。

柯西-黎曼方程可以用来证明柯西积分定理。

3. 研究复变函数的性质。

柯西-黎曼方程可以用来研究复变函数的性质,例如,它可以用来证明复变函
数的导数存在,以及复变函数的解析性。

柯西-黎曼方程在复分析中有着广泛的应用。

它是复分析的基础之一,也是数学中一个重要的方程。

普列汉诺夫的名词解释

普列汉诺夫的名词解释

普列汉诺夫的名词解释在数学领域中,普列汉诺夫(Poincaré)是一个备受推崇的名字。

他是法国数学家亨利·普列汉诺夫,也是20世纪初最具影响力的数学家之一。

他的研究涵盖了多个数学领域,包括微分几何、拓扑学和动力系统理论。

普列汉诺夫富有创造力和独创性,他的成就和贡献不仅仅局限于数学领域,还对物理学、天文学和哲学等领域有着深远的影响。

在微分几何方面,普列汉诺夫的工作主要集中在黎曼几何上。

黎曼几何是关于曲线和曲面的几何学,普列汉诺夫通过引入曲率的概念,推动了该领域的发展。

他的工作为后来的爱因斯坦理论打下了基础,后者将曲率作为引力的表达方式。

此外,普列汉诺夫还研究了拓扑学中的曲面分型问题,为该领域的研究和发展做出了杰出贡献。

在动力系统理论方面,普列汉诺夫提出了著名的“普列汉诺夫定理”。

该定理说明了在稳定系统中,有些初始状态具有极其敏感的特性,即微小扰动会导致系统的极大变化。

这意味着复杂动力系统的行为难以预测,这一现象被称为“决定性混沌”。

这个发现不仅在数学上具有重要意义,还对物理学、生物学和经济学等领域有着广泛的应用。

它改变了人们对自然界和社会系统的理解。

普列汉诺夫还对天体力学和宇宙系统的研究做出了巨大贡献。

他探索了三体问题的稳定性,即太阳系中三个星体的相互作用。

通过精确的数学方法,普列汉诺夫揭示了这一问题的深层结构和非线性动力学行为,为研究宇宙系统的演化和稳定性提供了重要的理论基础。

除了数学外,普列汉诺夫还在哲学领域有着广泛的思考。

他提出了一种关于科学发展的哲学观点,称为“定理不确定性原理”。

这一观点认为,定理的证明不可能从无懈可击的假设出发,而是依赖于更基础的、难以验证的假设。

这一理论深刻地影响了科学的发展和哲学对科学的理解。

总结来说,普列汉诺夫是一位数学家和哲学家的典型代表,他的名字代表着创新和独特的思维方式。

他在数学、物理学、天文学和哲学等领域的工作不仅仅是解决问题,更是为人类认识世界提供了新的视角和思考方式。

contor集的结构及性质

contor集的结构及性质

contor集的结构及性质在数学中,康托尔集,由德国数学家格奥尔格·康托尔在1883年引入(但由亨利·约翰·斯蒂芬·史密斯在1875年发现),是位于一条线段上的一些点的集合,具有许多显著和深刻的性质。

通过考虑这个集合,康托尔和其他数学家奠定了现代点集拓扑学的基础。

虽然康托尔自己用一种一般、抽象的方法定义了这个集合,但是最常见的构造是康托尔三分点集,由去掉一条线段的中间三分之一得出。

康托尔自己只附带介绍了三分点集的构造,作为一个更加一般的想法——一个无处稠密的完备集的例子。

取一条长度为1的直线段,将它三等分,去掉中间一段,留剩下两段,再将剩下的两段再分别三等分,各去掉中间一段,剩下更短的四段,……,将这样的操作一直继续下去,直至无穷,由于在不断分割舍弃过程中,所形成的线段数目越来越多,长度越来越小,在极限的情况下,得到一个离散的点集,称为康托尔点集,记为P。

称为康托尔点集的极限图形长度趋于0,线段数目趋于无穷,实际上相当于一个点集。

操作n次后边长r=(1/3)^n,边数N(r)=2^n,根据公式D=lnN(r)/ln(1/r) , D=ln2/ln3=0.631。

所以康托尔点集分数维是0.631。

康托三分集中有无穷多个点,所有的点处于非均匀分布状态。

此点集具有自相似性,其局部与整体是相似的,所以是一个分形系统。

康托三分集具有(1)自相似性;(2)精细结构;(3)无穷操作或迭代过程;(4)传统几何学陷入危机。

用传统的几何学术语难以描述,它既不满足某些简单条件如点的轨迹,也不是任何简单方程的解集。

其局部也同样难于描述。

因为每一点附近都有大量被各种不同间隔分开的其它点存在。

(5)长度为零;(6)简单与复杂的统一。

康托尔集P具有三条性质:1、P是完备集。

2、P没有内点。

3、P的基数为c。

4、P是不可数集。

康托尔集是一个基数为c的疏朗完备集。

不分明化拓扑空间中的拟R_0分离公理的刻画

不分明化拓扑空间中的拟R_0分离公理的刻画

不分明化拓扑空间中的拟R_0分离公理的刻画
李宁
【期刊名称】《山东大学学报:理学版》
【年(卷),期】2008(43)4
【摘要】定义了不分明拓扑空间的拟R0分离公理。

利用不分明拓扑空间的拟闭包、拟θ闭包及拟内核对不分明拓扑空间的拟R0分离公理进行刻画。

【总页数】4页(P17-20)
【关键词】不分明拓扑空间;拟闭包;拟θ闭包;拟内核;拟R0分离公理
【作者】李宁
【作者单位】山东大学数学与系统科学学院
【正文语种】中文
【中图分类】O189.1
【相关文献】
1.直觉不分明化拓扑空间的分离公理 [J], 蒋沈庆
2.不分明化拓扑中的S-分离公理 [J], 张广济
3.不分明化拓扑中的几乎分离公理 [J], 王瑞英;王尚志
4.不分明化拓扑空间中的b-分离性 [J], 李慧; 王瑞英
5.不分明拓扑空间中集网收敛与分离性 [J], 周忠群
因版权原因,仅展示原文概要,查看原文内容请购买。

拓扑空间中的连续逼近选择和几乎不动点(英文)

拓扑空间中的连续逼近选择和几乎不动点(英文)

拓扑空间中的连续逼近选择和几乎不动点(英文)
徐裕光
【期刊名称】《《数学杂志》》
【年(卷),期】2004(000)002
【摘要】本文研究连续逼近选择问题研究结果表明 ,几乎下半连续的集值映射有连续逼近选择 .从而 ,著名的Michael连续逼近选择定理被改进 .应用这个结果。

【总页数】4页(P)
【作者】徐裕光
【作者单位】昆明高等师范专科学校数学系; 云南昆明
【正文语种】中文
【中图分类】O189.1
【相关文献】
1.Sobolev空间中集值映射不动点的连续选择(Ⅱ)——不动点连续选择 [J], 孙广毅
2.p-几乎渐近非扩张型映象不动点具随机误差的迭代逼近 [J], 王俊明;陈建领
3.Banach空间中几乎渐近非扩张型映象不动点的迭代逼近问题 [J], 熊明;王绍荣;杨泽恒
4.一类新的几乎渐近非扩张型映象不动点的三步迭代逼近问题 [J], 邓传现;黄发伦
5.拓扑空间中的连续逼近选择和几乎不动点 [J], 徐裕光
因版权原因,仅展示原文概要,查看原文内容请购买。

自适应双重点阵DOT图像重建

自适应双重点阵DOT图像重建

自适应双重点阵DOT图像重建
王嵩;上田之雄;山下丰;刘华锋
【期刊名称】《浙江大学学报(工学版)》
【年(卷),期】2013(047)001
【摘要】引入无网格方法替代传统有限元方法(FEM),求解弥散光学层析成像(DOT)正问题,避免了FEM需要人工根据实际形状生成和调整网格的繁琐过程.优化形函数及各项参数,得到精确解.在求解逆问题时引入第2重较稀疏自适应点阵,能够根据重建迭代过程中的结果自适应调整分布和密度,一方面较大限度地减少了计算消耗,提高计算速度,另一方面抑制了问题的病态性,能够得到更鲁棒的结果.逆问题二维仿真实验表明,在噪声抑制、图像分辨率、网格依赖性方面该方法均优于传统方法.三维仿真实验和实物体模实验结果进一步体现了该方法的优势.
【总页数】7页(P102-108)
【作者】王嵩;上田之雄;山下丰;刘华锋
【作者单位】浙江大学现代光学仪器国家重点实验室,浙江杭州310027
【正文语种】中文
【中图分类】TH773
【相关文献】
1.利用辐射传输-扩散混合模型的DOT图像重建算法 [J], 任晓芳;徐亮
2.自适应步长非局部全变分约束迭代图像重建算法 [J], 王文杰; 乔志伟; 牛蕾; 席雅睿
3.自适应阈值收缩算子的稀疏正则化图像重建算法 [J], 张胜男; 许燕斌; 董峰
4.一种自适应加权欠采样图像重建算法 [J], 班晓征; 李志华
5.自适应阈值收缩算子的稀疏正则化图像重建算法 [J], 张胜男; 许燕斌; 董峰因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a r X i v :c o n d -m a t /0410467v 2 [c o n d -m a t .m e s -h a l l ] 25 O c t 2004Zero-field splitting of Kondo resonances in a carbon nanotube quantum dotJ.Nyg˚ard,1,2,∗W.F.Koehl,1N.Mason,1L.DiCarlo,1and C.M.Marcus 11Department of Physics,Harvard University,Cambridge MA 021382Niels Bohr Institute and Nanoscience Center,University of Copenhagen,Universitetsparken 5,DK-2100Copenhagen,Denmark(Dated:February 2,2008)We present low-temperature electron transport measurements on a single-wall carbon nanotube quantum dot exhibiting Kondo resonances at low temperature.Contrary to the usual behavior for the spin-1/2Kondo effect we find that the temperature dependence of the zero bias conductance is nonmonotonic.In nonlinear transport measurements low-energy splittings of the Kondo resonances are observed at zero magnetic field.We suggest that these anomalies reflect interactions between the nanotube and a magnetic (catalyst)particle.The nanotube device may effectively act as a ferromagnetically contacted Kondo dot.PACS numbers:Transport measurements on individual single-wall car-bon nanotubes have demonstrated their potential for nanoscale electronics,1ranging from high performance field-effect transistors to ideal one-dimensional quantum dots with well-defined spin structure.2,3The latter de-vices may even have prospects for solid-state quantum computing based on the electronic spin,4although fun-damental issues regarding spin relaxation and decoher-ence still need further investigations in addition to the requisite progress in device processing.A prominent example of quantum coherence and spin physics in quantum dots is the Kondo effect 5,6.Below the Kondo temperature,T K ,an extended many-body state arises from the interactions between a localized electron spin on the dot and the conduction electrons in the leads.Kondo effects have been found in quantum dots based on carbon nanotubes 7and in single molecule transistors.8In contrast to semiconductor dots,these systems allow for studies of Kondo effects in devices with different types of contacts,e.g.superconducting or magnetic electrodes.A nanotube Kondo dot coupled to superconducting elec-trodes has been realised,9and magnetically contacted quantum dots in the Kondo regime was reported recently in molecular transistors.10We present here experimental data on a nanotube quantum dot,where the Kondo res-onances are split at zero field.We interpret this as evi-dence for coupling of the dot to a ferromagnetic impurity (in the form of a catalyst nanoparticle).Our devices incorporate single-wall carbon nanotubes grown by chemical vapor deposition (CVD)on an SiO 2substrate.11Ferric iron nitrate nanoparticles deposited from a solution in isopropyl alcohol acted as catalyst for the CVD process,which was carried out in a tube fur-nace by flowing methane and hydrogen over the sample at 900◦C.This process yielded mostly individual nanotubes with diameters in the range 1-3nm as determined by atomic force microscopy.The nanotubes were contacted by thermally evaporated metal electrodes (35nm Au on 4nm Cr),spaced by 250nm and patterned by electron beam lithography.Highly doped silicon below the 400nm SiO 2cap layer acted as a gate electrode,see Fig.1(a).aSi gateSiO 2DrainSource Nanotubeca of (c)Electron transport measurements were carried out in a dilution refrigerator with a base electron temperature of T el ∼80mK as estimated from the device characteris-tics.The two-terminal conductance was measured using standard lock-in techniques with ∼5mV ac excitation and voltage bias V applied to the source with the drain grounded through a low-impedance current amplifier.In the appropriate range of back-gate voltage,V g ,the room temperature conductance is around 1.8e 2/h and only weakly dependent on gate voltage V g (not shown),indicating that the conducting nanotube is metallic.At low temperature,the differential conductance,d I/d V ,of the tube in the same range of back-gate voltage shows a strong dependence on V g ,as seen in Fig.1(b).The overall characteristics of the device are more clearly seen from the 2D plot of d I/d V as a function of source-drain voltage V and gate voltage V g in Fig.1(c).The dominant dark regions of low conductance are caused by Coulomb2-0.50.00.5c145 mKe550 mKV (mV)conduc-V g =−5.10V).resonance,at mK (e).are edges of by the finite source-drain bias.12Moreover,faint light horizontalridges of high conduc-tance around zero bias are seen in Fig.1(c).These ridges occur in a alternating manner,for every second electron added to the nanotube dot.They are consistent with Kondo resonances induced by the finite electron spin S =1/2existing for an odd number N of electrons where an unpaired electron is localized on the tube.7The zero bias resonances are absent for the other regions (with even N )where the ground state spin is S =0.A finite source-drain bias eV ∼kT K suppresses the Kondo effect and the resonances are thus expected to appear as thin horizontal lines at V =0in Fig.1(c),or equivalently as narrow peaks in d I/d V as a function of V .However,we note in Fig.1(b)that in fact a fine splitting of the Kondo peak is observed.Fig.2shows the temperature dependence of the zero bias conductance.We find a nonmonotonic temperature dependence in contrast to the usual Kondo resonances where the linear conductance,G =d I/d V |V =0,scales as G ∼−log(T )for T ≫T K and decreases monotonically with increasing T .In the present device the conductance increases with T up to around 200mK,where G satu-rates at 0.05e 2/h.For higher T (above ∼500mK)G decreases as expected.The accompanying d I/d V plots in Figs.2(b)-(d)show the peak profiles at various tem-peratures.We note that the splitting is only observed at the lowest temperatures,corresponding to the range where G (T )is increasing.Similar behavior is found for the other Kondo resonances in Fig.1(c),although the magnitude of the splittings vary between the different resonances which involve different orbitals.In a previous study of a semiconductor quantum dot in the Kondo regime double resonance peaks were found for an S =1’two-stage’Kondo effect,where two different energy scales result in the appearance of a dip in the peak.13However,this scenario does not apply to our case since the Kondo resonances here only exist for S =1/2as seen from the regular even-odd alternations in Fig.1(c).Application of an external magnetic field will normallyswept from 0.5T to −0.3T (open).cause the S =1/2Kondo resonance to split into two components with a peak spacing ∆V =2E Z /e ,where E Z =(1/2)gµB B is the electron Zeeman energy.5For the resonance in Fig.1(b)the splitting is ∆V ≈0.12mV,which would correspond to an external magnetic field of 0.51T,since g =2.0for the conduction electrons in metallic carbon nanotubes.2Such a large external field offset cannot exist in our experiment.14The magnetic field dependence for the resonance in Fig.2(b)is shown in Fig.3(a).The resonance is split for all fields.At large field the splitting grows as expected for the Zeeman splitting of a Kondo resonance.However,the minimal splitting is in fact achieved at a small finite field B ∼0.15mT,see Fig.3(b).The splitting and asymme-try in field are significant and cannot be explained based on a model of a purely non-magnetic quantum dot in a weak external field.Nanotubes can couple electrically to metal nanoparti-cles.For example,Ref.15demonstrates that a nonmag-netic gold nanoparticle placed in the gap between two nanotube segments can form a single-electron transistor with the nanotubes acting as leads.The sensitivity of the electronic properties of nanotubes to the presence of magnetic particles adsorbed on the tube walls has been proven by low-temperature STM measurements on tubes with Co clusters.16,17We interpret the splitting of the Kondo peak as resulting from contact with a ferromag-netic particle,presumably from the iron-containing cat-alyst material used to grow the nanotubes.11,18Theoret-ical work has shown the Kondo resonances persist when coupling a quantum dot to two ferromagnetic leads,how-ever,the Kondo peaks in d I/d V may split,even in the absence of an external magnetic field.19,20It is antici-pated that this result would also apply for dots cou-pled to just one magnetic lead.It has recently been shown using numerical renormalization group (NRG)theory that the conductance for such a one-magnetic-lead quantum dot would exhibit a nonmonotonic temperature dependence.21These results support our interpretation3that the splitting of the Kondo resonances in our device reflects interactions of the quantum dot with a magnetic impurity.In conclusion we have observed clear splittings of the Kondo resonances in a nanotube dot at zerofield.Inter-estingly,gaps below1meV were recently observed in an-other nanotube quantum dot,22but T or B dependences were not reported,precluding detailed comparison to the present data.We propose that the Kondo resonances in this study has probed the effect of a magnetic impurity on electron transport in a carbon nanotube device.Future experiments allowing gate-controlled interaction with a ferromagnetic particle will provide important further in-formation on the effects of ferromagnetic particles23on quantum transport in nanotubes.Until now all published studies on the effects of defects on nanotube transport have considered nonmagnetic impurities or defects,for instance charge traps in gate oxide,atomic defects,con-taminant particles,kinks,and normal metal particles. Meanwhile,in most fabrication methods for single-wall nanotubes magnetic particles from the catalyst remain in the material after growth,11,24although a catalyst free route for single-wall nanotube synthesis was devised recently.25It should be feasible to probe nanotubes cou-pled deliberately to individual magnetic particles,eg.by moving them into contact by AFM manipulation.15Like-wise,it would be desirable to achieve high transparency contacts to lithographically defined ferromagnetic elec-trodes.Nanotubes have already been contacted by mag-netic electrodes,26but in all reported studies the trans-mission was too low to allow for Kondo resonances to form.Notably,controlling or eliminating unwanted inter-actions with magnetic materials will be crucial for exper-iments on spintronics as well as electron spin resonance and quantum computing in nanotubes.We acknowledge J.von Delft,J.Martinek,and M. Sindel for useful discussions.The work was supported by ARO/ARDA(DAAD19-02-1-0039),NSF-NIRT(EIA-0210736),the Center for Imaging and Mesoscale Struc-tures at Harvard University,and the Danish Technical Research Council STVF.∗Permanent address:Niels Bohr Institute,University of Copenhagen,Electronic address:nygard@nbi.dk1P.L.McEuen,M.Fuhrer,and H.Park,IEEE Trans.on Nanotech.1,78(2002).2D.H.Cobden et al.,Phys.Rev.Lett.81,681(1998).3P.Jarillo-Herrero et al.,Nature429,389(2004).4D.Loss and D.P.DiVincenzo,Phys.Rev.A57,120 (1998).5D.Goldhaber-Gordon et al.,Nature391,156(1998).6L.Kouwenhoven and L.Glazman,Physics World14(1), 33(2001).7J.Nyg˚ard,D.H.Cobden,and P.E.Lindelof,Nature408, 342(2000).8J.Park et al.,Nature417,722(2002),W.J.Liang et al., Nature417,725(2002).9M.Buitelaar et al.,Phys.Rev.Lett.89,256801(2002). 10A.N.Pasupathy et al.,Science306,86(2004).11J.H.Hafner et al.,J.Phys.Chem.B105,743(2001). 12See,e.g.,L.P.Kouwenhoven,C.M.Marcus,P.L.McEuen, S.Tarucha,R.M.Westervelt,and N.S.Wingreen,in Mesoscopic Electron Transport,edited by L.P.Kouwen-hoven,G.Sch¨o n,and L.L.Sohn(Kluwer,Dordrecht,The Netherlands,1997).13W.G.van der Wiel et al.,Phys.Rev.Lett.88,126803 (2002).14From the superconducting coil of our cryostat an offset field of no more than10mT can be expected as shown in other experiments.Moreover,care has been taken to avoidany magnetic material in the setup(chip carrier,holder, leads,filters,cryostat parts etc.).15C.Thelander et al.,Appl.Phys.Lett.79,2106(2001). 16T.Odom et al.,Science290,1549(2000).17G.A.Fiete et al.,Phys.Rev.B66,24431(2002).18The overall diamond pattern of the dot was stable for overa month while the device was kept at subkelvin tempera-tures,i.e.the charge states did not change.Details in the excited state spectrum and Kondo peak splittings changed occasionally,possibly reflecting varying interactions with an impurity particle.19J.Martinek et al.,Phys.Rev.Lett.91,127203(2003),ibid.91,247202(2003).20M.-S.Choi,D.Sanchez and R.Lopez,Phys.Rev.Lett.92, 056601(2004).21M.Sindel and J.von Delft(unpublished).22B.Babic,T.Kontos,and C.Sch¨o nenberger,cond-mat/0407193.23Even strong coupling to a ferromagnetic oxide such as Fe3O4,which is half-metallic and believed to be fully spin polarized,may influence the electronic properties like for coupling to a magnetic metal.24F.Chen et al.,Appl.Phys.Lett.83,4601(2003).25V.Derycke et al.,Nano Lett.2,1046(2002).26K.Tsukagoshi,B.W.Alphenaar,and H.Ago,Nature401, 573(1999).。

相关文档
最新文档